// Implementation of basic-block-related functions for RTL SSA -*- C++ -*- // Copyright (C) 2020-2022 Free Software Foundation, Inc. // // This file is part of GCC. // // GCC is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 3, or (at your option) any later // version. // // GCC is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License // along with GCC; see the file COPYING3. If not see // . #define INCLUDE_ALGORITHM #define INCLUDE_FUNCTIONAL #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "rtl.h" #include "df.h" #include "rtl-ssa.h" #include "rtl-ssa/internals.h" #include "rtl-ssa/internals.inl" #include "cfganal.h" #include "cfgrtl.h" #include "predict.h" #include "domwalk.h" using namespace rtl_ssa; // Prepare to build information for a function in which all register numbers // are less than NUM_REGS and all basic block indices are less than // NUM_BB_INDICES function_info::build_info::build_info (unsigned int num_regs, unsigned int num_bb_indices) : current_bb (nullptr), current_ebb (nullptr), last_access (num_regs + 1), ebb_live_in_for_debug (nullptr), potential_phi_regs (num_regs), bb_phis (num_bb_indices), bb_mem_live_out (num_bb_indices), bb_to_rpo (num_bb_indices) { last_access.safe_grow_cleared (num_regs + 1); bitmap_clear (potential_phi_regs); // These arrays shouldn't need to be initialized, since we'll always // write to an entry before reading from it. But poison the contents // when checking, just to make sure we don't accidentally use an // uninitialized value. bb_phis.quick_grow (num_bb_indices); bb_mem_live_out.quick_grow (num_bb_indices); bb_to_rpo.quick_grow (num_bb_indices); if (flag_checking) { // Can't do this for bb_phis because it has a constructor. memset (bb_mem_live_out.address (), 0xaf, num_bb_indices * sizeof (bb_mem_live_out[0])); memset (bb_to_rpo.address (), 0xaf, num_bb_indices * sizeof (bb_to_rpo[0])); } // Start off with an empty set of phi nodes for each block. for (bb_phi_info &info : bb_phis) bitmap_initialize (&info.regs, &bitmap_default_obstack); } function_info::build_info::~build_info () { for (bb_phi_info &info : bb_phis) bitmap_release (&info.regs); } // A dom_walker for populating the basic blocks. class function_info::bb_walker : public dom_walker { public: bb_walker (function_info *, build_info &); edge before_dom_children (basic_block) final override; void after_dom_children (basic_block) final override; private: // Information about the function we're building. function_info *m_function; build_info &m_bi; // We should treat the exit block as being the last child of this one. // See the comment in the constructor for more information. basic_block m_exit_block_dominator; }; // Prepare to walk the blocks in FUNCTION using BI. function_info::bb_walker::bb_walker (function_info *function, build_info &bi) : dom_walker (CDI_DOMINATORS, ALL_BLOCKS, bi.bb_to_rpo.address ()), m_function (function), m_bi (bi), m_exit_block_dominator (nullptr) { // ??? There is no dominance information associated with the exit block, // so work out its immediate dominator using predecessor blocks. We then // walk the exit block just before popping its immediate dominator. edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (m_function->m_fn)->preds) if (m_exit_block_dominator) m_exit_block_dominator = nearest_common_dominator (CDI_DOMINATORS, m_exit_block_dominator, e->src); else m_exit_block_dominator = e->src; // If the exit block is unreachable, process it last. if (!m_exit_block_dominator) m_exit_block_dominator = ENTRY_BLOCK_PTR_FOR_FN (m_function->m_fn); } edge function_info::bb_walker::before_dom_children (basic_block bb) { m_function->start_block (m_bi, m_function->bb (bb)); return nullptr; } void function_info::bb_walker::after_dom_children (basic_block bb) { // See the comment in the constructor for details. if (bb == m_exit_block_dominator) { before_dom_children (EXIT_BLOCK_PTR_FOR_FN (m_function->m_fn)); after_dom_children (EXIT_BLOCK_PTR_FOR_FN (m_function->m_fn)); } m_function->end_block (m_bi, m_function->bb (bb)); } // See the comment above the declaration. void bb_info::print_identifier (pretty_printer *pp) const { char tmp[3 * sizeof (index ()) + 3]; snprintf (tmp, sizeof (tmp), "bb%d", index ()); pp_string (pp, tmp); if (ebb_info *ebb = this->ebb ()) { pp_space (pp); pp_left_bracket (pp); ebb->print_identifier (pp); pp_right_bracket (pp); } } // See the comment above the declaration. void bb_info::print_full (pretty_printer *pp) const { pp_string (pp, "basic block "); print_identifier (pp); pp_colon (pp); auto print_insn = [pp](const char *header, const insn_info *insn) { pp_newline_and_indent (pp, 2); pp_string (pp, header); pp_newline_and_indent (pp, 2); if (insn) pp_insn (pp, insn); else pp_string (pp, ""); pp_indentation (pp) -= 4; }; print_insn ("head:", head_insn ()); pp_newline (pp); pp_newline_and_indent (pp, 2); pp_string (pp, "contents:"); if (!head_insn ()) { pp_newline_and_indent (pp, 2); pp_string (pp, ""); pp_indentation (pp) -= 2; } else if (auto insns = real_insns ()) { bool is_first = true; for (const insn_info *insn : insns) { if (is_first) is_first = false; else pp_newline (pp); pp_newline_and_indent (pp, 2); pp_insn (pp, insn); pp_indentation (pp) -= 2; } } else { pp_newline_and_indent (pp, 2); pp_string (pp, "none"); pp_indentation (pp) -= 2; } pp_indentation (pp) -= 2; pp_newline (pp); print_insn ("end:", end_insn ()); } // See the comment above the declaration. void ebb_call_clobbers_info::print_summary (pretty_printer *pp) const { pp_string (pp, "call clobbers for ABI "); if (m_abi) pp_decimal_int (pp, m_abi->id ()); else pp_string (pp, ""); } // See the comment above the declaration. void ebb_call_clobbers_info::print_full (pretty_printer *pp) const { print_summary (pp); pp_colon (pp); pp_newline_and_indent (pp, 2); auto print_node = [](pretty_printer *pp, const insn_call_clobbers_note *note) { if (insn_info *insn = note->insn ()) insn->print_identifier_and_location (pp); else pp_string (pp, ""); }; print (pp, root (), print_node); pp_indentation (pp) -= 2; } // See the comment above the declaration. void ebb_info::print_identifier (pretty_printer *pp) const { // first_bb is populated by the constructor and so should always // be nonnull. auto index = first_bb ()->index (); char tmp[3 * sizeof (index) + 4]; snprintf (tmp, sizeof (tmp), "ebb%d", index); pp_string (pp, tmp); } // See the comment above the declaration. void ebb_info::print_full (pretty_printer *pp) const { pp_string (pp, "extended basic block "); print_identifier (pp); pp_colon (pp); pp_newline_and_indent (pp, 2); if (insn_info *phi_insn = this->phi_insn ()) { phi_insn->print_identifier_and_location (pp); pp_colon (pp); if (auto phis = this->phis ()) { bool is_first = true; for (const phi_info *phi : phis) { if (is_first) is_first = false; else pp_newline (pp); pp_newline_and_indent (pp, 2); pp_access (pp, phi, PP_ACCESS_SETTER); pp_indentation (pp) -= 2; } } else { pp_newline_and_indent (pp, 2); pp_string (pp, "no phi nodes"); pp_indentation (pp) -= 2; } } else pp_string (pp, "no phi insn"); pp_indentation (pp) -= 2; for (const bb_info *bb : bbs ()) { pp_newline (pp); pp_newline_and_indent (pp, 2); pp_bb (pp, bb); pp_indentation (pp) -= 2; } for (ebb_call_clobbers_info *ecc : call_clobbers ()) { pp_newline (pp); pp_newline_and_indent (pp, 2); pp_ebb_call_clobbers (pp, ecc); pp_indentation (pp) -= 2; } } // Add a dummy use to mark that DEF is live out of BB's EBB at the end of BB. void function_info::add_live_out_use (bb_info *bb, set_info *def) { // There is nothing to do if DEF is an artificial definition at the end // of BB. In that case the definitino is rooted at the end of the block // and we wouldn't gain anything by inserting a use immediately after it. // If we did want to insert a use, we'd need to associate it with a new // instruction that comes after bb->end_insn (). if (def->insn () == bb->end_insn ()) return; // If the end of the block already has an artificial use, that use // acts to make DEF live at the appropriate point. use_info *use = def->last_nondebug_insn_use (); if (use && use->insn () == bb->end_insn ()) return; // Currently there is no need to maintain a backward link from the end // instruction to the list of live-out uses. Such a list would be // expensive to update if it was represented using the usual insn_info // access arrays. use = allocate (bb->end_insn (), def->resource (), def); use->set_is_live_out_use (true); add_use (use); } // Return true if all nondebug uses of DEF are live-out uses. static bool all_uses_are_live_out_uses (set_info *def) { for (use_info *use : def->all_uses ()) if (!use->is_in_debug_insn () && !use->is_live_out_use ()) return false; return true; } // SET, if nonnull, is a definition of something that is live out from BB. // Return the live-out value itself. set_info * function_info::live_out_value (bb_info *bb, set_info *set) { // Degenerate phis only exist to provide a definition for uses in the // same EBB. The live-out value is the same as the live-in value. if (auto *phi = safe_dyn_cast (set)) if (phi->is_degenerate ()) { set = phi->input_value (0); // Remove the phi if it turned out to be useless. This is // mainly useful for memory, because we don't know ahead