// Copyright (C) 2020-2022 Free Software Foundation, Inc.
// This file is part of GCC.
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// .
#include "rust-ast-resolve.h"
#include "rust-ast-full.h"
#include "rust-tyty.h"
#include "rust-ast-resolve-toplevel.h"
#include "rust-ast-resolve-item.h"
#include "rust-ast-resolve-expr.h"
#include "rust-ast-resolve-struct-expr-field.h"
extern bool
saw_errors (void);
namespace Rust {
namespace Resolver {
// NameResolution
NameResolution *
NameResolution::get ()
{
static NameResolution *instance;
if (instance == nullptr)
instance = new NameResolution ();
return instance;
}
NameResolution::NameResolution ()
: resolver (Resolver::get ()), mappings (Analysis::Mappings::get ())
{
// these are global
resolver->get_type_scope ().push (mappings->get_next_node_id ());
resolver->insert_builtin_types (resolver->get_type_scope ().peek ());
resolver->push_new_type_rib (resolver->get_type_scope ().peek ());
}
void
NameResolution::Resolve (AST::Crate &crate)
{
auto resolver = get ();
resolver->go (crate);
}
void
NameResolution::go (AST::Crate &crate)
{
// lookup current crate name
CrateNum cnum = mappings->get_current_crate ();
std::string crate_name;
bool ok = mappings->get_crate_name (cnum, crate_name);
rust_assert (ok);
// setup the ribs
NodeId scope_node_id = crate.get_node_id ();
resolver->get_name_scope ().push (scope_node_id);
resolver->get_type_scope ().push (scope_node_id);
resolver->get_label_scope ().push (scope_node_id);
resolver->push_new_name_rib (resolver->get_name_scope ().peek ());
resolver->push_new_type_rib (resolver->get_type_scope ().peek ());
resolver->push_new_label_rib (resolver->get_type_scope ().peek ());
// get the root segment
CanonicalPath crate_prefix
= CanonicalPath::new_seg (scope_node_id, crate_name);
crate_prefix.set_crate_num (cnum);
// first gather the top-level namespace names then we drill down so this
// allows for resolving forward declarations since an impl block might have
// a Self type Foo which is defined after the impl block for example.
for (auto it = crate.items.begin (); it != crate.items.end (); it++)
ResolveTopLevel::go (it->get (), CanonicalPath::create_empty (),
crate_prefix);
// FIXME remove this
if (saw_errors ())
return;
// next we can drill down into the items and their scopes
for (auto it = crate.items.begin (); it != crate.items.end (); it++)
ResolveItem::go (it->get (), CanonicalPath::create_empty (), crate_prefix);
}
// rust-ast-resolve-struct-expr-field.h
void
ResolveStructExprField::visit (AST::StructExprFieldIdentifierValue &field)
{
ResolveExpr::go (field.get_value ().get (), field.get_node_id (), prefix,
canonical_prefix);
}
void
ResolveStructExprField::visit (AST::StructExprFieldIndexValue &field)
{
ResolveExpr::go (field.get_value ().get (), field.get_node_id (), prefix,
canonical_prefix);
}
void
ResolveStructExprField::visit (AST::StructExprFieldIdentifier &field)
{
AST::IdentifierExpr expr (field.get_field_name (), {}, field.get_locus ());
expr.set_node_id (field.get_node_id ());
ResolveExpr::go (&expr, field.get_node_id (), prefix, canonical_prefix);
}
// rust-ast-resolve-expr.h
void
ResolvePath::resolve_path (AST::PathInExpression *expr)
{
// resolve root segment first then apply segments in turn
std::vector &segs = expr->get_segments ();
AST::PathExprSegment &root_segment = segs.at (0);
AST::PathIdentSegment &root_ident_seg = root_segment.get_ident_segment ();
bool segment_is_type = false;
CanonicalPath root_seg_path
= CanonicalPath::new_seg (root_segment.get_node_id (),
root_ident_seg.as_string ());
// name scope first
if (resolver->get_name_scope ().lookup (root_seg_path, &resolved_node))
{
segment_is_type = false;
resolver->insert_resolved_name (root_segment.get_node_id (),
resolved_node);
resolver->insert_new_definition (root_segment.get_node_id (),
Definition{expr->get_node_id (),
parent});
}
// check the type scope
else if (resolver->get_type_scope ().lookup (root_seg_path, &resolved_node))
{
segment_is_type = true;
resolver->insert_resolved_type (root_segment.get_node_id (),
resolved_node);
resolver->insert_new_definition (root_segment.get_node_id (),
Definition{expr->get_node_id (),
parent});
}
else
{
