// Copyright (C) 2021 Free Software Foundation, Inc. // This file is part of GCC. // GCC is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 3, or (at your option) any later // version. // GCC is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // You should have received a copy of the GNU General Public License // along with GCC; see the file COPYING3. If not see // . // The idea is that all reachable symbols are live, codes called // from live codes are live, and everything else is dead. #include "rust-lint-marklive.h" #include "rust-hir-full.h" #include "rust-name-resolver.h" namespace Rust { namespace Analysis { // This class trys to find the live symbols which can be used as // seeds in MarkLive // // 1. TODO: explicit live // - Attribute like #[allow(dead_code)] // - Attribute like #[lang=".."], it's not a intra-crate item. // 2. TODO: foreign item class FindEntryPoint : public MarkLiveBase { using Rust::Analysis::MarkLiveBase::visit; public: static std::vector find (HIR::Crate &crate) { FindEntryPoint findEntryPoint; for (auto it = crate.items.begin (); it != crate.items.end (); it++) { it->get ()->accept_vis (findEntryPoint); } return findEntryPoint.getEntryPoint (); } // TODO not only fn main can be a entry point. void visit (HIR::Function &function) override { if (function.get_function_name () == "main") { entryPoints.push_back (function.get_mappings ().get_hirid ()); } } private: FindEntryPoint () : MarkLiveBase () {} std::vector entryPoints; std::vector getEntryPoint () { return entryPoints; } }; std::set MarkLive::Analysis (HIR::Crate &crate) { MarkLive marklive (FindEntryPoint::find (crate)); marklive.go (crate); return marklive.liveSymbols; } // pop a live symbol from worklist every iteration, // if it's a function then walk the function body, and // 1. save all the live symbols in worklist which is // visited first time // 2. save all the live symbols in liveSymbols void MarkLive::go (HIR::Crate &crate) { CrateNum crateNum = crate.get_mappings ().get_crate_num (); while (!worklist.empty ()) { HirId hirId = worklist.back (); worklist.pop_back (); scannedSymbols.emplace (hirId); HIR::Item *item = mappings->lookup_hir_item (crateNum, hirId); liveSymbols.emplace (hirId); if (item != nullptr) { item->accept_vis (*this); } else { // the item maybe inside a trait impl HirId parent_impl_id = UNKNOWN_HIRID; HIR::ImplItem *implItem = mappings->lookup_hir_implitem (crateNum, hirId, &parent_impl_id); if (implItem != nullptr) implItem->accept_vis (*this); } } } void MarkLive::visit (HIR::PathInExpression &expr) { // We should iterate every path segment in order to mark the struct which // is used in expression like Foo::bar(), we should mark the Foo alive. expr.iterate_path_segments ([&] (HIR::PathExprSegment &seg) -> bool { return visit_path_segment (seg); }); // after iterate the path segments, we should mark functions and associated // functions alive. NodeId ast_node_id = expr.get_mappings ().get_nodeid (); NodeId ref_node_id = UNKNOWN_NODEID; find_ref_node_id (ast_node_id, ref_node_id); // node back to HIR HirId ref; bool ok = mappings->lookup_node_to_hir (expr.get_mappings ().get_crate_num (), ref_node_id, &ref); rust_assert (ok); // it must resolve to some kind of HIR::Item or HIR::InheritImplItem HIR::Item *resolved_item = mappings->lookup_hir_item (expr.get_mappings ().get_crate_num (), ref); if (resolved_item != nullptr) { mark_hir_id (resolved_item->get_mappings ().get_hirid ()); } else { HirId parent_impl_id = UNKNOWN_HIRID; HIR::ImplItem *resolved_item = mappings->lookup_hir_implitem (expr.get_mappings ().get_crate_num (), ref, &parent_impl_id); if (resolved_item != nullptr) { mark_hir_id (resolved_item->get_impl_mappings ().get_hirid ()); } } } void MarkLive::visit (HIR::MethodCallExpr &expr) { expr.get_receiver ()->accept_vis (*this); visit_path_segment (expr.get_method_name ()); for (auto &argument : expr.get_arguments ()) argument->accept_vis (*this); // Trying to find the method definition and mark it alive. NodeId ast_node_id = expr.get_mappings ().get_nodeid (); NodeId ref_node_id = UNKNOWN_NODEID; find_ref_node_id (ast_node_id, ref_node_id); // node back to HIR HirId ref; bool ok = mappings->lookup_node_to_hir (expr.get_mappings ().get_crate_num (), ref_node_id, &ref); rust_assert (ok); mark_hir_id (ref); } bool MarkLive::visit_path_segment (HIR::PathExprSegment seg) { NodeId ast_node_id = seg.get_mappings ().get_nodeid (); NodeId ref_node_id = UNKNOWN_NODEID; // There are two different kinds of segment for us. // 1. function segment // like the symbol "foo" in expression `foo()`. // 2. type segment // like the symbol "Foo" in expression `Foo{a: 1, b: 2}` // // We should mark them alive all and ignoring other kind of segments. // If the segment we dont care then just return false is fine if (resolver->lookup_resolved_name (ast_node_id, &ref_node_id)) { Resolver::Definition def; bool ok = resolver->lookup_definition (ref_node_id, &def); rust_assert (ok); ref_node_id = def.parent; } else if (!resolver->lookup_resolved_type (ast_node_id, &ref_node_id)) { return false; } HirId ref; bool ok = mappings->lookup_node_to_hir (seg.get_mappings ().get_crate_num (), ref_node_id, &ref); rust_assert (ok); mark_hir_id (ref); return true; } void MarkLive::visit (HIR::FieldAccessExpr &expr) { // visit receiver at first expr.get_receiver_expr ()->accept_vis (*this); // resolve the receiver back to ADT type TyTy::BaseType *receiver = nullptr; if (!tyctx->lookup_type ( expr.get_receiver_expr ()->get_mappings ().get_hirid (), &receiver)) { rust_error_at (expr.get_receiver_expr ()->get_locus (), "unresolved type for receiver"); } TyTy::ADTType *adt = nullptr; if (receiver->get_kind () == TyTy::TypeKind::ADT) { adt = static_cast (receiver); } else if (receiver->get_kind () == TyTy::TypeKind::REF) { TyTy::ReferenceType *r = static_cast (receiver); TyTy::BaseType *b = r->get_base (); rust_assert (b->get_kind () == TyTy::TypeKind::ADT); adt = static_cast (b); } rust_assert (adt != nullptr); rust_assert (!adt->is_enum ()); rust_assert (adt->number_of_variants () == 1); TyTy::VariantDef *variant = adt->get_variants ().at (0); // get the field index size_t index; TyTy::StructFieldType *field; bool ok = variant->lookup_field (expr.get_field_name (), &field, &index); rust_assert (ok); if (index >= variant->num_fields ()) { rust_error_at (expr.get_receiver_expr ()->get_locus (), "cannot access struct %s by index: %ld", adt->get_name ().c_str (), index); return; } // get the field hir id HirId field_id = field->get_ref (); mark_hir_id (field_id); } void MarkLive::visit (HIR::TupleIndexExpr &expr) { // TODO: unused tuple field detection expr.get_tuple_expr ()->accept_vis (*this); } void MarkLive::visit (HIR::IdentifierExpr &expr) { NodeId ast_node_id = expr.get_mappings ().get_nodeid (); NodeId ref_node_id = UNKNOWN_NODEID; find_ref_node_id (ast_node_id, ref_node_id); // node back to HIR HirId ref; bool ok = mappings->lookup_node_to_hir (expr.get_mappings ().get_crate_num (), ref_node_id, &ref); rust_assert (ok); mark_hir_id (ref); } void MarkLive::visit (HIR::TypeAlias &alias) { NodeId ast_node_id; resolver->lookup_resolved_type ( alias.get_type_aliased ()->get_mappings ().get_nodeid (), &ast_node_id); HirId hir_id; bool ok = mappings->lookup_node_to_hir (alias.get_mappings ().get_crate_num (), ast_node_id, &hir_id); rust_assert (ok); mark_hir_id (hir_id); } void MarkLive::mark_hir_id (HirId id) { if (scannedSymbols.find (id) == scannedSymbols.end ()) { worklist.push_back (id); } liveSymbols.emplace (id); } void MarkLive::find_ref_node_id (NodeId ast_node_id, NodeId &ref_node_id) { if (resolver->lookup_resolved_name (ast_node_id, &ref_node_id)) { // these ref_node_ids will resolve to a pattern declaration but we are // interested in the definition that this refers to get the parent id Resolver::Definition def; bool ok = resolver->lookup_definition (ref_node_id, &def); rust_assert (ok); ref_node_id = def.parent; } else { bool ok = resolver->lookup_resolved_type (ast_node_id, &ref_node_id); rust_assert (ok); } } } // namespace Analysis } // namespace Rust