/* Compute different info about registers. Copyright (C) 1987-2023 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* This file contains regscan pass of the compiler and passes for dealing with info about modes of pseudo-registers inside subregisters. It also defines some tables of information about the hardware registers, function init_reg_sets to initialize the tables, and other auxiliary functions to deal with info about registers and their classes. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "target.h" #include "rtl.h" #include "tree.h" #include "df.h" #include "memmodel.h" #include "tm_p.h" #include "insn-config.h" #include "regs.h" #include "ira.h" #include "recog.h" #include "diagnostic-core.h" #include "reload.h" #include "output.h" #include "tree-pass.h" #include "function-abi.h" /* Maximum register number used in this function, plus one. */ int max_regno; /* Used to cache the results of simplifiable_subregs. SHAPE is the input parameter and SIMPLIFIABLE_REGS is the result. */ class simplifiable_subreg { public: simplifiable_subreg (const subreg_shape &); subreg_shape shape; HARD_REG_SET simplifiable_regs; }; struct target_hard_regs default_target_hard_regs; struct target_regs default_target_regs; #if SWITCHABLE_TARGET struct target_hard_regs *this_target_hard_regs = &default_target_hard_regs; struct target_regs *this_target_regs = &default_target_regs; #endif #define call_used_regs \ (this_target_hard_regs->x_call_used_regs) #define regs_invalidated_by_call \ (this_target_hard_regs->x_regs_invalidated_by_call) /* Data for initializing fixed_regs. */ static const char initial_fixed_regs[] = FIXED_REGISTERS; /* Data for initializing call_used_regs. */ #ifdef CALL_REALLY_USED_REGISTERS #ifdef CALL_USED_REGISTERS #error CALL_USED_REGISTERS and CALL_REALLY_USED_REGISTERS are both defined #endif static const char initial_call_used_regs[] = CALL_REALLY_USED_REGISTERS; #else static const char initial_call_used_regs[] = CALL_USED_REGISTERS; #endif /* Indexed by hard register number, contains 1 for registers that are being used for global register decls. These must be exempt from ordinary flow analysis and are also considered fixed. */ char global_regs[FIRST_PSEUDO_REGISTER]; /* The set of global registers. */ HARD_REG_SET global_reg_set; /* Declaration for the global register. */ tree global_regs_decl[FIRST_PSEUDO_REGISTER]; /* Used to initialize reg_alloc_order. */ #ifdef REG_ALLOC_ORDER static int initial_reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER; #endif /* The same information, but as an array of unsigned ints. We copy from these unsigned ints to the table above. We do this so the tm.h files do not have to be aware of the wordsize for machines with <= 64 regs. Note that we hard-code 32 here, not HOST_BITS_PER_INT. */ #define N_REG_INTS \ ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32) static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS] = REG_CLASS_CONTENTS; /* Array containing all of the register names. */ static const char *const initial_reg_names[] = REGISTER_NAMES; /* Array containing all of the register class names. */ const char * reg_class_names[] = REG_CLASS_NAMES; /* No more global register variables may be declared; true once reginfo has been initialized. */ static int no_global_reg_vars = 0; static void clear_global_regs_cache (void) { for (size_t i = 0 ; i < FIRST_PSEUDO_REGISTER ; i++) { global_regs[i] = 0; global_regs_decl[i] = NULL; } } void reginfo_cc_finalize (void) { clear_global_regs_cache (); no_global_reg_vars = 0; CLEAR_HARD_REG_SET (global_reg_set); } /* In insn-preds.cc. */ extern void init_reg_class_start_regs (); /* Given a register bitmap, turn on the bits in a HARD_REG_SET that correspond to the hard registers, if any, set in that map. This could be done far more efficiently by having all sorts of special-cases with moving single words, but probably isn't worth the trouble. */ void reg_set_to_hard_reg_set (HARD_REG_SET *to, const_bitmap from) { unsigned i; bitmap_iterator bi; EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi) { if (i >= FIRST_PSEUDO_REGISTER) return; SET_HARD_REG_BIT (*to, i); } } /* Function called only once per target_globals to initialize the target_hard_regs structure. Once this is done, various switches may override. */ void init_reg_sets (void) { int i, j; /* First copy the register information from the initial int form into the regsets. */ for (i = 0; i < N_REG_CLASSES; i++) { CLEAR_HARD_REG_SET (reg_class_contents[i]); /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */ for (j = 0; j < FIRST_PSEUDO_REGISTER; j++) if (int_reg_class_contents[i][j / 32] & ((unsigned) 1 << (j % 32))) SET_HARD_REG_BIT (reg_class_contents[i], j); } /* Sanity check: make sure the target macros FIXED_REGISTERS and CALL_USED_REGISTERS had the right number of initializers. */ gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs); gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs); #ifdef REG_ALLOC_ORDER gcc_assert (sizeof reg_alloc_order == sizeof initial_reg_alloc_order); #endif gcc_assert (sizeof reg_names == sizeof initial_reg_names); memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs); memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs); #ifdef REG_ALLOC_ORDER memcpy (reg_alloc_order, initial_reg_alloc_order, sizeof reg_alloc_order); #endif memcpy (reg_names, initial_reg_names, sizeof reg_names); SET_HARD_REG_SET (accessible_reg_set); SET_HARD_REG_SET (operand_reg_set); init_reg_class_start_regs (); } /* We need to save copies of some of the register information which can be munged by command-line switches so we can restore it during subsequent back-end reinitialization. */ static char saved_fixed_regs[FIRST_PSEUDO_REGISTER]; static char saved_call_used_regs[FIRST_PSEUDO_REGISTER]; static const char *saved_reg_names[FIRST_PSEUDO_REGISTER]; static HARD_REG_SET saved_accessible_reg_set; static HARD_REG_SET saved_operand_reg_set; /* Save the register information. */ void save_register_info (void) { /* Sanity check: make sure the target macros FIXED_REGISTERS and CALL_USED_REGISTERS had the right number of initializers. */ gcc_assert (sizeof fixed_regs == sizeof saved_fixed_regs); gcc_assert (sizeof call_used_regs == sizeof saved_call_used_regs); memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs); memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs); /* And similarly for reg_names. */ gcc_assert (sizeof reg_names == sizeof saved_reg_names); memcpy (saved_reg_names, reg_names, sizeof reg_names); saved_accessible_reg_set = accessible_reg_set; saved_operand_reg_set = operand_reg_set; } /* Restore the register information. */ static void restore_register_info (void) { memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs); memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs); memcpy (reg_names, saved_reg_names, sizeof reg_names); accessible_reg_set = saved_accessible_reg_set; operand_reg_set = saved_operand_reg_set; } /* After switches have been processed, which perhaps alter `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */ static void init_reg_sets_1 (void) { unsigned int i, j; unsigned int /* machine_mode */ m; restore_register_info (); #ifdef REG_ALLOC_ORDER for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) inv_reg_alloc_order[reg_alloc_order[i]] = i; #endif /* Let the target tweak things if necessary. */ targetm.conditional_register_usage (); /* Compute number of hard regs in each class. */ memset (reg_class_size, 0, sizeof reg_class_size); for (i = 0; i < N_REG_CLASSES; i++) { bool any_nonfixed = false; for (j = 0; j < FIRST_PSEUDO_REGISTER; j++) if (TEST_HARD_REG_BIT (reg_class_contents[i], j)) { reg_class_size[i]++; if (!fixed_regs[j]) any_nonfixed = true; } class_only_fixed_regs[i] = !any_nonfixed; } /* Initialize the table of subunions. reg_class_subunion[I][J] gets the largest-numbered reg-class that is contained in the union of classes I and J. */ memset (reg_class_subunion, 0, sizeof reg_class_subunion); for (i = 0; i < N_REG_CLASSES; i++) { for (j = 0; j < N_REG_CLASSES; j++) { HARD_REG_SET c; int k; c = reg_class_contents[i] | reg_class_contents[j]; for (k = 0; k < N_REG_CLASSES; k++) if (hard_reg_set_subset_p (reg_class_contents[k], c) && !hard_reg_set_subset_p (reg_class_contents[k], reg_class_contents [(int) reg_class_subunion[i][j]])) reg_class_subunion[i][j] = (enum reg_class) k; } } /* Initialize the table of superunions. reg_class_superunion[I][J] gets the smallest-numbered reg-class containing the union of classes I and J. */ memset (reg_class_superunion, 0, sizeof reg_class_superunion); for (i = 0; i < N_REG_CLASSES; i++) { for (j = 0; j < N_REG_CLASSES; j++) { HARD_REG_SET c; int k; c = reg_class_contents[i] | reg_class_contents[j]; for (k = 0; k < N_REG_CLASSES; k++) if (hard_reg_set_subset_p (c, reg_class_contents[k])) break; reg_class_superunion[i][j] = (enum reg_class) k; } } /* Initialize the tables