// Copyright (C) 2021 Free Software Foundation, Inc.
// This file is part of GCC.
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// .
// The idea is that all reachable symbols are live, codes called
// from live codes are live, and everything else is dead.
#include "rust-lint-marklive.h"
#include "rust-hir-full.h"
#include "rust-name-resolver.h"
namespace Rust {
namespace Analysis {
// This class trys to find the live symbols which can be used as
// seeds in MarkLive
//
// 1. TODO: explicit live
// - Attribute like #[allow(dead_code)]
// - Attribute like #[lang=".."], it's not a intra-crate item.
// 2. TODO: foreign item
class FindEntryPoint : public MarkLiveBase
{
using Rust::Analysis::MarkLiveBase::visit;
public:
static std::vector find (HIR::Crate &crate)
{
FindEntryPoint findEntryPoint;
for (auto it = crate.items.begin (); it != crate.items.end (); it++)
{
it->get ()->accept_vis (findEntryPoint);
}
return findEntryPoint.getEntryPoint ();
}
// TODO not only fn main can be a entry point.
void visit (HIR::Function &function) override
{
if (function.get_function_name () == "main")
{
entryPoints.push_back (function.get_mappings ().get_hirid ());
}
}
private:
FindEntryPoint () : MarkLiveBase () {}
std::vector entryPoints;
std::vector getEntryPoint () { return entryPoints; }
};
std::set
MarkLive::Analysis (HIR::Crate &crate)
{
MarkLive marklive (FindEntryPoint::find (crate));
marklive.go (crate);
return marklive.liveSymbols;
}
// pop a live symbol from worklist every iteration,
// if it's a function then walk the function body, and
// 1. save all the live symbols in worklist which is
// visited first time
// 2. save all the live symbols in liveSymbols
void
MarkLive::go (HIR::Crate &crate)
{
CrateNum crateNum = crate.get_mappings ().get_crate_num ();
while (!worklist.empty ())
{
HirId hirId = worklist.back ();
worklist.pop_back ();
scannedSymbols.emplace (hirId);
HIR::Item *item = mappings->lookup_hir_item (crateNum, hirId);
liveSymbols.emplace (hirId);
if (item != nullptr)
{
item->accept_vis (*this);
}
else
{ // the item maybe inside a trait impl
HirId parent_impl_id = UNKNOWN_HIRID;
HIR::ImplItem *implItem
= mappings->lookup_hir_implitem (crateNum, hirId, &parent_impl_id);
if (implItem != nullptr)
implItem->accept_vis (*this);
}
}
}
void
MarkLive::visit (HIR::PathInExpression &expr)
{
// We should iterate every path segment in order to mark the struct which
// is used in expression like Foo::bar(), we should mark the Foo alive.
expr.iterate_path_segments ([&] (HIR::PathExprSegment &seg) -> bool {
return visit_path_segment (seg);
});
// after iterate the path segments, we should mark functions and associated
// functions alive.
NodeId ast_node_id = expr.get_mappings ().get_nodeid ();
NodeId ref_node_id = UNKNOWN_NODEID;
find_ref_node_id (ast_node_id, ref_node_id);
// node back to HIR
HirId ref;
bool ok = mappings->lookup_node_to_hir (expr.get_mappings ().get_crate_num (),
ref_node_id, &ref);
rust_assert (ok);
// it must resolve to some kind of HIR::Item or HIR::InheritImplItem
HIR::Item *resolved_item
= mappings->lookup_hir_item (expr.get_mappings ().get_crate_num (), ref);
if (resolved_item != nullptr)
{
mark_hir_id (resolved_item->get_mappings ().get_hirid ());
}
else
{
HirId parent_impl_id = UNKNOWN_HIRID;
HIR::ImplItem *resolved_item
= mappings->lookup_hir_implitem (expr.get_mappings ().get_crate_num (),
ref, &parent_impl_id);
if (resolved_item != nullptr)
{
mark_hir_id (resolved_item->get_impl_mappings ().get_hirid ());
}
}
}
void
MarkLive::visit (HIR::MethodCallExpr &expr)
{
expr.get_receiver ()->accept_vis (*this);
visit_path_segment (expr.get_method_name ());
for (auto &argument : expr.get_arguments ())
argument->accept_vis (*this);
// Trying to find the method definition and mark it alive.
NodeId ast_node_id = expr.get_mappings ().get_nodeid ();
NodeId ref_node_id = UNKNOWN_NODEID;
find_ref_node_id (ast_node_id, ref_node_id);
// node back to HIR
HirId ref;
bool ok = mappings->lookup_node_to_hir (expr.get_mappings ().get_crate_num (),
ref_node_id, &ref);
rust_assert (ok);
mark_hir_id (ref);
}
bool
MarkLive::visit_path_segment (HIR::PathExprSegment seg)
{
NodeId ast_node_id = seg.get_mappings ().get_nodeid ();
NodeId ref_node_id = UNKNOWN_NODEID;
// There are two different kinds of segment for us.
