// Copyright (C) 2020-2025 Free Software Foundation, Inc.
// This file is part of GCC.
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// .
#include "rust-ast-resolve-item.h"
#include "rust-ast-full-decls.h"
#include "rust-ast-resolve-toplevel.h"
#include "rust-ast-resolve-type.h"
#include "rust-ast-resolve-pattern.h"
#include "rust-ast-resolve-path.h"
#include "rust-item.h"
#include "selftest.h"
namespace Rust {
namespace Resolver {
ResolveTraitItems::ResolveTraitItems (const CanonicalPath &prefix,
const CanonicalPath &canonical_prefix)
: ResolverBase (), prefix (prefix), canonical_prefix (canonical_prefix)
{}
void
ResolveTraitItems::go (AST::AssociatedItem *item, const CanonicalPath &prefix,
const CanonicalPath &canonical_prefix)
{
if (item->is_marked_for_strip ())
return;
ResolveTraitItems resolver (prefix, canonical_prefix);
item->accept_vis (resolver);
}
void
ResolveTraitItems::visit (AST::Function &function)
{
auto decl
= CanonicalPath::new_seg (function.get_node_id (),
function.get_function_name ().as_string ());
auto path = prefix.append (decl);
auto cpath = canonical_prefix.append (decl);
mappings.insert_canonical_path (function.get_node_id (), cpath);
NodeId scope_node_id = function.get_node_id ();
resolver->get_name_scope ().push (scope_node_id);
resolver->get_type_scope ().push (scope_node_id);
resolver->get_label_scope ().push (scope_node_id);
resolver->push_new_name_rib (resolver->get_name_scope ().peek ());
resolver->push_new_type_rib (resolver->get_type_scope ().peek ());
resolver->push_new_label_rib (resolver->get_type_scope ().peek ());
if (function.has_generics ())
for (auto &generic : function.get_generic_params ())
ResolveGenericParam::go (*generic, prefix, canonical_prefix);
if (function.has_return_type ())
ResolveType::go (function.get_return_type ());
// self turns into (self: Self) as a function param
std::vector bindings
= {PatternBinding (PatternBoundCtx::Product, std::set ())};
// we make a new scope so the names of parameters are resolved and shadowed
// correctly
for (auto &p : function.get_function_params ())
{
if (p->is_variadic ())
{
auto param = static_cast (*p);
PatternDeclaration::go (param.get_pattern (), Rib::ItemType::Param,
bindings);
}
else if (p->is_self ())
{
auto ¶m = static_cast (*p);
// FIXME: which location should be used for Rust::Identifier `self`?
AST::IdentifierPattern self_pattern (
param.get_node_id (), {"self"}, param.get_locus (),
param.get_has_ref (), param.get_is_mut (),
std::unique_ptr (nullptr));
PatternDeclaration::go (self_pattern, Rib::ItemType::Param);
if (param.has_type ())
{
// This shouldn't happen the parser should already error for this
rust_assert (!param.get_has_ref ());
ResolveType::go (param.get_type ());
}
else
{
// here we implicitly make self have a type path of Self
std::vector> segments;
segments.push_back (std::unique_ptr (
new AST::TypePathSegment ("Self", false, param.get_locus ())));
AST::TypePath self_type_path (std::move (segments),
param.get_locus ());
ResolveType::go (self_type_path);
}
}
else
{
auto ¶m = static_cast (*p);
ResolveType::go (param.get_type ());
PatternDeclaration::go (param.get_pattern (), Rib::ItemType::Param,
bindings);
}
}
if (function.has_where_clause ())
ResolveWhereClause::Resolve (function.get_where_clause ());
// trait items have an optional body
if (function.has_body ())
ResolveExpr::go (*function.get_definition ().value (), path, cpath);
resolver->get_name_scope ().pop ();
resolver->get_type_scope ().pop ();
resolver->get_label_scope ().pop ();
}
void
ResolveTraitItems::visit (AST::TraitItemType &type)
{
auto decl = CanonicalPath::new_seg (type.get_node_id (),
type.get_identifier ().as_string ());
auto path = prefix.append (decl);
auto cpath = canonical_prefix.append (decl);
mappings.insert_canonical_path (type.get_node_id (), cpath);
for (auto &bound : type.get_type_param_bounds ())
ResolveTypeBound::go (*bound);
}
void
ResolveTraitItems::visit (AST::TraitItemConst &constant)
{
auto decl = CanonicalPath::new_seg (constant.get_node_id (),
constant.get_identifier ().as_string ());
auto path = prefix.append (decl);
auto cpath = canonical_prefix.append (decl);
mappings.insert_canonical_path (constant.get_node_id (), cpath);
ResolveType::go (constant.get_type ());
if (constant.has_expr ())
ResolveExpr::go (constant.get_expr (), path, cpath);
}
ResolveItem::ResolveItem (const CanonicalPath &prefix,
const CanonicalPath &canonical_prefix)
: ResolverBase (), prefix (prefix), canonical_prefix (canonical_prefix)
{}
void
ResolveItem::go (AST::Item &item, const CanonicalPath &prefix,
const CanonicalPath &canonical_prefix)
{
ResolveItem resolver (prefix, canonical_prefix);
item.accept_vis (resolver);
}
void
