// Implementation of private inline member functions for RTL SSA -*- C++ -*- // Copyright (C) 2020-2023 Free Software Foundation, Inc. // // This file is part of GCC. // // GCC is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 3, or (at your option) any later // version. // // GCC is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License // along with GCC; see the file COPYING3. If not see // . namespace rtl_ssa { // Construct a new access with the given resource () and kind () values. inline access_info::access_info (resource_info resource, access_kind kind) : m_regno (resource.regno), m_mode (resource.mode), m_kind (kind), m_is_artificial (false), m_is_set_with_nondebug_insn_uses (false), m_is_pre_post_modify (false), m_is_call_clobber (false), m_is_live_out_use (false), m_includes_address_uses (false), m_includes_read_writes (false), m_includes_subregs (false), m_includes_multiregs (false), m_only_occurs_in_notes (false), m_is_last_nondebug_insn_use (false), m_is_in_debug_insn_or_phi (false), m_has_been_superceded (false), m_is_temp (false) { } // Construct a use of RESOURCE in LOCATION. The resource's value is provided // by DEF, or is completely undefined if DEF is null. inline use_info::use_info (insn_or_phi location, resource_info resource, set_info *definition) : access_info (resource, access_kind::USE), m_insn_or_phi (location), m_last_use_or_prev_use (nullptr), m_last_nondebug_insn_use_or_next_use (nullptr), m_def (definition) { if (m_insn_or_phi.is_second ()) { m_is_in_debug_insn_or_phi = true; m_is_artificial = true; } else { insn_info *insn = m_insn_or_phi.known_first (); m_is_in_debug_insn_or_phi = insn->is_debug_insn (); m_is_artificial = insn->is_artificial (); } } // Return the correct (uncached) value of m_is_last_nondebug_insn_use. inline bool use_info::calculate_is_last_nondebug_insn_use () const { use_info *next = next_use (); return is_in_nondebug_insn () && (!next || next->is_in_debug_insn_or_phi ()); } // Accumulate any properties about REF that are also stored in use_infos. // IS_FIRST is true if REF is the first access to resource () that we have // recorded in this way, false if we have already recorded previous // references. inline void use_info::record_reference (rtx_obj_reference ref, bool is_first) { if (is_first) { m_includes_address_uses = ref.in_address (); m_includes_read_writes = ref.is_write (); m_includes_subregs = ref.in_subreg (); m_includes_multiregs = ref.is_multireg (); m_only_occurs_in_notes = ref.in_note (); } else { m_includes_address_uses |= ref.in_address (); m_includes_read_writes |= ref.is_write (); m_includes_subregs |= ref.in_subreg (); m_includes_multiregs |= ref.is_multireg (); m_only_occurs_in_notes &= ref.in_note (); } } // Change the value of insn () to INSN. inline void use_info::set_insn (insn_info *insn) { m_insn_or_phi = insn; m_is_artificial = insn->is_artificial (); } // Copy the overloaded prev link from OTHER. inline void use_info::copy_prev_from (use_info *other) { m_last_use_or_prev_use = other->m_last_use_or_prev_use; } // Copy the overloaded next link from OTHER. inline void use_info::copy_next_from (use_info *other) { m_last_nondebug_insn_use_or_next_use = other->m_last_nondebug_insn_use_or_next_use; m_is_last_nondebug_insn_use = calculate_is_last_nondebug_insn_use (); } // Record that this use is the first in the list and that the last use is LAST. inline void use_info::set_last_use (use_info *last_use) { m_last_use_or_prev_use.set_first (last_use); } // Record that this use is not the first in the list and that the previous // use is PREV. inline void use_info::set_prev_use (use_info *prev_use) { m_last_use_or_prev_use.set_second (prev_use); } // Record that this use is the last use in the list. If USE is nonnull, // record that USE is the last use in the list by a nondebug instruction, // otherwise record that there are no uses by nondebug instructions // in the list. inline void use_info::set_last_nondebug_insn_use (use_info *use) { m_last_nondebug_insn_use_or_next_use.set_first (use); m_is_last_nondebug_insn_use = (use == this); } // Record that this use is not the last in the list and that the next // use is NEXT_USE. inline void use_info::set_next_use (use_info *next_use) { m_last_nondebug_insn_use_or_next_use.set_second (next_use); m_is_last_nondebug_insn_use = calculate_is_last_nondebug_insn_use (); } // Clear any information relating to the position of the use in its // definition's list. inline void use_info::clear_use_links () { m_last_use_or_prev_use = nullptr; m_last_nondebug_insn_use_or_next_use = nullptr; m_is_last_nondebug_insn_use = false; } // Return true if the use has any links to other