of time // whether a block will use memory or not. if (bb == bb->ebb ()->last_bb () && all_uses_are_live_out_uses (phi)) replace_phi (phi, set); } return set; } // Add PHI to EBB and enter it into the function's hash table. void function_info::append_phi (ebb_info *ebb, phi_info *phi) { phi_info *first_phi = ebb->first_phi (); if (first_phi) first_phi->set_prev_phi (phi); phi->set_next_phi (first_phi); ebb->set_first_phi (phi); add_def (phi); } // Remove PHI from its current position in the SSA graph. void function_info::remove_phi (phi_info *phi) { phi_info *next = phi->next_phi (); phi_info *prev = phi->prev_phi (); if (next) next->set_prev_phi (prev); if (prev) prev->set_next_phi (next); else phi->ebb ()->set_first_phi (next); remove_def (phi); phi->clear_phi_links (); } // Remove PHI from the SSA graph and free its memory. void function_info::delete_phi (phi_info *phi) { gcc_assert (!phi->has_any_uses ()); // Remove the inputs to the phi. for (use_info *input : phi->inputs ()) remove_use (input); remove_phi (phi); phi->set_next_phi (m_free_phis); m_free_phis = phi; } // If possible, remove PHI and replace all uses with NEW_VALUE. void function_info::replace_phi (phi_info *phi, set_info *new_value) { auto update_use = [&](use_info *use) { remove_use (use); use->set_def (new_value); add_use (use); }; if (new_value) for (use_info *use : phi->nondebug_insn_uses ()) if (!use->is_live_out_use ()) { // We need to keep the phi around for its local uses. // Turn it into a degenerate phi, if it isn't already. use_info *use = phi->input_use (0); if (use->def () != new_value) update_use (use); if (phi->is_degenerate ()) return; phi->make_degenerate (use); // Redirect all phi users to NEW_VALUE. while (use_info *phi_use = phi->last_phi_use ()) update_use (phi_use); return; } // Replace the uses. We can discard uses that only existed for the // sake of marking live-out values, since the resource is now transparent // in the phi's EBB. while (use_info *use = phi->last_use ()) if (use->is_live_out_use ()) remove_use (use); else update_use (use); delete_phi (phi); } // Create and return a phi node for EBB. RESOURCE is the resource that // the phi node sets (and thus that all the inputs set too). NUM_INPUTS // is the number of inputs, which is 1 for a degenerate phi. INPUTS[I] // is a set_info that gives the value of input I, or null if the value // is either unknown or uninitialized. If NUM_INPUTS > 1, this array // is allocated on the main obstack and can be reused for the use array. // // Add the created phi node to its basic block and enter it into the // function's hash table. phi_info * function_info::create_phi (ebb_info *ebb, resource_info resource, access_info **inputs, unsigned int num_inputs) { phi_info *phi = m_free_phis; if (phi) { m_free_phis = phi->next_phi (); *phi = phi_info (ebb->phi_insn (), resource, phi->uid ()); } else { phi = allocate (ebb->phi_insn (), resource, m_next_phi_uid); m_next_phi_uid += 1; } // Convert the array of set_infos into an array of use_infos. Also work // out what mode the phi should have. machine_mode new_mode = resource.mode; for (unsigned int i = 0; i < num_inputs; ++i) { auto *input = safe_as_a (inputs[i]); auto *use = allocate (phi, resource, input); add_use (use); inputs[i] = use; if (input) new_mode = combine_modes (new_mode, input->mode ()); } phi->set_inputs (use_array (inputs, num_inputs)); phi->set_mode (new_mode); append_phi (ebb, phi); return phi; } // Create and return a degenerate phi for EBB whose input comes from DEF. // This is used in cases where DEF is known to be available on entry to // EBB but was not previously used within it. If DEF is for a register, // there are two cases: // // (1) DEF was already live on entry to EBB but was previously transparent // within it. // // (2) DEF was not previously live on entry to EBB and is being made live // by this update. // // At the moment, this function only handles the case in which EBB has a // single predecessor block and DEF is defined in that block's EBB. phi_info * function_info::create_degenerate_phi (ebb_info *ebb, set_info *def) { access_info *input = def; phi_info *phi = create_phi (ebb, def->resource (), &input, 1); if (def->is_reg ()) { unsigned int regno = def->regno (); // Find the single predecessor mentioned above. basic_block pred_cfg_bb = single_pred (ebb->first_bb ()->cfg_bb ()); bb_info *pred_bb = this->bb (pred_cfg_bb); if (!bitmap_set_bit (DF_LR_IN (ebb->first_bb ()->cfg_bb ()), regno)) { // The register was not previously live on entry to EBB and // might not have been live on exit from PRED_BB either. if (bitmap_set_bit (DF_LR_OUT (pred_cfg_bb), regno)) add_live_out_use (pred_bb, def); } else { // The register was previously live in to EBB. Add live-out uses // at the appropriate points. insn_info *next_insn = nullptr; if (def_info *next_def = phi->next_def ()) next_insn = next_def->insn (); for (bb_info *bb : ebb->bbs ()) { if ((next_insn && *next_insn <= *bb->end_insn ()) || !bitmap_bit_p (DF_LR_OUT (bb->cfg_bb ()), regno)) break; add_live_out_use (bb, def); } } } return phi; } // Create a bb_info for CFG_BB, given that no such structure currently exists. bb_info * function_info::create_bb_info (basic_block cfg_bb) { bb_info *bb = allocate (cfg_bb); gcc_checking_assert (!m_bbs[cfg_bb->index]); m_bbs[cfg_bb->index] = bb; return bb; } // Add BB to the end of the list of blocks. void function_info::append_bb (bb_info *bb) { if (m_last_bb) m_last_bb->set_next_bb (bb); else m_first_bb = bb; bb->set_prev_bb (m_last_bb); m_last_bb = bb; } // Calculate BI.potential_phi_regs and BI.potential_phi_regs_for_debug. void function_info::calculate_potential_phi_regs (build_info &bi) { auto *lr_info = DF_LR_BB_INFO (ENTRY_BLOCK_PTR_FOR_FN (m_fn)); bool is_debug = MAY_HAVE_DEBUG_INSNS; for (unsigned int regno = 0; regno < m_num_regs; ++regno) if (regno >= DF_REG_SIZE (DF) // Exclude registers that have a single definition that dominates // all uses. If the definition does not dominate all uses, // the register will be exposed upwards to the entry block but // will not be defined by the entry block. || DF_REG_DEF_COUNT (regno) > 1 || (!bitmap_bit_p (&lr_info->def, regno) && bitmap_bit_p (&lr_info->out, regno))) { bitmap_set_bit (bi.potential_phi_regs, regno); if (is_debug) bitmap_set_bit (bi.potential_phi_regs_for_debug, regno); } } // Called while building SSA form using BI. Decide where phi nodes // should be placed for each register and initialize BI.bb_phis accordingly. void function_info::place_phis (build_info &bi) { unsigned int num_bb_indices = last_basic_block_for_fn (m_fn); // Calculate dominance frontiers. auto_vec frontiers; frontiers.safe_grow (num_bb_indices); for (unsigned int i = 0; i < num_bb_indices; ++i) bitmap_initialize (&frontiers[i], &bitmap_default_obstack); compute_dominance_frontiers (frontiers.address ()); // In extreme cases, the number of live-in registers can be much // greater than the number of phi nodes needed in a block (see PR98863). // Try to reduce the number of operations involving live-in sets by using // PENDING as a staging area: registers in PENDING need phi nodes if // they are live on entry to the corresponding block, but do not need // phi nodes otherwise. auto_vec unfiltered; unfiltered.safe_grow (num_bb_indices); for (unsigned int i = 0; i < num_bb_indices; ++i) bitmap_initialize (&unfiltered[i], &bitmap_default_obstack); // If block B1 defines R and if B2 is in the dominance frontier of B1, // queue a possible phi node for R in B2. auto_bitmap worklist; for (unsigned int b1 = 0; b1 < num_bb_indices; ++b1) { // Only access DF information for blocks that are known to exist. if (bitmap_empty_p (&frontiers[b1])) continue; bitmap b1_def = &DF_LR_BB_INFO (BASIC_BLOCK_FOR_FN (m_fn, b1))->def; bitmap_iterator bmi; unsigned int b2; EXECUTE_IF_SET_IN_BITMAP (&frontiers[b1], 0, b2, bmi) if (bitmap_ior_into (&unfiltered[b2], b1_def) && !bitmap_empty_p (&frontiers[b2])) // Propagate the (potential) new phi node definitions in B2. bitmap_set_bit (worklist, b2); } while (!bitmap_empty_p (worklist)) { unsigned int b1 = bitmap_first_set_bit (worklist); bitmap_clear_bit (worklist, b1); // Restrict the phi nodes to registers that are live on entry to // the block. bitmap b1_in = DF_LR_IN (BASIC_BLOCK_FOR_FN (m_fn, b1)); bitmap b1_phis = &bi.bb_phis[b1].regs; if (!bitmap_ior_and_into (b1_phis, &unfiltered[b1], b1_in)) continue; // If block B1 has a phi node for R and if B2 is in the dominance // frontier of B1, queue a possible phi node for R in B2. bitmap_iterator bmi; unsigned int b2; EXECUTE_IF_SET_IN_BITMAP (&frontiers[b1], 0, b2, bmi) if (bitmap_ior_into (&unfiltered[b2], b1_phis) && !bitmap_empty_p (&frontiers[b2])) bitmap_set_bit (worklist, b2); } basic_block cfg_bb; FOR_ALL_BB_FN (cfg_bb, m_fn) { // Calculate the set of phi nodes for blocks that don't have any // dominance frontiers. We only need to do this once per block. unsigned int i = cfg_bb->index; bb_phi_info &phis = bi.bb_phis[i]; if (bitmap_empty_p (&frontiers[i])) bitmap_and (&phis.regs, &unfiltered[i], DF_LR_IN (cfg_bb)); // Create an array that contains all phi inputs for this block. // See the comment above the member variables for more information. phis.num_phis = bitmap_count_bits (&phis.regs); phis.num_preds = EDGE_COUNT (cfg_bb->preds); unsigned int num_inputs = phis.num_phis * phis.num_preds; if (num_inputs != 0) { phis.inputs = XOBNEWVEC (&m_temp_obstack, set_info *, num_inputs); memset (phis.inputs, 0, num_inputs * sizeof (phis.inputs[0])); } } // Free the temporary bitmaps. for (unsigned int i = 0; i < num_bb_indices; ++i) { bitmap_release (&frontiers[i]); bitmap_release (&unfiltered[i]); } } // Called while building SSA form using BI, with BI.current_bb being // the entry block. // // Create the entry block instructions and their definitions. The only // useful instruction is the end instruction, which carries definitions // for the values that are live on entry to the function. However, it // seems simpler to create a head instruction too, rather than force all // users of the block information to treat the entry block as a special case. void function_info::add_entry_block_defs (build_info &bi) { bb_info *bb = bi.current_bb; basic_block cfg_bb = bi.current_bb->cfg_bb (); auto *lr_info = DF_LR_BB_INFO (cfg_bb); bb->set_head_insn (append_artificial_insn (bb)); insn_info *insn = append_artificial_insn (bb); bb->set_end_insn (insn); start_insn_accesses (); // Using LR to derive the liveness information means that we create an // entry block definition for upwards exposed registers. These registers // are sometimes genuinely uninitialized. However, some targets also // create a pseudo PIC base register and only initialize it later. // Handling that case correctly seems more important than optimizing // uninitialized uses. unsigned int regno; bitmap_iterator in_bi; EXECUTE_IF_SET_IN_BITMAP (&lr_info->out, 0, regno, in_bi) { auto *set = allocate (insn, full_register (regno)); append_def (set); m_temp_defs.safe_push (set); bi.record_reg_def (set); } // Create a definition that reflects the state of memory on entry to // the function. auto *set = allocate (insn, memory); append_def (set); m_temp_defs.safe_push (set); bi.record_mem_def (set); finish_insn_accesses (insn); } // Lazily calculate the value of BI.ebb_live_in_for_debug for BI.current_ebb. void function_info::calculate_ebb_live_in_for_debug (build_info &bi) { gcc_checking_assert (bitmap_empty_p (bi.tmp_ebb_live_in_for_debug)); bi.ebb_live_in_for_debug = bi.tmp_ebb_live_in_for_debug; bitmap_and (bi.ebb_live_in_for_debug, bi.potential_phi_regs_for_debug, DF_LR_IN (bi.current_ebb->first_bb ()->cfg_bb ())); bitmap_tree_view (bi.ebb_live_in_for_debug); } // Called while building SSA form using BI. Create phi nodes for the // current EBB. void function_info::add_phi_nodes (build_info &bi) { ebb_info *ebb = bi.current_ebb; basic_block cfg_bb = ebb->first_bb ()->cfg_bb (); // Create the register phis for this EBB. bb_phi_info &phis = bi.bb_phis[cfg_bb->index]; unsigned int num_preds = phis.num_preds; unsigned int regno; bitmap_iterator in_bi; EXECUTE_IF_SET_IN_BITMAP (&phis.regs, 0, regno, in_bi) { gcc_checking_assert (bitmap_bit_p (bi.potential_phi_regs, regno)); // Create an array of phi inputs, to be filled in later. auto *inputs = XOBNEWVEC (&m_obstack, access_info *, num_preds); memset (inputs, 0, sizeof (access_info *) * num_preds); // Later code works out the correct mode of the phi. Use BLKmode // as a placeholder for now. phi_info *phi = create_phi (ebb, { E_BLKmode, regno }, inputs, num_preds); bi.record_reg_def (phi); } bitmap_copy (bi.ebb_def_regs, &phis.regs); // Collect the live-in memory definitions and record whether they're // all the same. m_temp_defs.reserve (num_preds); set_info *mem_value = nullptr; bool mem_phi_is_degenerate = true; edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, cfg_bb->preds) { bb_info *pred_bb = this->bb (e->src); if (pred_bb && pred_bb->head_insn ()) { mem_value = bi.bb_mem_live_out[pred_bb->index ()]; m_temp_defs.quick_push (mem_value); if (mem_value != m_temp_defs[0]) mem_phi_is_degenerate = false; } else { m_temp_defs.quick_push (nullptr); mem_phi_is_degenerate = false; } } // Create a phi for memory, on the assumption that something in the // EBB will need it. if (mem_phi_is_degenerate) { access_info *input[] = { mem_value }; mem_value = create_phi (ebb, memory, input, 1); } else { obstack_grow (&m_obstack, m_temp_defs.address (), num_preds * sizeof (access_info *)); auto *inputs = static_cast (obstack_finish (&m_obstack)); mem_value = create_phi (ebb, memory, inputs, num_preds); } bi.record_mem_def (mem_value); m_temp_defs.truncate (0); } // Called while building SSA form using BI. // // If FLAGS is DF_REF_AT_TOP, create the head insn for BI.current_bb // and populate its uses and definitions. If FLAGS