/* Analyze RTL for GNU compiler. Copyright (C) 1987-2024 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "target.h" #include "rtl.h" #include "rtlanal.h" #include "tree.h" #include "predict.h" #include "df.h" #include "memmodel.h" #include "tm_p.h" #include "insn-config.h" #include "regs.h" #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */ #include "recog.h" #include "addresses.h" #include "rtl-iter.h" #include "hard-reg-set.h" #include "function-abi.h" /* Forward declarations */ static void set_of_1 (rtx, const_rtx, void *); static bool covers_regno_p (const_rtx, unsigned int); static bool covers_regno_no_parallel_p (const_rtx, unsigned int); static bool computed_jump_p_1 (const_rtx); static void parms_set (rtx, const_rtx, void *); static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode, const_rtx, machine_mode, unsigned HOST_WIDE_INT); static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode, const_rtx, machine_mode, unsigned HOST_WIDE_INT); static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode, const_rtx, machine_mode, unsigned int); static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode, const_rtx, machine_mode, unsigned int); rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE]; rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE]; /* Truncation narrows the mode from SOURCE mode to DESTINATION mode. If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is SIGN_EXTEND then while narrowing we also have to enforce the representation and sign-extend the value to mode DESTINATION_REP. If the value is already sign-extended to DESTINATION_REP mode we can just switch to DESTINATION mode on it. For each pair of integral modes SOURCE and DESTINATION, when truncating from SOURCE to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION] contains the number of high-order bits in SOURCE that have to be copies of the sign-bit so that we can do this mode-switch to DESTINATION. */ static unsigned int num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1]; /* Store X into index I of ARRAY. ARRAY is known to have at least I elements. Return the new base of ARRAY. */ template typename T::value_type * generic_subrtx_iterator ::add_single_to_queue (array_type &array, value_type *base, size_t i, value_type x) { if (base == array.stack) { if (i < LOCAL_ELEMS) { base[i] = x; return base; } gcc_checking_assert (i == LOCAL_ELEMS); /* A previous iteration might also have moved from the stack to the heap, in which case the heap array will already be big enough. */ if (vec_safe_length (array.heap) <= i) vec_safe_grow (array.heap, i + 1, true); base = array.heap->address (); memcpy (base, array.stack, sizeof (array.stack)); base[LOCAL_ELEMS] = x; return base; } unsigned int length = array.heap->length (); if (length > i) { gcc_checking_assert (base == array.heap->address ()); base[i] = x; return base; } else { gcc_checking_assert (i == length); vec_safe_push (array.heap, x); return array.heap->address (); } } /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the number of elements added to the worklist. */ template size_t generic_subrtx_iterator ::add_subrtxes_to_queue (array_type &array, value_type *base, size_t end, rtx_type x) { enum rtx_code code = GET_CODE (x); const char *format = GET_RTX_FORMAT (code); size_t orig_end = end; if (UNLIKELY (INSN_P (x))) { /* Put the pattern at the top of the queue, since that's what we're likely to want most. It also allows for the SEQUENCE code below. */ for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i) if (format[i] == 'e') { value_type subx = T::get_value (x->u.fld[i].rt_rtx); if (LIKELY (end < LOCAL_ELEMS)) base[end++] = subx; else base = add_single_to_queue (array, base, end++, subx); } } else for (int i = 0; format[i]; ++i) if (format[i] == 'e') { value_type subx = T::get_value (x->u.fld[i].rt_rtx); if (LIKELY (end < LOCAL_ELEMS)) base[end++] = subx; else base = add_single_to_queue (array, base, end++, subx); } else if (format[i] == 'E') { unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec); rtx *vec = x->u.fld[i].rt_rtvec->elem; if (LIKELY (end + length <= LOCAL_ELEMS)) for (unsigned int j = 0; j < length; j++) base[end++] = T::get_value (vec[j]); else for (unsigned int j = 0; j < length; j++) base = add_single_to_queue (array, base, end++, T::get_value (vec[j])); if (code == SEQUENCE && end == length) /* If the subrtxes of the sequence fill the entire array then we know that no other parts of a containing insn are queued. The caller is therefore iterating over the sequence as a PATTERN (...), so we also want the patterns of the subinstructions. */ for (unsigned int j = 0; j < length; j++) { typename T::rtx_type x = T::get_rtx (base[j]); if (INSN_P (x)) base[j] = T::get_value (PATTERN (x)); } } return end - orig_end; } template void generic_subrtx_iterator ::free_array (array_type &array) { vec_free (array.heap); } template const size_t generic_subrtx_iterator ::LOCAL_ELEMS; template class generic_subrtx_iterator ; template class generic_subrtx_iterator ; template class generic_subrtx_iterator ; /* Return true if the value of X is unstable (would be different at a different point in the program). The frame pointer, arg pointer, etc. are considered stable (within one function) and so is anything marked `unchanging'. */ bool rtx_unstable_p (const_rtx x) { const RTX_CODE code = GET_CODE (x); int i; const char *fmt; switch (code) { case MEM: return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0)); case CONST: CASE_CONST_ANY: case SYMBOL_REF: case LABEL_REF: return false; case REG: /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */ if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx /* The arg pointer varies if it is not a fixed register. */ || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])) return false; /* ??? When call-clobbered, the value is stable modulo the restore that must happen after a call. This currently screws up local-alloc into believing that the restore is not needed. */ if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx) return false; return true; case ASM_OPERANDS: if (MEM_VOLATILE_P (x)) return true; /* Fall through. */ default: break; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) if (fmt[i] == 'e') { if (rtx_unstable_p (XEXP (x, i))) return true; } else if (fmt[i] == 'E') { int j; for (j = 0; j < XVECLEN (x, i); j++) if (rtx_unstable_p (XVECEXP (x, i, j))) return true; } return false; } /* Return true if X has a value that can vary even between two executions of the program. false means X can be compared reliably against certain constants or near-constants. FOR_ALIAS is nonzero if we are called from alias analysis; if it is zero, we are slightly more conservative. The frame pointer and the arg pointer are considered constant. */ bool rtx_varies_p (const_rtx x, bool for_alias) { RTX_CODE code; int i; const char *fmt; if (!x) return false; code = GET_CODE (x); switch (code) { case MEM: return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias); case CONST: CASE_CONST_ANY: case SYMBOL_REF: case LABEL_REF: return false; case REG: /* Note that we have to test for the actual rtx used for the frame and arg pointers and not just the register number in case we have eliminated the frame and/or arg pointer and are using it for pseudos. */ if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx /* The arg pointer varies if it is not a fixed register. */ || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])) return false; if (x == pic_offset_table_rtx /* ??? When call-clobbered, the value is stable modulo the restore that must happen after a call. This currently screws up local-alloc into believing that the restore is not needed, so we must return 0 only if we are called from alias analysis. */ && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias)) return false; return true; case LO_SUM: /* The operand 0 of a LO_SUM is considered constant (in fact it is related specifically to operand 1) during alias analysis. */ return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias)) || rtx_varies_p (XEXP (x, 1), for_alias); case ASM_OPERANDS: if (MEM_VOLATILE_P (x)) return true; /* Fall through. */ default: break; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) if (fmt[i] == 'e') { if (rtx_varies_p (XEXP (x, i), for_alias)) return true; } else if (fmt[i] == 'E') { int j; for (j = 0; j < XVECLEN (x, i); j++) if (rtx_varies_p (XVECEXP (x, i, j), for_alias)) return true; } return false; } /* Compute an approximation for the offset between the register FROM and TO for the current function, as it was at the start of the routine. */ static poly_int64 get_initial_register_offset (int from, int to) { static const struct elim_table_t { const int from; const int to; } table[] = ELIMINABLE_REGS; poly_int64 offset1, offset2; unsigned int i, j; if (to == from) return 0; /* It is not safe to call INITIAL_ELIMINATION_OFFSET before the epilogue is completed, but we need to give at least an estimate for the stack pointer based on the frame size. */ if (!epilogue_completed) { offset1 = crtl->outgoing_args_size + get_frame_size (); #if !STACK_GROWS_DOWNWARD offset1 = - offset1; #endif if (to == STACK_POINTER_REGNUM) return offset1; else if (from == STACK_POINTER_REGNUM) return - offset1; else return 0; } for (i = 0; i < ARRAY_SIZE (table); i++) if (table[i].from == from) { if (table[i].to == to) { INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to, offset1); return offset1; } for (j = 0; j < ARRAY_SIZE (table); j++) { if (table[j].to == to && table[j].from == table[i].to) { INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to, offset1); INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to, offset2); return offset1 + offset2; } if (table[j].from == to && table[j].to == table[i].to) { INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to, offset1); INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to, offset2); return offset1 - offset2; } } } else if (table[i].to == from) { if (table[i].from == to) { INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to, offset1); return - offset1; } for (j = 0; j < ARRAY_SIZE (table); j++) { if (table[j].to == to && table[j].from == table[i].from) { INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to, offset1); INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to, offset2); return - offset1 + offset2; } if (table[j].from == to && table[j].to == table[i].from) { INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to, offset1); INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to, offset2); return - offset1 - offset2; } } } /* If the requested register combination was not found, try a different more simple combination. */ if (from == ARG_POINTER_REGNUM) return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to); else if (to == ARG_POINTER_REGNUM) return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM); else if (from == HARD_FRAME_POINTER_REGNUM) return get_initial_register_offset (FRAME_POINTER_REGNUM, to); else if (to == HARD_FRAME_POINTER_REGNUM) return get_initial_register_offset (from, FRAME_POINTER_REGNUM); else return 0; } /* Return true if the use of X+OFFSET as an address in a MEM with SIZE bytes can cause a trap. MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls whether true is returned for unaligned memory references on strict alignment machines. */ static bool rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size, machine_mode mode, bool unaligned_mems) { enum rtx_code code = GET_CODE (x); gcc_checking_assert (mode == BLKmode || mode == VOIDmode || known_size_p (size)); poly_int64 const_x1; /* The offset must be a multiple of the mode size if we are considering unaligned memory references on strict alignment machines. */ if (STRICT_ALIGNMENT && unaligned_mems && mode != BLKmode && mode != VOIDmode) { poly_int64 actual_offset = offset; #ifdef SPARC_STACK_BOUNDARY_HACK /* ??? The SPARC port may claim a STACK_BOUNDARY higher than the real alignment of %sp. However, when it does this, the alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */ if (SPARC_STACK_BOUNDARY_HACK && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx)) actual_offset -= STACK_POINTER_OFFSET; #endif if (!multiple_p (actual_offset, GET_MODE_SIZE (mode))) return true; } switch (code) { case SYMBOL_REF: if (SYMBOL_REF_WEAK (x)) return true; if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x)) { tree decl; poly_int64 decl_size; if (maybe_lt (offset, 0)) return true; if (!known_size_p (size)) return maybe_ne (offset, 0); /* If the size of the access or of the symbol is unknown, assume the worst. */ decl = SYMBOL_REF_DECL (x); /* Else check that the access is in bounds. TODO: restructure expr_size/tree_expr_size/int_expr_size and just use the latter. */ if (!decl) decl_size = -1; else if (DECL_P (decl) && DECL_SIZE_UNIT (decl)) { if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &decl_size)) decl_size = -1; } else if (TREE_CODE (decl) == STRING_CST) decl_size = TREE_STRING_LENGTH (decl); else if (TYPE_SIZE_UNIT (TREE_TYPE (decl))) decl_size = int_size_in_bytes (TREE_TYPE (decl)); else decl_size = -1; return (!known_size_p (decl_size) || known_eq (decl_size, 0) ? maybe_ne (offset, 0) : !known_subrange_p (offset, size, 0, decl_size)); } return false; case LABEL_REF: return false; case REG: /* Stack references are assumed not to trap, but we need to deal with nonsensical offsets. */ if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx || x == stack_pointer_rtx /* The arg pointer varies if it is not a fixed register. */ || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])) { #ifdef RED_ZONE_SIZE poly_int64 red_zone_size = RED_ZONE_SIZE; #else poly_int64 red_zone_size = 0; #endif poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT; poly_int64 low_bound, high_bound; if (!known_size_p (size)) return true; if (x == frame_pointer_rtx) { if (FRAME_GROWS_DOWNWARD) { high_bound = targetm.starting_frame_offset (); low_bound = high_bound - get_frame_size (); } else { low_bound = targetm.starting_frame_offset (); high_bound = low_bound + get_frame_size (); } } else if (x == hard_frame_pointer_rtx) { poly_int64 sp_offset = get_initial_register_offset (STACK_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM); poly_int64 ap_offset = get_initial_register_offset (ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM); #if STACK_GROWS_DOWNWARD low_bound = sp_offset - red_zone_size - stack_boundary; high_bound = ap_offset + FIRST_PARM_OFFSET (current_function_decl) #if !ARGS_GROW_DOWNWARD + crtl->args.size #endif + stack_boundary; #else high_bound = sp_offset + red_zone_size + stack_boundary; low_bound = ap_offset + FIRST_PARM_OFFSET (current_function_decl) #if ARGS_GROW_DOWNWARD - crtl->args.size #endif - stack_boundary; #endif } else if (x == stack_pointer_rtx) { poly_int64 ap_offset = get_initial_register_offset (ARG_POINTER_REGNUM, STACK_POINTER_REGNUM); #if STACK_GROWS_DOWNWARD low_bound = - red_zone_size - stack_boundary; high_bound = ap_offset + FIRST_PARM_OFFSET (current_function_decl) #if !ARGS_GROW_DOWNWARD + crtl->args.size #endif + stack_boundary; #else high_bound = red_zone_size + stack_boundary; low_bound = ap_offset + FIRST_PARM_OFFSET (current_function_decl) #if ARGS_GROW_DOWNWARD - crtl->args.size #endif - stack_boundary; #endif } else { /* We assume that accesses are safe to at least the next stack boundary. Examples are varargs and __builtin_return_address. */ #if ARGS_GROW_DOWNWARD high_bound = FIRST_PARM_OFFSET (current_function_decl) + stack_boundary; low_bound = FIRST_PARM_OFFSET (current_function_decl) - crtl->args.size - stack_boundary; #else low_bound = FIRST_PARM_OFFSET (current_function_decl) - stack_boundary; high_bound = FIRST_PARM_OFFSET (current_function_decl) + crtl->args.size + stack_boundary; #endif } if (known_ge (offset, low_bound) && known_le (offset, high_bound - size)) return false; return true; } /* All of the virtual frame registers are stack references. */ if (VIRTUAL_REGISTER_P (x)) return false; return true; case CONST: return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size, mode, unaligned_mems); case PLUS: /* An address is assumed not to trap if: - it is the pic register plus a const unspec without offset. */ if (XEXP (x, 0) == pic_offset_table_rtx && GET_CODE (XEXP (x, 1)) == CONST && GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC && known_eq (offset, 0)) return false; /* - or it is an address that can't trap plus a constant integer. */ if (poly_int_rtx_p (XEXP (x, 1), &const_x1) && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + const_x1, size, mode, unaligned_mems)) return false; return true; case LO_SUM: case PRE_MODIFY: return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size, mode, unaligned_mems); case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC: case POST_MODIFY: return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size, mode, unaligned_mems); default: break; } /* If it isn't one of the case above, it can cause a trap. */ return true; } /* Return true if the use of X as an address in a MEM can cause a trap. */ bool rtx_addr_can_trap_p (const_rtx x) { return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode, false); } /* Return true if X contains a MEM subrtx. */ bool contains_mem_rtx_p (rtx x) { subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, x, ALL) if (MEM_P (*iter)) return true; return false; } /* Return true if X is an address that is known to not be zero. */ bool nonzero_address_p (const_rtx x) { const enum rtx_code code = GET_CODE (x); switch (code) { case SYMBOL_REF: return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x); case LABEL_REF: return true; case REG: /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */ if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx || x == stack_pointer_rtx || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])) return true; /* All of the virtual frame registers are stack references. */ if (VIRTUAL_REGISTER_P (x)) return true; return false; case CONST: return nonzero_address_p (XEXP (x, 0)); case PLUS: /* Handle PIC references. */ if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1))) return true; return false; case PRE_MODIFY: /* Similar to the above; allow positive offsets. Further, since auto-inc is only allowed in memories, the register must be a pointer. */ if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) > 0) return true; return nonzero_address_p (XEXP (x, 0)); case PRE_INC: /* Similarly. Further, the offset is always positive. */ return true; case PRE_DEC: case POST_DEC: case POST_INC: case POST_MODIFY: return nonzero_address_p (XEXP (x, 0)); case LO_SUM: return nonzero_address_p (XEXP (x, 1)); default: break; } /* If it isn't one of the case above, might be zero. */ return false; } /* Return true if X refers to a memory location whose address cannot be compared reliably with constant addresses, or if X refers to a BLKmode memory object. FOR_ALIAS is nonzero if we are called from alias analysis; if it is zero, we are slightly more conservative. */ bool rtx_addr_varies_p (const_rtx x, bool for_alias) { enum rtx_code code; int i; const char *fmt; if (x == 0) return false; code = GET_CODE (x); if (code == MEM) return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias); fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) if (fmt[i] == 'e') { if (rtx_addr_varies_p (XEXP (x, i), for_alias)) return true; } else if (fmt[i] == 'E') { int j; for (j = 0; j < XVECLEN (x, i); j++) if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias)) return true; } return false; } /* Return the CALL in X if there is one. */ rtx get_call_rtx_from (const rtx_insn *insn) { rtx x = PATTERN (insn); if (GET_CODE (x) == PARALLEL) x = XVECEXP (x, 0, 0); if (GET_CODE (x) == SET) x = SET_SRC (x); if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0))) return x; return NULL_RTX; } /* Get the declaration of the function called by INSN. */ tree get_call_fndecl (const rtx_insn *insn) { rtx note, datum; note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX); if (note == NULL_RTX) return NULL_TREE; datum = XEXP (note, 0); if (datum != NULL_RTX) return SYMBOL_REF_DECL (datum); return NULL_TREE; } /* Return the value of the integer term in X, if one is apparent; otherwise return 0. Only obvious integer terms are detected. This is used in cse.cc with the `related_value' field. */ HOST_WIDE_INT get_integer_term (const_rtx x) { if (GET_CODE (x) == CONST) x = XEXP (x, 0); if (GET_CODE (x) == MINUS && CONST_INT_P (XEXP (x, 1))) return - INTVAL (XEXP (x, 1)); if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1))) return INTVAL (XEXP (x, 1)); return 0; } /* If X is a constant, return the value sans apparent integer term; otherwise return 0. Only obvious integer terms are detected. */ rtx get_related_value (const_rtx x) { if (GET_CODE (x) != CONST) return 0; x = XEXP (x, 0); if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1))) return XEXP (x, 0); else if (GET_CODE (x) == MINUS && CONST_INT_P (XEXP (x, 1))) return XEXP (x, 0); return 0; } /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points to somewhere in the same object or object_block as SYMBOL. */ bool offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset) { tree decl; if (GET_CODE (symbol) != SYMBOL_REF) return false; if (offset == 0) return true; if (offset > 0) { if (CONSTANT_POOL_ADDRESS_P (symbol) && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol))) return true; decl = SYMBOL_REF_DECL (symbol); if (decl && offset < int_size_in_bytes (TREE_TYPE (decl))) return true; } if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol) && SYMBOL_REF_BLOCK (symbol) && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol) < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size)) return