ResolveItem::visit (AST::TypeAlias &alias)
{
auto talias
= CanonicalPath::new_seg (alias.get_node_id (),
alias.get_new_type_name ().as_string ());
auto path = prefix.append (talias);
auto cpath = canonical_prefix.append (talias);
mappings.insert_canonical_path (alias.get_node_id (), cpath);
NodeId scope_node_id = alias.get_node_id ();
resolver->get_type_scope ().push (scope_node_id);
if (alias.has_generics ())
for (auto &generic : alias.get_generic_params ())
ResolveGenericParam::go (*generic, prefix, canonical_prefix);
if (alias.has_where_clause ())
ResolveWhereClause::Resolve (alias.get_where_clause ());
ResolveType::go (alias.get_type_aliased ());
resolver->get_type_scope ().pop ();
}
void
ResolveItem::visit (AST::Module &module)
{
auto mod = CanonicalPath::new_seg (module.get_node_id (),
module.get_name ().as_string ());
auto path = prefix.append (mod);
auto cpath = canonical_prefix.append (mod);
mappings.insert_canonical_path (module.get_node_id (), cpath);
resolve_visibility (module.get_visibility ());
NodeId scope_node_id = module.get_node_id ();
resolver->get_name_scope ().push (scope_node_id);
resolver->get_type_scope ().push (scope_node_id);
resolver->get_label_scope ().push (scope_node_id);
resolver->push_new_name_rib (resolver->get_name_scope ().peek ());
resolver->push_new_type_rib (resolver->get_type_scope ().peek ());
resolver->push_new_label_rib (resolver->get_type_scope ().peek ());
// FIXME: Should we reinsert a child here? Any reason we ResolveTopLevel::go
// in ResolveTopLevel::visit (AST::Module) as well as here?
for (auto &item : module.get_items ())
ResolveTopLevel::go (*item, CanonicalPath::create_empty (), cpath);
resolver->push_new_module_scope (module.get_node_id ());
for (auto &item : module.get_items ())
ResolveItem::go (*item, path, cpath);
resolver->pop_module_scope ();
resolver->get_name_scope ().pop ();
resolver->get_type_scope ().pop ();
resolver->get_label_scope ().pop ();
}
void
ResolveItem::visit (AST::TupleStruct &struct_decl)
{
auto decl
= CanonicalPath::new_seg (struct_decl.get_node_id (),
struct_decl.get_identifier ().as_string ());
auto path = prefix.append (decl);
auto cpath = canonical_prefix.append (decl);
mappings.insert_canonical_path (struct_decl.get_node_id (), cpath);
resolve_visibility (struct_decl.get_visibility ());
NodeId scope_node_id = struct_decl.get_node_id ();
resolver->get_type_scope ().push (scope_node_id);
if (struct_decl.has_generics ())
for (auto &generic : struct_decl.get_generic_params ())
ResolveGenericParam::go (*generic, prefix, canonical_prefix);
if (struct_decl.has_where_clause ())
ResolveWhereClause::Resolve (struct_decl.get_where_clause ());
for (AST::TupleField &field : struct_decl.get_fields ())
{
if (field.get_field_type ().is_marked_for_strip ())
continue;
resolve_visibility (field.get_visibility ());
ResolveType::go (field.get_field_type ());
}
resolver->get_type_scope ().pop ();
}
void
ResolveItem::visit (AST::Enum &enum_decl)
{
auto decl = CanonicalPath::new_seg (enum_decl.get_node_id (),
enum_decl.get_identifier ().as_string ());
auto path = prefix.append (decl);
auto cpath = canonical_prefix.append (decl);
mappings.insert_canonical_path (enum_decl.get_node_id (), cpath);
resolve_visibility (enum_decl.get_visibility ());
NodeId scope_node_id = enum_decl.get_node_id ();
resolver->get_type_scope ().push (scope_node_id);
if (enum_decl.has_generics ())
for (auto &generic : enum_decl.get_generic_params ())
ResolveGenericParam::go (*generic, prefix, cpath);
if (enum_decl.has_where_clause ())
ResolveWhereClause::Resolve (enum_decl.get_where_clause ());
/* The actual fields are inside the variants. */
for (auto &variant : enum_decl.get_variants ())
ResolveItem::go (*variant, path, cpath);
resolver->get_type_scope ().pop ();
}
/* EnumItem doesn't need to be handled, no fields. */
void
ResolveItem::visit (AST::EnumItem &item)
{
// Since at this point we cannot have visibilities on enum items anymore, we
// can skip handling them
auto decl = CanonicalPath::new_seg (item.get_node_id (),
item.get_identifier ().as_string ());
auto path = prefix.append (decl);
auto cpath = canonical_prefix.append (decl);
mappings.insert_canonical_path (item.get_node_id (), cpath);
}
void
ResolveItem::visit (AST::EnumItemTuple &item)
{
auto decl = CanonicalPath::new_seg (item.get_node_id (),
item.get_identifier ().as_string ());
auto path = prefix.append (decl);
auto cpath = canonical_prefix.append (decl);
mappings.insert_canonical_path (item.get_node_id (), cpath);
for (auto &field : item.get_tuple_fields ())
{
if (field.get_field_type ().is_marked_for_strip ())
continue;
ResolveType::go (field.get_field_type ());
}
}
void
ResolveItem::visit (AST::EnumItemStruct &item)
{
