// Copyright (C) 2020-2025 Free Software Foundation, Inc. // This file is part of GCC. // GCC is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 3, or (at your option) any later // version. // GCC is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // You should have received a copy of the GNU General Public License // along with GCC; see the file COPYING3. If not see // . #include "rust-ast-resolve-item.h" #include "rust-ast-full-decls.h" #include "rust-ast-resolve-toplevel.h" #include "rust-ast-resolve-type.h" #include "rust-ast-resolve-pattern.h" #include "rust-ast-resolve-path.h" #include "rust-item.h" #include "selftest.h" namespace Rust { namespace Resolver { ResolveTraitItems::ResolveTraitItems (const CanonicalPath &prefix, const CanonicalPath &canonical_prefix) : ResolverBase (), prefix (prefix), canonical_prefix (canonical_prefix) {} void ResolveTraitItems::go (AST::AssociatedItem *item, const CanonicalPath &prefix, const CanonicalPath &canonical_prefix) { if (item->is_marked_for_strip ()) return; ResolveTraitItems resolver (prefix, canonical_prefix); item->accept_vis (resolver); } void ResolveTraitItems::visit (AST::Function &function) { auto decl = CanonicalPath::new_seg (function.get_node_id (), function.get_function_name ().as_string ()); auto path = prefix.append (decl); auto cpath = canonical_prefix.append (decl); mappings.insert_canonical_path (function.get_node_id (), cpath); NodeId scope_node_id = function.get_node_id (); resolver->get_name_scope ().push (scope_node_id); resolver->get_type_scope ().push (scope_node_id); resolver->get_label_scope ().push (scope_node_id); resolver->push_new_name_rib (resolver->get_name_scope ().peek ()); resolver->push_new_type_rib (resolver->get_type_scope ().peek ()); resolver->push_new_label_rib (resolver->get_type_scope ().peek ()); if (function.has_generics ()) for (auto &generic : function.get_generic_params ()) ResolveGenericParam::go (*generic, prefix, canonical_prefix); if (function.has_return_type ()) ResolveType::go (function.get_return_type ()); // self turns into (self: Self) as a function param std::vector bindings = {PatternBinding (PatternBoundCtx::Product, std::set ())}; // we make a new scope so the names of parameters are resolved and shadowed // correctly for (auto &p : function.get_function_params ()) { if (p->is_variadic ()) { auto param = static_cast (*p); PatternDeclaration::go (param.get_pattern (), Rib::ItemType::Param, bindings); } else if (p->is_self ()) { auto ¶m = static_cast (*p); // FIXME: which location should be used for Rust::Identifier `self`? AST::IdentifierPattern self_pattern ( param.get_node_id (), {"self"}, param.get_locus (), param.get_has_ref (), param.get_is_mut (), std::unique_ptr (nullptr)); PatternDeclaration::go (self_pattern, Rib::ItemType::Param); if (param.has_type ()) { // This shouldn't happen the parser should already error for this rust_assert (!param.get_has_ref ()); ResolveType::go (param.get_type ()); } else { // here we implicitly make self have a type path of Self std::vector> segments; segments.push_back (std::unique_ptr ( new AST::TypePathSegment ("Self", false, param.get_locus ()))); AST::TypePath self_type_path (std::move (segments), param.get_locus ()); ResolveType::go (self_type_path); } } else { auto ¶m = static_cast (*p); ResolveType::go (param.get_type ()); PatternDeclaration::go (param.get_pattern (), Rib::ItemType::Param, bindings); } } if (function.has_where_clause ()) ResolveWhereClause::Resolve (function.get_where_clause ()); // trait items have an optional body if (function.has_body ()) ResolveExpr::go (*function.get_definition ().value (), path, cpath); resolver->get_name_scope ().pop (); resolver->get_type_scope ().pop (); resolver->get_label_scope ().pop (); } void ResolveTraitItems::visit (AST::TraitItemType &type) { auto decl = CanonicalPath::new_seg (type.get_node_id (), type.get_identifier ().as_string ()); auto path = prefix.append (decl); auto cpath = canonical_prefix.append (decl); mappings.insert_canonical_path (type.get_node_id (), cpath); for (auto &bound : type.get_type_param_bounds ()) ResolveTypeBound::go (*bound); } void ResolveTraitItems::visit (AST::TraitItemConst &constant) { auto decl = CanonicalPath::new_seg (constant.get_node_id (), constant.get_identifier ().as_string ()); auto path = prefix.append (decl); auto cpath = canonical_prefix.append (decl); mappings.insert_canonical_path (constant.get_node_id (), cpath); ResolveType::go (constant.get_type ()); if (constant.has_expr ()) ResolveExpr::go (constant.get_expr (), path, cpath); } ResolveItem::ResolveItem (const CanonicalPath &prefix, const CanonicalPath &canonical_prefix) : ResolverBase (), prefix (prefix), canonical_prefix (canonical_prefix) {} void ResolveItem::go (AST::Item &item, const CanonicalPath &prefix, const CanonicalPath &canonical_prefix) { ResolveItem resolver (prefix, canonical_prefix); item.accept_vis (resolver); } void ResolveItem::visit (AST::TypeAlias &alias) { auto talias = CanonicalPath::new_seg (alias.get_node_id (), alias.get_new_type_name ().as_string ()); auto path = prefix.append (talias); auto cpath = canonical_prefix.append (talias); mappings.insert_canonical_path (alias.get_node_id (), cpath); NodeId scope_node_id = alias.get_node_id (); resolver->get_type_scope ().push (scope_node_id); if (alias.has_generics ()) for (auto &generic : alias.get_generic_params ()) ResolveGenericParam::go (*generic, prefix, canonical_prefix); if (alias.has_where_clause ()) ResolveWhereClause::Resolve (alias.get_where_clause ()); ResolveType::go (alias.get_type_aliased ()); resolver->get_type_scope ().pop (); } void ResolveItem::visit (AST::Module &module) { auto mod = CanonicalPath::new_seg (module.get_node_id (), module.get_name ().as_string ()); auto path = prefix.append (mod); auto cpath = canonical_prefix.append (mod); mappings.insert_canonical_path (module.get_node_id (), cpath); resolve_visibility (module.get_visibility ()); NodeId scope_node_id = module.get_node_id (); resolver->get_name_scope ().push (scope_node_id); resolver->get_type_scope ().push (scope_node_id); resolver->get_label_scope ().push (scope_node_id); resolver->push_new_name_rib (resolver->get_name_scope ().peek ()); resolver->push_new_type_rib (resolver->get_type_scope ().peek ()); resolver->push_new_label_rib (resolver->get_type_scope ().peek ()); // FIXME: Should we reinsert a child here? Any reason we ResolveTopLevel::go // in ResolveTopLevel::visit (AST::Module) as well as here? for (auto &item : module.get_items ()) ResolveTopLevel::go (*item, CanonicalPath::create_empty (), cpath); resolver->push_new_module_scope (module.get_node_id ()); for (auto &item : module.get_items ()) ResolveItem::go (*item, path, cpath); resolver->pop_module_scope (); resolver->get_name_scope ().pop (); resolver->get_type_scope ().pop (); resolver->get_label_scope ().pop (); } void ResolveItem::visit (AST::TupleStruct &struct_decl) { auto decl = CanonicalPath::new_seg (struct_decl.get_node_id (), struct_decl.get_identifier ().as_string ()); auto path = prefix.append (decl); auto cpath = canonical_prefix.append (decl); mappings.insert_canonical_path (struct_decl.get_node_id (), cpath); resolve_visibility (struct_decl.get_visibility ()); NodeId scope_node_id = struct_decl.get_node_id (); resolver->get_type_scope ().push (scope_node_id); if (struct_decl.has_generics ()) for (auto &generic : struct_decl.get_generic_params ()) ResolveGenericParam::go (*generic, prefix, canonical_prefix); if (struct_decl.has_where_clause ()) ResolveWhereClause::Resolve (struct_decl.get_where_clause ()); for (AST::TupleField &field : struct_decl.get_fields ()) { if (field.get_field_type ().is_marked_for_strip ()) continue; resolve_visibility (field.get_visibility ()); ResolveType::go (field.get_field_type ()); } resolver->get_type_scope ().pop (); } void ResolveItem::visit (AST::Enum &enum_decl) { auto decl = CanonicalPath::new_seg (enum_decl.get_node_id (), enum_decl.get_identifier ().as_string ()); auto path = prefix.append (decl); auto cpath = canonical_prefix.append (decl); mappings.insert_canonical_path (enum_decl.get_node_id (), cpath); resolve_visibility (enum_decl.get_visibility ()); NodeId scope_node_id = enum_decl.get_node_id (); resolver->get_type_scope ().push (scope_node_id); if (enum_decl.has_generics ()) for (auto &generic : enum_decl.get_generic_params ()) ResolveGenericParam::go (*generic, prefix, cpath); if (enum_decl.has_where_clause ()) ResolveWhereClause::Resolve (enum_decl.get_where_clause ()); /* The actual fields are inside the variants. */ for (auto &variant : enum_decl.get_variants ()) ResolveItem::go (*variant, path, cpath); resolver->get_type_scope ().pop (); } /* EnumItem doesn't need to be handled, no fields. */ void ResolveItem::visit (AST::EnumItem &item) { // Since at this point we cannot have visibilities on enum items anymore, we // can skip handling them auto decl = CanonicalPath::new_seg (item.get_node_id (), item.get_identifier ().as_string ()); auto path = prefix.append (decl); auto cpath = canonical_prefix.append (decl); mappings.insert_canonical_path (item.get_node_id (), cpath); } void ResolveItem::visit (AST::EnumItemTuple &item) { auto decl = CanonicalPath::new_seg (item.get_node_id (), item.get_identifier ().as_string ()); auto path = prefix.append (decl); auto cpath = canonical_prefix.append (decl); mappings.insert_canonical_path (item.get_node_id (), cpath); for (auto &field : item.get_tuple_fields ()) { if (field.get_field_type ().is_marked_for_strip ()) continue; ResolveType::go (field.get_field_type ()); } } void ResolveItem::visit (AST::EnumItemStruct &item) { auto decl = CanonicalPath::new_seg (item.get_node_id (), item.get_identifier ().as_string ()); auto path = prefix.append (decl); auto cpath = canonical_prefix.append (decl); mappings.insert_canonical_path (item.get_node_id (), cpath); for (auto &field : item.get_struct_fields ()) { if (field.get_field_type ().is_marked_for_strip ()) continue; ResolveType::go (field.get_field_type ()); } } void ResolveItem::visit (AST::EnumItemDiscriminant &item) { auto decl = CanonicalPath::new_seg (item.get_node_id (), item.get_identifier ().as_string ()); auto path = prefix.append (decl); auto cpath = canonical_prefix.append (decl); mappings.insert_canonical_path (item.get_node_id (), cpath); } void ResolveItem::visit (AST::StructStruct &struct_decl) { auto decl = CanonicalPath::new_seg (struct_decl.get_node_id (), struct_decl.get_identifier ().as_string ()); auto path = prefix.append (decl); auto cpath = canonical_prefix.append (decl); mappings.insert_canonical_path (struct_decl.get_node_id (), cpath); resolve_visibility (struct_decl.get_visibility ()); NodeId scope_node_id = struct_decl.get_node_id (); resolver->get_type_scope ().push (scope_node_id); if (struct_decl.has_generics ()) for (auto &generic : struct_decl.get_generic_params ()) ResolveGenericParam::go (*generic, prefix, canonical_prefix); if (struct_decl.has_where_clause ()) ResolveWhereClause::Resolve (struct_decl.get_where_clause ()); for (AST::StructField &field : struct_decl.get_fields ()) { if (field.get_field_type ().is_marked_for_strip ()) continue; resolve_visibility (field.get_visibility ()); ResolveType::go (field.get_field_type ()); } resolver->get_type_scope ().pop (); } void ResolveItem::visit (AST::Union &union_decl) { auto decl = CanonicalPath::new_seg (union_decl.get_node_id (), union_decl.get_identifier ().as_string ()); auto path = prefix.append (decl); auto cpath = canonical_prefix.append (decl); mappings.insert_canonical_path (union_decl.get_node_id (), cpath); resolve_visibility (union_decl.get_visibility ()); NodeId scope_node_id = union_decl.get_node_id (); resolver->get_type_scope ().push (scope_node_id); if (union_decl.has_generics ()) for (auto &generic : union_decl.get_generic_params ()) ResolveGenericParam::go (*generic, prefix, canonical_prefix); if (union_decl.has_where_clause ()) ResolveWhereClause::Resolve (union_decl.get_where_clause ()); for (AST::StructField &field : union_decl.get_variants ()) { if (field.get_field_type ().is_marked_for_strip ()) continue; ResolveType::go (field.get_field_type ()); } resolver->get_type_scope ().pop (); } void ResolveItem::visit (AST::StaticItem &var) { auto decl = CanonicalPath::new_seg (var.get_node_id (), var.get_identifier ().as_string ()); auto path = prefix.append (decl); auto cpath = canonical_prefix.append (decl); mappings.insert_canonical_path (var.get_node_id (), cpath); ResolveType::go (var.get_type ()); ResolveExpr::go (var.get_expr (), path, cpath); } void ResolveItem::visit (AST::ConstantItem &constant) { auto decl = CanonicalPath::new_seg (constant.get_node_id (), constant.get_identifier ()); auto path = prefix.append (decl); auto cpath = canonical_prefix.append (decl); mappings.insert_canonical_path (constant.get_node_id (), cpath); resolve_visibility (constant.get_visibility ()); ResolveType::go (constant.get_type ()); ResolveExpr::go (constant.get_expr (), path, cpath); } void