uses. This is mostly // for assert checking. inline bool use_info::has_use_links () { return (m_last_use_or_prev_use || m_last_nondebug_insn_use_or_next_use || m_is_last_nondebug_insn_use); } // Construct a definition of RESOURCE in INSN, giving it kind KIND. inline def_info::def_info (insn_info *insn, resource_info resource, access_kind kind) : access_info (resource, kind), m_insn (insn), m_last_def_or_prev_def (nullptr), m_splay_root_or_next_def (nullptr) { m_is_artificial = insn->is_artificial (); } // Record any properties about REF that are also stored in def_infos. // IS_FIRST is true if REF is the first access to resource () that we have // recorded in this way, false if we have already recorded previous // references. inline void def_info::record_reference (rtx_obj_reference ref, bool is_first) { if (is_first) { m_is_pre_post_modify = ref.is_pre_post_modify (); m_includes_read_writes = ref.is_read (); m_includes_subregs = ref.in_subreg (); m_includes_multiregs = ref.is_multireg (); } else { m_is_pre_post_modify |= ref.is_pre_post_modify (); m_includes_read_writes |= ref.is_read (); m_includes_subregs |= ref.in_subreg (); m_includes_multiregs |= ref.is_multireg (); } } // Return the last definition in the list. Only valid when is_first () // is true. inline def_info * def_info::last_def () const { return m_last_def_or_prev_def.known_first (); } // Return the root of the splay tree of definitions of resource (), // or null if no splay tree has been created for this resource. // Only valid when is_last () is true. inline def_node * def_info::splay_root () const { return m_splay_root_or_next_def.known_first (); } // Copy the overloaded prev link from OTHER. inline void def_info::copy_prev_from (def_info *other) { m_last_def_or_prev_def = other->m_last_def_or_prev_def; } // Copy the overloaded next link from OTHER. inline void def_info::copy_next_from (def_info *other) { m_splay_root_or_next_def = other->m_splay_root_or_next_def; } // Record that this definition is the first in the list and that the last // definition is LAST. inline void def_info::set_last_def (def_info *last_def) { m_last_def_or_prev_def.set_first (last_def); } // Record that this definition is not the first in the list and that the // previous definition is PREV. inline void def_info::set_prev_def (def_info *prev_def) { m_last_def_or_prev_def.set_second (prev_def); } // Record that this definition is the last in the list and that the root // of the splay tree associated with resource () is ROOT. inline void def_info::set_splay_root (def_node *root) { m_splay_root_or_next_def = root; } // Record that this definition is not the last in the list and that the // next definition is NEXT. inline void def_info::set_next_def (def_info *next_def) { m_splay_root_or_next_def = next_def; } // Clear the prev and next links inline void def_info::clear_def_links () { m_last_def_or_prev_def = nullptr; m_splay_root_or_next_def = nullptr; } // Return true if the definition has any links to other definitions. // This is mostly for assert checking. inline bool def_info::has_def_links () { return m_last_def_or_prev_def || m_splay_root_or_next_def; } // Construct a clobber of register REGNO in insn INSN. inline clobber_info::clobber_info (insn_info *insn, unsigned int regno) : def_info (insn, { E_BLKmode, regno }, access_kind::CLOBBER), m_children (), m_parent (nullptr), m_group (nullptr) { } // Set the containing group to GROUP, if it isn't already. The main // use of this function is to update the new root of GROUP's splay tree. inline void clobber_info::update_group (clobber_group *group) { if (UNLIKELY (m_group != group)) m_group = group; } // Cconstruct a set_info for a store to RESOURCE in INSN, giving it // kind KIND. inline set_info::set_info (insn_info *insn, resource_info resource, access_kind kind) : def_info (insn, resource, kind), m_first_use (nullptr) { } // Cconstruct a set_info for a store to RESOURCE in INSN. inline set_info::set_info (insn_info *insn, resource_info resource) : set_info (insn, resource, access_kind::SET) { } // Record that USE is the first use of this definition. inline void set_info::set_first_use (use_info *first_use) { m_first_use = first_use; m_is_set_with_nondebug_insn_uses = (first_use && first_use->is_in_nondebug_insn ()); } // Construct a phi for RESOURCE in INSN, giving it identifier UID. inline phi_info::phi_info (insn_info *insn, resource_info resource, unsigned int uid) : set_info (insn, resource, access_kind::PHI), m_uid (uid), m_num_inputs (0), m_prev_phi (nullptr), m_next_phi (nullptr) { } // Turn the phi into a degenerate phi, with INPUT representing the // value of the resource on all incoming