auto decl = CanonicalPath::new_seg (item.get_node_id (),
item.get_identifier ().as_string ());
auto path = prefix.append (decl);
auto cpath = canonical_prefix.append (decl);
mappings.insert_canonical_path (item.get_node_id (), cpath);
for (auto &field : item.get_struct_fields ())
{
if (field.get_field_type ().is_marked_for_strip ())
continue;
ResolveType::go (field.get_field_type ());
}
}
void
ResolveItem::visit (AST::EnumItemDiscriminant &item)
{
auto decl = CanonicalPath::new_seg (item.get_node_id (),
item.get_identifier ().as_string ());
auto path = prefix.append (decl);
auto cpath = canonical_prefix.append (decl);
mappings.insert_canonical_path (item.get_node_id (), cpath);
}
void
ResolveItem::visit (AST::StructStruct &struct_decl)
{
auto decl
= CanonicalPath::new_seg (struct_decl.get_node_id (),
struct_decl.get_identifier ().as_string ());
auto path = prefix.append (decl);
auto cpath = canonical_prefix.append (decl);
mappings.insert_canonical_path (struct_decl.get_node_id (), cpath);
resolve_visibility (struct_decl.get_visibility ());
NodeId scope_node_id = struct_decl.get_node_id ();
resolver->get_type_scope ().push (scope_node_id);
if (struct_decl.has_generics ())
for (auto &generic : struct_decl.get_generic_params ())
ResolveGenericParam::go (*generic, prefix, canonical_prefix);
if (struct_decl.has_where_clause ())
ResolveWhereClause::Resolve (struct_decl.get_where_clause ());
for (AST::StructField &field : struct_decl.get_fields ())
{
if (field.get_field_type ().is_marked_for_strip ())
continue;
resolve_visibility (field.get_visibility ());
ResolveType::go (field.get_field_type ());
}
resolver->get_type_scope ().pop ();
}
void
ResolveItem::visit (AST::Union &union_decl)
{
auto decl
= CanonicalPath::new_seg (union_decl.get_node_id (),
union_decl.get_identifier ().as_string ());
auto path = prefix.append (decl);
auto cpath = canonical_prefix.append (decl);
mappings.insert_canonical_path (union_decl.get_node_id (), cpath);
resolve_visibility (union_decl.get_visibility ());
NodeId scope_node_id = union_decl.get_node_id ();
resolver->get_type_scope ().push (scope_node_id);
if (union_decl.has_generics ())
for (auto &generic : union_decl.get_generic_params ())
ResolveGenericParam::go (*generic, prefix, canonical_prefix);
if (union_decl.has_where_clause ())
ResolveWhereClause::Resolve (union_decl.get_where_clause ());
for (AST::StructField &field : union_decl.get_variants ())
{
if (field.get_field_type ().is_marked_for_strip ())
continue;
ResolveType::go (field.get_field_type ());
}
resolver->get_type_scope ().pop ();
}
void
ResolveItem::visit (AST::StaticItem &var)
{
auto decl = CanonicalPath::new_seg (var.get_node_id (),
var.get_identifier ().as_string ());
auto path = prefix.append (decl);
auto cpath = canonical_prefix.append (decl);
mappings.insert_canonical_path (var.get_node_id (), cpath);
ResolveType::go (var.get_type ());
ResolveExpr::go (var.get_expr (), path, cpath);
}
void
ResolveItem::visit (AST::ConstantItem &constant)
{
auto decl = CanonicalPath::new_seg (constant.get_node_id (),
constant.get_identifier ());
auto path = prefix.append (decl);
auto cpath = canonical_prefix.append (decl);
mappings.insert_canonical_path (constant.get_node_id (), cpath);
resolve_visibility (constant.get_visibility ());
ResolveType::go (constant.get_type ());
ResolveExpr::go (constant.get_expr (), path, cpath);
}
void
ResolveItem::visit (AST::Function &function)
{
auto decl
= CanonicalPath::new_seg (function.get_node_id (),
function.get_function_name ().as_string ());
auto path = prefix.append (decl);
auto cpath = canonical_prefix.append (decl);
mappings.insert_canonical_path (function.get_node_id (), cpath);
resolve_visibility (function.get_visibility ());
NodeId scope_node_id = function.get_node_id ();
resolver->get_name_scope ().push (scope_node_id);
resolver->get_type_scope ().push (scope_node_id);
resolver->get_label_scope ().push (scope_node_id);
resolver->push_new_name_rib (resolver->get_name_scope ().peek ());
resolver->push_new_type_rib (resolver->get_type_scope ().peek ());
resolver->push_new_label_rib (resolver->get_type_scope ().peek ());
if (function.has_generics ())
for (auto &generic : function.get_generic_params ())
ResolveGenericParam::go (*generic, prefix, canonical_prefix);
// resolve any where clause items
if (function.has_where_clause ())
ResolveWhereClause::Resolve (function.get_where_clause ());
if (function.has_return_type ())
ResolveType::go (function.get_return_type ());
if (function.has_self_param ())
{
// self turns into (self: Self) as a function param
AST::Param &s_param = function.get_self_param ();
auto &self_param = static_cast (s_param);
// FIXME: which location should be used for Rust::Identifier `self`?