ResolveItem::visit (AST::Function &function) { auto decl = CanonicalPath::new_seg (function.get_node_id (), function.get_function_name ().as_string ()); auto path = prefix.append (decl); auto cpath = canonical_prefix.append (decl); mappings.insert_canonical_path (function.get_node_id (), cpath); resolve_visibility (function.get_visibility ()); NodeId scope_node_id = function.get_node_id (); resolver->get_name_scope ().push (scope_node_id); resolver->get_type_scope ().push (scope_node_id); resolver->get_label_scope ().push (scope_node_id); resolver->push_new_name_rib (resolver->get_name_scope ().peek ()); resolver->push_new_type_rib (resolver->get_type_scope ().peek ()); resolver->push_new_label_rib (resolver->get_type_scope ().peek ()); if (function.has_generics ()) for (auto &generic : function.get_generic_params ()) ResolveGenericParam::go (*generic, prefix, canonical_prefix); // resolve any where clause items if (function.has_where_clause ()) ResolveWhereClause::Resolve (function.get_where_clause ()); if (function.has_return_type ()) ResolveType::go (function.get_return_type ()); if (function.has_self_param ()) { // self turns into (self: Self) as a function param AST::Param &s_param = function.get_self_param (); auto &self_param = static_cast (s_param); // FIXME: which location should be used for Rust::Identifier `self`? AST::IdentifierPattern self_pattern ( self_param.get_node_id (), {"self"}, self_param.get_locus (), self_param.get_has_ref (), self_param.get_is_mut (), std::unique_ptr (nullptr)); PatternDeclaration::go (self_pattern, Rib::ItemType::Param); if (self_param.has_type ()) { // This shouldn't happen the parser should already error for this rust_assert (!self_param.get_has_ref ()); ResolveType::go (self_param.get_type ()); } else { // here we implicitly make self have a type path of Self std::vector> segments; segments.push_back (std::unique_ptr ( new AST::TypePathSegment ("Self", false, self_param.get_locus ()))); AST::TypePath self_type_path (std::move (segments), self_param.get_locus ()); ResolveType::go (self_type_path); } } std::vector bindings = {PatternBinding (PatternBoundCtx::Product, std::set ())}; // we make a new scope so the names of parameters are resolved and shadowed // correctly for (auto &p : function.get_function_params ()) { if (p->is_variadic ()) { auto ¶m = static_cast (*p); if (param.has_pattern ()) PatternDeclaration::go (param.get_pattern (), Rib::ItemType::Param, bindings); } else if (p->is_self ()) { auto ¶m = static_cast (*p); if (param.has_type ()) ResolveType::go (param.get_type ()); } else { auto ¶m = static_cast (*p); ResolveType::go (param.get_type ()); PatternDeclaration::go (param.get_pattern (), Rib::ItemType::Param, bindings); } } // resolve the function body ResolveExpr::go (*function.get_definition ().value (), path, cpath); resolver->get_name_scope ().pop (); resolver->get_type_scope ().pop (); resolver->get_label_scope ().pop (); } void ResolveItem::visit (AST::InherentImpl &impl_block) { NodeId scope_node_id = impl_block.get_node_id (); resolver->get_name_scope ().push (scope_node_id); resolver->get_type_scope ().push (scope_node_id); resolver->push_new_name_rib (resolver->get_name_scope ().peek ()); resolver->push_new_type_rib (resolver->get_type_scope ().peek ()); resolve_visibility (impl_block.get_visibility ()); if (impl_block.has_generics ()) for (auto &generic : impl_block.get_generic_params ()) ResolveGenericParam::go (*generic, prefix, canonical_prefix); // resolve any where clause items if (impl_block.has_where_clause ()) ResolveWhereClause::Resolve (impl_block.get_where_clause ()); // FIXME this needs to be protected behind nominal type-checks see: // rustc --explain E0118 // issue #2634 ResolveType::go (impl_block.get_type ()); // Setup paths CanonicalPath self_cpath = CanonicalPath::create_empty (); bool ok = ResolveTypeToCanonicalPath::go (impl_block.get_type (), self_cpath); rust_assert (ok); rust_debug ("AST::InherentImpl resolve Self: {%s}", self_cpath.get ().c_str ()); CanonicalPath impl_type = self_cpath; CanonicalPath impl_type_seg = CanonicalPath::inherent_impl_seg (impl_block.get_node_id (), impl_type); CanonicalPath impl_prefix = prefix.append (impl_type_seg); // see https://godbolt.org/z/a3vMbsT6W CanonicalPath cpath = CanonicalPath::create_empty (); if (canonical_prefix.size () <= 