true; return false; } /* Split X into a base and a constant offset, storing them in *BASE_OUT and *OFFSET_OUT respectively. */ void split_const (rtx x, rtx *base_out, rtx *offset_out) { if (GET_CODE (x) == CONST) { x = XEXP (x, 0); if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1))) { *base_out = XEXP (x, 0); *offset_out = XEXP (x, 1); return; } } *base_out = x; *offset_out = const0_rtx; } /* Express integer value X as some value Y plus a polynomial offset, where Y is either const0_rtx, X or something within X (as opposed to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */ rtx strip_offset (rtx x, poly_int64 *offset_out) { rtx base = const0_rtx; rtx test = x; if (GET_CODE (test) == CONST) test = XEXP (test, 0); if (GET_CODE (test) == PLUS) { base = XEXP (test, 0); test = XEXP (test, 1); } if (poly_int_rtx_p (test, offset_out)) return base; *offset_out = 0; return x; } /* Return the argument size in REG_ARGS_SIZE note X. */ poly_int64 get_args_size (const_rtx x) { gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE); return rtx_to_poly_int64 (XEXP (x, 0)); } /* Return the number of places FIND appears within X. If COUNT_DEST is zero, we do not count occurrences inside the destination of a SET. */ int count_occurrences (const_rtx x, const_rtx find, int count_dest) { int i, j; enum rtx_code code; const char *format_ptr; int count; if (x == find) return 1; code = GET_CODE (x); switch (code) { case REG: CASE_CONST_ANY: case SYMBOL_REF: case CODE_LABEL: case PC: return 0; case EXPR_LIST: count = count_occurrences (XEXP (x, 0), find, count_dest); if (XEXP (x, 1)) count += count_occurrences (XEXP (x, 1), find, count_dest); return count; case MEM: if (MEM_P (find) && rtx_equal_p (x, find)) return 1; break; case SET: if (SET_DEST (x) == find && ! count_dest) return count_occurrences (SET_SRC (x), find, count_dest); break; default: break; } format_ptr = GET_RTX_FORMAT (code); count = 0; for (i = 0; i < GET_RTX_LENGTH (code); i++) { switch (*format_ptr++) { case 'e': count += count_occurrences (XEXP (x, i), find, count_dest); break; case 'E': for (j = 0; j < XVECLEN (x, i); j++) count += count_occurrences (XVECEXP (x, i, j), find, count_dest); break; } } return count; } /* Return TRUE if OP is a register or subreg of a register that holds an unsigned quantity. Otherwise, return FALSE. */ bool unsigned_reg_p (rtx op) { if (REG_P (op) && REG_EXPR (op) && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op)))) return true; if (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_SIGN (op)) return true; return false; } /* Return true if register REG appears somewhere within IN. Also works if REG is not a register; in this case it checks for a subexpression of IN that is Lisp "equal" to REG. */ bool reg_mentioned_p (const_rtx reg, const_rtx in) { const char *fmt; int i; enum rtx_code code; if (in == 0) return false; if (reg == in) return true; if (GET_CODE (in) == LABEL_REF) return reg == label_ref_label (in); code = GET_CODE (in); switch (code) { /* Compare registers by number. */ case REG: return REG_P (reg) && REGNO (in) == REGNO (reg); /* These codes have no constituent expressions and are unique. */ case SCRATCH: case PC: return false; CASE_CONST_ANY: /* These are kept unique for a given value. */ return false; default: break; } if (GET_CODE (reg) == code && rtx_equal_p (reg, in)) return true; fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'E') { int j; for (j = XVECLEN (in, i) - 1; j >= 0; j--) if (reg_mentioned_p (reg, XVECEXP (in, i, j))) return true; } else if (fmt[i] == 'e' && reg_mentioned_p (reg, XEXP (in, i))) return true; } return false; } /* Return true if in between BEG and END, exclusive of BEG and END, there is no CODE_LABEL insn. */ bool no_labels_between_p (const rtx_insn *beg, const rtx_insn *end) { rtx_insn *p; if (beg == end) return false; for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p)) if (LABEL_P (p)) return false; return true; } /* Return true if register REG is used in an insn between FROM_INSN and TO_INSN (exclusive of those two). */ bool reg_used_between_p (const_rtx reg, const rtx_insn *from_insn, const rtx_insn *to_insn) { rtx_insn *insn; if (from_insn == to_insn) return false; for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn)) if (NONDEBUG_INSN_P (insn) && (reg_overlap_mentioned_p (reg, PATTERN (insn)) || (CALL_P (insn) && find_reg_fusage (insn, USE, reg)))) return true; return false; } /* Return true if the old value of X, a register, is referenced in BODY. If X is entirely replaced by a new value and the only use is as a SET_DEST, we do not consider it a reference. */ bool reg_referenced_p (const_rtx x, const_rtx body) { int i; switch (GET_CODE (body)) { case SET: if (reg_overlap_mentioned_p (x, SET_SRC (body))) return true; /* If the destination is anything other than PC, a REG or a SUBREG of a REG that occupies all of the REG, the insn references X if it is mentioned in the destination. */ if (GET_CODE (SET_DEST (body)) != PC && !REG_P (SET_DEST (body)) && ! (GET_CODE (SET_DEST (body)) == SUBREG && REG_P (SUBREG_REG (SET_DEST (body))) && !read_modify_subreg_p (SET_DEST (body))) && reg_overlap_mentioned_p (x, SET_DEST (body))) return true; return false; case ASM_OPERANDS: for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--) if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i))) return true; return false; case CALL: case USE: case IF_THEN_ELSE: return reg_overlap_mentioned_p (x, body); case TRAP_IF: return reg_overlap_mentioned_p (x, TRAP_CONDITION (body)); case PREFETCH: return reg_overlap_mentioned_p (x, XEXP (body, 0)); case UNSPEC: case UNSPEC_VOLATILE: for (i = XVECLEN (body, 0) - 1; i >= 0; i--) if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i))) return true; return false; case PARALLEL: for (i = XVECLEN (body, 0) - 1; i >= 0; i--) if (reg_referenced_p (x, XVECEXP (body, 0, i))) return true; return false; case CLOBBER: if (MEM_P (XEXP (body, 0))) if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0))) return true; return false; case COND_EXEC: if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body))) return true; return reg_referenced_p (x, COND_EXEC_CODE (body)); default: return false; } } /* Return true if register REG is set or clobbered in an insn between FROM_INSN and TO_INSN (exclusive of those two). */ bool reg_set_between_p (const_rtx reg, const rtx_insn *from_insn, const rtx_insn *to_insn) { const rtx_insn *insn; if (from_insn == to_insn) return false; for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn)) if (INSN_P (insn) && reg_set_p (reg, insn)) return true; return false; } /* Return true if REG is set or clobbered inside INSN. */ bool reg_set_p (const_rtx reg, const_rtx insn) { /* After delay slot handling, call and branch insns might be in a sequence. Check all the elements there. */ if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) { for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i) if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i))) return true; return false; } /* We can be passed an insn or part of one. If we are passed an insn, check if a side-effect of the insn clobbers REG. */ if (INSN_P (insn) && (FIND_REG_INC_NOTE (insn, reg) || (CALL_P (insn) && ((REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER && (insn_callee_abi (as_a (insn)) .clobbers_reg_p (GET_MODE (reg), REGNO (reg)))) || MEM_P (reg) || find_reg_fusage (insn, CLOBBER, reg))))) return true; /* There are no REG_INC notes for SP autoinc. */ if (reg == stack_pointer_rtx && INSN_P (insn)) { subrtx_var_iterator::array_type array; FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST) { rtx mem = *iter; if (mem && MEM_P (mem) && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC) { if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx) return true; iter.skip_subrtxes (); } } } return set_of (reg, insn) != NULL_RTX; } /* Similar to reg_set_between_p, but check all registers in X. Return false only if none of them are modified between START and END. Return true if X contains a MEM; this routine does use memory aliasing. */ bool modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end) { const enum rtx_code code = GET_CODE (x); const char *fmt; int i, j; rtx_insn *insn; if (start == end) return false; switch (code) { CASE_CONST_ANY: case CONST: case SYMBOL_REF: case LABEL_REF: return false; case PC: return true; case MEM: if (modified_between_p (XEXP (x, 0), start, end)) return true; if (MEM_READONLY_P (x)) return false; for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn)) if (memory_modified_in_insn_p (x, insn)) return true; return false; case REG: return reg_set_between_p (x, start, end); default: break; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end)) return true; else if (fmt[i] == 'E') for (j = XVECLEN (x, i) - 1; j >= 0; j--) if (modified_between_p (XVECEXP (x, i, j), start, end)) return true; } return false; } /* Similar to reg_set_p, but check all registers in X. Return false only if none of them are modified in INSN. Return true if X contains a MEM; this routine does use memory aliasing. */ bool modified_in_p (const_rtx x, const_rtx insn) { const enum rtx_code code = GET_CODE (x); const char *fmt; int i, j; switch (code) { CASE_CONST_ANY: case CONST: case SYMBOL_REF: case LABEL_REF: return false; case PC: return true; case MEM: if (modified_in_p (XEXP (x, 0), insn)) return true; if (MEM_READONLY_P (x)) return false; if (memory_modified_in_insn_p (x, insn)) return true; return false; case REG: return reg_set_p (x, insn); default: break; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn)) return true; else if (fmt[i] == 'E') for (j = XVECLEN (x, i) - 1; j >= 0; j--) if (modified_in_p (XVECEXP (x, i, j), insn)) return true; } return false; } /* Return true if X is a SUBREG and if storing a value to X would preserve some of its SUBREG_REG. For example, on a normal 32-bit target, using a SUBREG to store to one half of a DImode REG would preserve the other half. */ bool read_modify_subreg_p (const_rtx x) { if (GET_CODE (x) != SUBREG) return false; poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))); poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x)); poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x))); /* The inner and outer modes of a subreg must be ordered, so that we can tell whether they're paradoxical or partial. */ gcc_checking_assert (ordered_p (isize, osize)); return (maybe_gt (isize, osize) && maybe_gt (isize, regsize)); } /* Helper function for set_of. */ struct set_of_data { const_rtx found; const_rtx pat; }; static void set_of_1 (rtx x, const_rtx pat, void *data1) { struct set_of_data *const data = (struct set_of_data *) (data1); if (rtx_equal_p (x, data->pat) || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x))) data->found = pat; } /* Give an INSN, return a SET or CLOBBER expression that does modify PAT (either directly or via STRICT_LOW_PART and similar modifiers). */ const_rtx set_of (const_rtx pat, const_rtx insn) { struct set_of_data data; data.found = NULL_RTX; data.pat = pat; note_pattern_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data); return data.found; } /* Check whether instruction pattern PAT contains a SET with the following properties: - the SET is executed unconditionally; and - either: - the destination of the SET is a REG that contains REGNO; or - both: - the destination of the SET is a SUBREG of such a REG; and - writing to the subreg clobbers all of the SUBREG_REG (in other words, read_modify_subreg_p is false). If PAT does have a SET like that, return the set, otherwise return null. This is intended to be an alternative to single_set for passes that can handle patterns with multiple_sets. */ rtx simple_regno_set (rtx pat, unsigned int regno) { if (GET_CODE (pat) == PARALLEL) { int last = XVECLEN (pat, 0) - 1; for (int i = 0; i < last; ++i) if (rtx set = simple_regno_set (XVECEXP (pat, 0, i), regno)) return set; pat = XVECEXP (pat, 0, last); } if (GET_CODE (pat) == SET && covers_regno_no_parallel_p (SET_DEST (pat), regno)) return pat; return nullptr; } /* Add all hard register in X to *PSET. */ void find_all_hard_regs (const_rtx x, HARD_REG_SET *pset) { subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, x, NONCONST) { const_rtx x = *iter; if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER) add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x)); } } /* This function, called through note_stores, collects sets and clobbers of hard registers in a HARD_REG_SET, which is pointed to by DATA. */ void record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data) { HARD_REG_SET *pset = (HARD_REG_SET *)data; if (REG_P (x) && HARD_REGISTER_P (x)) add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x)); } /* Examine INSN, and compute the set of hard registers written by it. Store it in *PSET. Should only be called after reload. IMPLICIT is true if we should include registers that are fully-clobbered by calls. This should be used with caution, since it doesn't include partially-clobbered registers. */ void find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit) { rtx link; CLEAR_HARD_REG_SET (*pset); note_stores (insn, record_hard_reg_sets, pset); if (CALL_P (insn) && implicit) *pset |= insn_callee_abi (insn).full_reg_clobbers (); for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) if (REG_NOTE_KIND (link) == REG_INC) record_hard_reg_sets (XEXP (link, 0), NULL, pset); } /* Like record_hard_reg_sets, but called through note_uses. */ void record_hard_reg_uses (rtx *px, void *data) { find_all_hard_regs (*px, (HARD_REG_SET *) data); } /* Given an INSN, return a SET expression if this insn has only a single SET. It may also have CLOBBERs, USEs, or SET whose output will not be used, which we ignore. */ rtx single_set_2 (const rtx_insn *insn, const_rtx pat) { rtx set = NULL; int set_verified = 1; int i; if (GET_CODE (pat) == PARALLEL) { for (i = 0; i < XVECLEN (pat, 0); i++) { rtx sub = XVECEXP (pat, 0, i); switch (GET_CODE (sub)) { case USE: case CLOBBER: break; case SET: /* We can consider insns having multiple sets, where all but one are dead as single set insns. In common case only single set is present in the pattern so we want to avoid checking for REG_UNUSED notes unless necessary. When we reach set first time, we just expect this is the single set we are looking for and only when more sets are found in the insn, we check them. */ if (!set_verified) { if (find_reg_note (insn, REG_UNUSED, SET_DEST (set)) && !side_effects_p (set)) set = NULL; else set_verified = 1; } if (!set) set = sub, set_verified = 0; else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub)) || side_effects_p (sub)) return NULL_RTX; break; default: return NULL_RTX; } } } return set; } /* Given an INSN, return true if it has more than one SET, else return false. */ bool multiple_sets (const_rtx insn) { bool found; int i; /* INSN must be an insn. */ if (! INSN_P (insn)) return false; /* Only a PARALLEL can have multiple SETs. */ if (GET_CODE (PATTERN (insn)) == PARALLEL) { for (i = 0, found = false; i < XVECLEN (PATTERN (insn), 0); i++) if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET) { /* If we have already found a SET, then return now. */ if (found) return true; else found = true; } } /* Either zero or one SET. */ return false; } /* Return true if the destination of SET equals the source and there are no side effects. */ bool set_noop_p (const_rtx set) { rtx src = SET_SRC (set); rtx dst = SET_DEST (set); if (dst == pc_rtx && src == pc_rtx) return true; if (MEM_P (dst) && MEM_P (src)) return (rtx_equal_p (dst, src) && !side_effects_p (dst) && !side_effects_p (src)); if (GET_CODE (dst) == ZERO_EXTRACT) return (rtx_equal_p (XEXP (dst, 0), src) && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx && !side_effects_p (src) && !side_effects_p (XEXP (dst, 0))); if (GET_CODE (dst) == STRICT_LOW_PART) dst = XEXP (dst, 0); if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG) { if (maybe_ne (SUBREG_BYTE (src), SUBREG_BYTE (dst))) return false; src = SUBREG_REG (src); dst = SUBREG_REG (dst); if (GET_MODE (src) != GET_MODE (dst)) /* It is hard to tell whether subregs refer to the same bits, so act conservatively and return false. */ return false; } /* It is a NOOP if destination overlaps with selected src vector elements. */ if (GET_CODE (src) == VEC_SELECT && REG_P (XEXP (src, 0)) && REG_P (dst) && HARD_REGISTER_P (XEXP (src, 0)) && HARD_REGISTER_P (dst)) { int i; rtx par = XEXP (src, 1); rtx src0 = XEXP (src, 0); poly_int64 c0; if (!poly_int_rtx_p (XVECEXP (par, 0, 0), &c0)) return false; poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0; for (i = 1; i < XVECLEN (par, 0); i++) { poly_int64 c0i; if (!poly_int_rtx_p (XVECEXP (par, 0, i), &c0i) || maybe_ne (c0i, c0 + i)) return false; } return REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst)) && simplify_subreg_regno (REGNO (src0), GET_MODE (src0), offset, GET_MODE (dst)) == (int) REGNO (dst); } return (REG_P (src) && REG_P (dst) && REGNO (src) == REGNO (dst)); } /* Return true if an insn consists only of SETs, each of which only sets a value to itself. */ bool noop_move_p (const rtx_insn *insn) { rtx pat = PATTERN (insn); if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE) return true; /* Check the code to be executed for COND_EXEC. */ if (GET_CODE (pat) == COND_EXEC) pat = COND_EXEC_CODE (pat); if (GET_CODE (pat) == SET && set_noop_p (pat)) return true; if (GET_CODE (pat) == PARALLEL) { int i; /* If nothing but SETs of registers to themselves, this insn can also be deleted. */ for (i = 0; i < XVECLEN (pat, 0); i++) { rtx tem = XVECEXP (pat, 0, i); if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER) continue; if (GET_CODE (tem) != SET || ! set_noop_p (tem)) return false; } return true; } return false; } /* Return true if register in range [REGNO, ENDREGNO) appears either explicitly or implicitly in X other than being stored into. References contained within the substructure at LOC do not count. LOC may be zero, meaning don't ignore anything. */ bool refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x, rtx *loc) { int i; unsigned int x_regno; RTX_CODE code; const char *fmt; repeat: /* The contents of a REG_NONNEG note is always zero, so we must come here upon repeat in case the last REG_NOTE is a REG_NONNEG note. */ if (x == 0) return false; code = GET_CODE (x); switch (code) { case REG: x_regno = REGNO (x); /* If we modifying the stack, frame, or argument pointer, it will clobber a virtual register. In fact, we could be more precise, but it isn't worth it. */ if ((x_regno == STACK_POINTER_REGNUM || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && x_regno == ARG_POINTER_REGNUM) || x_regno == FRAME_POINTER_REGNUM) && VIRTUAL_REGISTER_NUM_P (regno)) return true; return endregno > x_regno && regno < END_REGNO (x); case SUBREG: /* If this is a SUBREG of a hard reg, we can see exactly which registers are being modified. Otherwise, handle normally. */ if (REG_P (SUBREG_REG (x)) && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER) { unsigned int inner_regno = subreg_regno (x); unsigned int inner_endregno = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER ? subreg_nregs (x) : 1); return endregno > inner_regno && regno < inner_endregno; } break; case CLOBBER: case SET: if (&SET_DEST (x) != loc /* Note setting a SUBREG counts as referring to the REG it is in for a pseudo but not for hard registers since we can treat each word individually. */ && ((GET_CODE (SET_DEST (x)) == SUBREG && loc != &SUBREG_REG (SET_DEST (x)) && REG_P (SUBREG_REG (SET_DEST (x))) && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER && refers_to_regno_p (regno, endregno, SUBREG_REG (SET_DEST (x)), loc)) || (!REG_P (SET_DEST (x)) && refers_to_regno_p (regno, endregno, SET_DEST (x), loc)))) return true; if (code == CLOBBER || loc == &SET_SRC (x)) return false; x = SET_SRC (x); goto repeat; default: break; } /* X does not match, so try its subexpressions. */ fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e' && loc != &XEXP (x, i)) { if (i == 0) { x = XEXP (x, 0); goto repeat; } else if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc)) return true; } else if (fmt[i] == 'E') { int j; for (j = XVECLEN (x, i) - 1; j >= 0; j--) if (loc != &XVECEXP (x, i, j) && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc)) return true; } } return false; } /* Rreturn true if modifying X will affect IN. If X is a register or a SUBREG, we check if any register number in X conflicts with the relevant register numbers. If X is a constant, return false. If X is a MEM, return true iff IN contains a MEM (we don't bother checking for memory addresses that can't conflict because we expect this to be a rare case. */ bool reg_overlap_mentioned_p (const_rtx x, const_rtx in) { unsigned int regno, endregno; /* If either argument is a constant, then modifying X cannot affect IN. Here we look at IN, we can profitably combine CONSTANT_P (x) with the switch statement below. */ if (CONSTANT_P (in)) return false; recurse: switch (GET_CODE (x)) { case CLOBBER: case STRICT_LOW_PART: case ZERO_EXTRACT: case SIGN_EXTRACT: /* Overly conservative. */ x = XEXP (x, 0); goto recurse; case SUBREG: regno = REGNO (SUBREG_REG (x)); if (regno < FIRST_PSEUDO_REGISTER) regno = subreg_regno (x); endregno = regno + (regno < FIRST_PSEUDO_REGISTER ? subreg_nregs (x) : 1); goto do_reg; case REG: regno = REGNO (x); endregno = END_REGNO (x); do_reg: return refers_to_regno_p (regno, endregno, in, (rtx*) 0); case MEM: { const char *fmt; int i; if (MEM_P (in)) return true; fmt = GET_RTX_FORMAT (GET_CODE (in)); for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--) if (fmt[i] == 'e') { if (reg_overlap_mentioned_p (x, XEXP (in, i))) return true; } else if (fmt[i] == 'E') { int j; for (j = XVECLEN (in, i) - 1; j >= 0; --j) if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j))) return true; } return false; } case SCRATCH: case PC: return reg_mentioned_p (x, in); case PARALLEL: { int i; /* If any register in here refers to it we return true. */ for (i = XVECLEN (x, 0) - 1; i >= 0; i--) if (XEXP (XVECEXP (x, 0, i), 0) != 0 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in)) return true; return false; } default: gcc_assert (CONSTANT_P (x)); return false; } } /* Call FUN on each register or MEM that is stored into or clobbered by X. (X would be the pattern of an insn). DATA is an arbitrary pointer, ignored by note_stores, but passed to FUN. FUN receives three arguments: 1. the REG, MEM or PC being stored in or clobbered, 2. the SET or CLOBBER rtx that does the store, 3. the pointer DATA provided to note_stores. If the item being stored in or clobbered is a SUBREG of a hard register, the SUBREG will be passed. */ void note_pattern_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data) { int i; if (GET_CODE (x) == COND_EXEC) x = COND_EXEC_CODE (x); if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER) { rtx dest = SET_DEST (x); while ((GET_CODE (dest) == SUBREG && (!REG_P (SUBREG_REG (dest)) || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER)) || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART) dest = XEXP (dest, 0); /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions, each of whose first operand is a register. */ if (GET_CODE (dest) == PARALLEL) { for (i = XVECLEN (dest, 0) - 1; i >= 0; i--) if (XEXP (XVECEXP (dest, 0, i), 0) != 0) (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data); } else (*fun) (dest, x, data); } else if (GET_CODE (x) == PARALLEL) for (i = XVECLEN (x, 0) - 1; i >= 0; i--) note_pattern_stores (XVECEXP (x, 0, i), fun, data); } /* Same, but for an instruction. If the instruction is a call, include any CLOBBERs in its CALL_INSN_FUNCTION_USAGE. */ void note_stores (const rtx_insn *insn, void (*fun) (rtx, const_rtx, void *), void *data) { if (CALL_P (insn)) for (rtx link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1)) if (GET_CODE (XEXP (link, 0)) == CLOBBER) note_pattern_stores (XEXP (link, 0), fun, data); note_pattern_stores (PATTERN (insn), fun, data); } /* Like notes_stores, but call FUN for each expression that is being referenced in PBODY, a pointer to the PATTERN of an insn. We only call FUN for each expression, not any interior subexpressions. FUN receives a pointer to the expression and the DATA passed to this function. Note that this is not quite the same test as that done in reg_referenced_p since that considers something as being referenced if it is being partially set, while we do not. */ void note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data) { rtx body = *pbody; int i; switch (GET_CODE (body)) { case COND_EXEC: (*fun) (&COND_EXEC_TEST (body), data); note_uses (&COND_EXEC_CODE (body), fun, data); return; case PARALLEL: for (i = XVECLEN (body, 0) - 1; i >= 0; i--) note_uses (&XVECEXP (body, 0, i), fun, data); return; case SEQUENCE: for (i = XVECLEN (body, 0) - 1; i >= 0; i--) note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data); return; case USE: (*fun) (&XEXP (body, 0), data); return; case ASM_OPERANDS: for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--) (*fun) (&ASM_OPERANDS_INPUT (body, i), data); return; case TRAP_IF: (*fun) (&TRAP_CONDITION (body), data); return; case PREFETCH: (*fun) (&XEXP (body, 0), data); return; case UNSPEC: case UNSPEC_VOLATILE: for (i = XVECLEN (body, 0) - 1; i >= 0; i--) (*fun) (&XVECEXP (body, 0, i), data); return; case CLOBBER: if (MEM_P (XEXP (body, 0))) (*fun) (&XEXP (XEXP (body, 0), 0), data); return; case SET: { rtx dest = SET_DEST (body); /* For sets we replace everything in source plus registers in memory expression in store and operands of a ZERO_EXTRACT. */ (*fun) (&SET_SRC (body), data); if (GET_CODE (dest) == ZERO_EXTRACT) { (*fun) (&XEXP (dest, 1), data); (*fun) (&XEXP (dest, 2), data); } while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART) dest = XEXP (dest, 0); if (MEM_P (dest)) (*fun) (&XEXP (dest, 0), data); } return; default: /* All the other possibilities never store. */ (*fun) (pbody, data); return; } } /* Try to add a description of REG X to this object, stopping once the REF_END limit has been reached. FLAGS is a bitmask of rtx_obj_reference flags that describe the context. */ void rtx_properties::try_to_add_reg (const_rtx x, unsigned int flags) { if (REG_NREGS (x) != 1) flags |= rtx_obj_flags::IS_MULTIREG; machine_mode mode = GET_MODE (x); unsigned int start_regno = REGNO (x); unsigned int end_regno = END_REGNO (x); for (unsigned int regno = start_regno; regno < end_regno; ++regno) if (ref_iter != ref_end) *ref_iter++ = rtx_obj_reference (regno, flags, mode, regno - start_regno); } /* Add a description of destination X to this object. FLAGS is a bitmask of rtx_obj_reference flags that describe the context. This routine accepts all rtxes that can legitimately appear in a SET_DEST. */ void rtx_properties::try_to_add_dest (const_rtx x, unsigned int flags) { /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions, each of whose first operand is a register. */ if (UNLIKELY (GET_CODE (x) == PARALLEL)) { for (int i = XVECLEN (x, 0) - 1; i >= 0; --i) if (rtx dest = XEXP (XVECEXP (x, 0, i), 0)) try_to_add_dest (dest, flags); return; } unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS; flags |= rtx_obj_flags::IS_WRITE; for (;;) if (GET_CODE (x) == ZERO_EXTRACT) { try_to_add_src (XEXP (x, 1), base_flags); try_to_add_src (XEXP (x, 2), base_flags); flags |= rtx_obj_flags::IS_READ; x = XEXP (x, 0); } else if (GET_CODE (x) == STRICT_LOW_PART) { flags |= rtx_obj_flags::IS_READ; x = XEXP (x, 0); } else if (GET_CODE (x) == SUBREG) { flags |= rtx_obj_flags::IN_SUBREG; if (read_modify_subreg_p (x)) flags |= rtx_obj_flags::IS_READ; x = SUBREG_REG (x); } else break; if (MEM_P (x)) { if (ref_iter != ref_end) *ref_iter++ = rtx_obj_reference (MEM_REGNO, flags, GET_MODE (x)); unsigned int addr_flags = base_flags | rtx_obj_flags::IN_MEM_STORE; if (flags & rtx_obj_flags::IS_READ) addr_flags |= rtx_obj_flags::IN_MEM_LOAD; try_to_add_src (XEXP (x, 0), addr_flags); return; } if (LIKELY (REG_P (x))) { /* We want to keep sp alive everywhere - by making all writes to sp also use sp. */ if (REGNO (x) == STACK_POINTER_REGNUM) flags |= rtx_obj_flags::IS_READ; try_to_add_reg (x, flags); return; } } /* Try to add a description of source X to this object, stopping once the REF_END limit has been reached. FLAGS is a bitmask of rtx_obj_reference flags that describe the context. This routine accepts all rtxes that can legitimately appear in a SET_SRC. */ void rtx_properties::try_to_add_src (const_rtx x, unsigned int flags) { unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS; subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, x, NONCONST) { const_rtx x = *iter; rtx_code code = GET_CODE (x); if (code == REG) try_to_add_reg (x, flags | rtx_obj_flags::IS_READ); else if (code == MEM) { if (MEM_VOLATILE_P (x)) has_volatile_refs = true; if (!MEM_READONLY_P (x) && ref_iter != ref_end) { auto mem_flags = flags | rtx_obj_flags::IS_READ; *ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags, GET_MODE (x)); } try_to_add_src (XEXP (x, 0), base_flags | rtx_obj_flags::IN_MEM_LOAD); iter.skip_subrtxes (); } else if (code == SUBREG) { try_to_add_src (SUBREG_REG (x), flags | rtx_obj_flags::IN_SUBREG); iter.skip_subrtxes (); } else if (code == UNSPEC_VOLATILE) has_volatile_refs = true; else if (code == ASM_INPUT || code == ASM_OPERANDS) { has_asm = true; if (MEM_VOLATILE_P (x)) has_volatile_refs = true; } else if (code == PRE_INC || code == PRE_DEC || code == POST_INC || code == POST_DEC || code == PRE_MODIFY || code == POST_MODIFY) { has_pre_post_modify = true; unsigned int addr_flags = (base_flags | rtx_obj_flags::IS_PRE_POST_MODIFY | rtx_obj_flags::IS_READ); try_to_add_dest (XEXP (x, 0), addr_flags); if (code == PRE_MODIFY || code == POST_MODIFY) iter.substitute (XEXP (XEXP (x, 1), 1)); else iter.skip_subrtxes (); } else if (code == CALL) has_call = true; } } /* Try to add a description of instruction pattern PAT to this object, stopping once the REF_END limit has been reached. */ void rtx_properties::try_to_add_pattern (const_rtx pat) { switch (GET_CODE (pat)) { case COND_EXEC: try_to_add_src (COND_EXEC_TEST (pat)); try_to_add_pattern (COND_EXEC_CODE (pat)); break; case PARALLEL: { int last = XVECLEN (pat, 0) - 1; for (int i = 0; i < last; ++i) try_to_add_pattern (XVECEXP (pat, 0, i)); try_to_add_pattern (XVECEXP (pat, 0, last)); break; } case ASM_OPERANDS: for (int i = 0, len = ASM_OPERANDS_INPUT_LENGTH (pat); i < len; ++i) try_to_add_src (ASM_OPERANDS_INPUT (pat, i)); break; case CLOBBER: try_to_add_dest (XEXP (pat, 0), rtx_obj_flags::IS_CLOBBER); break; case SET: try_to_add_dest (SET_DEST (pat)); try_to_add_src (SET_SRC (pat)); break; default: /* All the other possibilities never store and can use a normal rtx walk. This includes: - USE - TRAP_IF - PREFETCH - UNSPEC - UNSPEC_VOLATILE. */ try_to_add_src (pat); break; } } /* Try to add a description of INSN to this object, stopping once the REF_END limit has been reached. INCLUDE_NOTES is true if the description should include REG_EQUAL and REG_EQUIV notes; all such references will then be marked with rtx_obj_flags::IN_NOTE. For calls, this description includes all accesses in CALL_INSN_FUNCTION_USAGE. It also include all implicit accesses to global registers by the target function. However, it does not include clobbers performed by the target function; callers that want this information should instead use the function_abi interface. */ void rtx_properties::try_to_add_insn (const rtx_insn *insn, bool include_notes) { if (CALL_P (insn)) { /* Non-const functions can read from global registers. Impure functions can also set them. Adding the global registers first removes a situation in which a fixed-form clobber of register R could come before a real set of register R. */ if (!hard_reg_set_empty_p (global_reg_set) && !RTL_CONST_CALL_P (insn)) { unsigned int flags = rtx_obj_flags::IS_READ; if (!RTL_PURE_CALL_P (insn)) flags |= rtx_obj_flags::IS_WRITE; for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno) /* As a special case, the stack pointer is invariant across calls even if it has been marked global; see the corresponding handling in df_get_call_refs. */ if (regno != STACK_POINTER_REGNUM && global_regs[regno] && ref_iter != ref_end) *ref_iter++ = rtx_obj_reference (regno, flags, reg_raw_mode[regno], 0); } /* Untyped calls implicitly set all function value registers. Again, we add them first in case the main pattern contains a fixed-form clobber. */ if (find_reg_note (insn, REG_UNTYPED_CALL, NULL_RTX)) for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno) if (targetm.calls.function_value_regno_p (regno) && ref_iter != ref_end) *ref_iter++ = rtx_obj_reference (regno, rtx_obj_flags::IS_WRITE, reg_raw_mode[regno], 0); if (ref_iter != ref_end && !RTL_CONST_CALL_P (insn)) { auto mem_flags = rtx_obj_flags::IS_READ; if (!RTL_PURE_CALL_P (insn)) mem_flags |= rtx_obj_flags::IS_WRITE; *ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags, BLKmode); } try_to_add_pattern (PATTERN (insn)); for (rtx link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1)) { rtx x = XEXP (link, 0); if (GET_CODE (x) == CLOBBER) try_to_add_dest (XEXP (x, 0), rtx_obj_flags::IS_CLOBBER); else if (GET_CODE (x) == USE) try_to_add_src (XEXP (x, 0)); } } else try_to_add_pattern (PATTERN (insn)); if (include_notes) for (rtx note = REG_NOTES (insn); note; note = XEXP (note, 1)) if (REG_NOTE_KIND (note) == REG_EQUAL || REG_NOTE_KIND (note) == REG_EQUIV) try_to_add_note (XEXP (note, 0)); } /* Grow the storage by a bit while keeping the contents of the first START elements. */ void vec_rtx_properties_base::grow (ptrdiff_t start) { /* The same heuristic that vec uses. */ ptrdiff_t new_elems = (ref_end - ref_begin) * 3 / 2; if (ref_begin == m_storage) { ref_begin = XNEWVEC (rtx_obj_reference, new_elems); if (start) memcpy (ref_begin, m_storage, start * sizeof (rtx_obj_reference)); } else ref_begin = reinterpret_cast (xrealloc (ref_begin, new_elems * sizeof (rtx_obj_reference))); ref_iter = ref_begin + start; ref_end = ref_begin + new_elems; } /* Return true if X's old contents don't survive after INSN. This will be true if X is a register and X dies in INSN or because INSN entirely sets X. "Entirely set" means set directly and not through a SUBREG, or ZERO_EXTRACT, so no trace of the old contents remains. Likewise, REG_INC does not count. REG may be a hard or pseudo reg. Renumbering is not taken into account, but for this use that makes no difference, since regs don't overlap during their lifetimes. Therefore, this function may be used at any time after deaths have been computed. If REG is a hard reg that occupies multiple machine registers, this function will only return true if each of those registers will be replaced by INSN. */ bool dead_or_set_p (const rtx_insn *insn, const_rtx x) { unsigned int regno, end_regno; unsigned int i; gcc_assert (REG_P (x)); regno = REGNO (x); end_regno = END_REGNO (x); for (i = regno; i < end_regno; i++) if (! dead_or_set_regno_p (insn, i)) return false; return true; } /* Return TRUE iff DEST is a register or subreg of a register, is a complete rather than read-modify-write destination, and contains register TEST_REGNO. */ static bool covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno) { unsigned int regno, endregno; if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest)) dest = SUBREG_REG (dest); if (!REG_P (dest)) return false; regno = REGNO (dest); endregno = END_REGNO (dest); return (test_regno >= regno && test_regno < endregno); } /* Like covers_regno_no_parallel_p, but also handles PARALLELs where any member matches the covers_regno_no_parallel_p criteria. */ static bool covers_regno_p (const_rtx dest, unsigned int test_regno) { if (GET_CODE (dest) == PARALLEL) { /* Some targets place small structures in registers for return values of functions, and those registers are wrapped in PARALLELs that we may see as the destination of a SET. */ int i; for (i = XVECLEN (dest, 0) - 1; i >= 0; i--) { rtx inner = XEXP (XVECEXP (dest, 0, i), 0); if (inner != NULL_RTX && covers_regno_no_parallel_p (inner, test_regno)) return true; } return false; } else return covers_regno_no_parallel_p (dest, test_regno); } /* Utility function for dead_or_set_p to check an individual register. */ bool dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno) { const_rtx pattern; /* See if there is a death note for something that includes TEST_REGNO. */ if (find_regno_note (insn, REG_DEAD, test_regno)) return true; if (CALL_P (insn) && find_regno_fusage (insn, CLOBBER, test_regno)) return true; pattern = PATTERN (insn); /* If a COND_EXEC is not executed, the value survives. */ if (GET_CODE (pattern) == COND_EXEC) return false; if (GET_CODE (pattern) == SET || GET_CODE (pattern) == CLOBBER) return covers_regno_p (SET_DEST (pattern), test_regno); else if (GET_CODE (pattern) == PARALLEL) { int i; for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--) { rtx body = XVECEXP (pattern, 0, i); if (GET_CODE (body) == COND_EXEC) body = COND_EXEC_CODE (body); if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER) && covers_regno_p (SET_DEST (body), test_regno)) return true; } } return false; } /* Return the reg-note of kind KIND in insn INSN, if there is one. If DATUM is nonzero, look for one whose datum is DATUM. */ rtx find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum) { rtx link; gcc_checking_assert (insn); /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */ if (! INSN_P (insn)) return 0; if (datum == 0) { for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) if (REG_NOTE_KIND (link) == kind) return link; return 0; } for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0)) return link; return 0; } /* Return the reg-note of kind KIND in insn INSN which applies to register number REGNO, if any. Return 0 if there is no such reg-note. Note that the REGNO of this NOTE need not be REGNO if REGNO is a hard register; it might be the case that the note overlaps REGNO. */ rtx find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno) { rtx link; /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */ if (! INSN_P (insn)) return 0; for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) if (REG_NOTE_KIND (link) == kind /* Verify that it is a register, so that scratch and MEM won't cause a problem here. */ && REG_P (XEXP (link, 0)) && REGNO (XEXP (link, 0)) <= regno && END_REGNO (XEXP (link, 0)) > regno) return link; return 0; } /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and has such a note. */ rtx find_reg_equal_equiv_note (const_rtx insn) { rtx link; if (!INSN_P (insn)) return 0; for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) if (REG_NOTE_KIND (link) == REG_EQUAL || REG_NOTE_KIND (link) == REG_EQUIV) { /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on insns that have multiple sets. Checking single_set to make sure of this is not the proper check, as explained in the comment in set_unique_reg_note. This should be changed into an assert. */ if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn)) return 0; return link; } return NULL; } /* Check whether INSN is a single_set whose source is known to be equivalent to a constant. Return that constant if so, otherwise return null. */ rtx find_constant_src (const rtx_insn *insn) { rtx note, set, x; set = single_set (insn); if (set) { x = avoid_constant_pool_reference (SET_SRC (set)); if (CONSTANT_P (x)) return x; } note = find_reg_equal_equiv_note (insn); if (note && CONSTANT_P (XEXP (note, 0))) return XEXP (note, 0); return NULL_RTX; } /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found in the CALL_INSN_FUNCTION_USAGE information of INSN. */ bool find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum) { /* If it's not a CALL_INSN, it can't possibly have a CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */ if (!CALL_P (insn)) return false; gcc_assert (datum); if (!REG_P (datum)) { rtx link; for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1)) if (GET_CODE (XEXP (link, 0)) == code && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0))) return true; } else { unsigned int regno = REGNO (datum); /* CALL_INSN_FUNCTION_USAGE information cannot contain references to pseudo registers, so don't bother checking. */ if (regno < FIRST_PSEUDO_REGISTER) { unsigned int end_regno = END_REGNO (datum); unsigned int i; for (i = regno; i < end_regno; i++) if (find_regno_fusage (insn, code, i)) return true; } } return false; } /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found in the CALL_INSN_FUNCTION_USAGE information of INSN. */ bool find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno) { rtx link; /* CALL_INSN_FUNCTION_USAGE information cannot contain references to pseudo registers, so don't bother checking. */ if (regno >= FIRST_PSEUDO_REGISTER || !CALL_P (insn) ) return false; for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1)) { rtx op, reg; if (GET_CODE (op = XEXP (link, 0)) == code && REG_P (reg = XEXP (op, 0)) && REGNO (reg) <= regno && END_REGNO (reg) > regno) return true; } return false; } /* Return true if KIND is an integer REG_NOTE. */ static bool int_reg_note_p (enum reg_note kind) { return kind == REG_BR_PROB; } /* Allocate a register note with kind KIND and datum DATUM. LIST is stored as the pointer to the next register note. */ rtx alloc_reg_note (enum reg_note kind, rtx datum, rtx list) { rtx note; gcc_checking_assert (!int_reg_note_p (kind)); switch (kind) { case REG_LABEL_TARGET: case REG_LABEL_OPERAND: case REG_TM: /* These types of register notes use an INSN_LIST rather than an EXPR_LIST, so that copying is done right and dumps look better. */ note = alloc_INSN_LIST (datum, list); PUT_REG_NOTE_KIND (note, kind); break; default: note = alloc_EXPR_LIST (kind, datum, list); break; } return note; } /* Add register note with kind KIND and datum DATUM to INSN. */ void add_reg_note (rtx insn, enum reg_note kind, rtx datum) { REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn)); } /* Add an integer register note with kind KIND and datum DATUM to INSN. */ void add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum) { gcc_checking_assert (int_reg_note_p (kind)); REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind, datum, REG_NOTES (insn)); } /* Add a REG_ARGS_SIZE note to INSN with value VALUE. */ void add_args_size_note (rtx_insn *insn, poly_int64 value) { gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX)); add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode)); } /* Add a register note like NOTE to INSN. */ void add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note) { if (GET_CODE (note) == INT_LIST) add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0)); else add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0)); } /* Duplicate NOTE and return the copy. */ rtx duplicate_reg_note (rtx note) { reg_note kind = REG_NOTE_KIND (note); if (GET_CODE (note) == INT_LIST) return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX); else if (GET_CODE (note) == EXPR_LIST) return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX); else return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX); } /* Remove register note NOTE from the REG_NOTES of INSN. */ void remove_note (rtx_insn *insn, const_rtx note) { rtx link; if (note == NULL_RTX) return; if (REG_NOTES (insn) == note) REG_NOTES (insn) = XEXP (note, 1); else for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) if (XEXP (link, 1) == note) { XEXP (link, 1) = XEXP (note, 1); break; } switch (REG_NOTE_KIND (note)) { case