AST::IdentifierPattern self_pattern (
self_param.get_node_id (), {"self"}, self_param.get_locus (),
self_param.get_has_ref (), self_param.get_is_mut (),
std::unique_ptr (nullptr));
PatternDeclaration::go (self_pattern, Rib::ItemType::Param);
if (self_param.has_type ())
{
// This shouldn't happen the parser should already error for this
rust_assert (!self_param.get_has_ref ());
ResolveType::go (self_param.get_type ());
}
else
{
// here we implicitly make self have a type path of Self
std::vector> segments;
segments.push_back (std::unique_ptr (
new AST::TypePathSegment ("Self", false, self_param.get_locus ())));
AST::TypePath self_type_path (std::move (segments),
self_param.get_locus ());
ResolveType::go (self_type_path);
}
}
std::vector bindings
= {PatternBinding (PatternBoundCtx::Product, std::set ())};
// we make a new scope so the names of parameters are resolved and shadowed
// correctly
for (auto &p : function.get_function_params ())
{
if (p->is_variadic ())
{
auto ¶m = static_cast (*p);
if (param.has_pattern ())
PatternDeclaration::go (param.get_pattern (), Rib::ItemType::Param,
bindings);
}
else if (p->is_self ())
{
auto ¶m = static_cast (*p);
if (param.has_type ())
ResolveType::go (param.get_type ());
}
else
{
auto ¶m = static_cast (*p);
ResolveType::go (param.get_type ());
PatternDeclaration::go (param.get_pattern (), Rib::ItemType::Param,
bindings);
}
}
// resolve the function body
ResolveExpr::go (*function.get_definition ().value (), path, cpath);
resolver->get_name_scope ().pop ();
resolver->get_type_scope ().pop ();
resolver->get_label_scope ().pop ();
}
void
ResolveItem::visit (AST::InherentImpl &impl_block)
{
NodeId scope_node_id = impl_block.get_node_id ();
resolver->get_name_scope ().push (scope_node_id);
resolver->get_type_scope ().push (scope_node_id);
resolver->push_new_name_rib (resolver->get_name_scope ().peek ());
resolver->push_new_type_rib (resolver->get_type_scope ().peek ());
resolve_visibility (impl_block.get_visibility ());
if (impl_block.has_generics ())
for (auto &generic : impl_block.get_generic_params ())
ResolveGenericParam::go (*generic, prefix, canonical_prefix);
// resolve any where clause items
if (impl_block.has_where_clause ())
ResolveWhereClause::Resolve (impl_block.get_where_clause ());
// FIXME this needs to be protected behind nominal type-checks see:
// rustc --explain E0118
// issue #2634
ResolveType::go (impl_block.get_type ());
// Setup paths
CanonicalPath self_cpath = CanonicalPath::create_empty ();
bool ok = ResolveTypeToCanonicalPath::go (impl_block.get_type (), self_cpath);
rust_assert (ok);
rust_debug ("AST::InherentImpl resolve Self: {%s}",
self_cpath.get ().c_str ());
CanonicalPath impl_type = self_cpath;
CanonicalPath impl_type_seg
= CanonicalPath::inherent_impl_seg (impl_block.get_node_id (), impl_type);
CanonicalPath impl_prefix = prefix.append (impl_type_seg);
// see https://godbolt.org/z/a3vMbsT6W
CanonicalPath cpath = CanonicalPath::create_empty ();
if (canonical_prefix.size () <= 1)
{
cpath = impl_prefix;
}
else
{
std::string seg_buf = "";
CanonicalPath seg
= CanonicalPath::new_seg (impl_block.get_node_id (), seg_buf);
cpath = canonical_prefix.append (seg);
}
// done setup paths
auto Self
= CanonicalPath::get_big_self (impl_block.get_type ().get_node_id ());
resolver->get_type_scope ().insert (Self,
impl_block.get_type ().get_node_id (),
impl_block.get_type ().get_locus ());
for (auto &impl_item : impl_block.get_impl_items ())
{
rust_debug (
"AST::InherentImpl resolve_impl_item: impl_prefix={%s} cpath={%s}",
impl_prefix.get ().c_str (), cpath.get ().c_str ());
resolve_impl_item (*impl_item, impl_prefix, cpath);
}
resolver->get_type_scope ().peek ()->clear_name (
Self, impl_block.get_type ().get_node_id ());
resolver->get_type_scope ().pop ();
resolver->get_name_scope ().pop ();
}
void
ResolveItem::visit (AST::TraitImpl &impl_block)
{