1) { cpath = impl_prefix; } else { std::string seg_buf = ""; CanonicalPath seg = CanonicalPath::new_seg (impl_block.get_node_id (), seg_buf); cpath = canonical_prefix.append (seg); } // done setup paths auto Self = CanonicalPath::get_big_self (impl_block.get_type ().get_node_id ()); resolver->get_type_scope ().insert (Self, impl_block.get_type ().get_node_id (), impl_block.get_type ().get_locus ()); for (auto &impl_item : impl_block.get_impl_items ()) { rust_debug ( "AST::InherentImpl resolve_impl_item: impl_prefix={%s} cpath={%s}", impl_prefix.get ().c_str (), cpath.get ().c_str ()); resolve_impl_item (*impl_item, impl_prefix, cpath); } resolver->get_type_scope ().peek ()->clear_name ( Self, impl_block.get_type ().get_node_id ()); resolver->get_type_scope ().pop (); resolver->get_name_scope ().pop (); } void ResolveItem::visit (AST::TraitImpl &impl_block) { NodeId scope_node_id = impl_block.get_node_id (); resolve_visibility (impl_block.get_visibility ()); resolver->get_name_scope ().push (scope_node_id); resolver->get_type_scope ().push (scope_node_id); resolver->get_label_scope ().push (scope_node_id); resolver->push_new_name_rib (resolver->get_name_scope ().peek ()); resolver->push_new_type_rib (resolver->get_type_scope ().peek ()); resolver->push_new_label_rib (resolver->get_type_scope ().peek ()); if (impl_block.has_generics ()) for (auto &generic : impl_block.get_generic_params ()) ResolveGenericParam::go (*generic, prefix, canonical_prefix); // resolve any where clause items if (impl_block.has_where_clause ()) ResolveWhereClause::Resolve (impl_block.get_where_clause ()); // CanonicalPath canonical_trait_type = CanonicalPath::create_empty (); NodeId trait_resolved_node = ResolveType::go (impl_block.get_trait_path ()); if (trait_resolved_node == UNKNOWN_NODEID) { resolver->get_name_scope ().pop (); resolver->get_type_scope ().pop (); resolver->get_label_scope ().pop (); return; } // CanonicalPath canonical_impl_type = CanonicalPath::create_empty (); NodeId type_resolved_node = ResolveType::go (impl_block.get_type ()); if (type_resolved_node == UNKNOWN_NODEID) { resolver->get_name_scope ().pop (); resolver->get_type_scope ().pop (); resolver->get_label_scope ().pop (); return; } bool ok; // setup paths CanonicalPath canonical_trait_type = CanonicalPath::create_empty (); ok = ResolveTypeToCanonicalPath::go (impl_block.get_trait_path (), canonical_trait_type); rust_assert (ok); rust_debug ("AST::TraitImpl resolve trait type: {%s}", canonical_trait_type.get ().c_str ()); CanonicalPath canonical_impl_type = CanonicalPath::create_empty (); ok = ResolveTypeToCanonicalPath::go (impl_block.get_type (), canonical_impl_type); rust_assert (ok); rust_debug ("AST::TraitImpl resolve self: {%s}", canonical_impl_type.get ().c_str ()); // raw paths CanonicalPath impl_type_seg = canonical_impl_type; CanonicalPath trait_type_seg = canonical_trait_type; CanonicalPath projection = CanonicalPath::trait_impl_projection_seg (impl_block.get_node_id (), trait_type_seg, impl_type_seg); CanonicalPath impl_prefix = prefix.append (projection); // setup canonical-path CanonicalPath canonical_projection = CanonicalPath::trait_impl_projection_seg (impl_block.get_node_id (), canonical_trait_type, canonical_impl_type); CanonicalPath cpath = CanonicalPath::create_empty (); if (canonical_prefix.size () <= 1) { cpath = canonical_projection; } else { std::string projection_str = canonical_projection.get (); std::string seg_buf = ""; CanonicalPath seg = CanonicalPath::new_seg (impl_block.get_node_id (), seg_buf); cpath = canonical_prefix.append (seg); } // DONE setup canonical-path auto Self = CanonicalPath::get_big_self (impl_block.get_type ().get_node_id ()); resolver->get_type_scope ().insert (Self, impl_block.get_type ().get_node_id (), impl_block.get_type ().get_locus ()); for (auto &impl_item : impl_block.get_impl_items ()) { rust_debug ( "AST::TraitImpl resolve_impl_item: impl_prefix={%s} cpath={%s}", impl_prefix.get ().c_str (), cpath.get ().c_str ()); resolve_impl_item (*impl_item, impl_prefix, cpath); } Rib *r = resolver->get_type_scope ().peek (); r->clear_name (Self, impl_block.get_type ().get_node_id ()); resolver->get_name_scope ().pop (); resolver->get_type_scope ().pop (); resolver->get_label_scope ().pop (); } void ResolveItem::visit (AST::Trait &trait) { NodeId scope_node_id = trait.get_node_id (); resolve_visibility (trait.get_visibility ()); resolver->get_name_scope ().push (scope_node_id); resolver->get_type_scope ().push (scope_node_id); resolver->push_new_name_rib (resolver->get_name_scope ().peek ()); resolver->push_new_type_rib (resolver->get_type_scope ().peek ()); // we need to inject an implicit self TypeParam here // FIXME: which location should be used for Rust::Identifier `Self`? AST::TypeParam *implicit_self = new AST::TypeParam ({"Self"}, trait.get_locus ()); trait.insert_implict_self ( std::unique_ptr (implicit_self)); CanonicalPath Self = CanonicalPath::get_big_self (trait.get_node_id ()); for (auto &generic : trait.get_generic_params ()) ResolveGenericParam::go (*generic, prefix, canonical_prefix); // Self is an implicit TypeParam so lets mark it as such resolver->get_type_scope ().append_reference_for_def ( Self.get_node_id (), implicit_self->get_node_id ()); if (trait.has_type_param_bounds ()) { for (auto &bound : trait.get_type_param_bounds ()) { ResolveTypeBound::go (*bound); } } // resolve any where clause items if (trait.has_where_clause ()) ResolveWhereClause::Resolve (trait.get_where_clause ()); // resolve the paths CanonicalPath path = CanonicalPath::create_empty (); CanonicalPath cpath = CanonicalPath::create_empty (); // for (auto &item : trait.get_trait_items ()) { ResolveTraitItems::go (item.get (), path, cpath); } resolver->get_type_scope ().pop (); resolver->get_name_scope ().pop (); } void ResolveItem::visit (AST::ExternBlock &extern_block) { resolve_visibility (extern_block.get_visibility ()); for (auto &item : extern_block.get_extern_items ()) { resolve_extern_item (*item); } } void ResolveItem::resolve_impl_item (AST::AssociatedItem &item, const CanonicalPath &prefix, const CanonicalPath &canonical_prefix) { ResolveImplItems::go (item, prefix, canonical_prefix); } void ResolveItem::resolve_extern_item (AST::ExternalItem &item) { ResolveExternItem::go (item, prefix, canonical_prefix); } static void flatten_glob (const AST::UseTreeGlob &glob, std::vector &imports); static void flatten_rebind (const AST::UseTreeRebind &glob, std::vector &imports); static void flatten_list (const AST::UseTreeList &glob, std::vector &imports); static void flatten (const AST::UseTree *tree, std::vector &imports) { switch (tree->get_kind ()) { case AST::UseTree::Glob: { auto glob = static_cast (tree); flatten_glob (*glob, imports); break; } case AST::UseTree::Rebind: { auto rebind = static_cast (tree); flatten_rebind (*rebind, imports); break; } case AST::UseTree::List: { auto list = static_cast (tree); flatten_list (*list, imports); break; } break; } } static void flatten_glob (const AST::UseTreeGlob &glob, std::vector &imports) { if (glob.has_path ()) imports.emplace_back (glob.get_path (), true, std::string ()); } static void flatten_rebind (const AST::UseTreeRebind &rebind, std::vector &imports) { auto path = rebind.get_path (); std::string label; if (rebind.has_identifier ()) label = rebind.get_identifier ().as_string (); else label = path.get_final_segment ().as_string (); imports.emplace_back (path, false, label); } static void flatten_list (const AST::UseTreeList &list, std::vector &imports) { auto prefix = AST::SimplePath::create_empty (); if (list.has_path ()) prefix = list.get_path (); for (const auto &tree : list.get_trees ()) { // append imports to the main list, then modify them in-place auto start_idx = imports.size (); flatten (tree.get (), imports); for (auto import = imports.begin () + start_idx; import != imports.end (); import++) import->add_prefix (prefix); } } void Import::add_prefix (AST::SimplePath prefix) { AST::SimplePath old_path (std::move (path)); path = std::move (prefix); std::move (old_path.get_segments ().begin (), old_path.get_segments ().end (), std::back_inserter (path.get_segments ())); } /** * Flatten a UseDeclaration's UseTree into multiple simple paths to resolve. * * Given the following use declarations: * ``` * use some::path::to_resolve; #1 * use some::path::to_glob::*; #2 * use some::path::{one, two}; #2 * ``` * * In the first case, we simply want to return a vector with a single * SimplePath: * [some::path::to_resolve] * * In the second case, we want to resolve the glob's "origin path": * [some::path::to_glob] * * Finally in the third case, we want to create two SimplePaths