REG_EQUAL: case REG_EQUIV: df_notes_rescan (insn); break; default: break; } } /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. If NO_RESCAN is false and any notes were removed, call df_notes_rescan. Return true if any note has been removed. */ bool remove_reg_equal_equiv_notes (rtx_insn *insn, bool no_rescan) { rtx *loc; bool ret = false; loc = ®_NOTES (insn); while (*loc) { enum reg_note kind = REG_NOTE_KIND (*loc); if (kind == REG_EQUAL || kind == REG_EQUIV) { *loc = XEXP (*loc, 1); ret = true; } else loc = &XEXP (*loc, 1); } if (ret && !no_rescan) df_notes_rescan (insn); return ret; } /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */ void remove_reg_equal_equiv_notes_for_regno (unsigned int regno) { df_ref eq_use; if (!df) return; /* This loop is a little tricky. We cannot just go down the chain because it is being modified by some actions in the loop. So we just iterate over the head. We plan to drain the list anyway. */ while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL) { rtx_insn *insn = DF_REF_INSN (eq_use); rtx note = find_reg_equal_equiv_note (insn); /* This assert is generally triggered when someone deletes a REG_EQUAL or REG_EQUIV note by hacking the list manually rather than calling remove_note. */ gcc_assert (note); remove_note (insn, note); } } /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and return 1 if it is found. A simple equality test is used to determine if NODE matches. */ bool in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node) { const_rtx x; for (x = listp; x; x = XEXP (x, 1)) if (node == XEXP (x, 0)) return true; return false; } /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and remove that entry from the list if it is found. A simple equality test is used to determine if NODE matches. */ void remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp) { rtx_insn_list *temp = *listp; rtx_insn_list *prev = NULL; while (temp) { if (node == temp->insn ()) { /* Splice the node out of the list. */ if (prev) XEXP (prev, 1) = temp->next (); else *listp = temp->next (); gcc_checking_assert (!in_insn_list_p (temp->next (), node)); return; } prev = temp; temp = temp->next (); } } /* Return true if X contains any volatile instructions. These are instructions which may cause unpredictable machine state instructions, and thus no instructions or register uses should be moved or combined across them. This includes only volatile asms and UNSPEC_VOLATILE instructions. */ bool volatile_insn_p (const_rtx x) { const RTX_CODE code = GET_CODE (x); switch (code) { case LABEL_REF: case SYMBOL_REF: case CONST: CASE_CONST_ANY: case PC: case REG: case SCRATCH: case CLOBBER: case ADDR_VEC: case ADDR_DIFF_VEC: case CALL: case MEM: return false; case UNSPEC_VOLATILE: return true; case ASM_INPUT: case ASM_OPERANDS: if (MEM_VOLATILE_P (x)) return true; default: break; } /* Recursively scan the operands of this expression. */ { const char *const fmt = GET_RTX_FORMAT (code); int i; for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { if (volatile_insn_p (XEXP (x, i))) return true; } else if (fmt[i] == 'E') { int j; for (j = 0; j < XVECLEN (x, i); j++) if (volatile_insn_p (XVECEXP (x, i, j))) return true; } } } return false; } /* Return true if X contains any volatile memory references UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */ bool volatile_refs_p (const_rtx x) { const RTX_CODE code = GET_CODE (x); switch (code) { case LABEL_REF: case SYMBOL_REF: case CONST: CASE_CONST_ANY: case PC: case REG: case SCRATCH: case CLOBBER: case ADDR_VEC: case ADDR_DIFF_VEC: return false; case UNSPEC_VOLATILE: return true; case MEM: case ASM_INPUT: case ASM_OPERANDS: if (MEM_VOLATILE_P (x)) return true; default: break; } /* Recursively scan the operands of this expression. */ { const char *const fmt = GET_RTX_FORMAT (code); int i; for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { if (volatile_refs_p (XEXP (x, i))) return true; } else if (fmt[i] == 'E') { int j; for (j = 0; j < XVECLEN (x, i); j++) if (volatile_refs_p (XVECEXP (x, i, j))) return true; } } } return false; } /* Similar to above, except that it also rejects register pre- and post- incrementing. */ bool side_effects_p (const_rtx x) { const RTX_CODE code = GET_CODE (x); switch (code) { case LABEL_REF: case SYMBOL_REF: case CONST: CASE_CONST_ANY: case PC: case REG: case SCRATCH: case ADDR_VEC: case ADDR_DIFF_VEC: case VAR_LOCATION: return false; case CLOBBER: /* Reject CLOBBER with a non-VOID mode. These are made by combine.cc when some combination can't be done. If we see one, don't think that we can simplify the expression. */ return (GET_MODE (x) != VOIDmode); case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC: case PRE_MODIFY: case POST_MODIFY: case CALL: case UNSPEC_VOLATILE: return true; case MEM: case ASM_INPUT: case ASM_OPERANDS: if (MEM_VOLATILE_P (x)) return true; default: break; } /* Recursively scan the operands of this expression. */ { const char *fmt = GET_RTX_FORMAT (code); int i; for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { if (side_effects_p (XEXP (x, i))) return true; } else if (fmt[i] == 'E') { int j; for (j = 0; j < XVECLEN (x, i); j++) if (side_effects_p (XVECEXP (x, i, j))) return true; } } } return false; } /* Return true if evaluating rtx X might cause a trap. FLAGS controls how to consider MEMs. A true means the context of the access may have changed from the original, such that the address may have become invalid. */ bool may_trap_p_1 (const_rtx x, unsigned flags) { int i; enum rtx_code code; const char *fmt; /* We make no distinction currently, but this function is part of the internal target-hooks ABI so we keep the parameter as "unsigned flags". */ bool code_changed = flags != 0; if (x == 0) return false; code = GET_CODE (x); switch (code) { /* Handle these cases quickly. */ CASE_CONST_ANY: case SYMBOL_REF: case LABEL_REF: case CONST: case PC: case REG: case SCRATCH: return false; case UNSPEC: return targetm.unspec_may_trap_p (x, flags); case UNSPEC_VOLATILE: case ASM_INPUT: case TRAP_IF: return true; case ASM_OPERANDS: return MEM_VOLATILE_P (x); /* Memory ref can trap unless it's a static var or a stack slot. */ case MEM: /* Recognize specific pattern of stack checking probes. */ if (flag_stack_check && MEM_VOLATILE_P (x) && XEXP (x, 0) == stack_pointer_rtx) return true; if (/* MEM_NOTRAP_P only relates to the actual position of the memory reference; moving it out of context such as when moving code when optimizing, might cause its address to become invalid. */ code_changed || !MEM_NOTRAP_P (x)) { poly_int64 size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : -1; return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size, GET_MODE (x), code_changed); } return false; /* Division by a non-constant might trap. */ case DIV: case MOD: case UDIV: case UMOD: if (HONOR_SNANS (x)) return true; if (FLOAT_MODE_P (GET_MODE (x))) return flag_trapping_math; if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx)) return true; if (GET_CODE (XEXP (x, 1)) == CONST_VECTOR) { /* For CONST_VECTOR, return 1 if any element is or might be zero. */ unsigned int n_elts; rtx op = XEXP (x, 1); if (!GET_MODE_NUNITS (GET_MODE (op)).is_constant (&n_elts)) { if (!CONST_VECTOR_DUPLICATE_P (op)) return true; for (unsigned i = 0; i < (unsigned int) XVECLEN (op, 0); i++) if (CONST_VECTOR_ENCODED_ELT (op, i) == const0_rtx) return true; } else for (unsigned i = 0; i < n_elts; i++) if (CONST_VECTOR_ELT (op, i) == const0_rtx) return true; } break; case EXPR_LIST: /* An EXPR_LIST is used to represent a function call. This certainly may trap. */ return true; case GE: case GT: case LE: case LT: case LTGT: case COMPARE: /* Treat min/max similar as comparisons. */ case SMIN: case SMAX: /* Some floating point comparisons may trap. */ if (!flag_trapping_math) break; /* ??? There is no machine independent way to check for tests that trap when COMPARE is used, though many targets do make this distinction. For instance, sparc uses CCFPE for compares which generate exceptions and CCFP for compares which do not generate exceptions. */ if (HONOR_NANS (x)) return true; /* But often the compare has some CC mode, so check operand modes as well. */ if (HONOR_NANS (XEXP (x, 0)) || HONOR_NANS (XEXP (x, 1))) return true; break; case EQ: case NE: if (HONOR_SNANS (x)) return true; /* Often comparison is CC mode, so check operand modes. */ if (HONOR_SNANS (XEXP (x, 0)) || HONOR_SNANS (XEXP (x, 1))) return true; break; case FIX: case UNSIGNED_FIX: /* Conversion of floating point might trap. */ if (flag_trapping_math && HONOR_NANS (XEXP (x, 0))) return true; break; case NEG: case ABS: case SUBREG: case VEC_MERGE: case VEC_SELECT: case VEC_CONCAT: case VEC_DUPLICATE: /* These operations don't trap even with floating point. */ break; default: /* Any floating arithmetic may trap. */ if (FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math) return true; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { if (may_trap_p_1 (XEXP (x, i), flags)) return true; } else if (fmt[i] == 'E') { int j; for (j = 0; j < XVECLEN (x, i); j++) if (may_trap_p_1 (XVECEXP (x, i, j), flags)) return true; } } return false; } /* Return true if evaluating rtx X might cause a trap. */ bool may_trap_p (const_rtx x) { return may_trap_p_1 (x, 0); } /* Same as above, but additionally return true if evaluating rtx X might cause a fault. We define a fault for the purpose of this function as a erroneous execution condition that cannot be encountered during the normal execution of a valid program; the typical example is an unaligned memory access on a strict alignment machine. The compiler guarantees that it doesn't generate code that will fault from a valid program, but this guarantee doesn't mean anything for individual instructions. Consider the following example: struct S { int d; union { char *cp; int *ip; }; }; int foo(struct S *s) { if (s->d == 1) return *s->ip; else return *s->cp; } on a strict alignment machine. In a valid program, foo will never be invoked on a structure for which d is equal to 1 and the underlying unique field of the union not aligned on a 4-byte boundary, but the expression *s->ip might cause a fault if considered individually. At the RTL level, potentially problematic expressions will almost always verify may_trap_p; for example, the above dereference can be emitted as (mem:SI (reg:P)) and this expression is may_trap_p for a generic register. However, suppose that foo is inlined in a caller that causes s->cp to point to a local character variable and guarantees that s->d is not set to 1; foo may have been effectively translated into pseudo-RTL as: if ((reg:SI) == 1) (set (reg:SI) (mem:SI (%fp - 7))) else (set (reg:QI) (mem:QI (%fp - 7))) Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a memory reference to a stack slot, but it will certainly cause a fault on a strict alignment machine. */ bool may_trap_or_fault_p (const_rtx x) { return may_trap_p_1 (x, 1); } /* Replace any occurrence of FROM in X with TO. The function does not enter into CONST_DOUBLE for the replace. Note that copying is not done so X must not be shared unless all copies are to be modified. ALL_REGS is true if we want to replace all REGs equal to FROM, not just those pointer-equal ones. */ rtx replace_rtx (rtx x, rtx from, rtx to, bool all_regs) { int i, j; const char *fmt; if (x == from) return to; /* Allow this function to make replacements in EXPR_LISTs. */ if (x == 0) return 0; if (all_regs && REG_P (x) && REG_P (from) && REGNO (x) == REGNO (from)) { gcc_assert (GET_MODE (x) == GET_MODE (from)); return to; } else if (GET_CODE (x) == SUBREG) { rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs); if (CONST_SCALAR_INT_P (new_rtx)) { x = simplify_subreg (GET_MODE (x), new_rtx, GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x)); gcc_assert (x); } else SUBREG_REG (x) = new_rtx; return x; } else if (GET_CODE (x) == ZERO_EXTEND) { rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs); if (CONST_SCALAR_INT_P (new_rtx)) { x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x), new_rtx, GET_MODE (XEXP (x, 0))); gcc_assert (x); } else XEXP (x, 0) = new_rtx; return x; } fmt = GET_RTX_FORMAT (GET_CODE (x)); for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) { if (fmt[i] == 'e') XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs); else if (fmt[i] == 'E') for (j = XVECLEN (x, i) - 1; j >= 0; j--) XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to, all_regs); } return x; } /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */ void replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses) { /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */ rtx x = *loc; if (JUMP_TABLE_DATA_P (x)) { x = PATTERN (x); rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC); int len = GET_NUM_ELEM (vec); for (int i = 0; i < len; ++i) { rtx ref = RTVEC_ELT (vec, i); if (XEXP (ref, 0) == old_label) { XEXP (ref, 0) = new_label; if (update_label_nuses) { ++LABEL_NUSES (new_label); --LABEL_NUSES (old_label); } } } return; } /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL field. This is not handled by the iterator because it doesn't handle unprinted ('0') fields. */ if (JUMP_P (x) && JUMP_LABEL (x) == old_label) JUMP_LABEL (x) = new_label; subrtx_ptr_iterator::array_type array; FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL) { rtx *loc = *iter; if (rtx x = *loc) { if (GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x)) { rtx c = get_pool_constant (x); if (rtx_referenced_p (old_label, c)) { /* Create a copy of constant C; replace the label inside but do not update LABEL_NUSES because uses in constant pool are not counted. */ rtx new_c = copy_rtx (c); replace_label (&new_c, old_label, new_label, false); /* Add the new constant NEW_C to constant pool and replace the old reference to constant by new reference. */ rtx new_mem = force_const_mem (get_pool_mode (x), new_c); *loc = replace_rtx (x, x, XEXP (new_mem, 0)); } } if ((GET_CODE (x) == LABEL_REF || GET_CODE (x) == INSN_LIST) && XEXP (x, 0) == old_label) { XEXP (x, 0) = new_label; if (update_label_nuses) { ++LABEL_NUSES (new_label); --LABEL_NUSES (old_label); } } } } } void replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label, rtx_insn *new_label, bool update_label_nuses) { rtx insn_as_rtx = insn; replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses); gcc_checking_assert (insn_as_rtx == insn); } /* Return true if X is referenced in BODY. */ bool rtx_referenced_p (const_rtx x, const_rtx body) { subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, body, ALL) if (const_rtx y = *iter) { /* Check if a label_ref Y refers to label X. */ if (GET_CODE (y) == LABEL_REF && LABEL_P (x) && label_ref_label (y) == x) return true; if (rtx_equal_p (x, y)) return true; /* If Y is a reference to pool constant traverse the constant. */ if (GET_CODE (y) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (y)) iter.substitute (get_pool_constant (y)); } return false; } /* If INSN is a tablejump return true and store the label (before jump table) to *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */ bool tablejump_p (const rtx_insn *insn, rtx_insn **labelp, rtx_jump_table_data **tablep) { if (!JUMP_P (insn)) return false; rtx target = JUMP_LABEL (insn); if (target == NULL_RTX || ANY_RETURN_P (target)) return false; rtx_insn *label = as_a (target); rtx_insn *table = next_insn (label); if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table)) return false; if (labelp) *labelp = label; if (tablep) *tablep = as_a (table); return true; } /* For INSN known to satisfy tablejump_p, determine if it actually is a CASESI. Return the insn pattern if so, NULL_RTX otherwise. */ rtx tablejump_casesi_pattern (const rtx_insn *insn) { rtx tmp; if ((tmp = single_set (insn)) != NULL && SET_DEST (tmp) == pc_rtx && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF) return tmp; return NULL_RTX; } /* A subroutine of computed_jump_p, return true if X contains a REG or MEM or constant that is not in the constant pool and not in the condition of an IF_THEN_ELSE. */ static bool computed_jump_p_1 (const_rtx x) { const enum rtx_code code = GET_CODE (x); int i, j; const char *fmt; switch (code) { case LABEL_REF: case PC: return false; case CONST: CASE_CONST_ANY: case SYMBOL_REF: case REG: return true; case MEM: return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0))); case IF_THEN_ELSE: return (computed_jump_p_1 (XEXP (x, 1)) || computed_jump_p_1 (XEXP (x, 2))); default: break; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e' && computed_jump_p_1 (XEXP (x, i))) return true; else if (fmt[i] == 'E') for (j = 0; j < XVECLEN (x, i); j++) if (computed_jump_p_1 (XVECEXP (x, i, j))) return true; } return false; } /* Return true if INSN is an indirect jump (aka computed jump). Tablejumps and casesi insns are not considered indirect jumps; we can recognize them by a (use (label_ref)). */ bool computed_jump_p (const rtx_insn *insn) { int i; if (JUMP_P (insn)) { rtx pat = PATTERN (insn); /* If we have a JUMP_LABEL set, we're not a computed jump. */ if (JUMP_LABEL (insn) != NULL) return false; if (GET_CODE (pat) == PARALLEL) { int len = XVECLEN (pat, 0); bool has_use_labelref = false; for (i = len - 1; i >= 0; i--) if (GET_CODE (XVECEXP (pat, 0, i)) == USE && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == LABEL_REF)) { has_use_labelref = true; break; } if (! has_use_labelref) for (i = len - 1; i >= 0; i--) if (GET_CODE (XVECEXP (pat, 0, i)) == SET && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i)))) return true; } else if (GET_CODE (pat) == SET && SET_DEST (pat) == pc_rtx && computed_jump_p_1 (SET_SRC (pat))) return true; } return false; } /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of the equivalent add insn and pass the result to FN, using DATA as the final argument. */ static int for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data) { rtx x = XEXP (mem, 0); switch (GET_CODE (x)) { case PRE_INC: case POST_INC: { poly_int64 size = GET_MODE_SIZE (GET_MODE (mem)); rtx r1 = XEXP (x, 0); rtx c = gen_int_mode (size, GET_MODE (r1)); return fn (mem, x, r1, r1, c, data); } case PRE_DEC: case POST_DEC: { poly_int64 size = GET_MODE_SIZE (GET_MODE (mem)); rtx r1 = XEXP (x, 0); rtx c = gen_int_mode (-size, GET_MODE (r1)); return fn (mem, x, r1, r1, c, data); } case PRE_MODIFY: case POST_MODIFY: { rtx r1 = XEXP (x, 0); rtx add = XEXP (x, 1); return fn (mem, x, r1, add, NULL, data); } default: gcc_unreachable (); } } /* Traverse *LOC looking for MEMs that have autoinc addresses. For each such autoinc operation found, call FN, passing it the innermost enclosing MEM, the operation itself, the RTX modified by the operation, two RTXs (the second may be NULL) that, once added, represent the value to be held by the modified RTX afterwards, and DATA. FN is to return 0 to continue the traversal or any other value to have it returned to the caller of for_each_inc_dec. */ int for_each_inc_dec (rtx x, for_each_inc_dec_fn fn, void *data) { subrtx_var_iterator::array_type array; FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST) { rtx mem = *iter; if (mem && MEM_P (mem) && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC) { int res = for_each_inc_dec_find_inc_dec (mem, fn, data); if (res != 0) return res; iter.skip_subrtxes (); } } return 0; } /* Searches X for any reference to REGNO, returning the rtx of the reference found if any. Otherwise, returns NULL_RTX. */ rtx regno_use_in (unsigned int regno, rtx x) { const char *fmt; int i, j; rtx tem; if (REG_P (x) && REGNO (x) == regno) return x; fmt = GET_RTX_FORMAT (GET_CODE (x)); for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) { if (fmt[i] == 'e') { if ((tem = regno_use_in (regno, XEXP (x, i)))) return tem; } else if (fmt[i] == 'E') for (j = XVECLEN (x, i) - 1; j >= 0; j--) if ((tem = regno_use_in (regno , XVECEXP (x, i, j)))) return tem; } return NULL_RTX; } /* Return a value indicating whether OP, an operand of a commutative operation, is preferred as the first or second operand. The more positive the value, the stronger the preference for being the first operand. */ int commutative_operand_precedence (rtx op) { enum rtx_code code = GET_CODE (op); /* Constants always become the second operand. Prefer "nice" constants. */ if (code == CONST_INT) return -10; if (code == CONST_WIDE_INT) return -9; if (code == CONST_POLY_INT) return -8; if (code == CONST_DOUBLE) return -8; if (code == CONST_FIXED) return -8; op = avoid_constant_pool_reference (op); code = GET_CODE (op); switch (GET_RTX_CLASS (code)) { case RTX_CONST_OBJ: if (code == CONST_INT) return -7; if (code == CONST_WIDE_INT) return -6; if (code == CONST_POLY_INT) return -5; if (code == CONST_DOUBLE) return -5; if (code == CONST_FIXED) return -5; return -4; case RTX_EXTRA: /* SUBREGs of objects should come second. */ if (code == SUBREG && OBJECT_P (SUBREG_REG (op))) return -3; return 0; case RTX_OBJ: /* Complex expressions should be the first, so decrease priority of objects. Prefer pointer objects over non pointer objects. */ if ((REG_P (op) && REG_POINTER (op)) || (MEM_P (op) && MEM_POINTER (op))) return -1; return -2; case RTX_COMM_ARITH: /* Prefer operands that are themselves commutative to be first. This helps to make things linear. In particular, (and (and (reg) (reg)) (not (reg))) is canonical. */ return 4; case RTX_BIN_ARITH: /* If only one operand is a binary expression, it will be the first operand. In particular, (plus (minus (reg) (reg)) (neg (reg))) is canonical, although it will usually be further simplified. */ return 2; case RTX_UNARY: /* Then prefer NEG and NOT. */ if (code == NEG || code == NOT) return 1; /* FALLTHRU */ default: return 0; } } /* Return true iff it is necessary to swap operands of commutative operation in order to canonicalize expression. */ bool swap_commutative_operands_p (rtx x, rtx y) { return (commutative_operand_precedence (x) < commutative_operand_precedence (y)); } /* Return true if X is an autoincrement side effect and the register is not the stack pointer. */ bool auto_inc_p (const_rtx x) { switch (GET_CODE (x)) { case PRE_INC: case POST_INC: case PRE_DEC: case POST_DEC: case PRE_MODIFY: case POST_MODIFY: /* There are no REG_INC notes for SP. */ if (XEXP (x, 0) != stack_pointer_rtx) return true; default: break; } return false; } /* Return true if IN contains a piece of rtl that has the address LOC. */ bool loc_mentioned_in_p (rtx *loc, const_rtx in) { enum rtx_code code; const char *fmt; int i, j; if (!in) return false; code = GET_CODE (in); fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i))) return true; } else if (fmt[i] == 'E') for (j = XVECLEN (in, i) - 1; j >= 0; j--) if (loc == &XVECEXP (in, i, j) || loc_mentioned_in_p (loc, XVECEXP (in, i, j))) return true; } return false; } /* Reinterpret a subreg as a bit extraction from an integer and return the position of the least significant bit of the extracted value. In other words, if the extraction were performed as a shift right and mask, return the number of bits to shift right. The outer value of the subreg has OUTER_BYTES bytes and starts at byte offset SUBREG_BYTE within an inner value of INNER_BYTES bytes. */ poly_uint64 subreg_size_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes, poly_uint64 subreg_byte) { poly_uint64 subreg_end, trailing_bytes, byte_pos; /* A paradoxical subreg begins at bit position 0. */ gcc_checking_assert (ordered_p (outer_bytes, inner_bytes)); if (maybe_gt (outer_bytes, inner_bytes)) { gcc_checking_assert (known_eq (subreg_byte, 0U)); return 0; } subreg_end = subreg_byte + outer_bytes; trailing_bytes = inner_bytes - subreg_end; if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN) byte_pos = trailing_bytes; else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN) byte_pos = subreg_byte; else { /* When bytes and words have opposite endianness, we must be able to split offsets into words and bytes at compile time. */ poly_uint64 leading_word_part = force_align_down (subreg_byte, UNITS_PER_WORD); poly_uint64 trailing_word_part = force_align_down (trailing_bytes, UNITS_PER_WORD); /* If the subreg crosses a word boundary ensure that it also begins and ends on a word boundary. */ gcc_assert (known_le (subreg_end - leading_word_part, (unsigned int) UNITS_PER_WORD) || (known_eq (leading_word_part, subreg_byte) && known_eq (trailing_word_part, trailing_bytes))); if (WORDS_BIG_ENDIAN) byte_pos = trailing_word_part + (subreg_byte - leading_word_part); else byte_pos = leading_word_part + (trailing_bytes - trailing_word_part); } return byte_pos * BITS_PER_UNIT; } /* Given a subreg X, return the bit offset where the subreg begins (counting from the least significant bit of the reg). */ poly_uint64 subreg_lsb (const_rtx x) { return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x)); } /* Return the subreg byte offset for a subreg whose outer value has OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where there are LSB_SHIFT *bits* between the lsb of the outer value and the lsb of the inner value. This is the inverse of the calculation performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */ poly_uint64 subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes, poly_uint64 lsb_shift) { /* A paradoxical subreg begins at bit position 0. */ gcc_checking_assert (ordered_p (outer_bytes, inner_bytes)); if (maybe_gt (outer_bytes, inner_bytes)) { gcc_checking_assert (known_eq (lsb_shift, 0U)); return 0; } poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT); poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes); if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN) return upper_bytes; else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN) return lower_bytes; else { /* When bytes and words have opposite endianness, we must be able to split offsets into words and bytes at compile time. */ poly_uint64 lower_word_part = force_align_down (lower_bytes, UNITS_PER_WORD); poly_uint64 upper_word_part = force_align_down (upper_bytes, UNITS_PER_WORD); if (WORDS_BIG_ENDIAN) return upper_word_part + (lower_bytes - lower_word_part); else return lower_word_part + (upper_bytes - upper_word_part); } } /* Fill in information about a subreg of a hard register. xregno - A regno of an inner hard subreg_reg (or what will become one). xmode - The mode of xregno. offset - The byte offset. ymode - The mode of a top level SUBREG (or what may become one). info - Pointer to structure to fill in. Rather than considering one particular inner register (and thus one particular "outer" register) in isolation, this function really uses XREGNO as a model for a sequence of isomorphic hard registers. Thus the function does not check whether adding INFO->offset to XREGNO gives a valid hard register; even if INFO->offset + XREGNO is out of range, there might be another register of the same type that is in range. Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts the new register, since that can depend on things like whether the final register number is even or odd. Callers that want to check whether this particular subreg can be replaced by a simple (reg ...) should use simplify_subreg_regno. */ void subreg_get_info (unsigned int xregno, machine_mode xmode, poly_uint64 offset, machine_mode ymode, struct subreg_info *info) { unsigned int nregs_xmode, nregs_ymode; gcc_assert (xregno < FIRST_PSEUDO_REGISTER); poly_uint64 xsize = GET_MODE_SIZE (xmode); poly_uint64 ysize = GET_MODE_SIZE (ymode); bool rknown = false; /* If the register representation of a non-scalar mode has holes in it, we expect the scalar units to be concatenated together, with the holes distributed evenly among the scalar units. Each scalar unit must occupy at least one register. */ if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)) { /* As a consequence, we must be dealing with a constant number of scalars, and thus a constant offset and number of units. */ HOST_WIDE_INT coffset = offset.to_constant (); HOST_WIDE_INT cysize = ysize.to_constant (); nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode); unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant (); scalar_mode xmode_unit = GET_MODE_INNER (xmode); gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit)); gcc_assert (nregs_xmode == (nunits * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit))); gcc_assert (hard_regno_nregs (xregno, xmode) == hard_regno_nregs (xregno, xmode_unit) * nunits); /* You can only ask for a SUBREG of a value with holes in the middle if you don't cross the holes. (Such a SUBREG should be done by picking a different register class, or doing it in memory if necessary.) An example of a value with holes is XCmode on 32-bit x86 with -m128bit-long-double; it's represented in 6 32-bit registers, 3 for each part, but in memory it's two 128-bit parts. Padding is assumed to be at the end (not necessarily the 'high part') of each unit. */ if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits) && (coffset / GET_MODE_SIZE (xmode_unit) != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit)))) { info->representable_p = false; rknown = true; } } else nregs_xmode = hard_regno_nregs (xregno, xmode); nregs_ymode = hard_regno_nregs (xregno, ymode); /* Subreg sizes must be ordered, so that we can tell whether they are partial, paradoxical or complete. */ gcc_checking_assert (ordered_p (xsize, ysize)); /* Paradoxical subregs are otherwise valid. */ if (!rknown && known_eq (offset, 0U) && maybe_gt (ysize, xsize)) { info->representable_p = true; /* If this is a big endian paradoxical subreg, which uses more actual hard registers than the original register, we must return a negative offset so that we find the proper highpart of the register. We assume that the ordering of registers within a multi-register value has a consistent endianness: if bytes and register words have different endianness, the hard registers that make up a multi-register value must be at least word-sized. */ if (REG_WORDS_BIG_ENDIAN) info->offset = (int) nregs_xmode - (int) nregs_ymode; else info->offset = 0; info->nregs = nregs_ymode; return; } /* If registers store different numbers of bits in the different modes, we cannot generally form this subreg. */ poly_uint64 regsize_xmode, regsize_ymode; if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode) && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode) && multiple_p (xsize, nregs_xmode, ®size_xmode) && multiple_p (ysize, nregs_ymode, ®size_ymode)) { if (!rknown && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode)) || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode)))) { info->representable_p = false; if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs) || !can_div_trunc_p (offset, regsize_xmode, &info->offset)) /* Checked by validate_subreg. We must know at compile time which inner registers are being accessed. */ gcc_unreachable (); return; } /* It's not valid to extract a subreg of mode YMODE at OFFSET that would go outside of XMODE. */ if (!rknown && maybe_gt (ysize + offset, xsize)) { info->representable_p = false; info->nregs = nregs_ymode; if (!can_div_trunc_p (offset, regsize_xmode, &info->offset)) /* Checked by validate_subreg. We must know at compile time which inner registers are being accessed. */ gcc_unreachable (); return; } /* Quick exit for the simple and common case of extracting whole subregisters from a multiregister value. */ /* ??? It would be better to integrate this into the code below, if we can generalize the concept enough and figure out how odd-sized modes can coexist with the other weird cases we support. */ HOST_WIDE_INT count; if (!rknown && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN && known_eq (regsize_xmode, regsize_ymode) && constant_multiple_p (offset, regsize_ymode, &count)) { info->representable_p = true; info->nregs = nregs_ymode; info->offset = count; gcc_assert (info->offset + info->nregs <= (int) nregs_xmode); return; } } /* Lowpart subregs are otherwise valid. */ if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode))) { info->representable_p = true; rknown = true; if (known_eq (offset, 0U) || nregs_xmode == nregs_ymode) { info->offset = 0; info->nregs = nregs_ymode; return; } } /* Set NUM_BLOCKS to the number of independently-representable YMODE values there are in (reg:XMODE XREGNO). We can view the register as consisting of this number of independent "blocks", where each block occupies NREGS_YMODE registers and contains exactly one representable YMODE value. */ gcc_assert ((nregs_xmode % nregs_ymode) == 0); unsigned int num_blocks = nregs_xmode / nregs_ymode; /* Calculate the number of bytes in each block. This must always be exact, otherwise we don't know how to verify the constraint. These conditions may be relaxed but subreg_regno_offset would need to be redesigned. */ poly_uint64 bytes_per_block = exact_div (xsize, num_blocks); /* Get the number of the first block that contains the subreg and the byte offset of the subreg from the start of that block. */ unsigned int block_number; poly_uint64 subblock_offset; if (!can_div_trunc_p (offset, bytes_per_block, &block_number, &subblock_offset)) /* Checked by validate_subreg. We must know at compile time which inner registers are being accessed. */ gcc_unreachable (); if (!rknown) { /* Only the lowpart of each block is representable. */ info->representable_p = known_eq (subblock_offset, subreg_size_lowpart_offset (ysize, bytes_per_block)); rknown = true; } /* We assume that the ordering of registers within a multi-register value has a consistent endianness: if bytes and register words have different endianness, the hard registers that make up a multi-register value must be at least word-sized. */ if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN) /* The block number we calculated above followed memory endianness. Convert it to register endianness by counting back from the end. (Note that, because of the assumption above, each block must be at least word-sized.) */ info->offset = (num_blocks - block_number - 1) * nregs_ymode; else info->offset = block_number * nregs_ymode; info->nregs = nregs_ymode; } /* This function returns the regno offset of a subreg expression. xregno - A regno of an inner hard subreg_reg (or what will become one). xmode - The mode of xregno. offset - The byte offset. ymode - The mode of a top level SUBREG (or what may become one). RETURN - The regno offset which would be used. */ unsigned int subreg_regno_offset (unsigned int xregno, machine_mode xmode, poly_uint64 offset, machine_mode ymode) { struct subreg_info info; subreg_get_info (xregno, xmode, offset, ymode, &info); return info.offset; } /* This function returns true when the offset is representable via subreg_offset in the given regno. xregno - A regno of an inner hard subreg_reg (or what will become one). xmode - The mode of xregno. offset - The byte offset. ymode - The mode of a top level SUBREG (or what may become one). RETURN - Whether the offset is representable. */ bool subreg_offset_representable_p (unsigned int xregno, machine_mode xmode, poly_uint64 offset, machine_mode ymode) { struct subreg_info info; subreg_get_info (xregno, xmode, offset, ymode, &info); return info.representable_p; } /* Return the number of a YMODE register to which (subreg:YMODE (reg:XMODE XREGNO) OFFSET) can be simplified. Return -1 if the subreg can't be simplified. XREGNO is a hard register number. */ int simplify_subreg_regno (unsigned int xregno, machine_mode xmode, poly_uint64 offset, machine_mode ymode) { struct subreg_info info; unsigned int yregno; /* Give the backend a chance to disallow the mode change. */ if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode)) return -1; /* We shouldn't simplify stack-related registers. */ if ((!reload_completed || frame_pointer_needed) && xregno == FRAME_POINTER_REGNUM) return -1; if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && xregno == ARG_POINTER_REGNUM) return -1; if (xregno == STACK_POINTER_REGNUM /* We should convert hard stack register in LRA if it is possible. */ && ! lra_in_progress) return -1; /* Try to get the register offset. */ subreg_get_info (xregno, xmode, offset, ymode, &info); if (!info.representable_p) return -1; /* Make sure that the offsetted register value is in range. */ yregno = xregno + info.offset; if (!HARD_REGISTER_NUM_P (yregno)) return -1; /* See whether (reg:YMODE YREGNO) is valid. ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid. This is a kludge to work around how complex FP arguments are passed on IA-64 and should be fixed. See PR target/49226. */ if (!targetm.hard_regno_mode_ok (yregno, ymode) && targetm.hard_regno_mode_ok (xregno, xmode)) return -1; return (int) yregno; } /* A wrapper around simplify_subreg_regno that uses subreg_lowpart_offset (xmode, ymode) as the offset. */ int lowpart_subreg_regno (unsigned int regno, machine_mode xmode, machine_mode ymode) { poly_uint64 offset = subreg_lowpart_offset (xmode, ymode); return simplify_subreg_regno (regno, xmode, offset, ymode); } /* Return the final regno that a subreg expression refers to. */ unsigned int subreg_regno (const_rtx x) { unsigned int ret; rtx subreg = SUBREG_REG (x); int regno = REGNO (subreg); ret = regno + subreg_regno_offset (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x)); return ret; } /* Return the number of registers that a subreg expression refers to. */ unsigned int subreg_nregs (const_rtx x) { return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x); } /* Return the number of registers that a subreg REG with REGNO expression refers to. This is a copy of the rtlanal.cc:subreg_nregs changed so that the regno can be passed in. */ unsigned int subreg_nregs_with_regno (unsigned int regno, const_rtx x) { struct subreg_info info; rtx subreg = SUBREG_REG (x); subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x), &info); return info.nregs; } struct parms_set_data { int nregs; HARD_REG_SET regs; }; /* Helper function for noticing stores to parameter registers. */ static void parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data) { struct parms_set_data *const d = (struct parms_set_data *) data; if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER && TEST_HARD_REG_BIT (d->regs, REGNO (x))) { CLEAR_HARD_REG_BIT (d->regs, REGNO (x)); d->nregs--; } } /* Look backward for first parameter to be loaded. Note that loads of all parameters will not necessarily be found if CSE has eliminated some of them (e.g., an argument to the outer function is passed down as a parameter). Do not skip BOUNDARY. */ rtx_insn * find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary) { struct parms_set_data parm; rtx p; rtx_insn *before, *first_set; /* Since different machines initialize their parameter registers in different orders, assume nothing. Collect the set of all parameter registers. */ CLEAR_HARD_REG_SET (parm.regs); parm.nregs = 0; for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1)) if (GET_CODE (XEXP (p, 0)) == USE && REG_P (XEXP (XEXP (p, 0), 0)) && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0))) { gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER); /* We only care about registers which can hold function arguments. */ if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0)))) continue; SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0))); parm.nregs++; } before = call_insn; first_set = call_insn; /* Search backward for the first set of a register in this set. */ while (parm.nregs && before != boundary) { before = PREV_INSN (before); /* It is possible that some loads got CSEed from one call to another. Stop in that case. */ if (CALL_P (before)) break; /* Our caller needs either ensure that we will find all sets (in case code has not been optimized yet), or take care for possible labels in a way by setting boundary to preceding CODE_LABEL. */ if (LABEL_P (before)) { gcc_assert (before == boundary); break; } if (INSN_P (before)) { int nregs_old = parm.nregs; note_stores (before, parms_set, &parm); /* If we found something that did not set a parameter reg, we're done. Do not keep going, as that might result in hoisting an insn before the setting of a pseudo that is used by the hoisted insn. */ if (nregs_old != parm.nregs) first_set = before; else break; } } return first_set; } /* Return true if we should avoid inserting code between INSN and preceding call instruction. */ bool keep_with_call_p (const rtx_insn *insn) { rtx set; if (INSN_P (insn) && (set = single_set (insn)) != NULL) { if (REG_P (SET_DEST (set)) && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER && fixed_regs[REGNO (SET_DEST (set))] && general_operand (SET_SRC (set), VOIDmode)) return true; if (REG_P (SET_SRC (set)) && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set))) && REG_P (SET_DEST (set)) && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER) return true; /* There may be a stack pop just after the call and before the store of the return register. Search for the actual store when deciding if we can break or not. */ if (SET_DEST (set) == stack_pointer_rtx) { /* This CONST_CAST is okay because next_nonnote_insn just returns its argument and we assign it to a const_rtx variable. */ const rtx_insn *i2 = next_nonnote_insn (const_cast (insn)); if (i2 && keep_with_call_p (i2)) return true; } } return false; } /* Return true if LABEL is a target of JUMP_INSN. This applies only to non-complex jumps. That is, direct unconditional, conditional, and tablejumps, but not computed jumps or returns. It also does not apply to the fallthru case of a conditional jump. */ bool label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn) { rtx tmp = JUMP_LABEL (jump_insn); rtx_jump_table_data *table; if (label == tmp) return true; if (tablejump_p (jump_insn, NULL, &table)) { rtvec vec = table->get_labels (); int i, veclen = GET_NUM_ELEM (vec); for (i = 0; i < veclen; ++i) if (XEXP (RTVEC_ELT (vec, i), 0) == label) return true; } if (find_reg_note (jump_insn, REG_LABEL_TARGET, label)) return true; return false; } /* Return an estimate of the cost of computing rtx X. One use is in cse, to decide which expression to keep in the hash table. Another is in rtl generation, to pick the cheapest way to multiply. Other uses like the latter are expected in the future. X appears as operand OPNO in an expression with code OUTER_CODE. SPEED specifies whether costs optimized for speed or size should be returned. */ int rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code, int opno, bool speed) { int i, j; enum rtx_code code; const char *fmt; int total; int factor; unsigned mode_size; if (x == 0) return 0; if (GET_CODE (x) == SET) /* A SET doesn't have a mode, so let's look at the SET_DEST to get the mode for the factor. */ mode = GET_MODE (SET_DEST (x)); else if (GET_MODE (x) != VOIDmode) mode = GET_MODE (x); mode_size = estimated_poly_value (GET_MODE_SIZE (mode)); /* A size N times larger than UNITS_PER_WORD likely needs N times as many insns, taking N times as long. */ factor = mode_size > UNITS_PER_WORD ? mode_size / UNITS_PER_WORD : 1; /* Compute the default costs of certain things. Note that targetm.rtx_costs can override the defaults. */ code = GET_CODE (x); switch (code) { case MULT: case FMA: case SS_MULT: case US_MULT: case SMUL_HIGHPART: case UMUL_HIGHPART: /* Multiplication has time-complexity O(N*N), where N is the number of units (translated from digits) when using schoolbook long multiplication. */ total = factor * factor * COSTS_N_INSNS (5); break; case DIV: case UDIV: case MOD: case UMOD: case SS_DIV: case US_DIV: /* Similarly, complexity for schoolbook long division. */ total = factor * factor * COSTS_N_INSNS (7); break; case USE: /* Used in combine.cc as a marker. */ total = 0; break; default: total = factor * COSTS_N_INSNS (1); } switch (code) { case REG: return 0; case SUBREG: total = 0; /* If we can't tie these modes, make this expensive. The larger the mode, the more expensive it is. */ if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x)))) return COSTS_N_INSNS (2 + factor); break; case TRUNCATE: if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0)))) { total = 0; break; } /* FALLTHRU */ default: if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed)) return total; break; } /* Sum the costs of the sub-rtx's, plus cost of this operation, which is already in total. */ fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) if (fmt[i] == 'e') total += rtx_cost (XEXP (x, i), mode, code, i, speed); else if (fmt[i] == 'E') for (j = 0; j < XVECLEN (x, i); j++) total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed); return total; } /* Fill in the structure C with information about both speed and size rtx costs for X, which is operand OPNO in an expression with code OUTER. */ void get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno, struct full_rtx_costs *c) { c->speed = rtx_cost (x, mode, outer, opno, true); c->size = rtx_cost (x, mode, outer, opno, false); } /* Return cost of address expression X. Expect that X is properly formed address reference. SPEED parameter specify whether costs optimized for speed or size should be returned. */ int address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed) { /* We may be asked for cost of various unusual addresses, such as operands of push instruction. It is not worthwhile to complicate writing of the target hook by such cases. */ if (!memory_address_addr_space_p (mode, x, as)) return 1000; return targetm.address_cost (x, mode, as, speed); } /* If the target doesn't override, compute the cost as with arithmetic. */ int default_address_cost (rtx x, machine_mode, addr_space_t, bool speed) { return rtx_cost (x, Pmode, MEM, 0, speed); } unsigned HOST_WIDE_INT nonzero_bits (const_rtx x, machine_mode mode) { if (mode == VOIDmode) mode = GET_MODE (x); scalar_int_mode int_mode; if (!is_a (mode, &int_mode)) return GET_MODE_MASK (mode); return cached_nonzero_bits (x, int_mode, NULL_RTX, VOIDmode, 0); } unsigned int num_sign_bit_copies (const_rtx x, machine_mode mode) { if (mode == VOIDmode) mode = GET_MODE (x); scalar_int_mode int_mode; if (!is_a (mode, &int_mode)) return 1; return cached_num_sign_bit_copies (x, int_mode, NULL_RTX, VOIDmode, 0); } /* Return true if nonzero_bits1 might recurse into both operands of X. */ static inline bool nonzero_bits_binary_arith_p (const_rtx x) { if (!ARITHMETIC_P (x)) return false; switch (GET_CODE (x)) { case AND: case XOR: case IOR: case UMIN: case UMAX: case SMIN: case SMAX: case PLUS: case MINUS: case MULT: case DIV: case UDIV: case MOD: case UMOD: return true; default: return false; } } /* The function cached_nonzero_bits is a wrapper around nonzero_bits1. It avoids exponential behavior in nonzero_bits1 when X has identical subexpressions on the first or the second level. */ static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x, machine_mode known_mode, unsigned HOST_WIDE_INT known_ret) { if (x == known_x && mode == known_mode) return known_ret; /* Try to find identical subexpressions. If found call nonzero_bits1 on X with the subexpressions as KNOWN_X and the precomputed value for the subexpression as KNOWN_RET. */ if (nonzero_bits_binary_arith_p (x)) { rtx x0 = XEXP (x, 0); rtx x1 = XEXP (x, 1); /* Check the first level. */ if (x0 == x1) return nonzero_bits1 (x, mode, x0, mode, cached_nonzero_bits (x0, mode, known_x, known_mode, known_ret)); /* Check the second level. */ if (nonzero_bits_binary_arith_p (x0) && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1))) return nonzero_bits1 (x, mode, x1, mode, cached_nonzero_bits (x1, mode, known_x, known_mode, known_ret)); if (nonzero_bits_binary_arith_p (x1) && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1))) return nonzero_bits1 (x, mode, x0, mode, cached_nonzero_bits (x0, mode, known_x, known_mode, known_ret)); } return nonzero_bits1 (x, mode, known_x, known_mode, known_ret); } /* We let num_sign_bit_copies recur into nonzero_bits as that is useful. We don't let nonzero_bits recur into num_sign_bit_copies, because that is less useful. We can't allow both, because that results in exponential run time recursion. There is a nullstone testcase that triggered this. This macro avoids accidental uses of num_sign_bit_copies. */ #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior /* Given an expression, X, compute which bits in X can be nonzero. We don't care about bits outside of those defined in MODE. For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is an arithmetic operation, we can do better. */ static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x, machine_mode known_mode, unsigned HOST_WIDE_INT known_ret) { unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode); unsigned HOST_WIDE_INT inner_nz; enum rtx_code code = GET_CODE (x); machine_mode inner_mode; unsigned int inner_width; scalar_int_mode xmode; unsigned int mode_width = GET_MODE_PRECISION (mode); if (CONST_INT_P (x)) { if (SHORT_IMMEDIATES_SIGN_EXTEND && INTVAL (x) > 0 && mode_width < BITS_PER_WORD && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1))) != 0) return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width); return UINTVAL (x); } if (!is_a (GET_MODE (x), &xmode)) return nonzero; unsigned int xmode_width = GET_MODE_PRECISION (xmode); /* If X is wider than MODE, use its mode instead. */ if (xmode_width > mode_width) { mode = xmode; nonzero = GET_MODE_MASK (mode); mode_width = xmode_width; } if (mode_width > HOST_BITS_PER_WIDE_INT) /* Our only callers in this case look for single bit values. So just return the mode mask. Those tests will then be false. */ return nonzero; /* If MODE is wider than X, but both are a single word for both the host and target machines, we can compute this from which bits of the object might be nonzero in its own mode, taking into account the fact that, on CISC machines, accessing an object in a wider mode generally causes the high-order bits to become undefined, so they are not known to be zero. We extend this reasoning to RISC machines for operations that might not operate on the full registers. */ if (mode_width > xmode_width && xmode_width <= BITS_PER_WORD && xmode_width <= HOST_BITS_PER_WIDE_INT && !(WORD_REGISTER_OPERATIONS && word_register_operation_p (x))) { nonzero &= cached_nonzero_bits (x, xmode, known_x, known_mode, known_ret); nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode); return nonzero; } /* Please keep nonzero_bits_binary_arith_p above in sync with the code in the switch below. */ switch (code) { case REG: #if defined(POINTERS_EXTEND_UNSIGNED) /* If pointers extend unsigned and this is a pointer in Pmode, say that all the bits above ptr_mode are known to be zero. */ /* As we do not know which address space the pointer is referring to, we can do this only if the target does not support different pointer or address modes depending on the address space. */ if (target_default_pointer_address_modes_p () && POINTERS_EXTEND_UNSIGNED && xmode == Pmode && REG_POINTER (x) && !targetm.have_ptr_extend ()) nonzero &= GET_MODE_MASK (ptr_mode); #endif /* Include declared information about alignment of pointers. */ /* ??? We don't properly preserve REG_POINTER changes across pointer-to-integer casts, so we can't trust it except for things that we know must be pointers. See execute/960116-1.c. */ if ((x == stack_pointer_rtx || x == frame_pointer_rtx || x == arg_pointer_rtx) && REGNO_POINTER_ALIGN (REGNO (x))) { unsigned HOST_WIDE_INT alignment = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT; #ifdef PUSH_ROUNDING /* If PUSH_ROUNDING is defined, it is possible for the stack to be momentarily aligned only to that amount, so we pick the least alignment. */ if (x == stack_pointer_rtx && targetm.calls.push_argument (0)) { poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1)); alignment = MIN (known_alignment (rounded_1), alignment); } #endif nonzero &= ~(alignment - 1); } { unsigned HOST_WIDE_INT nonzero_for_hook = nonzero; rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode, &nonzero_for_hook); if (new_rtx) nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x, known_mode, known_ret); return nonzero_for_hook; } case MEM: /* In many, if not most, RISC machines, reading a byte from memory zeros the rest of the register. Noticing that fact saves a lot of extra zero-extends. */ if (load_extend_op (xmode) == ZERO_EXTEND) nonzero &= GET_MODE_MASK (xmode); break; case EQ: case NE: case UNEQ: case LTGT: case GT: case GTU: case UNGT: case LT: case LTU: case UNLT: case GE: case GEU: case UNGE: case LE: case LEU: case UNLE: case UNORDERED: case ORDERED: /* If this produces an integer result, we know which bits are set. Code here used to clear bits outside the mode of X, but that is now done above. */ /* Mind that MODE is the mode the caller wants to look at this operation in, and not the actual operation mode. We can wind up with (subreg:DI (gt:V4HI x y)), and we don't have anything that describes the results of a vector compare. */ if (GET_MODE_CLASS (xmode) == MODE_INT && mode_width <= HOST_BITS_PER_WIDE_INT) nonzero = STORE_FLAG_VALUE; break; case NEG: #if 0 /* Disabled to avoid exponential mutual recursion between nonzero_bits and num_sign_bit_copies. */ if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width) nonzero = 1; #endif if (xmode_width < mode_width) nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode)); break; case ABS: #if 0 /* Disabled to avoid exponential mutual recursion between nonzero_bits and num_sign_bit_copies. */ if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width) nonzero = 1; #endif break; case TRUNCATE: nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode, known_x, known_mode, known_ret) & GET_MODE_MASK (mode)); break; case ZERO_EXTEND: nonzero &= cached_nonzero_bits (XEXP (x, 0), mode, known_x, known_mode, known_ret); if (GET_MODE (XEXP (x, 0)) != VOIDmode) nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0))); break; case SIGN_EXTEND: /* If the sign bit is known clear, this is the same as ZERO_EXTEND. Otherwise, show all the bits in the outer mode but not the inner may be nonzero. */ inner_nz = cached_nonzero_bits (XEXP (x, 0), mode, known_x, known_mode, known_ret); if (GET_MODE (XEXP (x, 0)) != VOIDmode) { inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0))); if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz)) inner_nz |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))); } nonzero &= inner_nz; break; case AND: nonzero &= cached_nonzero_bits (XEXP (x, 0), mode, known_x, known_mode, known_ret) & cached_nonzero_bits (XEXP (x, 1), mode, known_x, known_mode, known_ret); break; case XOR: case IOR: case UMIN: case UMAX: case SMIN: case SMAX: { unsigned HOST_WIDE_INT nonzero0 = cached_nonzero_bits (XEXP (x, 0), mode, known_x, known_mode, known_ret); /* Don't call nonzero_bits for the second time if it cannot change anything. */ if ((nonzero & nonzero0) != nonzero) nonzero &= nonzero0 | cached_nonzero_bits (XEXP (x, 1), mode, known_x, known_mode, known_ret); } break; case PLUS: case MINUS: case MULT: case DIV: case UDIV: case MOD: case UMOD: /* We can apply the rules of arithmetic to compute the number of high- and low-order zero bits of these operations. We start by computing the width (position of the highest-order nonzero bit) and the number of low-order zero bits for each value. */ { unsigned HOST_WIDE_INT nz0 = cached_nonzero_bits (XEXP (x, 0), mode, known_x, known_mode, known_ret); unsigned HOST_WIDE_INT nz1 = cached_nonzero_bits (XEXP (x, 1), mode, known_x, known_mode, known_ret); int sign_index = xmode_width - 1; int width0 = floor_log2 (nz0) + 1; int width1 = floor_log2 (nz1) + 1; int low0 = ctz_or_zero (nz0); int low1 = ctz_or_zero (nz1); unsigned HOST_WIDE_INT op0_maybe_minusp = nz0 & (HOST_WIDE_INT_1U << sign_index); unsigned HOST_WIDE_INT op1_maybe_minusp = nz1 & (HOST_WIDE_INT_1U << sign_index); unsigned int result_width = mode_width; int result_low = 0; switch (code) { case PLUS: result_width = MAX (width0, width1) + 1; result_low = MIN (low0, low1); break; case MINUS: result_low = MIN (low0, low1); break; case MULT: result_width = width0 + width1; result_low = low0 + low1; break; case DIV: if (width1 == 0) break; if (!op0_maybe_minusp && !op1_maybe_minusp) result_width = width0; break; case UDIV: if (width1 == 0) break; result_width = width0; break; case MOD: if (width1 == 0) break; if (!op0_maybe_minusp && !op1_maybe_minusp) result_width = MIN (width0, width1); result_low = MIN (low0, low1); break; case UMOD: if (width1 == 0) break; result_width = MIN (width0, width1); result_low = MIN (low0, low1); break; default: gcc_unreachable (); } /* Note that mode_width <= HOST_BITS_PER_WIDE_INT, see above. */ if (result_width < mode_width) nonzero &= (HOST_WIDE_INT_1U << result_width) - 1; if (result_low > 0) { if (result_low < HOST_BITS_PER_WIDE_INT) nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1); else nonzero = 0; } } break; case ZERO_EXTRACT: if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT) nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1; break; case SUBREG: /* If this is a SUBREG formed for a promoted variable that has been zero-extended, we know that at least the high-order bits are zero, though others might be too. */ if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x)) nonzero = GET_MODE_MASK (xmode) & cached_nonzero_bits (SUBREG_REG (x), xmode, known_x, known_mode, known_ret); /* If the inner mode is a single word for both the host and target machines, we can compute this from which bits of the inner object might be nonzero. */ inner_mode = GET_MODE (SUBREG_REG (x)); if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width) && inner_width <= BITS_PER_WORD && inner_width <= HOST_BITS_PER_WIDE_INT) { nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode, known_x, known_mode, known_ret); /* On a typical CISC machine, accessing an object in a wider mode causes the high-order bits to become undefined. So they are not known to be zero. On a typical RISC machine, we only have to worry about the way loads are extended. Otherwise, if we get a reload for the inner part, it may be loaded from the stack, and then we may lose all the zero bits that existed before the store to the stack. */ rtx_code extend_op; if ((!WORD_REGISTER_OPERATIONS || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND ? val_signbit_known_set_p (inner_mode, nonzero) : extend_op != ZERO_EXTEND) || !MEM_P (SUBREG_REG (x))) && xmode_width > inner_width) nonzero |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode)); } break; case ASHIFT: case ASHIFTRT: case LSHIFTRT: case ROTATE: case ROTATERT: /* The nonzero bits are in two classes: any bits within MODE that aren't in xmode are always significant. The rest of the nonzero bits are those that are significant in the operand of the shift when shifted the appropriate number of bits. This shows that high-order bits are cleared by the right shift and low-order bits by left shifts. */ if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT && INTVAL (XEXP (x, 1)) < xmode_width) { int count = INTVAL (XEXP (x, 1)); unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (xmode); unsigned HOST_WIDE_INT op_nonzero = cached_nonzero_bits (XEXP (x, 0), mode, known_x, known_mode, known_ret); unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask; unsigned HOST_WIDE_INT outer = 0; if (mode_width > xmode_width) outer = (op_nonzero & nonzero & ~mode_mask); switch (code) { case ASHIFT: inner <<= count; break; case LSHIFTRT: inner >>= count; break; case ASHIFTRT: inner >>= count; /* If the sign bit may have been nonzero before the shift, we need to mark all the places it could have been copied to by the shift as possibly nonzero. */ if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count))) inner |= (((HOST_WIDE_INT_1U << count) - 1) << (xmode_width - count)); break; case ROTATE: inner = (inner << (count % xmode_width) | (inner >> (xmode_width - (count % xmode_width)))) & mode_mask; break; case ROTATERT: inner = (inner >> (count % xmode_width) | (inner << (xmode_width - (count % xmode_width)))) & mode_mask; break; default: gcc_unreachable (); } nonzero &= (outer | inner); } break; case FFS: case POPCOUNT: /* This is at most the number of bits in the mode. */ nonzero = (HOST_WIDE_INT_UC (2) << (floor_log2 (mode_width))) - 1; break; case CLZ: /* If CLZ has a known value at zero, then the nonzero bits are that value, plus the number of bits in the mode minus one. */ if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero)) nonzero |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1; else nonzero = -1; break; case CTZ: /* If CTZ has a known value at zero, then the nonzero bits are that value, plus the number of bits in the mode minus one. */ if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero)) nonzero |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1; else nonzero = -1; break; case CLRSB: /* This is at most the number of bits in the mode minus 1. */ nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1; break; case PARITY: nonzero = 1; break; case IF_THEN_ELSE: { unsigned HOST_WIDE_INT nonzero_true = cached_nonzero_bits (XEXP (x, 1), mode, known_x, known_mode, known_ret); /* Don't call nonzero_bits for the second time if it cannot change anything. */ if ((nonzero & nonzero_true) != nonzero) nonzero &= nonzero_true | cached_nonzero_bits (XEXP (x, 2), mode, known_x, known_mode, known_ret); } break; default: break; } return nonzero; } /* See the macro definition above. */ #undef cached_num_sign_bit_copies /* Return true if num_sign_bit_copies1 might recurse into both operands of X. */ static inline bool num_sign_bit_copies_binary_arith_p (const_rtx x) { if (!ARITHMETIC_P (x)) return false; switch (GET_CODE (x)) { case IOR: case AND: case XOR: case SMIN: case SMAX: case UMIN: case UMAX: case PLUS: case MINUS: case MULT: return true; default: return false; } } /* The function cached_num_sign_bit_copies is a wrapper around num_sign_bit_copies1. It avoids exponential behavior in num_sign_bit_copies1 when X has identical subexpressions on the first or the second level. */ static unsigned int cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode, const_rtx known_x, machine_mode known_mode, unsigned int known_ret) { if (x == known_x && mode == known_mode) return known_ret; /* Try to find identical subexpressions. If found call num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and the precomputed value for the subexpression as KNOWN_RET. */ if (num_sign_bit_copies_binary_arith_p (x)) { rtx x0 = XEXP (x, 0); rtx x1 = XEXP (x, 1); /* Check the first level. */ if (x0 == x1) return num_sign_bit_copies1 (x, mode, x0, mode, cached_num_sign_bit_copies (x0, mode, known_x, known_mode, known_ret)); /* Check the second level. */ if (num_sign_bit_copies_binary_arith_p (x0) && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1))) return num_sign_bit_copies1 (x, mode, x1, mode, cached_num_sign_bit_copies (x1, mode, known_x, known_mode, known_ret)); if (num_sign_bit_copies_binary_arith_p (x1) && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1))) return num_sign_bit_copies1 (x, mode, x0, mode, cached_num_sign_bit_copies (x0, mode, known_x, known_mode, known_ret)); } return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret); } /* Return the number of bits at the high-order end of X that are known to be equal to the sign bit. X will be used in mode MODE. The returned value will always be between 1 and the number of bits in MODE. */ static unsigned int num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x, machine_mode known_mode, unsigned int known_ret) { enum rtx_code code = GET_CODE (x); unsigned int bitwidth = GET_MODE_PRECISION (mode); int num0, num1, result; unsigned HOST_WIDE_INT nonzero; if (CONST_INT_P (x)) { /* If the constant is negative, take its 1's complement and remask. Then see how many zero bits we have. */ nonzero = UINTVAL (x) & GET_MODE_MASK (mode); if (bitwidth <= HOST_BITS_PER_WIDE_INT && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0) nonzero = (~nonzero) & GET_MODE_MASK (mode); return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1); } scalar_int_mode xmode, inner_mode; if (!is_a (GET_MODE (x), &xmode)) return 1; unsigned int xmode_width = GET_MODE_PRECISION (xmode); /* For a smaller mode, just ignore the high bits. */ if (bitwidth < xmode_width) { num0 = cached_num_sign_bit_copies (x, xmode, known_x, known_mode, known_ret); return MAX (1, num0 - (int) (xmode_width - bitwidth)); } if (bitwidth > xmode_width) { /* If this machine does not do all register operations on the entire register and MODE is wider than the mode of X, we can say nothing at all about the high-order bits. We extend this reasoning to RISC machines for operations that might not operate on full registers. */ if (!