NodeId scope_node_id = impl_block.get_node_id ();
resolve_visibility (impl_block.get_visibility ());
resolver->get_name_scope ().push (scope_node_id);
resolver->get_type_scope ().push (scope_node_id);
resolver->get_label_scope ().push (scope_node_id);
resolver->push_new_name_rib (resolver->get_name_scope ().peek ());
resolver->push_new_type_rib (resolver->get_type_scope ().peek ());
resolver->push_new_label_rib (resolver->get_type_scope ().peek ());
if (impl_block.has_generics ())
for (auto &generic : impl_block.get_generic_params ())
ResolveGenericParam::go (*generic, prefix, canonical_prefix);
// resolve any where clause items
if (impl_block.has_where_clause ())
ResolveWhereClause::Resolve (impl_block.get_where_clause ());
// CanonicalPath canonical_trait_type = CanonicalPath::create_empty ();
NodeId trait_resolved_node = ResolveType::go (impl_block.get_trait_path ());
if (trait_resolved_node == UNKNOWN_NODEID)
{
resolver->get_name_scope ().pop ();
resolver->get_type_scope ().pop ();
resolver->get_label_scope ().pop ();
return;
}
// CanonicalPath canonical_impl_type = CanonicalPath::create_empty ();
NodeId type_resolved_node = ResolveType::go (impl_block.get_type ());
if (type_resolved_node == UNKNOWN_NODEID)
{
resolver->get_name_scope ().pop ();
resolver->get_type_scope ().pop ();
resolver->get_label_scope ().pop ();
return;
}
bool ok;
// setup paths
CanonicalPath canonical_trait_type = CanonicalPath::create_empty ();
ok = ResolveTypeToCanonicalPath::go (impl_block.get_trait_path (),
canonical_trait_type);
rust_assert (ok);
rust_debug ("AST::TraitImpl resolve trait type: {%s}",
canonical_trait_type.get ().c_str ());
CanonicalPath canonical_impl_type = CanonicalPath::create_empty ();
ok = ResolveTypeToCanonicalPath::go (impl_block.get_type (),
canonical_impl_type);
rust_assert (ok);
rust_debug ("AST::TraitImpl resolve self: {%s}",
canonical_impl_type.get ().c_str ());
// raw paths
CanonicalPath impl_type_seg = canonical_impl_type;
CanonicalPath trait_type_seg = canonical_trait_type;
CanonicalPath projection
= CanonicalPath::trait_impl_projection_seg (impl_block.get_node_id (),
trait_type_seg, impl_type_seg);
CanonicalPath impl_prefix = prefix.append (projection);
// setup canonical-path
CanonicalPath canonical_projection
= CanonicalPath::trait_impl_projection_seg (impl_block.get_node_id (),
canonical_trait_type,
canonical_impl_type);
CanonicalPath cpath = CanonicalPath::create_empty ();
if (canonical_prefix.size () <= 1)
{
cpath = canonical_projection;
}
else
{
std::string projection_str = canonical_projection.get ();
std::string seg_buf
= "";
CanonicalPath seg
= CanonicalPath::new_seg (impl_block.get_node_id (), seg_buf);
cpath = canonical_prefix.append (seg);
}
// DONE setup canonical-path
auto Self
= CanonicalPath::get_big_self (impl_block.get_type ().get_node_id ());
resolver->get_type_scope ().insert (Self,
impl_block.get_type ().get_node_id (),
impl_block.get_type ().get_locus ());
for (auto &impl_item : impl_block.get_impl_items ())
{
rust_debug (
"AST::TraitImpl resolve_impl_item: impl_prefix={%s} cpath={%s}",
impl_prefix.get ().c_str (), cpath.get ().c_str ());
resolve_impl_item (*impl_item, impl_prefix, cpath);
}
Rib *r = resolver->get_type_scope ().peek ();
r->clear_name (Self, impl_block.get_type ().get_node_id ());
resolver->get_name_scope ().pop ();
resolver->get_type_scope ().pop ();
resolver->get_label_scope ().pop ();
}
void
ResolveItem::visit (AST::Trait &trait)
{
NodeId scope_node_id = trait.get_node_id ();
resolve_visibility (trait.get_visibility ());
resolver->get_name_scope ().push (scope_node_id);
resolver->get_type_scope ().push (scope_node_id);
resolver->push_new_name_rib (resolver->get_name_scope ().peek ());
resolver->push_new_type_rib (resolver->get_type_scope ().peek ());
// we need to inject an implicit self TypeParam here
// FIXME: which location should be used for Rust::Identifier `Self`?