to resolve: * [some::path::one, some::path::two] */ static std::vector flatten_use_dec_to_imports (const AST::UseDeclaration &use_item) { auto imports = std::vector (); const auto &tree = use_item.get_tree (); flatten (tree.get (), imports); return imports; } void ResolveItem::visit (AST::UseDeclaration &use_item) { std::vector to_resolve = flatten_use_dec_to_imports (use_item); // FIXME: I think this does not actually resolve glob use-decls and is going // the wrong way about it. RFC #1560 specifies the following: // // > When we find a glob import, we have to record a 'back link', so that when // a public name is added for the supplying module, we can add it for the // importing module. // // Which is the opposite of what we're doing if I understand correctly? NodeId current_module = resolver->peek_current_module_scope (); for (auto &import : to_resolve) { auto &path = import.get_path (); rust_debug ("resolving use-decl path: [%s]", path.as_string ().c_str ()); NodeId resolved_node_id = ResolvePath::go (path); bool ok = resolved_node_id != UNKNOWN_NODEID; if (!ok) continue; if (import.is_glob ()) continue; auto decl = CanonicalPath::new_seg (resolved_node_id, import.get_name ()); mappings.insert_module_child_item (current_module, decl); resolver->get_type_scope ().insert (decl, resolved_node_id, path.get_locus (), Rib::ItemType::Type); rust_debug ("use-decl rexporting: [%s]", decl.get ().c_str ()); } } ResolveImplItems::ResolveImplItems (const CanonicalPath &prefix, const CanonicalPath &canonical_prefix) : ResolveItem (prefix, canonical_prefix) {} void ResolveImplItems::go (AST::AssociatedItem &item, const CanonicalPath &prefix, const CanonicalPath &canonical_prefix) { if (item.is_marked_for_strip ()) return; ResolveImplItems resolver (prefix, canonical_prefix); item.accept_vis (resolver); } void ResolveImplItems::visit (AST::TypeAlias &alias) { ResolveItem::visit (alias); resolve_visibility (alias.get_visibility ()); // FIXME this stops the erronious unused decls which will be fixed later on resolver->get_type_scope ().append_reference_for_def (alias.get_node_id (), alias.get_node_id ()); } void ResolveExternItem::go (AST::ExternalItem &item, const CanonicalPath &prefix, const CanonicalPath &canonical_prefix) { ResolveExternItem resolver (prefix, canonical_prefix); item.accept_vis (resolver); } void ResolveExternItem::visit (AST::Function &function) { NodeId scope_node_id = function.get_node_id (); auto decl = CanonicalPath::new_seg (function.get_node_id (), function.get_function_name ().as_string ()); auto path = prefix.append (decl); auto cpath = canonical_prefix.append (decl); mappings.insert_canonical_path (function.get_node_id (), cpath); resolve_visibility (function.get_visibility ()); resolver->get_name_scope ().push (scope_node_id); resolver->get_type_scope ().push (scope_node_id); resolver->get_label_scope ().push (scope_node_id); resolver->push_new_name_rib (resolver->get_name_scope ().peek ()); resolver->push_new_type_rib (resolver->get_type_scope ().peek ()); resolver->push_new_label_rib (resolver->get_type_scope ().peek ()); // resolve the generics if (function.has_generics ()) for (auto &generic : function.get_generic_params ()) ResolveGenericParam::go (*generic, prefix, canonical_prefix); if (function.has_return_type ()) ResolveType::go (function.get_return_type ()); // we make a new scope so the names of parameters are resolved and shadowed // correctly for (auto ¶m : function.get_function_params ()) if (!param->is_variadic ()) { auto &p = static_cast (*param); ResolveType::go (p.get_type ()); } // done resolver->get_name_scope ().pop (); resolver->get_type_scope ().pop (); resolver->get_label_scope ().pop (); } void ResolveExternItem::visit (AST::ExternalStaticItem &item) { resolve_visibility (item.get_visibility ()); ResolveType::go (item.get_type ()); } } // namespace Resolver } // namespace Rust #if CHECKING_P namespace selftest { static void rust_flatten_nested_glob (void) { auto foo = Rust::AST::SimplePathSegment ("foo", UNDEF_LOCATION); auto bar = Rust::AST::SimplePathSegment ("bar", UNDEF_LOCATION); auto foobar = Rust::AST::SimplePath ({foo, bar}); auto glob = Rust::AST::UseTreeGlob (Rust::AST::UseTreeGlob::PathType::PATH_PREFIXED, foobar, UNDEF_LOCATION); auto imports = std::vector (); Rust::Resolver::flatten_glob (glob, imports); ASSERT_TRUE (!imports.empty ()); ASSERT_EQ (imports.size (), 1); ASSERT_EQ (imports[0].get_path ().get_segments ()[0].as_string (), "foo"); ASSERT_EQ (imports[0].get_path ().get_segments ()[1].as_string (), "bar"); } static void rust_flatten_glob (void) { auto frob = Rust::AST::SimplePath::from_str ("frobulator", UNDEF_LOCATION); auto glob = Rust::AST::UseTreeGlob (Rust::AST::UseTreeGlob::PathType::PATH_PREFIXED, frob, UNDEF_LOCATION); auto imports = std::vector (); Rust::Resolver::flatten_glob (glob, imports); ASSERT_TRUE (!imports.empty ()); ASSERT_EQ (imports.size (), 1); ASSERT_EQ (imports[0].get_path (), "frobulator"); } static void rust_flatten_rebind_none (void) { auto foo = Rust::AST::SimplePathSegment ("foo", UNDEF_LOCATION); auto bar = Rust::AST::SimplePathSegment ("bar", UNDEF_LOCATION); auto foobar = Rust::AST::SimplePath ({foo, bar}); auto rebind = Rust::AST::UseTreeRebind (Rust::AST::UseTreeRebind::NONE, foobar, UNDEF_LOCATION); auto imports = std::vector (); Rust::Resolver::flatten_rebind (rebind, imports); ASSERT_TRUE (!imports.empty ()); ASSERT_EQ (imports.size (), 1); ASSERT_EQ (imports[0].get_path ().get_segments ()[0].as_string (), "foo"); ASSERT_EQ (imports[0].get_path ().get_segments ()[1].as_string (), "bar"); } static void rust_flatten_rebind (void) { auto frob = Rust::AST::SimplePath::from_str ("frobulator", UNDEF_LOCATION); auto rebind = Rust::AST::UseTreeRebind (Rust::AST::UseTreeRebind::IDENTIFIER, frob, UNDEF_LOCATION, {"saindoux"}); auto imports = std::vector (); Rust::Resolver::flatten_rebind (rebind, imports); ASSERT_TRUE (!imports.empty ()); ASSERT_EQ (imports.size (), 1); ASSERT_EQ (imports[0].get_path (), "frobulator"); ASSERT_EQ (imports[0].get_name (), "saindoux"); } static void rust_flatten_rebind_nested (void) { auto foo = Rust::AST::SimplePathSegment ("foo", UNDEF_LOCATION); auto bar = Rust::AST::SimplePathSegment ("bar", UNDEF_LOCATION); auto baz = Rust::AST::SimplePathSegment ("baz", UNDEF_LOCATION); auto foo_bar_baz = Rust::AST::SimplePath ({foo, bar, baz}); auto rebind = Rust::AST::UseTreeRebind (Rust::AST::UseTreeRebind::IDENTIFIER, foo_bar_baz, UNDEF_LOCATION, {"saindoux"}); auto imports = std::vector (); Rust::Resolver::flatten_rebind (rebind, imports); ASSERT_TRUE (!imports.empty ()); ASSERT_EQ (imports.size (), 1); ASSERT_EQ (imports[0].get_path ().get_segments ()[0].as_string (), "foo"); ASSERT_EQ (imports[0].get_path ().get_segments ()[1].as_string (), "bar"); ASSERT_EQ (imports[0].get_path ().get_segments ()[2].as_string (), "baz"); ASSERT_EQ (imports[0].get_name (), "saindoux"); } static void rust_flatten_list (void) { auto foo = Rust::AST::SimplePathSegment ("foo", UNDEF_LOCATION); auto bar = Rust::AST::SimplePathSegment ("bar", UNDEF_LOCATION); auto foo_bar = Rust::AST::SimplePath ({foo, bar}); auto baz = Rust::AST::SimplePath::from_str ("baz", UNDEF_LOCATION); auto bul = Rust::AST::SimplePath::from_str ("bul", UNDEF_LOCATION); // use foo::bar::{baz, bul}; auto use0 = std::unique_ptr ( new Rust::AST::UseTreeRebind (Rust::AST::UseTreeRebind::NONE, baz, UNDEF_LOCATION)); auto use1 = std::unique_ptr ( new Rust::AST::UseTreeRebind (Rust::AST::UseTreeRebind::NONE, bul, UNDEF_LOCATION)); auto uses = std::vector> (); uses.emplace_back (std::move (use0)); uses.emplace_back (std::move (use1)); auto list = Rust::AST::UseTreeList (Rust::AST::UseTreeList::PATH_PREFIXED, foo_bar, std::move (uses), UNDEF_LOCATION); auto imports = std::vector (); Rust::Resolver::flatten_list (list, imports); ASSERT_TRUE (!imports.empty ()); ASSERT_EQ (imports.size (), 2); ASSERT_EQ (imports[0].get_path ().get_segments ()[0].as_string (), "foo"); ASSERT_EQ (imports[0].get_path ().get_segments ()[1].as_string (), "bar"); ASSERT_EQ (imports[0].get_path ().get_segments ()[2].as_string (), "baz"); ASSERT_EQ (imports[1].get_path ().get_segments ()[0].as_string (), "foo"); ASSERT_EQ (imports[1].get_path ().get_segments ()[1].as_string (), "bar"); ASSERT_EQ (imports[1].get_path ().get_segments ()[2].as_string (), "bul"); } static void rust_use_dec_flattening (void) { rust_flatten_glob (); rust_flatten_nested_glob (); rust_flatten_rebind_none (); rust_flatten_rebind (); rust_flatten_rebind_nested (); rust_flatten_list (); } void rust_simple_path_resolve_test (void) { rust_use_dec_flattening (); } } // namespace selftest #endif // CHECKING_P