(WORD_REGISTER_OPERATIONS && word_register_operation_p (x))) return 1; /* Likewise on machines that do, if the mode of the object is smaller than a word and loads of that size don't sign extend, we can say nothing about the high order bits. */ if (xmode_width < BITS_PER_WORD && load_extend_op (xmode) != SIGN_EXTEND) return 1; } /* Please keep num_sign_bit_copies_binary_arith_p above in sync with the code in the switch below. */ switch (code) { case REG: #if defined(POINTERS_EXTEND_UNSIGNED) /* If pointers extend signed and this is a pointer in Pmode, say that all the bits above ptr_mode are known to be sign bit copies. */ /* As we do not know which address space the pointer is referring to, we can do this only if the target does not support different pointer or address modes depending on the address space. */ if (target_default_pointer_address_modes_p () && ! POINTERS_EXTEND_UNSIGNED && xmode == Pmode && mode == Pmode && REG_POINTER (x) && !targetm.have_ptr_extend ()) return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1; #endif { unsigned int copies_for_hook = 1, copies = 1; rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode, &copies_for_hook); if (new_rtx) copies = cached_num_sign_bit_copies (new_rtx, mode, known_x, known_mode, known_ret); if (copies > 1 || copies_for_hook > 1) return MAX (copies, copies_for_hook); /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */ } break; case MEM: /* Some RISC machines sign-extend all loads of smaller than a word. */ if (load_extend_op (xmode) == SIGN_EXTEND) return MAX (1, ((int) bitwidth - (int) xmode_width + 1)); break; case SUBREG: /* If this is a SUBREG for a promoted object that is sign-extended and we are looking at it in a wider mode, we know that at least the high-order bits are known to be sign bit copies. */ if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x)) { num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode, known_x, known_mode, known_ret); return MAX ((int) bitwidth - (int) xmode_width + 1, num0); } if (is_a (GET_MODE (SUBREG_REG (x)), &inner_mode)) { /* For a smaller object, just ignore the high bits. */ if (bitwidth <= GET_MODE_PRECISION (inner_mode)) { num0 = cached_num_sign_bit_copies (SUBREG_REG (x), inner_mode, known_x, known_mode, known_ret); return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth)); } /* For paradoxical SUBREGs on machines where all register operations affect the entire register, just look inside. Note that we are passing MODE to the recursive call, so the number of sign bit copies will remain relative to that mode, not the inner mode. This works only if loads sign extend. Otherwise, if we get a reload for the inner part, it may be loaded from the stack, and then we lose all sign bit copies that existed before the store to the stack. */ if (WORD_REGISTER_OPERATIONS && load_extend_op (inner_mode) == SIGN_EXTEND && paradoxical_subreg_p (x) && MEM_P (SUBREG_REG (x))) return cached_num_sign_bit_copies (SUBREG_REG (x), mode, known_x, known_mode, known_ret); } break; case SIGN_EXTRACT: if (CONST_INT_P (XEXP (x, 1))) return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1))); break; case SIGN_EXTEND: if (is_a (GET_MODE (XEXP (x, 0)), &inner_mode)) return (bitwidth - GET_MODE_PRECISION (inner_mode) + cached_num_sign_bit_copies (XEXP (x, 0), inner_mode, known_x, known_mode, known_ret)); break; case TRUNCATE: /* For a smaller object, just ignore the high bits. */ inner_mode = as_a (GET_MODE (XEXP (x, 0))); num0 = cached_num_sign_bit_copies (XEXP (x, 0), inner_mode, known_x, known_mode, known_ret); return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth))); case NOT: return cached_num_sign_bit_copies (XEXP (x, 0), mode, known_x, known_mode, known_ret); case ROTATE: case ROTATERT: /* If we are rotating left by a number of bits less than the number of sign bit copies, we can just subtract that amount from the number. */ if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0 && INTVAL (XEXP (x, 1)) < (int) bitwidth) { num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode, known_x, known_mode, known_ret); return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1)) : (int) bitwidth - INTVAL (XEXP (x, 1)))); } break; case NEG: /* In general, this subtracts one sign bit copy. But if the value is known to be positive, the number of sign bit copies is the same as that of the input. Finally, if the input has just one bit that might be nonzero, all the bits are copies of the sign bit. */ num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode, known_x, known_mode, known_ret); if (bitwidth > HOST_BITS_PER_WIDE_INT) return num0 > 1 ? num0 - 1 : 1; nonzero = nonzero_bits (XEXP (x, 0), mode); if (nonzero == 1) return bitwidth; if (num0 > 1 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero)) num0--; return num0; case IOR: case AND: case XOR: case SMIN: case SMAX: case UMIN: case UMAX: /* Logical operations will preserve the number of sign-bit copies. MIN and MAX operations always return one of the operands. */ num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode, known_x, known_mode, known_ret); num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode, known_x, known_mode, known_ret); /* If num1 is clearing some of the top bits then regardless of the other term, we are guaranteed to have at least that many high-order zero bits. */ if (code == AND && num1 > 1 && bitwidth <= HOST_BITS_PER_WIDE_INT && CONST_INT_P (XEXP (x, 1)) && (UINTVAL (XEXP (x, 1)) & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0) return num1; /* Similarly for IOR when setting high-order bits. */ if (code == IOR && num1 > 1 && bitwidth <= HOST_BITS_PER_WIDE_INT && CONST_INT_P (XEXP (x, 1)) && (UINTVAL (XEXP (x, 1)) & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0) return num1; return MIN (num0, num1); case PLUS: case MINUS: /* For addition and subtraction, we can have a 1-bit carry. However, if we are subtracting 1 from a positive number, there will not be such a carry. Furthermore, if the positive number is known to be 0 or 1, we know the result is either -1 or 0. */ if (code == PLUS && XEXP (x, 1) == constm1_rtx && bitwidth <= HOST_BITS_PER_WIDE_INT) { nonzero = nonzero_bits (XEXP (x, 0), mode); if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0) return (nonzero == 1 || nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1); } num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode, known_x, known_mode, known_ret); num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode, known_x, known_mode, known_ret); result = MAX (1, MIN (num0, num1) - 1); return result; case MULT: /* The number of bits of the product is the sum of the number of bits of both terms. However, unless one of the terms if known to be positive, we must allow for an additional bit since negating a negative number can remove one sign bit copy. */ num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode, known_x, known_mode, known_ret); num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode, known_x, known_mode, known_ret); result = bitwidth - (bitwidth - num0) - (bitwidth - num1); if (result > 0 && (bitwidth > HOST_BITS_PER_WIDE_INT || (((nonzero_bits (XEXP (x, 0), mode) & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0) && ((nonzero_bits (XEXP (x, 1), mode) & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)))) result--; return MAX (1, result); case UDIV: /* The result must be <= the first operand. If the first operand has the high bit set, we know nothing about the number of sign bit copies. */ if (bitwidth > HOST_BITS_PER_WIDE_INT) return 1; else if ((nonzero_bits (XEXP (x, 0), mode) & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0) return 1; else return cached_num_sign_bit_copies (XEXP (x, 0), mode, known_x, known_mode, known_ret); case UMOD: /* The result must be <= the second operand. If the second operand has (or just might have) the high bit set, we know nothing about the number of sign bit copies. */ if (bitwidth > HOST_BITS_PER_WIDE_INT) return 1; else if ((nonzero_bits (XEXP (x, 1), mode) & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0) return 1; else return cached_num_sign_bit_copies (XEXP (x, 1), mode, known_x, known_mode, known_ret); case DIV: /* Similar to unsigned division, except that we have to worry about the case where the divisor is negative, in which case we have to add 1. */ result = cached_num_sign_bit_copies (XEXP (x, 0), mode, known_x, known_mode, known_ret); if (result > 1 && (bitwidth > HOST_BITS_PER_WIDE_INT || (nonzero_bits (XEXP (x, 1), mode) & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)) result--; return result; case MOD: result = cached_num_sign_bit_copies (XEXP (x, 1), mode, known_x, known_mode, known_ret); if (result > 1 && (bitwidth > HOST_BITS_PER_WIDE_INT || (nonzero_bits (XEXP (x, 1), mode) & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)) result--; return result; case ASHIFTRT: /* Shifts by a constant add to the number of bits equal to the sign bit. */ num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode, known_x, known_mode, known_ret); if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) > 0 && INTVAL (XEXP (x, 1)) < xmode_width) num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1))); return num0; case ASHIFT: /* Left shifts destroy copies. */ if (!CONST_INT_P (XEXP (x, 1)) || INTVAL (XEXP (x, 1)) < 0 || INTVAL (XEXP (x, 1)) >= (int) bitwidth || INTVAL (XEXP (x, 1)) >= xmode_width) return 1; num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode, known_x, known_mode, known_ret); return MAX (1, num0 - INTVAL (XEXP (x, 1))); case IF_THEN_ELSE: num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode, known_x, known_mode, known_ret); num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode, known_x, known_mode, known_ret); return MIN (num0, num1); case EQ: case NE: case GE: case GT: case LE: case LT: case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT: case GEU: case GTU: case LEU: case LTU: case UNORDERED: case ORDERED: /* If the constant is negative, take its 1's complement and remask. Then see how many zero bits we have. */ nonzero = STORE_FLAG_VALUE; if (bitwidth <= HOST_BITS_PER_WIDE_INT && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0) nonzero = (~nonzero) & GET_MODE_MASK (mode); return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1); default: break; } /* If we haven't been able to figure it out by one of the above rules, see if some of the high-order bits are known to be zero. If so, count those bits and return one less than that amount. If we can't safely compute the mask for this mode, always return BITWIDTH. */ bitwidth = GET_MODE_PRECISION (mode); if (bitwidth > HOST_BITS_PER_WIDE_INT) return 1; nonzero = nonzero_bits (x, mode); return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1)) ? 1 : bitwidth - floor_log2 (nonzero) - 1; } /* Calculate the rtx_cost of a single instruction pattern. A return value of zero indicates an instruction pattern without a known cost. */ int pattern_cost (rtx pat, bool speed) { int i, cost; rtx set; /* Extract the single set rtx from the instruction pattern. We can't use single_set since we only have the pattern. We also consider PARALLELs of a normal set and a single comparison. In that case we use the cost of the non-comparison SET operation, which is most-likely to be the real cost of this operation. */ if (GET_CODE (pat) == SET) set = pat; else if (GET_CODE (pat) == PARALLEL) { set = NULL_RTX; rtx comparison = NULL_RTX; for (i = 0; i < XVECLEN (pat, 0); i++) { rtx x = XVECEXP (pat, 0, i); if (GET_CODE (x) == SET) { if (GET_CODE (SET_SRC (x)) == COMPARE) { if (comparison) return 0; comparison = x; } else { if (set) return 0; set = x; } } } if (!set && comparison) set = comparison; if (!set) return 0; } else return 0; cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed); return cost > 0 ? cost : COSTS_N_INSNS (1); } /* Calculate the cost of a single instruction. A return value of zero indicates an instruction pattern without a known cost. */ int insn_cost (rtx_insn *insn, bool speed) { if (targetm.insn_cost) return targetm.insn_cost (insn, speed); return pattern_cost (PATTERN (insn), speed); } /* Returns estimate on cost of computing SEQ. */ unsigned seq_cost (const rtx_insn *seq, bool speed) { unsigned cost = 0; rtx set; for (; seq; seq = NEXT_INSN (seq)) { set = single_set (seq); if (set) cost += set_rtx_cost (set, speed); else if (NONDEBUG_INSN_P (seq)) { int this_cost = insn_cost (CONST_CAST_RTX_INSN (seq), speed); if (this_cost > 0) cost += this_cost; else cost++; } } return cost; } /* Given an insn INSN and condition COND, return the condition in a canonical form to simplify testing by callers. Specifically: (1) The code will always be a comparison operation (EQ, NE, GT, etc.). (2) Both operands will be machine operands. (3) If an operand is a constant, it will be the second operand. (4) (LE x const) will be replaced with (LT x ) and similarly for GE, GEU, and LEU. If the condition cannot be understood, or is an inequality floating-point comparison which needs to be reversed, 0 will be returned. If REVERSE is nonzero, then reverse the condition prior to canonizing it. If EARLIEST is nonzero, it is a pointer to a place where the earliest insn used in locating the condition was found. If a replacement test of the condition is desired, it should be placed in front of that insn and we will be sure that the inputs are still valid. If WANT_REG is nonzero, we wish the condition to be relative to that register, if possible. Therefore, do not canonicalize the condition further. If ALLOW_CC_MODE is nonzero, allow the condition returned to be a compare to a CC mode register. If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST and at INSN. */ rtx canonicalize_condition (rtx_insn *insn, rtx cond, int reverse, rtx_insn **earliest, rtx want_reg, int allow_cc_mode, int valid_at_insn_p) { enum rtx_code code; rtx_insn *prev = insn; const_rtx set; rtx tem; rtx op0, op1; int reverse_code = 0; machine_mode mode; basic_block bb = BLOCK_FOR_INSN (insn); code = GET_CODE (cond); mode = GET_MODE (cond); op0 = XEXP (cond, 0); op1 = XEXP (cond, 1); if (reverse) code = reversed_comparison_code (cond, insn); if (code == UNKNOWN) return 0; if (earliest) *earliest = insn; /* If we are comparing a register with zero, see if the register is set in the previous insn to a COMPARE or a comparison operation. Perform the same tests as a function of STORE_FLAG_VALUE as find_comparison_args in cse.cc */ while ((GET_RTX_CLASS (code) == RTX_COMPARE || GET_RTX_CLASS (code) == RTX_COMM_COMPARE) && op1 == CONST0_RTX (GET_MODE (op0)) && op0 != want_reg) { /* Set nonzero when we find something of interest. */ rtx x = 0; /* If this is a COMPARE, pick up the two things being compared. */ if (GET_CODE (op0) == COMPARE) { op1 = XEXP (op0, 1); op0 = XEXP (op0, 0); continue; } else if (!REG_P (op0)) break; /* Go back to the previous insn. Stop if it is not an INSN. We also stop if it isn't a single set or if it has a REG_INC note because we don't want to bother dealing with it. */ prev = prev_nonnote_nondebug_insn (prev); if (prev == 0 || !NONJUMP_INSN_P (prev) || FIND_REG_INC_NOTE (prev, NULL_RTX) /* In cfglayout mode, there do not have to be labels at the beginning of a block, or jumps at the end, so the previous conditions would not stop us when we reach bb boundary. */ || BLOCK_FOR_INSN (prev) != bb) break; set = set_of (op0, prev); if (set && (GET_CODE (set) != SET || !rtx_equal_p (SET_DEST (set), op0))) break; /* If this is setting OP0, get what it sets it to if it looks relevant. */ if (set) { machine_mode inner_mode = GET_MODE (SET_DEST (set)); #ifdef FLOAT_STORE_FLAG_VALUE REAL_VALUE_TYPE fsfv; #endif /* ??? We may not combine comparisons done in a CCmode with comparisons not done in a CCmode. This is to aid targets like Alpha that have an IEEE compliant EQ instruction, and a non-IEEE compliant BEQ instruction. The use of CCmode is actually artificial, simply to prevent the combination, but should not affect other platforms. However, we must allow VOIDmode comparisons to match either CCmode or non-CCmode comparison, because some ports have modeless comparisons inside branch patterns. ??? This mode check should perhaps look more like the mode check in simplify_comparison in combine. */ if (((GET_MODE_CLASS (mode) == MODE_CC) != (GET_MODE_CLASS (inner_mode) == MODE_CC)) && mode != VOIDmode && inner_mode != VOIDmode) break; if (GET_CODE (SET_SRC (set)) == COMPARE || (((code == NE || (code == LT && val_signbit_known_set_p (inner_mode, STORE_FLAG_VALUE)) #ifdef FLOAT_STORE_FLAG_VALUE || (code == LT && SCALAR_FLOAT_MODE_P (inner_mode) && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode), REAL_VALUE_NEGATIVE (fsfv))) #endif )) && COMPARISON_P (SET_SRC (set)))) x = SET_SRC (set); else if (((code == EQ || (code == GE && val_signbit_known_set_p (inner_mode, STORE_FLAG_VALUE)) #ifdef FLOAT_STORE_FLAG_VALUE || (code == GE && SCALAR_FLOAT_MODE_P (inner_mode) && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode), REAL_VALUE_NEGATIVE (fsfv))) #endif )) && COMPARISON_P (SET_SRC (set))) { reverse_code = 1; x = SET_SRC (set); } else if ((code == EQ || code == NE) && GET_CODE (SET_SRC (set)) == XOR) /* Handle sequences like: (set op0 (xor X Y)) ...(eq|ne op0 (const_int 0))... in which case: (eq op0 (const_int 0)) reduces to (eq X Y) (ne op0 (const_int 0)) reduces to (ne X Y) This is the form used by MIPS16, for example. */ x = SET_SRC (set); else break; } else if (reg_set_p (op0, prev)) /* If this sets OP0, but not directly, we have to give up. */ break; if (x) { /* If the caller is expecting the condition to be valid at INSN, make sure X doesn't change before INSN. */ if (valid_at_insn_p) if (modified_in_p (x, prev) || modified_between_p (x, prev, insn)) break; if (COMPARISON_P (x)) code = GET_CODE (x); if (reverse_code) { code = reversed_comparison_code (x, prev); if (code == UNKNOWN) return 0; reverse_code = 0; } op0 = XEXP (x, 0), op1 = XEXP (x, 1); if (earliest) *earliest = prev; } } /* If constant is first, put it last. */ if (CONSTANT_P (op0)) code = swap_condition (code), tem = op0, op0 = op1, op1 = tem; /* If OP0 is the result of a comparison, we weren't able to find what was really being compared, so fail. */ if (!allow_cc_mode && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC) return 0; /* Canonicalize any ordered comparison with integers involving equality if we can do computations in the relevant mode and we do not overflow. */ scalar_int_mode op0_mode; if (CONST_INT_P (op1) && is_a (GET_MODE (op0), &op0_mode) && GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT) { HOST_WIDE_INT const_val = INTVAL (op1); unsigned HOST_WIDE_INT uconst_val = const_val; unsigned HOST_WIDE_INT max_val = (unsigned HOST_WIDE_INT) GET_MODE_MASK (op0_mode); switch (code) { case LE: if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1) code = LT, op1 = gen_int_mode (const_val + 1, op0_mode); break; /* When cross-compiling, const_val might be sign-extended from BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */ case GE: if ((const_val & max_val) != (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (op0_mode) - 1))) code = GT, op1 = gen_int_mode (const_val - 1, op0_mode); break; case LEU: if (uconst_val < max_val) code = LTU, op1 = gen_int_mode (uconst_val + 1, op0_mode); break; case GEU: if (uconst_val != 0) code = GTU, op1 = gen_int_mode (uconst_val - 1, op0_mode); break; default: break; } } /* We promised to return a comparison. */ rtx ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1); if (COMPARISON_P (ret)) return ret; return 0; } /* Given a jump insn JUMP, return the condition that will cause it to branch to its JUMP_LABEL. If the condition cannot be understood, or is an inequality floating-point comparison which needs to be reversed, 0 will be returned. If EARLIEST is nonzero, it is a pointer to a place where the earliest insn used in locating the condition was found. If a replacement test of the condition is desired, it should be placed in front of that insn and we will be sure that the inputs are still valid. If EARLIEST is null, the returned condition will be valid at INSN. If ALLOW_CC_MODE is nonzero, allow the condition returned to be a compare CC mode register. VALID_AT_INSN_P is the same as for canonicalize_condition. */ rtx get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode, int valid_at_insn_p) { rtx cond; int reverse; rtx set; /* If this is not a standard conditional jump, we can't parse it. */ if (!JUMP_P (jump) || ! any_condjump_p (jump)) return 0; set = pc_set (jump); cond = XEXP (SET_SRC (set), 0); /* If this branches to JUMP_LABEL when the condition is false, reverse the condition. */ reverse = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump); return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX, allow_cc_mode, valid_at_insn_p); } /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on TARGET_MODE_REP_EXTENDED. Note that we assume that the property of TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes narrower than mode B. I.e., if A is a mode narrower than B then in order to be able to operate on it in mode B, mode A needs to satisfy the requirements set by the representation of mode B. */ static void init_num_sign_bit_copies_in_rep (void) { opt_scalar_int_mode in_mode_iter; scalar_int_mode mode; FOR_EACH_MODE_IN_CLASS (in_mode_iter, MODE_INT) FOR_EACH_MODE_UNTIL (mode, in_mode_iter.require ()) { scalar_int_mode in_mode = in_mode_iter.require (); scalar_int_mode i; /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED extends to the next widest mode. */ gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN || GET_MODE_WIDER_MODE (mode).require () == in_mode); /* We are in in_mode. Count how many bits outside of mode have to be copies of the sign-bit. */ FOR_EACH_MODE (i, mode, in_mode) { /* This must always exist (for the last iteration it will be IN_MODE). */ scalar_int_mode wider = GET_MODE_WIDER_MODE (i).require (); if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND /* We can only check sign-bit copies starting from the top-bit. In order to be able to check the bits we have already seen we pretend that subsequent bits have to be sign-bit copies too. */ || num_sign_bit_copies_in_rep [in_mode][mode]) num_sign_bit_copies_in_rep [in_mode][mode] += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i); } } } /* Suppose that truncation from the machine mode of X to MODE is not a no-op. See if there