AST::TypeParam *implicit_self
= new AST::TypeParam ({"Self"}, trait.get_locus ());
trait.insert_implict_self (
std::unique_ptr (implicit_self));
CanonicalPath Self = CanonicalPath::get_big_self (trait.get_node_id ());
for (auto &generic : trait.get_generic_params ())
ResolveGenericParam::go (*generic, prefix, canonical_prefix);
// Self is an implicit TypeParam so lets mark it as such
resolver->get_type_scope ().append_reference_for_def (
Self.get_node_id (), implicit_self->get_node_id ());
if (trait.has_type_param_bounds ())
{
for (auto &bound : trait.get_type_param_bounds ())
{
ResolveTypeBound::go (*bound);
}
}
// resolve any where clause items
if (trait.has_where_clause ())
ResolveWhereClause::Resolve (trait.get_where_clause ());
// resolve the paths
CanonicalPath path = CanonicalPath::create_empty ();
CanonicalPath cpath = CanonicalPath::create_empty ();
//
for (auto &item : trait.get_trait_items ())
{
ResolveTraitItems::go (item.get (), path, cpath);
}
resolver->get_type_scope ().pop ();
resolver->get_name_scope ().pop ();
}
void
ResolveItem::visit (AST::ExternBlock &extern_block)
{
resolve_visibility (extern_block.get_visibility ());
for (auto &item : extern_block.get_extern_items ())
{
resolve_extern_item (*item);
}
}
void
ResolveItem::resolve_impl_item (AST::AssociatedItem &item,
const CanonicalPath &prefix,
const CanonicalPath &canonical_prefix)
{
ResolveImplItems::go (item, prefix, canonical_prefix);
}
void
ResolveItem::resolve_extern_item (AST::ExternalItem &item)
{
ResolveExternItem::go (item, prefix, canonical_prefix);
}
static void
flatten_glob (const AST::UseTreeGlob &glob, std::vector &imports);
static void
flatten_rebind (const AST::UseTreeRebind &glob, std::vector &imports);
static void
flatten_list (const AST::UseTreeList &glob, std::vector &imports);
static void
flatten (const AST::UseTree *tree, std::vector &imports)
{
switch (tree->get_kind ())
{
case AST::UseTree::Glob: {
auto glob = static_cast (tree);
flatten_glob (*glob, imports);
break;
}
case AST::UseTree::Rebind: {
auto rebind = static_cast (tree);
flatten_rebind (*rebind, imports);
break;
}
case AST::UseTree::List: {
auto list = static_cast (tree);
flatten_list (*list, imports);
break;
}
break;
}
}
static void
flatten_glob (const AST::UseTreeGlob &glob, std::vector &imports)
{
if (glob.has_path ())
imports.emplace_back (glob.get_path (), true, std::string ());
}
static void
flatten_rebind (const AST::UseTreeRebind &rebind, std::vector &imports)
{
auto path = rebind.get_path ();
std::string label;
if (rebind.has_identifier ())
label = rebind.get_identifier ().as_string ();
else
label = path.get_final_segment ().as_string ();
imports.emplace_back (path, false, label);
}
static void
flatten_list (const AST::UseTreeList &list, std::vector &imports)
{
auto prefix = AST::SimplePath::create_empty ();
if (list.has_path ())
prefix = list.get_path ();
for (const auto &tree : list.get_trees ())
{
// append imports to the main list, then modify them in-place
auto start_idx = imports.size ();
flatten (tree.get (), imports);
for (auto import = imports.begin () + start_idx; import != imports.end ();
import++)
import->add_prefix (prefix);
}
}
void
Import::add_prefix (AST::SimplePath prefix)
{
AST::SimplePath old_path (std::move (path));
path = std::move (prefix);
std::move (old_path.get_segments ().begin (), old_path.get_segments ().end (),
std::back_inserter (path.get_segments ()));
}
/**
* Flatten a UseDeclaration's UseTree into multiple simple paths to resolve.
*
* Given the following use declarations:
* ```
* use some::path::to_resolve; #1
* use some::path::to_glob::*; #2
* use some::path::{one, two}; #2
* ```
*
* In the first case, we simply want to return a vector with a single
* SimplePath:
* [some::path::to_resolve]
*
* In the second case, we want to resolve the glob's "origin path":
* [some::path::to_glob]
*
* Finally in the third case, we want to create two SimplePaths to resolve:
* [some::path::one, some::path::two]
*/
static std::vector
flatten_use_dec_to_imports (const AST::UseDeclaration &use_item)
{
auto imports = std::vector ();
const auto &tree = use_item.get_tree ();
flatten (tree.get (), imports);
return imports;
}
void
ResolveItem::visit (AST::UseDeclaration &use_item)
{
std::vector to_resolve = flatten_use_dec_to_imports (use_item);
// FIXME: I think this does not actually resolve glob use-decls and is going
// the wrong way about it. RFC #1560 specifies the following:
//
// > When we find a glob import, we have to record a 'back link', so that when
// a public name is added for the supplying module, we can add it for the
// importing module.
//
// Which is the opposite of what we're doing if I understand correctly?