rust_error_at (expr->get_locus (),
"Cannot find path %<%s%> in this scope",
root_segment.as_string ().c_str ());
return;
}
if (root_segment.has_generic_args ())
{
bool ok = ResolveTypeToCanonicalPath::type_resolve_generic_args (
root_segment.get_generic_args ());
if (!ok)
{
rust_error_at (root_segment.get_locus (),
"failed to resolve generic arguments");
return;
}
}
bool is_single_segment = segs.size () == 1;
if (is_single_segment)
{
if (segment_is_type)
resolver->insert_resolved_type (expr->get_node_id (), resolved_node);
else
resolver->insert_resolved_name (expr->get_node_id (), resolved_node);
resolver->insert_new_definition (expr->get_node_id (),
Definition{expr->get_node_id (),
parent});
return;
}
resolve_segments (root_seg_path, 1, expr->get_segments (),
expr->get_node_id (), expr->get_locus ());
}
void
ResolvePath::resolve_path (AST::QualifiedPathInExpression *expr)
{
AST::QualifiedPathType &root_segment = expr->get_qualified_path_type ();
bool canonicalize_type_with_generics = false;
ResolveType::go (&root_segment.get_as_type_path (),
root_segment.get_node_id (),
canonicalize_type_with_generics);
ResolveType::go (root_segment.get_type ().get (), root_segment.get_node_id (),
canonicalize_type_with_generics);
bool type_resolve_generic_args = true;
CanonicalPath impl_type_seg
= ResolveTypeToCanonicalPath::resolve (*root_segment.get_type ().get (),
canonicalize_type_with_generics,
type_resolve_generic_args);
CanonicalPath trait_type_seg
= ResolveTypeToCanonicalPath::resolve (root_segment.get_as_type_path (),
canonicalize_type_with_generics,
type_resolve_generic_args);
CanonicalPath root_seg_path
= TraitImplProjection::resolve (root_segment.get_node_id (), trait_type_seg,
impl_type_seg);
bool segment_is_type = false;
// name scope first
if (resolver->get_name_scope ().lookup (root_seg_path, &resolved_node))
{
segment_is_type = false;
resolver->insert_resolved_name (root_segment.get_node_id (),
resolved_node);
resolver->insert_new_definition (root_segment.get_node_id (),
Definition{expr->get_node_id (),
parent});
}
// check the type scope
else if (resolver->get_type_scope ().lookup (root_seg_path, &resolved_node))
{
segment_is_type = true;
resolver->insert_resolved_type (root_segment.get_node_id (),
resolved_node);
resolver->insert_new_definition (root_segment.get_node_id (),
Definition{expr->get_node_id (),
parent});
}
else
{
rust_error_at (expr->get_locus (),
"Cannot find path %<%s%> in this scope",
root_segment.as_string ().c_str ());
return;
}
bool is_single_segment = expr->get_segments ().empty ();
if (is_single_segment)
{
if (segment_is_type)
resolver->insert_resolved_type (expr->get_node_id (), resolved_node);
else
resolver->insert_resolved_name (expr->get_node_id (), resolved_node);
resolver->insert_new_definition (expr->get_node_id (),
Definition{expr->get_node_id (),
parent});
return;
}
resolve_segments (root_seg_path, 0, expr->get_segments (),
expr->get_node_id (), expr->get_locus ());
}
void
ResolvePath::resolve_segments (CanonicalPath prefix, size_t offs,
std::vector &segs,
NodeId expr_node_id, Location expr_locus)
{
// we can attempt to resolve this path fully
CanonicalPath path = prefix;
bool segment_is_type = false;
for (size_t i = offs; i < segs.size (); i++)
{
AST::PathExprSegment &seg = segs.at (i);
auto s = ResolvePathSegmentToCanonicalPath::resolve (seg);
path = path.append (s);
// reset state
segment_is_type = false;
resolved_node = UNKNOWN_NODEID;
if (resolver->get_name_scope ().lookup (path, &resolved_node))
{
resolver->insert_resolved_name (seg.get_node_id (), resolved_node);
resolver->insert_new_definition (seg.get_node_id (),
Definition{expr_node_id, parent});
}
// check the type scope
else if (resolver->get_type_scope ().lookup (path, &resolved_node))
{
segment_is_type = true;
resolver->insert_resolved_type (seg.get_node_id (), resolved_node);
resolver->insert_new_definition (seg.get_node_id (),
Definition{expr_node_id, parent});
}
else
{
// attempt to fully resolve the path which is allowed to fail given
// the following scenario
//
// https://github.com/Rust-GCC/gccrs/issues/355 Paths are
// resolved fully here, there are limitations though imagine:
//
// struct Foo (A);
//
// impl Foo {
// fn test() -> ...