edges. inline void phi_info::make_degenerate (use_info *input) { m_num_inputs = 1; m_single_input = input; } // Set the inputs of the phi to INPUTS. inline void phi_info::set_inputs (use_array inputs) { m_num_inputs = inputs.size (); if (inputs.size () == 1) m_single_input = inputs[0]; else m_inputs = access_array (inputs).begin (); } // Construct a definition splay tree node for FIRST_DEF, which is either // the first clobber_info in a group or a standalone set_info. inline def_node::def_node (clobber_or_set first_def) : m_clobber_or_set (first_def), m_children () { } // Construct a new group of clobber_infos that initially contains just CLOBBER. inline clobber_group::clobber_group (clobber_info *clobber) : def_node (clobber), m_last_clobber (clobber), m_clobber_tree (clobber) { clobber->m_group = this; } // Construct a node for the instruction with uid UID. inline insn_info::order_node::order_node (int uid) : insn_note (kind), m_children (), m_parent (nullptr) { m_data32 = uid; } // Construct a note for instruction INSN, giving it abi_id () value ABI_ID. inline insn_call_clobbers_note::insn_call_clobbers_note (unsigned int abi_id, insn_info *insn) : insn_note (kind), m_children (), m_insn (insn) { m_data32 = abi_id; } // Construct an instruction with the given bb () and rtl () values. // If the instruction is real, COST_OR_UID is the value of cost (), // otherwise it is the value of uid (). inline insn_info::insn_info (bb_info *bb, rtx_insn *rtl, int cost_or_uid) : m_prev_insn_or_last_debug_insn (nullptr), m_next_nondebug_or_debug_insn (nullptr), m_bb (bb), m_rtl (rtl), m_accesses (nullptr), m_num_uses (0), m_num_defs (0), m_is_debug_insn (rtl && DEBUG_INSN_P (rtl)), m_can_be_optimized (false), m_is_asm (false), m_has_pre_post_modify (false), m_has_volatile_refs (false), m_spare (0), m_point (0), m_cost_or_uid (cost_or_uid), m_first_note (nullptr) { } // Copy any insn properties from PROPERTIES that are also stored in an // insn_info. inline void insn_info::set_properties (const rtx_properties &properties) { m_is_asm = properties.has_asm; m_has_pre_post_modify = properties.has_pre_post_modify; m_has_volatile_refs = properties.has_volatile_refs; // Not strictly related to the properties we've been given, but it's // a convenient location to do this. m_can_be_optimized = (NONDEBUG_INSN_P (m_rtl) & (GET_CODE (PATTERN (m_rtl)) != USE) & (GET_CODE (PATTERN (m_rtl)) != CLOBBER)); } // Change the list of instruction accesses to ACCESSES, which contains // NUM_DEFS definitions followed by NUM_USES uses. inline void insn_info::set_accesses (access_info **accesses, unsigned int num_defs, unsigned int num_uses) { m_accesses = accesses; m_num_defs = num_defs; gcc_assert (num_defs == m_num_defs); m_num_uses = num_uses; } // Change defs () and uses () to DEFS and USES respectively, given that // the existing m_accesses array has enough room for them. inline void insn_info::copy_accesses (access_array defs, access_array uses) { gcc_assert (defs.size () + uses.size () <= m_num_defs + m_num_uses); memcpy (m_accesses, defs.begin (), defs.size_bytes ()); memcpy (m_accesses + defs.size (), uses.begin (), uses.size_bytes ()); m_num_defs = defs.size (); gcc_assert (m_num_defs == defs.size ()); m_num_uses = uses.size (); } // If the instruction has an insn_info::order_node, return the node, // otherwise return null. inline insn_info::order_node * insn_info::get_order_node () const { // The order_node always comes first. if (insn_note *note = first_note ()) return note->dyn_cast (); return nullptr; } // Like get_order_node (), but the node is known to exist. inline insn_info::order_node * insn_info::get_known_order_node () const { // The order_node always comes first. return first_note ()->as_a (); } // Copy the overloaded prev link from OTHER. inline void insn_info::copy_prev_from (insn_info *other) { m_prev_insn_or_last_debug_insn = other->m_prev_insn_or_last_debug_insn; } // Copy the overloaded next link from OTHER. inline void insn_info::copy_next_from (insn_info *other) { m_next_nondebug_or_debug_insn = other->m_next_nondebug_or_debug_insn; } // If this is a nondebug instruction, record that the previous nondebug // instruction is PREV. (There might be intervening debug instructions.) // // If this is a debug instruction, record that the previous instruction // is debug instruction PREV. inline void insn_info::set_prev_sametype_insn (insn_info *prev) { m_prev_insn_or_last_debug_insn.set_first (prev); } // Only valid for debug instructions. Record that this instruction starts // a subsequence of debug instructions that ends with LAST. inline void insn_info::set_last_debug_insn (insn_info *last) { m_prev_insn_or_last_debug_insn.set_second (last); } // Record that the next instruction of any kind is NEXT. inline void insn_info::set_next_any_insn (insn_info *next) { if (next && next->is_debug_insn ()) m_next_nondebug_or_debug_insn.set_second (next); else m_next_nondebug_or_debug_insn.set_first (next); } // Clear the list links and point number for this instruction. inline void insn_info::clear_insn_links () { m_prev_insn_or_last_debug_insn = nullptr; m_next_nondebug_or_debug_insn = nullptr; m_point = 0; } // Return true if the instruction contains any list information. // This is used by assert checking. inline bool insn_info::has_insn_links () { return (m_prev_insn_or_last_debug_insn || m_next_nondebug_or_debug_insn || m_point); } // Construct a representation of basic block CFG_BB. inline bb_info::bb_info (basic_block cfg_bb) : m_prev_bb (nullptr), m_next_bb (nullptr), m_cfg_bb (cfg_bb), m_ebb (nullptr), m_head_insn (nullptr), m_end_insn (nullptr) { } // Construct a tree of call clobbers for the given ABI. inline ebb_call_clobbers_info:: ebb_call_clobbers_info (const predefined_function_abi *abi) : m_next (nullptr), m_abi (abi) { } // Construct an EBB whose first block is FIRST_BB and whose last block // is LAST_BB. inline ebb_info::ebb_info (bb_info *first_bb, bb_info *last_bb) : m_first_phi (nullptr), m_phi_insn (nullptr), m_first_bb (first_bb), m_last_bb (last_bb), m_first_call_clobbers (nullptr) { } // Record register definition DEF in last_access, pushing a definition // to def_stack where appropriate. inline void function_info::build_info::record_reg_def (def_info *def) { unsigned int regno = def->regno (); auto *prev_dominating_def = safe_as_a (last_access[regno + 1]); if (!prev_dominating_def) // Indicate that DEF is the first dominating definition of REGNO. def_stack.safe_push (def); else if (prev_dominating_def->bb () != def->bb ()) // Record that PREV_DOMINATING_DEF was the dominating definition // of REGNO on entry to the current block. def_stack.safe_push (prev_dominating_def); last_access[regno + 1] = def; } // Set the contents of last_access for memory to DEF. inline void function_info::build_info::record_mem_def (def_info *def) { last_access[0] = def; } // Return the current value of live register REGNO, or null if the register's // value is completedly undefined. inline set_info * function_info::build_info::current_reg_value (unsigned int regno) const { return safe_dyn_cast (last_access[regno + 1]); } // Return the current value of memory. inline set_info * function_info::build_info::current_mem_value () const { return as_a (last_access[0]); } // Allocate a T on the function's main obstack, passing ARGS // to its constructor. template inline T * function_info::allocate (Ts... args) { static_assert (std::is_trivially_destructible::value, "destructor won't be called"); static_assert (alignof (T) <= obstack_alignment, "too much alignment required"); void *addr = obstack_alloc (&m_obstack, sizeof (T)); return new (addr) T (std::forward (args)...); } // Allocate a T on the function's temporary obstack, passing ARGS // to its constructor. template inline T * function_info::allocate_temp (Ts... args) { static_assert (std::is_trivially_destructible::value, "destructor won't be called"); static_assert (alignof (T) <= obstack_alignment, "too much alignment required"); void *addr = obstack_alloc (&m_temp_obstack, sizeof (T)); return new (addr) T (std::forward (args)...); } // Add INSN to the end of the function's list of instructions. inline void function_info::append_insn (insn_info *insn) { gcc_checking_assert (!insn->has_insn_links ()); if (insn_info *after = m_last_insn) add_insn_after (insn, after); else // The first instruction is for the entry block and is always a nondebug // insn m_first_insn = m_last_insn = m_last_nondebug_insn = insn; } // Start building a new list of uses and definitions for an instruction. inline void function_info::start_insn_accesses () { gcc_checking_assert (m_temp_defs.is_empty () && m_temp_uses.is_empty ()); } // Return a mode that encapsulates two distinct references to a register, // one with mode MODE1 and one with mode MODE2. Treat BLKmode as a // "don't know" wildcard. inline machine_mode combine_modes (machine_mode mode1, machine_mode mode2) { if (mode1 == E_BLKmode) return mode2; if (mode2 == E_BLKmode) return mode1; return wider_subreg_mode (mode1, mode2); } // PRINTER (PP, ARGS...) prints ARGS... to a pretty_printer PP. Use it // to print ARGS... to FILE. template inline void dump_using (FILE *file, Printer printer, Args... args) { pretty_printer pp; printer (&pp, args...); pp_newline (&pp); fprintf (file, "%s", pp_formatted_text (&pp)); } }