NodeId current_module = resolver->peek_current_module_scope ();
for (auto &import : to_resolve)
{
auto &path = import.get_path ();
rust_debug ("resolving use-decl path: [%s]", path.as_string ().c_str ());
NodeId resolved_node_id = ResolvePath::go (path);
bool ok = resolved_node_id != UNKNOWN_NODEID;
if (!ok)
continue;
if (import.is_glob ())
continue;
auto decl = CanonicalPath::new_seg (resolved_node_id, import.get_name ());
mappings.insert_module_child_item (current_module, decl);
resolver->get_type_scope ().insert (decl, resolved_node_id,
path.get_locus (),
Rib::ItemType::Type);
rust_debug ("use-decl rexporting: [%s]", decl.get ().c_str ());
}
}
ResolveImplItems::ResolveImplItems (const CanonicalPath &prefix,
const CanonicalPath &canonical_prefix)
: ResolveItem (prefix, canonical_prefix)
{}
void
ResolveImplItems::go (AST::AssociatedItem &item, const CanonicalPath &prefix,
const CanonicalPath &canonical_prefix)
{
if (item.is_marked_for_strip ())
return;
ResolveImplItems resolver (prefix, canonical_prefix);
item.accept_vis (resolver);
}
void
ResolveImplItems::visit (AST::TypeAlias &alias)
{
ResolveItem::visit (alias);
resolve_visibility (alias.get_visibility ());
// FIXME this stops the erronious unused decls which will be fixed later on
resolver->get_type_scope ().append_reference_for_def (alias.get_node_id (),
alias.get_node_id ());
}
void
ResolveExternItem::go (AST::ExternalItem &item, const CanonicalPath &prefix,
const CanonicalPath &canonical_prefix)
{
ResolveExternItem resolver (prefix, canonical_prefix);
item.accept_vis (resolver);
}
void
ResolveExternItem::visit (AST::Function &function)
{
NodeId scope_node_id = function.get_node_id ();
auto decl
= CanonicalPath::new_seg (function.get_node_id (),
function.get_function_name ().as_string ());
auto path = prefix.append (decl);
auto cpath = canonical_prefix.append (decl);
mappings.insert_canonical_path (function.get_node_id (), cpath);
resolve_visibility (function.get_visibility ());
resolver->get_name_scope ().push (scope_node_id);
resolver->get_type_scope ().push (scope_node_id);
resolver->get_label_scope ().push (scope_node_id);
resolver->push_new_name_rib (resolver->get_name_scope ().peek ());
resolver->push_new_type_rib (resolver->get_type_scope ().peek ());
resolver->push_new_label_rib (resolver->get_type_scope ().peek ());
// resolve the generics
if (function.has_generics ())
for (auto &generic : function.get_generic_params ())
ResolveGenericParam::go (*generic, prefix, canonical_prefix);
if (function.has_return_type ())
ResolveType::go (function.get_return_type ());
// we make a new scope so the names of parameters are resolved and shadowed
// correctly
for (auto ¶m : function.get_function_params ())
if (!param->is_variadic ())
{
auto &p = static_cast (*param);
ResolveType::go (p.get_type ());
}
// done
resolver->get_name_scope ().pop ();
resolver->get_type_scope ().pop ();
resolver->get_label_scope ().pop ();
}
void
ResolveExternItem::visit (AST::ExternalStaticItem &item)
{
resolve_visibility (item.get_visibility ());
ResolveType::go (item.get_type ());
}
} // namespace Resolver
} // namespace Rust
#if CHECKING_P
namespace selftest {
static void
rust_flatten_nested_glob (void)
{
auto foo = Rust::AST::SimplePathSegment ("foo", UNDEF_LOCATION);
auto bar = Rust::AST::SimplePathSegment ("bar", UNDEF_LOCATION);
auto foobar = Rust::AST::SimplePath ({foo, bar});
auto glob
= Rust::AST::UseTreeGlob (Rust::AST::UseTreeGlob::PathType::PATH_PREFIXED,
foobar, UNDEF_LOCATION);
auto imports = std::vector ();
Rust::Resolver::flatten_glob (glob, imports);
ASSERT_TRUE (!imports.empty ());
ASSERT_EQ (imports.size (), 1);
ASSERT_EQ (imports[0].get_path ().get_segments ()[0].as_string (), "foo");
ASSERT_EQ (imports[0].get_path ().get_segments ()[1].as_string (), "bar");
}
static void
rust_flatten_glob (void)
{
auto frob = Rust::AST::SimplePath::from_str ("frobulator", UNDEF_LOCATION);
auto glob
= Rust::AST::UseTreeGlob (Rust::AST::UseTreeGlob::PathType::PATH_PREFIXED,