is anything special about X so that we can assume it already contains a truncated value of MODE. */ bool truncated_to_mode (machine_mode mode, const_rtx x) { /* This register has already been used in MODE without explicit truncation. */ if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x)) return true; /* See if we already satisfy the requirements of MODE. If yes we can just switch to MODE. */ if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode] && (num_sign_bit_copies (x, GET_MODE (x)) >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1)) return true; return false; } /* Return true if RTX code CODE has a single sequence of zero or more "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds entry in that case. */ static bool setup_reg_subrtx_bounds (unsigned int code) { const char *format = GET_RTX_FORMAT ((enum rtx_code) code); unsigned int i = 0; for (; format[i] != 'e'; ++i) { if (!format[i]) /* No subrtxes. Leave start and count as 0. */ return true; if (format[i] == 'E' || format[i] == 'V') return false; } /* Record the sequence of 'e's. */ rtx_all_subrtx_bounds[code].start = i; do ++i; while (format[i] == 'e'); rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start; /* rtl-iter.h relies on this. */ gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3); for (; format[i]; ++i) if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e') return false; return true; } /* Initialize rtx_all_subrtx_bounds. */ void init_rtlanal (void) { int i; for (i = 0; i < NUM_RTX_CODE; i++) { if (!setup_reg_subrtx_bounds (i)) rtx_all_subrtx_bounds[i].count = UCHAR_MAX; if (GET_RTX_CLASS (i) != RTX_CONST_OBJ) rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i]; } init_num_sign_bit_copies_in_rep (); } /* Check whether this is a constant pool constant. */ bool constant_pool_constant_p (rtx x) { x = avoid_constant_pool_reference (x); return CONST_DOUBLE_P (x); } /* If M is a bitmask that selects a field of low-order bits within an item but not the entire word, return the length of the field. Return -1 otherwise. M is used in machine mode MODE. */ int low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m) { if (mode != VOIDmode) { if (!HWI_COMPUTABLE_MODE_P (mode)) return -1; m &= GET_MODE_MASK (mode); } return exact_log2 (m + 1); } /* Return the mode of MEM's address. */ scalar_int_mode get_address_mode (rtx mem) { machine_mode mode; gcc_assert (MEM_P (mem)); mode = GET_MODE (XEXP (mem, 0)); if (mode != VOIDmode) return as_a (mode); return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem)); } /* Split up a CONST_DOUBLE or integer constant rtx into two rtx's for single words, storing in *FIRST the word that comes first in memory in the target and in *SECOND the other. TODO: This function needs to be rewritten to work on any size integer. */ void split_double (rtx value, rtx *first, rtx *second) { if (CONST_INT_P (value)) { if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD)) { /* In this case the CONST_INT holds both target words. Extract the bits from it into two word-sized pieces. Sign extend each half to HOST_WIDE_INT. */ unsigned HOST_WIDE_INT low, high; unsigned HOST_WIDE_INT mask, sign_bit, sign_extend; unsigned bits_per_word = BITS_PER_WORD; /* Set sign_bit to the most significant bit of a word. */ sign_bit = 1; sign_bit <<= bits_per_word - 1; /* Set mask so that all bits of the word are set. We could have used 1 << BITS_PER_WORD instead of basing the calculation on sign_bit. However, on machines where HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a compiler warning, even though the code would never be executed. */ mask = sign_bit << 1; mask--; /* Set sign_extend as any remaining bits. */ sign_extend = ~mask; /* Pick the lower word and sign-extend it. */ low = INTVAL (value); low &= mask; if (low & sign_bit) low |= sign_extend; /* Pick the higher word, shifted to the least significant bits, and sign-extend it. */ high = INTVAL (value); high >>= bits_per_word - 1; high >>= 1; high &= mask; if (high & sign_bit) high |= sign_extend; /* Store the words in the target machine order. */ if (WORDS_BIG_ENDIAN) { *first = GEN_INT (high); *second = GEN_INT (low); } else { *first = GEN_INT (low); *second = GEN_INT (high); } } else { /* The rule for using CONST_INT for a wider mode is that we regard the value as signed. So sign-extend it. */ rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx); if (WORDS_BIG_ENDIAN) { *first = high; *second = value; } else { *first = value; *second = high; } } } else if (GET_CODE (value) == CONST_WIDE_INT) { /* All of this is scary code and needs to be converted to properly work with any size integer. */ gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2); if (WORDS_BIG_ENDIAN) { *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1)); *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0)); } else { *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0)); *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1)); } } else if (!CONST_DOUBLE_P (value)) { if (WORDS_BIG_ENDIAN) { *first = const0_rtx; *second = value; } else { *first = value; *second = const0_rtx; } } else if (GET_MODE (value) == VOIDmode /* This is the old way we did CONST_DOUBLE integers. */ || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT) { /* In an integer, the words are defined as most and least significant. So order them by the target's convention. */ if (WORDS_BIG_ENDIAN) { *first = GEN_INT (CONST_DOUBLE_HIGH (value)); *second = GEN_INT (CONST_DOUBLE_LOW (value)); } else { *first = GEN_INT (CONST_DOUBLE_LOW (value)); *second = GEN_INT (CONST_DOUBLE_HIGH (value)); } } else { long l[2]; /* Note, this converts the REAL_VALUE_TYPE to the target's format, splits up the floating point double and outputs exactly 32 bits of it into each of l[0] and l[1] -- not necessarily BITS_PER_WORD bits. */ REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l); /* If 32 bits is an entire word for the target, but not for the host, then sign-extend on the host so that the number will look the same way on the host that it would on the target. See for instance simplify_unary_operation. The #if is needed to avoid compiler warnings. */ #if HOST_BITS_PER_LONG > 32 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32) { if (l[0] & ((long) 1 << 31)) l[0] |= ((unsigned long) (-1) << 32); if (l[1] & ((long) 1 << 31)) l[1] |= ((unsigned long) (-1) << 32); } #endif *first = GEN_INT (l[0]); *second = GEN_INT (l[1]); } } /* Return true if X is a sign_extract or zero_extract from the least significant bit. */ static bool lsb_bitfield_op_p (rtx x) { if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS) { machine_mode mode = GET_MODE (XEXP (x, 0)); HOST_WIDE_INT len = INTVAL (XEXP (x, 1)); HOST_WIDE_INT pos = INTVAL (XEXP (x, 2)); poly_int64 remaining_bits = GET_MODE_PRECISION (mode) - len; return known_eq (pos, BITS_BIG_ENDIAN ? remaining_bits : 0); } return false; } /* Strip outer address "mutations" from LOC and return a pointer to the inner value. If OUTER_CODE is nonnull, store the code of the innermost stripped expression there. "Mutations" either convert between modes or apply some kind of extension, truncation or alignment. */ rtx * strip_address_mutations (rtx *loc, enum rtx_code *outer_code) { for (;;) { enum rtx_code code = GET_CODE (*loc); if (GET_RTX_CLASS (code) == RTX_UNARY) /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be used to convert between pointer sizes. */ loc = &XEXP (*loc, 0); else if (lsb_bitfield_op_p (*loc)) /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively acts as a combined truncation and extension. */ loc = &XEXP (*loc, 0); else if (code == AND && CONST_INT_P (XEXP (*loc, 1))) /* (and ... (const_int -X)) is used to align to X bytes. */ loc = &XEXP (*loc, 0); else if (code == SUBREG && (!OBJECT_P (SUBREG_REG (*loc)) || CONSTANT_P (SUBREG_REG (*loc))) && subreg_lowpart_p (*loc)) /* (subreg (operator ...) ...) inside AND is used for mode conversion too. It is also used for load-address operations in which an extension can be done for free, such as: (zero_extend:DI (subreg:SI (plus:DI (reg:DI R) (symbol_ref:DI "foo") 0))) The latter usage also covers subregs of plain "displacements", such as: (zero_extend:DI (subreg:SI (symbol_ref:DI "foo") 0)) The inner address should then be the symbol_ref, not the subreg, similarly to the plus case above. In contrast, the subreg in: (zero_extend:DI (subreg:SI (reg:DI R) 0)) should be treated as the base, since it should be replaced by an SImode hard register during register allocation. */ loc = &SUBREG_REG (*loc); else return loc; if (outer_code) *outer_code = code; } } /* Return true if CODE applies some kind of scale. The scaled value is is the first operand and the scale is the second. */ static bool binary_scale_code_p (enum rtx_code code) { return (code == MULT || code == ASHIFT /* Needed by ARM targets. */ || code == ASHIFTRT || code == LSHIFTRT || code == ROTATE || code == ROTATERT); } /* Return true if X appears to be a valid base or index term. */ static bool valid_base_or_index_term_p (rtx x) { if (GET_CODE (x) == SCRATCH) return true; /* Handle what appear to be eliminated forms of a register. If we reach here, the elimination occurs outside of the outermost PLUS tree, and so the elimination offset cannot be treated as a displacement of the main address. Instead, we need to treat the whole PLUS as the base or index term. The address can only be made legitimate by reloading the PLUS. */ if (GET_CODE (x) == PLUS && CONST_SCALAR_INT_P (XEXP (x, 1))) x = XEXP (x, 0); if (GET_CODE (x) == SUBREG) x = SUBREG_REG (x); return REG_P (x) || MEM_P (x); } /* If *INNER can be interpreted as a base, return a pointer to the inner term (see address_info). Return null otherwise. */ static rtx * get_base_term (rtx *inner) { if (GET_CODE (*inner) == LO_SUM) inner = strip_address_mutations (&XEXP (*inner, 0)); if (valid_base_or_index_term_p (*inner)) return inner; return 0; } /* If *INNER can be interpreted as an index, return a pointer to the inner term (see address_info). Return null otherwise. */ static rtx * get_index_term (rtx *inner) { /* At present, only constant scales are allowed. */ if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1))) inner = strip_address_mutations (&XEXP (*inner, 0)); if (valid_base_or_index_term_p (*inner)) return inner; return 0; } /* Set the segment part of address INFO to LOC, given that INNER is the unmutated value. */ static void set_address_segment (struct address_info *info, rtx *loc, rtx *inner) { gcc_assert (!info->segment); info->segment = loc; info->segment_term = inner; } /* Set the base part of address INFO to LOC, given that INNER is the unmutated value. */ static void set_address_base (struct address_info *info, rtx *loc, rtx *inner) { gcc_assert (!info->base); info->base = loc; info->base_term = inner; } /* Set the index part of address INFO to LOC, given that INNER is the unmutated value. */ static void set_address_index (struct address_info *info, rtx *loc, rtx *inner) { gcc_assert (!info->index); info->index = loc; info->index_term = inner; } /* Set the displacement part of address INFO to LOC, given that INNER is the constant term. */ static void set_address_disp (struct address_info *info, rtx *loc, rtx *inner) { gcc_assert (!info->disp); info->disp = loc; info->disp_term = inner; } /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the rest of INFO accordingly. */ static void decompose_incdec_address (struct address_info *info) { info->autoinc_p = true; rtx *base = &XEXP (*info->inner, 0); set_address_base (info, base, base); gcc_checking_assert (info->base == info->base_term); /* These addresses are only valid when the size of the addressed value is known. */ gcc_checking_assert (info->mode != VOIDmode); } /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest of INFO accordingly. */ static void decompose_automod_address (struct address_info *info) { info->autoinc_p = true; rtx *base = &XEXP (*info->inner, 0); set_address_base (info, base, base); gcc_checking_assert (info->base == info->base_term); rtx plus = XEXP (*info->inner, 1); gcc_assert (GET_CODE (plus) == PLUS); info->base_term2 = &XEXP (plus, 0); gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2)); rtx *step = &XEXP (plus, 1); rtx *inner_step = strip_address_mutations (step); if (CONSTANT_P (*inner_step)) set_address_disp (info, step, inner_step); else set_address_index (info, step, inner_step); } /* Treat *LOC as a tree of PLUS operands and store pointers to the summed values in [PTR, END). Return a pointer to the end of the used array. */ static rtx ** extract_plus_operands (rtx *loc, rtx **ptr, rtx **end) { rtx x = *loc; if (GET_CODE (x) == PLUS) { ptr = extract_plus_operands (&XEXP (x, 0), ptr, end); ptr = extract_plus_operands (&XEXP (x, 1), ptr, end); } else { gcc_assert (ptr != end); *ptr++ = loc; } return ptr; } /* Evaluate the likelihood of X being a base or index value, returning positive if it is likely to be a base, negative if it is likely to be an index, and 0 if we can't tell. Make the magnitude of the return value reflect the amount of confidence we have in the answer. MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */ static int baseness (rtx x, machine_mode mode, addr_space_t as, enum rtx_code outer_code, enum rtx_code index_code) { /* Believe *_POINTER unless the address shape requires otherwise. */ if (REG_P (x) && REG_POINTER (x)) return 2; if (MEM_P (x) && MEM_POINTER (x)) return 2; if (REG_P (x) && HARD_REGISTER_P (x)) { /* X is a hard register. If it only fits one of the base or index classes, choose that interpretation. */ int regno = REGNO (x); bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code); bool index_p = REGNO_OK_FOR_INDEX_P (regno); if (base_p != index_p) return base_p ? 1 : -1; } return 0; } /* INFO->INNER describes a normal, non-automodified address. Fill in the rest of INFO accordingly. */ static void decompose_normal_address (struct address_info *info) { /* Treat the address as the sum of up to four values. */ rtx *ops[4]; size_t n_ops = extract_plus_operands (info->inner, ops, ops + ARRAY_SIZE (ops)) - ops; /* If there is more than one component, any base component is in a PLUS. */ if (n_ops > 1) info->base_outer_code = PLUS; /* Try to classify each sum operand now. Leave those that could be either a base or an index in OPS. */ rtx *inner_ops[4]; size_t out = 0; for (size_t in = 0; in < n_ops; ++in) { rtx *loc = ops[in]; rtx *inner = strip_address_mutations (loc); if (CONSTANT_P (*inner)) set_address_disp (info, loc, inner); else if (GET_CODE (*inner) == UNSPEC) set_address_segment (info, loc, inner); else { /* The only other possibilities are a base or an index. */ rtx *base_term = get_base_term (inner); rtx *index_term = get_index_term (inner); gcc_assert (base_term || index_term); if (!base_term) set_address_index (info, loc, index_term); else if (!index_term) set_address_base (info, loc, base_term); else { gcc_assert (base_term == index_term); ops[out] = loc; inner_ops[out] = base_term; ++out; } } } /* Classify the remaining OPS members as bases and indexes. */ if (out == 1) { /* If we haven't seen a base or an index yet, assume that this is the base. If we were confident that another term was the base or index, treat the remaining operand as the other kind. */ if (!info->base) set_address_base (info, ops[0], inner_ops[0]); else set_address_index (info, ops[0], inner_ops[0]); } else if (out == 2) { auto address_mode = targetm.addr_space.address_mode (info->as); rtx inner_op0 = *inner_ops[0]; rtx inner_op1 = *inner_ops[1]; int base; /* If one inner operand has the expected mode for a base and the other doesn't, assume that the other one is the index. This is useful for addresses such as: (plus (zero_extend X) Y) zero_extend is not in itself enough to assume an index, since bases can be zero-extended on POINTERS_EXTEND_UNSIGNED targets. But if Y has address mode and X doesn't, there should be little doubt that Y is the base. */ if (GET_MODE (inner_op0) == address_mode && GET_MODE (inner_op1) != address_mode) base = 0; else if (GET_MODE (inner_op1) == address_mode && GET_MODE (inner_op0) != address_mode) base = 1; /* In the event of a tie, assume the base comes first. */ else if (baseness (inner_op0, info->mode, info->as, PLUS, GET_CODE (*ops[1])) >= baseness (inner_op1, info->mode, info->as, PLUS, GET_CODE (*ops[0]))) base = 0; else base = 1; set_address_base (info, ops[base], inner_ops[base]); set_address_index (info, ops[1 - base], inner_ops[1 - base]); } else gcc_assert (out == 0); } /* Describe address *LOC in *INFO. MODE is the mode of the addressed value, or VOIDmode if not known. AS is the address space associated with LOC. OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */ void decompose_address (struct address_info *info, rtx *loc, machine_mode mode, addr_space_t as, enum rtx_code outer_code) { memset (info, 0, sizeof (*info)); info->mode = mode; info->as = as; info->addr_outer_code = outer_code; info->outer = loc; info->inner = strip_address_mutations (loc, &outer_code); info->base_outer_code = outer_code; switch (GET_CODE (*info->inner)) { case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC: decompose_incdec_address (info); break; case PRE_MODIFY: case POST_MODIFY: decompose_automod_address (info); break; default: decompose_normal_address (info); break; } } /* Describe address operand LOC in INFO. */ void decompose_lea_address (struct address_info *info, rtx *loc) { decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS); } /* Describe the address of MEM X in INFO. */ void decompose_mem_address (struct address_info *info, rtx x) { gcc_assert (MEM_P (x)); decompose_address (info, &XEXP (x, 0), GET_MODE (x), MEM_ADDR_SPACE (x), MEM); } /* Update INFO after a change to the address it describes. */ void update_address (struct address_info *info) { decompose_address (info, info->outer, info->mode, info->as, info->addr_outer_code); } /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is more complicated than that. */ HOST_WIDE_INT get_index_scale (const struct address_info *info) { rtx index = *info->index; if (GET_CODE (index) == MULT && CONST_INT_P (XEXP (index, 1)) && info->index_term == &XEXP (index, 0)) return INTVAL (XEXP (index, 1)); if (GET_CODE (index) == ASHIFT && CONST_INT_P (XEXP (index, 1)) && info->index_term == &XEXP (index, 0)) return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1)); if (info->index == info->index_term) return 1; return 0; } /* Return the "index code" of INFO, in the form required by ok_for_base_p_1. */ enum rtx_code get_index_code (const struct address_info *info) { if (info->index) return GET_CODE (*info->index); if (info->disp) return GET_CODE (*info->disp); return SCRATCH; } /* Return true if RTL X contains a SYMBOL_REF. */ bool contains_symbol_ref_p (const_rtx x) { subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, x, ALL) if (SYMBOL_REF_P (*iter)) return true; return false; } /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */ bool contains_symbolic_reference_p (const_rtx x) { subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, x, ALL) if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF) return true; return false; } /* Return true if RTL X contains a constant pool address. */ bool contains_constant_pool_address_p (const_rtx x) { subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, x, ALL) if (SYMBOL_REF_P (*iter) && CONSTANT_POOL_ADDRESS_P (*iter)) return true; return false; } /* Return true if X contains a thread-local symbol. */ bool tls_referenced_p (const_rtx x) { if (!targetm.have_tls) return false; subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, x, ALL) if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0) return true; return false; } /* Process recursively X of INSN and add REG_INC notes if necessary. */ void add_auto_inc_notes (rtx_insn *insn, rtx x) { enum rtx_code code = GET_CODE (x); const char *fmt; int i, j; if (code == MEM && auto_inc_p (XEXP (x, 0))) { add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0)); return; } /* Scan all X sub-expressions. */ fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') add_auto_inc_notes (insn, XEXP (x, i)); else if (fmt[i] == 'E') for (j = XVECLEN (x, i) - 1; j >= 0; j--) add_auto_inc_notes (insn, XVECEXP (x, i, j)); } } /* Return true if X is register asm. */ bool register_asm_p (const_rtx x) { return (REG_P (x) && REG_EXPR (x) != NULL_TREE && HAS_DECL_ASSEMBLER_NAME_P (REG_EXPR (x)) && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (x)) && DECL_REGISTER (REG_EXPR (x))); } /* Return true if, for all OP of mode OP_MODE: (vec_select:RESULT_MODE OP SEL) is equivalent to the highpart RESULT_MODE of OP. */ bool vec_series_highpart_p (machine_mode result_mode, machine_mode op_mode, rtx sel) { int nunits; if (GET_MODE_NUNITS (op_mode).is_constant (&nunits) && targetm.can_change_mode_class (op_mode, result_mode, ALL_REGS)) { int offset = BYTES_BIG_ENDIAN ? 0 : nunits - XVECLEN (sel, 0); return rtvec_series_p (XVEC (sel, 0), offset); } return false; } /* Return true if, for all OP of mode OP_MODE: (vec_select:RESULT_MODE OP SEL) is equivalent to the lowpart RESULT_MODE of OP. */ bool vec_series_lowpart_p (machine_mode result_mode, machine_mode op_mode, rtx sel) { int nunits; if (GET_MODE_NUNITS (op_mode).is_constant (&nunits) && targetm.can_change_mode_class (op_mode, result_mode, ALL_REGS)) { int offset = BYTES_BIG_ENDIAN ? nunits - XVECLEN (sel, 0) : 0; return rtvec_series_p (XVEC (sel, 0), offset); } return false; } /* Return true if X contains a paradoxical subreg. */ bool contains_paradoxical_subreg_p (rtx x) { subrtx_var_iterator::array_type array; FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST) { x = *iter; if (SUBREG_P (x) && paradoxical_subreg_p (x)) return true; } return false; }