is 0, do the same // for the end insn. void function_info::add_artificial_accesses (build_info &bi, df_ref_flags flags) { bb_info *bb = bi.current_bb; basic_block cfg_bb = bb->cfg_bb (); auto *lr_info = DF_LR_BB_INFO (cfg_bb); df_ref ref; insn_info *insn; if (flags == DF_REF_AT_TOP) { if (cfg_bb->index == EXIT_BLOCK) insn = append_artificial_insn (bb); else insn = append_artificial_insn (bb, bb_note (cfg_bb)); bb->set_head_insn (insn); } else { insn = append_artificial_insn (bb); bb->set_end_insn (insn); } start_insn_accesses (); FOR_EACH_ARTIFICIAL_USE (ref, cfg_bb->index) if ((DF_REF_FLAGS (ref) & DF_REF_AT_TOP) == flags) { unsigned int regno = DF_REF_REGNO (ref); machine_mode mode = GET_MODE (DF_REF_REAL_REG (ref)); // A definition must be available. gcc_checking_assert (bitmap_bit_p (&lr_info->in, regno) || (flags != DF_REF_AT_TOP && bitmap_bit_p (&lr_info->def, regno))); m_temp_uses.safe_push (create_reg_use (bi, insn, { mode, regno })); } // Track the return value of memory by adding an artificial use of // memory at the end of the exit block. if (flags == 0 && cfg_bb->index == EXIT_BLOCK) { auto *use = allocate (insn, memory, bi.current_mem_value ()); add_use (use); m_temp_uses.safe_push (use); } FOR_EACH_ARTIFICIAL_DEF (ref, cfg_bb->index) if ((DF_REF_FLAGS (ref) & DF_REF_AT_TOP) == flags) { unsigned int regno = DF_REF_REGNO (ref); machine_mode mode = GET_MODE (DF_REF_REAL_REG (ref)); resource_info resource { mode, regno }; // We rely on the def set being correct. gcc_checking_assert (bitmap_bit_p (&lr_info->def, regno)); // If the value isn't used later in the block and isn't live // on exit, we could instead represent the definition as a // clobber_info. However, that case should be relatively // rare and set_info is any case more compact than clobber_info. set_info *def = allocate (insn, resource); append_def (def); m_temp_defs.safe_push (def); bi.record_reg_def (def); } // Model the effect of a memory clobber on an incoming edge by adding // a fake definition of memory at the start of the block. We don't need // to add a use of the phi node because memory is implicitly always live. if (flags == DF_REF_AT_TOP && has_abnormal_call_or_eh_pred_edge_p (cfg_bb)) { set_info *def = allocate (insn, memory); append_def (def); m_temp_defs.safe_push (def); bi.record_mem_def (def); } finish_insn_accesses (insn); } // Called while building SSA form using BI. Create insn_infos for all // relevant instructions in BI.current_bb. void function_info::add_block_contents (build_info &bi) { basic_block cfg_bb = bi.current_bb->cfg_bb (); rtx_insn *insn; FOR_BB_INSNS (cfg_bb, insn) if (INSN_P (insn)) add_insn_to_block (bi, insn); } // Called while building SSA form using BI. Record live-out register values // in the phi inputs of successor blocks and create live-out uses where // appropriate. Record the live-out memory value in BI.bb_mem_live_out. void function_info::record_block_live_out (build_info &bi) { bb_info *bb = bi.current_bb; ebb_info *ebb = bi.current_ebb; basic_block cfg_bb = bb->cfg_bb (); // Record the live-out register values in the phi inputs of // successor blocks. edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, cfg_bb->succs) { bb_phi_info &phis = bi.bb_phis[e->dest->index]; unsigned int input_i = e->dest_idx * phis.num_phis; unsigned int regno; bitmap_iterator out_bi; EXECUTE_IF_SET_IN_BITMAP (&phis.regs, 0, regno, out_bi) { phis.inputs[input_i] = live_out_value (bb, bi.current_reg_value (regno)); input_i += 1; } } // Add the set of registers that were defined in this BB to the set // of potentially-live registers defined in the EBB. bitmap_ior_into (bi.ebb_def_regs, &DF_LR_BB_INFO (cfg_bb)->def); // Iterate through the registers in LIVE_OUT and see whether we need // to add a live-out use for them. auto record_live_out_regs = [&](bitmap live_out) { unsigned int regno; bitmap_iterator out_bi; EXECUTE_IF_AND_IN_BITMAP (bi.ebb_def_regs, live_out, 0, regno, out_bi) { set_info *value = live_out_value (bb, bi.current_reg_value (regno)); if (value && value->ebb () == ebb) add_live_out_use (bb, value); } }; if (bb == ebb->last_bb ()) // All live-out registers might need live-out uses. record_live_out_regs (DF_LR_OUT (cfg_bb)); else // Registers might need live-out uses if they are live on entry // to a successor block in a different EBB. FOR_EACH_EDGE (e, ei, cfg_bb->succs) { bb_info *dest_bb = this->bb (e->dest); if (dest_bb->ebb () != ebb || dest_bb == ebb->first_bb ()) record_live_out_regs (DF_LR_IN (e->dest)); } // Record the live-out memory value. bi.bb_mem_live_out[cfg_bb->index] = live_out_value (bb, bi.current_mem_value ()); } // Add BB and its contents to the SSA information. void function_info::start_block (build_info &bi, bb_info *bb) { ebb_info *ebb = bb->ebb (); // We (need to) add all blocks from one EBB before moving on to the next. bi.current_bb = bb; if (bb == ebb->first_bb ()) bi.current_ebb = ebb; else gcc_assert (bi.current_ebb == ebb); // Record the start of this block's definitions in the definitions stack. bi.old_def_stack_limit.safe_push (bi.def_stack.length ()); // Add the block itself. append_bb (bb); // If the block starts an EBB, create the phi insn. This insn should exist // for all EBBs, even if they don't (yet) need phis. if (bb == ebb->first_bb ()) ebb->set_phi_insn (append_artificial_insn (bb)); if (bb->index () == ENTRY_BLOCK) { add_entry_block_defs (bi); record_block_live_out (bi); return; } if (EDGE_COUNT (bb->cfg_bb ()->preds) == 0) { // Leave unreachable blocks empty, since there is no useful // liveness information for them, and anything they do will // be wasted work. In a cleaned-up cfg, the only unreachable // block we should see is the exit block of a noreturn function. bb->set_head_insn (append_artificial_insn (bb)); bb->set_end_insn (append_artificial_insn (bb)); return; } // If the block starts an EBB, create the phi nodes. if (bb == ebb->first_bb ()) add_phi_nodes (bi); // Process the contents of the block. add_artificial_accesses (bi, DF_REF_AT_TOP); if (bb->index () != EXIT_BLOCK) add_block_contents (bi); add_artificial_accesses (bi, df_ref_flags ()); record_block_live_out (bi); // If we needed to calculate a live-in set for debug purposes, // reset it to null at the end of the EBB. Convert the underlying // bitmap to an empty list view, ready for the next calculation. if (bi.ebb_live_in_for_debug && bb == ebb->last_bb ()) { bitmap_clear (bi.tmp_ebb_live_in_for_debug); bitmap_list_view (bi.tmp_ebb_live_in_for_debug); bi.ebb_live_in_for_debug = nullptr; } } // Finish adding BB and the blocks that it dominates to the SSA information. void function_info::end_block (build_info &bi, bb_info *bb) { // Restore the register last_access information to the state it was // in before we started processing BB. unsigned int old_limit = bi.old_def_stack_limit.pop (); while (bi.def_stack.length () > old_limit) { // We pushed a definition in BB if it was the first dominating // definition (and so the previous entry was null). In other // cases we pushed the previous dominating definition. def_info *def = bi.def_stack.pop (); unsigned int regno = def->regno (); if (def->bb () == bb) def = nullptr; bi.last_access[regno + 1] = def; } } // Finish setting up the phi nodes for each block, now that we've added // the contents of all blocks. void function_info::populate_phi_inputs (build_info &bi) { auto_vec sorted_phis; for (ebb_info *ebb : ebbs ()) { if (!ebb->first_phi ()) continue; // Get a sorted array of EBB's phi nodes. basic_block cfg_bb = ebb->first_bb ()->cfg_bb (); bb_phi_info &phis = bi.bb_phis[cfg_bb->index]; sorted_phis.truncate (0); for (phi_info *phi : ebb->phis ()) sorted_phis.safe_push (phi); std::sort (sorted_phis.address (), sorted_phis.address () + sorted_phis.length (), compare_access_infos); // Set the inputs of the non-degenerate register phis. All inputs // for one edge come before all inputs for the next edge. set_info **inputs = phis.inputs; unsigned int phi_i = 0; bitmap_iterator bmi; unsigned int regno; EXECUTE_IF_SET_IN_BITMAP (&phis.regs, 0, regno, bmi) { // Skip intervening degenerate phis. while (sorted_phis[phi_i]->regno () < regno) phi_i += 1; phi_info *phi = sorted_phis[phi_i]; gcc_assert (phi->regno () == regno); for (unsigned int input_i = 0; input_i < phis.num_preds; ++input_i) if (set_info *input = inputs[input_i * phis.num_phis]) { use_info *use = phi->input_use (input_i); gcc_assert (!use->def ()); use->set_def (input); add_use (use); } phi_i += 1; inputs += 1; } // Fill in the backedge inputs to any memory phi. phi_info *mem_phi = sorted_phis.last (); if (mem_phi->is_mem () && !mem_phi->is_degenerate ()) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, cfg_bb->preds) { use_info *use = mem_phi->input_use (e->dest_idx); if (!use->def ()) { use->set_def (bi.bb_mem_live_out[e->src->index]); add_use (use); } } } } } // Return true if it would be better to continue an EBB across NEW_EDGE // rather than across OLD_EDGE, given that both edges are viable candidates. // This is not a total ordering. static bool better_ebb_edge_p (edge new_edge, edge old_edge) { // Prefer the likeliest edge. if (new_edge->probability.initialized_p () && old_edge->probability.initialized_p () && !