frob, UNDEF_LOCATION);
auto imports = std::vector ();
Rust::Resolver::flatten_glob (glob, imports);
ASSERT_TRUE (!imports.empty ());
ASSERT_EQ (imports.size (), 1);
ASSERT_EQ (imports[0].get_path (), "frobulator");
}
static void
rust_flatten_rebind_none (void)
{
auto foo = Rust::AST::SimplePathSegment ("foo", UNDEF_LOCATION);
auto bar = Rust::AST::SimplePathSegment ("bar", UNDEF_LOCATION);
auto foobar = Rust::AST::SimplePath ({foo, bar});
auto rebind = Rust::AST::UseTreeRebind (Rust::AST::UseTreeRebind::NONE,
foobar, UNDEF_LOCATION);
auto imports = std::vector ();
Rust::Resolver::flatten_rebind (rebind, imports);
ASSERT_TRUE (!imports.empty ());
ASSERT_EQ (imports.size (), 1);
ASSERT_EQ (imports[0].get_path ().get_segments ()[0].as_string (), "foo");
ASSERT_EQ (imports[0].get_path ().get_segments ()[1].as_string (), "bar");
}
static void
rust_flatten_rebind (void)
{
auto frob = Rust::AST::SimplePath::from_str ("frobulator", UNDEF_LOCATION);
auto rebind = Rust::AST::UseTreeRebind (Rust::AST::UseTreeRebind::IDENTIFIER,
frob, UNDEF_LOCATION, {"saindoux"});
auto imports = std::vector ();
Rust::Resolver::flatten_rebind (rebind, imports);
ASSERT_TRUE (!imports.empty ());
ASSERT_EQ (imports.size (), 1);
ASSERT_EQ (imports[0].get_path (), "frobulator");
ASSERT_EQ (imports[0].get_name (), "saindoux");
}
static void
rust_flatten_rebind_nested (void)
{
auto foo = Rust::AST::SimplePathSegment ("foo", UNDEF_LOCATION);
auto bar = Rust::AST::SimplePathSegment ("bar", UNDEF_LOCATION);
auto baz = Rust::AST::SimplePathSegment ("baz", UNDEF_LOCATION);
auto foo_bar_baz = Rust::AST::SimplePath ({foo, bar, baz});
auto rebind
= Rust::AST::UseTreeRebind (Rust::AST::UseTreeRebind::IDENTIFIER,
foo_bar_baz, UNDEF_LOCATION, {"saindoux"});
auto imports = std::vector ();
Rust::Resolver::flatten_rebind (rebind, imports);
ASSERT_TRUE (!imports.empty ());
ASSERT_EQ (imports.size (), 1);
ASSERT_EQ (imports[0].get_path ().get_segments ()[0].as_string (), "foo");
ASSERT_EQ (imports[0].get_path ().get_segments ()[1].as_string (), "bar");
ASSERT_EQ (imports[0].get_path ().get_segments ()[2].as_string (), "baz");
ASSERT_EQ (imports[0].get_name (), "saindoux");
}
static void
rust_flatten_list (void)
{
auto foo = Rust::AST::SimplePathSegment ("foo", UNDEF_LOCATION);
auto bar = Rust::AST::SimplePathSegment ("bar", UNDEF_LOCATION);
auto foo_bar = Rust::AST::SimplePath ({foo, bar});
auto baz = Rust::AST::SimplePath::from_str ("baz", UNDEF_LOCATION);
auto bul = Rust::AST::SimplePath::from_str ("bul", UNDEF_LOCATION);
// use foo::bar::{baz, bul};
auto use0 = std::unique_ptr (
new Rust::AST::UseTreeRebind (Rust::AST::UseTreeRebind::NONE, baz,
UNDEF_LOCATION));
auto use1 = std::unique_ptr (
new Rust::AST::UseTreeRebind (Rust::AST::UseTreeRebind::NONE, bul,
UNDEF_LOCATION));
auto uses = std::vector> ();
uses.emplace_back (std::move (use0));
uses.emplace_back (std::move (use1));
auto list
= Rust::AST::UseTreeList (Rust::AST::UseTreeList::PATH_PREFIXED, foo_bar,
std::move (uses), UNDEF_LOCATION);
auto imports = std::vector ();
Rust::Resolver::flatten_list (list, imports);
ASSERT_TRUE (!imports.empty ());
ASSERT_EQ (imports.size (), 2);
ASSERT_EQ (imports[0].get_path ().get_segments ()[0].as_string (), "foo");
ASSERT_EQ (imports[0].get_path ().get_segments ()[1].as_string (), "bar");
ASSERT_EQ (imports[0].get_path ().get_segments ()[2].as_string (), "baz");
ASSERT_EQ (imports[1].get_path ().get_segments ()[0].as_string (), "foo");
ASSERT_EQ (imports[1].get_path ().get_segments ()[1].as_string (), "bar");
ASSERT_EQ (imports[1].get_path ().get_segments ()[2].as_string (), "bul");
}
static void
rust_use_dec_flattening (void)
{
rust_flatten_glob ();
rust_flatten_nested_glob ();
rust_flatten_rebind_none ();
rust_flatten_rebind ();
rust_flatten_rebind_nested ();
rust_flatten_list ();
}
void
rust_simple_path_resolve_test (void)
{
rust_use_dec_flattening ();
}
} // namespace selftest
#endif // CHECKING_P