// Copyright (C) 2020 Free Software Foundation, Inc. // This file is part of GCC. // GCC is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 3, or (at your option) any later // version. // GCC is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // You should have received a copy of the GNU General Public License // along with GCC; see the file COPYING3. If not see // . #include "rust-compile.h" #include "rust-compile-item.h" #include "rust-compile-expr.h" #include "rust-compile-struct-field-expr.h" #include "rust-hir-trait-resolve.h" #include "rust-hir-path-probe.h" #include "fnv-hash.h" namespace Rust { namespace Compile { CompileCrate::CompileCrate (HIR::Crate &crate, Context *ctx) : crate (crate), ctx (ctx) {} CompileCrate::~CompileCrate () {} void CompileCrate::Compile (HIR::Crate &crate, Context *ctx) { CompileCrate c (crate, ctx); c.go (); } void CompileCrate::go () { for (auto &item : crate.items) CompileItem::compile (item.get (), ctx, false); for (auto &item : crate.items) CompileItem::compile (item.get (), ctx, true); } // rust-compile-expr.h void CompileExpr::visit (HIR::CallExpr &expr) { TyTy::BaseType *tyty = nullptr; if (!ctx->get_tyctx ()->lookup_type ( expr.get_fnexpr ()->get_mappings ().get_hirid (), &tyty)) { rust_error_at (expr.get_locus (), "unknown type"); return; } // must be a tuple constructor bool is_fn = tyty->get_kind () == TyTy::TypeKind::FNDEF || tyty->get_kind () == TyTy::TypeKind::FNPTR; if (!is_fn) { Btype *type = TyTyResolveCompile::compile (ctx, tyty); // this assumes all fields are in order from type resolution and if a // base struct was specified those fields are filed via accesors std::vector vals; expr.iterate_params ([&] (HIR::Expr *argument) mutable -> bool { Bexpression *e = CompileExpr::Compile (argument, ctx); vals.push_back (e); return true; }); translated = ctx->get_backend ()->constructor_expression (type, vals, -1, expr.get_locus ()); } else { // must be a call to a function Bexpression *fn = CompileExpr::Compile (expr.get_fnexpr (), ctx); rust_assert (fn != nullptr); std::vector args; expr.iterate_params ([&] (HIR::Expr *p) mutable -> bool { Bexpression *compiled_expr = CompileExpr::Compile (p, ctx); rust_assert (compiled_expr != nullptr); args.push_back (compiled_expr); return true; }); auto fncontext = ctx->peek_fn (); translated = ctx->get_backend ()->call_expression (fncontext.fndecl, fn, args, nullptr, expr.get_locus ()); } } void CompileExpr::visit (HIR::MethodCallExpr &expr) { // lookup the resolved name NodeId resolved_node_id = UNKNOWN_NODEID; if (!ctx->get_resolver ()->lookup_resolved_name ( expr.get_mappings ().get_nodeid (), &resolved_node_id)) { rust_error_at (expr.get_locus (), "failed to lookup resolved MethodCall"); return; } // reverse lookup HirId ref; if (!ctx->get_mappings ()->lookup_node_to_hir ( expr.get_mappings ().get_crate_num (), resolved_node_id, &ref)) { rust_fatal_error (expr.get_locus (), "reverse lookup failure"); return; } // lookup the expected function type TyTy::BaseType *lookup_fntype = nullptr; bool ok = ctx->get_tyctx ()->lookup_type ( expr.get_method_name ().get_mappings ().get_hirid (), &lookup_fntype); rust_assert (ok); rust_assert (lookup_fntype->get_kind () == TyTy::TypeKind::FNDEF); TyTy::FnType *fntype = static_cast (lookup_fntype); // lookup compiled functions Bfunction *fn = nullptr; if (!ctx->lookup_function_decl (fntype->get_ty_ref (), &fn)) { // this might fail because its a forward decl so we can attempt to // resolve it now HIR::ImplItem *resolved_item = ctx->get_mappings ()->lookup_hir_implitem ( expr.get_mappings ().get_crate_num (), ref, nullptr); if (resolved_item == nullptr) { // it might be resolved to a trait item HIR::TraitItem *trait_item = ctx->get_mappings ()->lookup_hir_trait_item ( expr.get_mappings ().get_crate_num (), ref); HIR::Trait *trait = ctx->get_mappings ()->lookup_trait_item_mapping ( trait_item->get_mappings ().get_hirid ()); Resolver::TraitReference *trait_ref = &Resolver::TraitReference::error_node (); bool ok = ctx->get_tyctx ()->lookup_trait_reference ( trait->get_mappings ().get_defid (), &trait_ref); rust_assert (ok); TyTy::BaseType *receiver = nullptr; ok = ctx->get_tyctx ()->lookup_receiver ( expr.get_mappings ().get_hirid (), &receiver); rust_assert (ok); if (receiver->get_kind () == TyTy::TypeKind::PARAM) { TyTy::ParamType *p = static_cast (receiver); receiver = p->resolve (); } // the type resolver can only resolve type bounds to their trait // item so its up to us to figure out if this path should resolve // to an trait-impl-block-item or if it can be defaulted to the // trait-impl-item's definition std::vector candidates = Resolver::PathProbeType::Probe ( receiver, expr.get_method_name ().get_segment (), true, false, true); if (candidates.size () == 0) { // this means we are defaulting back to the trait_item if // possible Resolver::TraitItemReference *trait_item_ref = nullptr; bool ok = trait_ref->lookup_hir_trait_item (*trait_item, &trait_item_ref); rust_assert (ok); // found rust_assert (trait_item_ref->is_optional ()); // has definition TyTy::BaseType *self_type = nullptr; if (!ctx->get_tyctx ()->lookup_type ( expr.get_receiver ()->get_mappings ().get_hirid (), &self_type)) { rust_error_at (expr.get_locus (), "failed to resolve type for self param"); return; } CompileTraitItem::Compile (self_type, trait_item_ref->get_hir_trait_item (), ctx, fntype); if (!ctx->lookup_function_decl (fntype->get_ty_ref (), &fn)) { translated = ctx->get_backend ()->error_expression (); rust_error_at (expr.get_locus (), "forward declaration was not compiled"); return; } } else { Resolver::PathProbeCandidate &candidate = candidates.at (0); rust_assert (candidate.is_impl_candidate ()); HIR::ImplItem *impl_item = candidate.item.impl.impl_item; TyTy::BaseType *self_type = nullptr; if (!ctx->get_tyctx ()->lookup_type ( expr.get_receiver ()->get_mappings ().get_hirid (), &self_type)) { rust_error_at (expr.get_locus (), "failed to resolve type for self param"); return; } if (!fntype->has_subsititions_defined ()) CompileInherentImplItem::Compile (self_type, impl_item, ctx, true); else CompileInherentImplItem::Compile (self_type, impl_item, ctx, true, fntype); if (!ctx->lookup_function_decl ( impl_item->get_impl_mappings ().get_hirid (), &fn)) { translated = ctx->get_backend ()->error_expression (); rust_error_at (expr.get_locus (), "forward declaration was not compiled"); return; } } } else { TyTy::BaseType *self_type = nullptr; if (!ctx->get_tyctx ()->lookup_type ( expr.get_receiver ()->get_mappings ().get_hirid (), &self_type)) { rust_error_at (expr.get_locus (), "failed to resolve type for self param"); return; } if (!fntype->has_subsititions_defined ()) CompileInherentImplItem::Compile (self_type, resolved_item, ctx, true); else CompileInherentImplItem::Compile (self_type, resolved_item, ctx, true, fntype); if (!ctx->lookup_function_decl (fntype->get_ty_ref (), &fn)) { translated = ctx->get_backend ()->error_expression (); rust_error_at (expr.get_locus (), "forward declaration was not compiled"); return; } } } Bexpression *fn_expr = ctx->get_backend ()->function_code_expression (fn, expr.get_locus ()); std::vector args; // method receiver Bexpression *self = CompileExpr::Compile (expr.get_receiver ().get (), ctx); rust_assert (self != nullptr); args.push_back (self); // normal args expr.iterate_params ([&] (HIR::Expr *p) mutable -> bool { Bexpression *compiled_expr = CompileExpr::Compile (p, ctx); rust_assert (compiled_expr != nullptr); args.push_back (compiled_expr); return true; }); auto fncontext = ctx->peek_fn (); translated = ctx->get_backend ()->call_expression (fncontext.fndecl, fn_expr, args, nullptr, expr.get_locus ()); } // rust-compile-block.h void CompileBlock::visit (HIR::BlockExpr &expr) { fncontext fnctx = ctx->peek_fn (); Bfunction *fndecl = fnctx.fndecl; Location start_location = expr.get_locus (); Location end_location = expr.get_closing_locus (); auto body_mappings = expr.get_mappings (); Resolver::Rib *rib = nullptr; if (!ctx->get_resolver ()->find_name_rib (body_mappings.get_nodeid (), &rib)) { rust_fatal_error (expr.get_locus (), "failed to setup locals per block"); return; } std::vector locals; bool ok = compile_locals_for_block (*rib, fndecl, locals); rust_assert (ok); Bblock *enclosing_scope = ctx->peek_enclosing_scope (); Bblock *new_block = ctx->get_backend ()->block (fndecl, enclosing_scope, locals, start_location, end_location); ctx->push_block (new_block); for (auto &s : expr.get_statements ()) { auto compiled_expr = CompileStmt::Compile (s.get (), ctx); if (compiled_expr != nullptr) { Bstatement *compiled_stmt = ctx->get_backend ()->expression_statement (fnctx.fndecl, compiled_expr); ctx->add_statement (compiled_stmt); } } if (expr.has_expr ()) { // the previous passes will ensure this is a valid return or // a valid trailing expression Bexpression *compiled_expr = CompileExpr::Compile (expr.expr.get (), ctx); if (compiled_expr != nullptr) { if (result == nullptr) { Bstatement *final_stmt = ctx->get_backend ()->expression_statement (fnctx.fndecl, compiled_expr); ctx->add_statement (final_stmt); } else { Bexpression *result_reference = ctx->get_backend ()->var_expression ( result, expr.get_final_expr ()->get_locus_slow ()); Bstatement *assignment = ctx->get_backend ()->assignment_statement (fnctx.fndecl, result_reference, compiled_expr, expr.get_locus ()); ctx->add_statement (assignment); } } } ctx->pop_block (); translated = new_block; } void CompileConditionalBlocks::visit (HIR::IfExpr &expr) { fncontext fnctx = ctx->peek_fn (); Bfunction *fndecl = fnctx.fndecl; Bexpression *condition_expr = CompileExpr::Compile (expr.get_if_condition (), ctx); Bblock *then_block = CompileBlock::compile (expr.get_if_block (), ctx, result); translated = ctx->get_backend ()->if_statement (fndecl, condition_expr, then_block, NULL, expr.get_locus ()); } void CompileConditionalBlocks::visit (HIR::IfExprConseqElse &expr) { fncontext fnctx = ctx->peek_fn (); Bfunction *fndecl = fnctx.fndecl; Bexpression *condition_expr = CompileExpr::Compile (expr.get_if_condition (), ctx); Bblock *then_block = CompileBlock::compile (expr.get_if_block (), ctx, result); Bblock *else_block = CompileBlock::compile (expr.get_else_block (), ctx, result); translated = ctx->get_backend ()->if_statement (fndecl, condition_expr, then_block, else_block, expr.get_locus ()); } void CompileConditionalBlocks::visit (HIR::IfExprConseqIf &expr) { fncontext fnctx = ctx->peek_fn (); Bfunction *fndecl = fnctx.fndecl; Bexpression *condition_expr = CompileExpr::Compile (expr.get_if_condition (), ctx); Bblock *then_block = CompileBlock::compile (expr.get_if_block (), ctx, result); // else block std::vector locals; Location start_location = expr.get_conseq_if_expr ()->get_locus (); Location end_location = expr.get_conseq_if_expr ()->get_locus (); // FIXME Bblock *enclosing_scope = ctx->peek_enclosing_scope (); Bblock *else_block = ctx->get_backend ()->block (fndecl, enclosing_scope, locals, start_location, end_location); ctx->push_block (else_block); Bstatement *else_stmt_decl = CompileConditionalBlocks::compile (expr.get_conseq_if_expr (), ctx, result); ctx->add_statement (else_stmt_decl); ctx->pop_block (); translated = ctx->get_backend ()->if_statement (fndecl, condition_expr, then_block, else_block, expr.get_locus ()); } // rust-compile-struct-field-expr.h void CompileStructExprField::visit (HIR::StructExprFieldIdentifierValue &field) { translated = CompileExpr::Compile (field.get_value (), ctx); } void CompileStructExprField::visit (HIR::StructExprFieldIndexValue &field) { translated = CompileExpr::Compile (field.get_value (), ctx); } void CompileStructExprField::visit (HIR::StructExprFieldIdentifier &field) { // we can make the field look like an identifier expr to take advantage of // existing code HIR::IdentifierExpr expr (field.get_mappings (), field.get_field_name (), field.get_locus ()); translated = CompileExpr::Compile (&expr, ctx); } // Shared methods in compilation void HIRCompileBase::compile_function_body ( Bfunction *fndecl, std::unique_ptr &function_body, bool has_return_type) { for (auto &s : function_body->get_statements ()) { auto compiled_expr = CompileStmt::Compile (s.get (), ctx); if (compiled_expr != nullptr) { Bstatement *compiled_stmt = ctx->get_backend ()->expression_statement (fndecl, compiled_expr); ctx->add_statement (compiled_stmt); } } if (function_body->has_expr ()) { // the previous passes will ensure this is a valid return // or a valid trailing expression Bexpression *compiled_expr = CompileExpr::Compile (function_body->expr.get (), ctx); if (compiled_expr != nullptr) { if (has_return_type) { std::vector retstmts; retstmts.push_back (compiled_expr); auto ret = ctx->get_backend ()->return_statement ( fndecl, retstmts, function_body->get_final_expr ()->get_locus_slow ()); ctx->add_statement (ret); } else { Bstatement *final_stmt = ctx->get_backend ()->expression_statement (fndecl, compiled_expr); ctx->add_statement (final_stmt); } } } } bool HIRCompileBase::compile_locals_for_block (Resolver::Rib &rib, Bfunction *fndecl, std::vector &locals) { rib.iterate_decls ([&] (NodeId n, Location) mutable -> bool { Resolver::Definition d; bool ok = ctx->get_resolver ()->lookup_definition (n, &d); rust_assert (ok); HIR::Stmt *decl = nullptr; ok = ctx->get_mappings ()->resolve_nodeid_to_stmt (d.parent, &decl); rust_assert (ok); // if its a function we extract this out side of this fn context // and it is not a local to this function bool is_item = ctx->get_mappings ()->lookup_hir_item ( decl->get_mappings ().get_crate_num (), decl->get_mappings ().get_hirid ()) != nullptr; if (is_item) { HIR::Item *item = static_cast (decl); CompileItem::compile (item, ctx, true); return true; } Bvariable *compiled = CompileVarDecl::compile (fndecl, decl, ctx); locals.push_back (compiled); return true; }); return true; } // Mr Mangle time static const std::string kMangledSymbolPrefix = "_ZN"; static const std::string kMangledSymbolDelim = "E"; static const std::string kMangledGenericDelim = "$C$"; static const std::string kMangledSubstBegin = "$LT$"; static const std::string kMangledSubstEnd = "$GT$"; static std::string mangle_name (const std::string &name) { return std::to_string (name.size ()) + name; } // rustc uses a sip128 hash for legacy mangling, but an fnv 128 was quicker to // implement for now static std::string legacy_hash (const std::string &fingerprint) { Hash::FNV128 hasher; hasher.write ((const unsigned char *) fingerprint.c_str (), fingerprint.size ()); uint64_t hi, lo; hasher.sum (&hi, &lo); char hex[16 + 1]; memset (hex, 0, sizeof hex); snprintf (hex, sizeof hex, "%08" PRIx64 "%08" PRIx64, lo, hi); return "h" + std::string (hex, sizeof (hex) - 1); } static std::string mangle_self (const TyTy::BaseType *self) { if (self->get_kind () != TyTy::TypeKind::ADT) return mangle_name (self->get_name ()); const TyTy::ADTType *s = static_cast (self); std::string buf = s->get_identifier (); if (s->has_subsititions_defined ()) { buf += kMangledSubstBegin; const std::vector ¶ms = s->get_substs (); for (size_t i = 0; i < params.size (); i++) { const TyTy::SubstitutionParamMapping &sub = params.at (i); buf += sub.as_string (); if ((i + 1) < params.size ()) buf += kMangledGenericDelim; } buf += kMangledSubstEnd; } return mangle_name (buf); } std::string Context::mangle_item (const TyTy::BaseType *ty, const std::string &name) const { const std::string &crate_name = mappings->get_current_crate_name (); const std::string hash = legacy_hash (ty->as_string ()); const std::string hash_sig = mangle_name (hash); return kMangledSymbolPrefix + mangle_name (crate_name) + mangle_name (name) + hash_sig + kMangledSymbolDelim; } std::string Context::mangle_impl_item (const TyTy::BaseType *self, const TyTy::BaseType *ty, const std::string &name) const { const std::string &crate_name = mappings->get_current_crate_name (); const std::string hash = legacy_hash (ty->as_string ()); const std::string hash_sig = mangle_name (hash); return kMangledSymbolPrefix + mangle_name (crate_name) + mangle_self (self) + mangle_name (name) + hash_sig + kMangledSymbolDelim; } } // namespace Compile } // namespace Rust