// 1. function segment
// like the symbol "foo" in expression `foo()`.
// 2. type segment
// like the symbol "Foo" in expression `Foo{a: 1, b: 2}`
//
// We should mark them alive all and ignoring other kind of segments.
// If the segment we dont care then just return false is fine
if (resolver->lookup_resolved_name (ast_node_id, &ref_node_id))
{
Resolver::Definition def;
bool ok = resolver->lookup_definition (ref_node_id, &def);
rust_assert (ok);
ref_node_id = def.parent;
}
else if (!resolver->lookup_resolved_type (ast_node_id, &ref_node_id))
{
return false;
}
HirId ref;
bool ok = mappings->lookup_node_to_hir (seg.get_mappings ().get_crate_num (),
ref_node_id, &ref);
rust_assert (ok);
mark_hir_id (ref);
return true;
}
void
MarkLive::visit (HIR::FieldAccessExpr &expr)
{
// visit receiver at first
expr.get_receiver_expr ()->accept_vis (*this);
// resolve the receiver back to ADT type
TyTy::BaseType *receiver = nullptr;
if (!tyctx->lookup_type (
expr.get_receiver_expr ()->get_mappings ().get_hirid (), &receiver))
{
rust_error_at (expr.get_receiver_expr ()->get_locus (),
"unresolved type for receiver");
}
TyTy::ADTType *adt = nullptr;
if (receiver->get_kind () == TyTy::TypeKind::ADT)
{
adt = static_cast (receiver);
}
else if (receiver->get_kind () == TyTy::TypeKind::REF)
{
TyTy::ReferenceType *r = static_cast (receiver);
TyTy::BaseType *b = r->get_base ();
rust_assert (b->get_kind () == TyTy::TypeKind::ADT);
adt = static_cast (b);
}
rust_assert (adt != nullptr);
rust_assert (!adt->is_enum ());
rust_assert (adt->number_of_variants () == 1);
TyTy::VariantDef *variant = adt->get_variants ().at (0);
// get the field index
size_t index;
TyTy::StructFieldType *field;
bool ok = variant->lookup_field (expr.get_field_name (), &field, &index);
rust_assert (ok);
if (index >= variant->num_fields ())
{
rust_error_at (expr.get_receiver_expr ()->get_locus (),
"cannot access struct %s by index: %ld",
adt->get_name ().c_str (), index);
return;
}
// get the field hir id
HirId field_id = field->get_ref ();
mark_hir_id (field_id);
}
void
MarkLive::visit (HIR::TupleIndexExpr &expr)
{
// TODO: unused tuple field detection
expr.get_tuple_expr ()->accept_vis (*this);
}
void
MarkLive::visit (HIR::IdentifierExpr &expr)
{
NodeId ast_node_id = expr.get_mappings ().get_nodeid ();
NodeId ref_node_id = UNKNOWN_NODEID;
find_ref_node_id (ast_node_id, ref_node_id);
// node back to HIR
HirId ref;
bool ok = mappings->lookup_node_to_hir (expr.get_mappings ().get_crate_num (),
ref_node_id, &ref);
rust_assert (ok);
mark_hir_id (ref);
}
void
MarkLive::visit (HIR::TypeAlias &alias)
{
NodeId ast_node_id;
resolver->lookup_resolved_type (
alias.get_type_aliased ()->get_mappings ().get_nodeid (), &ast_node_id);
HirId hir_id;
bool ok
= mappings->lookup_node_to_hir (alias.get_mappings ().get_crate_num (),
ast_node_id, &hir_id);
rust_assert (ok);
mark_hir_id (hir_id);
}
void
MarkLive::mark_hir_id (HirId id)
{
if (scannedSymbols.find (id) == scannedSymbols.end ())
{
worklist.push_back (id);
}
liveSymbols.emplace (id);
}
void
MarkLive::find_ref_node_id (NodeId ast_node_id, NodeId &ref_node_id)
{
if (resolver->lookup_resolved_name (ast_node_id, &ref_node_id))
{
// these ref_node_ids will resolve to a pattern declaration but we are
// interested in the definition that this refers to get the parent id
Resolver::Definition def;
bool ok = resolver->lookup_definition (ref_node_id, &def);
rust_assert (ok);
ref_node_id = def.parent;
}
else
{
bool ok = resolver->lookup_resolved_type (ast_node_id, &ref_node_id);
rust_assert (ok);
}
}
} // namespace Analysis
} // namespace Rust