//
// impl Foo {
// fn test() -> ...
//
// fn main() {
// let a:i32 = Foo::test();
//
// there are multiple paths that test can resolve to Foo::>::test
// here so we cannot resolve this case
//
// canonical names:
//
// struct Foo -> Foo
// impl Foo::fn test -> Foo::isize::test
// impl Foo::fn test -> Foo::f32::test
//
// Since there is the case we have the following paths for test:
//
// Foo::isize::test
// Foo::f32::test
// vs
// Foo::test
//
// but the lookup was simply Foo::test we must rely on type resolution
// to figure this type out in a similar fashion to method resolution
// with a probe phase
// nothing more we can do we need the type resolver to try and resolve
// this
return;
}
}
// its fully resolved lets mark it as such
if (resolved_node != UNKNOWN_NODEID)
{
if (segment_is_type)
resolver->insert_resolved_type (expr_node_id, resolved_node);
else
resolver->insert_resolved_name (expr_node_id, resolved_node);
resolver->insert_new_definition (expr_node_id,
Definition{expr_node_id, parent});
}
}
// rust-ast-resolve-item.h
void
ResolveItem::resolve_impl_item (AST::TraitImplItem *item,
const CanonicalPath &prefix,
const CanonicalPath &canonical_prefix)
{
ResolveImplItems::go (item, prefix, canonical_prefix);
}
void
ResolveItem::resolve_impl_item (AST::InherentImplItem *item,
const CanonicalPath &prefix,
const CanonicalPath &canonical_prefix)
{
ResolveImplItems::go (item, prefix, canonical_prefix);
}
void
ResolveItem::resolve_extern_item (AST::ExternalItem *item)
{
ResolveExternItem::go (item);
}
// qualified path in type
bool
ResolveRelativeTypePath::resolve_qual_seg (AST::QualifiedPathType &seg,
CanonicalPath &result)
{
if (seg.is_error ())
{
rust_error_at (seg.get_locus (), "segment has error: %s",
seg.as_string ().c_str ());
return false;
}
bool include_generic_args_in_path = false;
NodeId type_resolved_node
= ResolveType::go (seg.get_type ().get (), seg.get_node_id ());
if (type_resolved_node == UNKNOWN_NODEID)
return false;
CanonicalPath impl_type_seg
= ResolveTypeToCanonicalPath::resolve (*seg.get_type ().get (),
include_generic_args_in_path);
if (!seg.has_as_clause ())
{
result = result.append (impl_type_seg);
return true;
}
NodeId trait_resolved_node
= ResolveType::go (&seg.get_as_type_path (), seg.get_node_id ());
if (trait_resolved_node == UNKNOWN_NODEID)
return false;
CanonicalPath trait_type_seg
= ResolveTypeToCanonicalPath::resolve (seg.get_as_type_path (),
include_generic_args_in_path);
CanonicalPath projection
= TraitImplProjection::resolve (seg.get_node_id (), trait_type_seg,
impl_type_seg);
result = result.append (projection);
return true;
}
} // namespace Resolver
} // namespace Rust