(old_edge->probability == new_edge->probability)) return old_edge->probability < new_edge->probability; // If both edges are equally likely, prefer a fallthru edge. if (new_edge->flags & EDGE_FALLTHRU) return true; if (old_edge->flags & EDGE_FALLTHRU) return false; // Otherwise just stick with OLD_EDGE. return false; } // Pick and return the next basic block in an EBB that currently ends with BB. // Return null if the EBB must end with BB. static basic_block choose_next_block_in_ebb (basic_block bb) { // Although there's nothing in principle wrong with having an EBB that // starts with the entry block and includes later blocks, there's not // really much point either. Keeping the entry block separate means // that uses of arguments consistently occur through phi nodes, rather // than the arguments sometimes appearing to come from an EBB-local // definition instead. if (bb->index == ENTRY_BLOCK) return nullptr; bool optimize_for_speed_p = optimize_bb_for_speed_p (bb); edge best_edge = nullptr; edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->succs) if (!(e->flags & EDGE_COMPLEX) && e->dest->index != EXIT_BLOCK && single_pred_p (e->dest) && optimize_for_speed_p == optimize_bb_for_speed_p (e->dest) && (!best_edge || better_ebb_edge_p (e, best_edge))) best_edge = e; return best_edge ? best_edge->dest : nullptr; } // Partition the function into extended basic blocks. Create the // associated ebb_infos and bb_infos, but don't add the bb_infos // to the function list yet. void function_info::create_ebbs (build_info &bi) { // Compute the starting reverse postorder. We tweak this later to try // to get better EBB assignments. auto *postorder = new int[n_basic_blocks_for_fn (m_fn)]; unsigned int postorder_num = pre_and_rev_post_order_compute (nullptr, postorder, true); gcc_assert (int (postorder_num) <= n_basic_blocks_for_fn (m_fn)); // Iterate over the blocks in reverse postorder. In cases where // multiple possible orders exist, prefer orders that chain blocks // together into EBBs. If multiple possible EBBs exist, try to pick // the ones that are most likely to be profitable. auto_vec bbs; unsigned int next_bb_index = 0; for (unsigned int i = 0; i < postorder_num; ++i) if (!m_bbs[postorder[i]]) { // Choose and create the blocks that should form the next EBB. basic_block cfg_bb = BASIC_BLOCK_FOR_FN (m_fn, postorder[i]); do { // Record the chosen block order in a new RPO. bi.bb_to_rpo[cfg_bb->index] = next_bb_index++; bbs.safe_push (create_bb_info (cfg_bb)); cfg_bb = choose_next_block_in_ebb (cfg_bb); } while (cfg_bb); // Create the EBB itself. auto *ebb = allocate (bbs[0], bbs.last ()); for (bb_info *bb : bbs) bb->set_ebb (ebb); bbs.truncate (0); } delete[] postorder; } // Partition the function's blocks into EBBs and build SSA form for all // EBBs in the function. void function_info::process_all_blocks () { auto temps = temp_watermark (); unsigned int num_bb_indices = last_basic_block_for_fn (m_fn); build_info bi (m_num_regs, num_bb_indices); calculate_potential_phi_regs (bi); create_ebbs (bi); place_phis (bi); bb_walker (this, bi).walk (ENTRY_BLOCK_PTR_FOR_FN (m_fn)); populate_phi_inputs (bi); if (flag_checking) { // The definition stack should be empty and all register definitions // should be back in their original undefined state. gcc_assert (bi.def_stack.is_empty () && bi.old_def_stack_limit.is_empty ()); for (unsigned int regno = 0; regno < m_num_regs; ++regno) gcc_assert (!bi.last_access[regno + 1]); } } // Print a description of CALL_CLOBBERS to PP. void rtl_ssa::pp_ebb_call_clobbers (pretty_printer *pp, const ebb_call_clobbers_info *call_clobbers) { if (!call_clobbers) pp_string (pp, ""); else call_clobbers->print_full (pp); } // Print a description of BB to PP. void rtl_ssa::pp_bb (pretty_printer *pp, const bb_info *bb) { if (!bb) pp_string (pp, ""); else bb->print_full (pp); } // Print a description of EBB to PP void rtl_ssa::pp_ebb (pretty_printer *pp, const ebb_info *ebb) { if (!ebb) pp_string (pp, ""); else ebb->print_full (pp); } // Print a description of CALL_CLOBBERS to FILE. void dump (FILE *file, const ebb_call_clobbers_info *call_clobbers) { dump_using (file, pp_ebb_call_clobbers, call_clobbers); } // Print a description of BB to FILE. void dump (FILE *file, const bb_info *bb) { dump_using (file, pp_bb, bb); } // Print a description of EBB to FILE. void dump (FILE *file, const ebb_info *ebb) { dump_using (file, pp_ebb, ebb); } // Debug interfaces to the dump routines above. void debug (const ebb_call_clobbers_info *x) { dump (stderr, x); } void debug (const bb_info *x) { dump (stderr, x); } void debug (const ebb_info *x) { dump (stderr, x); }