of subclasses and superclasses of each reg class. First clear the whole table, then add the elements as they are found. */ for (i = 0; i < N_REG_CLASSES; i++) { for (j = 0; j < N_REG_CLASSES; j++) reg_class_subclasses[i][j] = LIM_REG_CLASSES; } for (i = 0; i < N_REG_CLASSES; i++) { if (i == (int) NO_REGS) continue; for (j = i + 1; j < N_REG_CLASSES; j++) if (hard_reg_set_subset_p (reg_class_contents[i], reg_class_contents[j])) { /* Reg class I is a subclass of J. Add J to the table of superclasses of I. */ enum reg_class *p; /* Add I to the table of superclasses of J. */ p = ®_class_subclasses[j][0]; while (*p != LIM_REG_CLASSES) p++; *p = (enum reg_class) i; } } /* Initialize "constant" tables. */ CLEAR_HARD_REG_SET (fixed_reg_set); CLEAR_HARD_REG_SET (regs_invalidated_by_call); operand_reg_set &= accessible_reg_set; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { /* As a special exception, registers whose class is NO_REGS are not accepted by `register_operand'. The reason for this change is to allow the representation of special architecture artifacts (such as a condition code register) without extending the rtl definitions. Since registers of class NO_REGS cannot be used as registers in any case where register classes are examined, it is better to apply this exception in a target-independent way. */ if (REGNO_REG_CLASS (i) == NO_REGS) CLEAR_HARD_REG_BIT (operand_reg_set, i); /* If a register is too limited to be treated as a register operand, then it should never be allocated to a pseudo. */ if (!TEST_HARD_REG_BIT (operand_reg_set, i)) fixed_regs[i] = 1; if (fixed_regs[i]) SET_HARD_REG_BIT (fixed_reg_set, i); /* There are a couple of fixed registers that we know are safe to exclude from being clobbered by calls: The frame pointer is always preserved across calls. The arg pointer is if it is fixed. The stack pointer usually is, unless TARGET_RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present. If we are generating PIC code, the PIC offset table register is preserved across calls, though the target can override that. */ if (i == STACK_POINTER_REGNUM) ; else if (global_regs[i]) SET_HARD_REG_BIT (regs_invalidated_by_call, i); else if (i == FRAME_POINTER_REGNUM) ; else if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && i == HARD_FRAME_POINTER_REGNUM) ; else if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && i == ARG_POINTER_REGNUM && fixed_regs[i]) ; else if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i]) ; else if (call_used_regs[i]) SET_HARD_REG_BIT (regs_invalidated_by_call, i); } SET_HARD_REG_SET (savable_regs); fixed_nonglobal_reg_set = fixed_reg_set; /* Preserve global registers if called more than once. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { if (global_regs[i]) { fixed_regs[i] = call_used_regs[i] = 1; SET_HARD_REG_BIT (fixed_reg_set, i); SET_HARD_REG_BIT (global_reg_set, i); } } memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode)); memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode)); for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++) { HARD_REG_SET ok_regs, ok_regs2; CLEAR_HARD_REG_SET (ok_regs); CLEAR_HARD_REG_SET (ok_regs2); for (j = 0; j < FIRST_PSEUDO_REGISTER; j++) if (!TEST_HARD_REG_BIT (fixed_nonglobal_reg_set, j) && targetm.hard_regno_mode_ok (j, (machine_mode) m)) { SET_HARD_REG_BIT (ok_regs, j); if (!fixed_regs[j]) SET_HARD_REG_BIT (ok_regs2, j); } for (i = 0; i < N_REG_CLASSES; i++) if ((targetm.class_max_nregs ((reg_class_t) i, (machine_mode) m) <= reg_class_size[i]) && hard_reg_set_intersect_p (ok_regs, reg_class_contents[i])) { contains_reg_of_mode[i][m] = 1; if (hard_reg_set_intersect_p (ok_regs2, reg_class_contents[i])) { have_regs_of_mode[m] = 1; contains_allocatable_reg_of_mode[i][m] = 1; } } } default_function_abi.initialize (0, regs_invalidated_by_call); } /* Compute the table of register modes. These values are used to record death information for individual registers (as opposed to a multi-register mode). This function might be invoked more than once, if the target has support for changing register usage conventions on a per-function basis. */ void init_reg_modes_target (void) { int i, j; this_target_regs->x_hard_regno_max_nregs = 1; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) for (j = 0; j < MAX_MACHINE_MODE; j++) { unsigned char nregs = targetm.hard_regno_nregs (i, (machine_mode) j); this_target_regs->x_hard_regno_nregs[i][j] = nregs; if (nregs > this_target_regs->x_hard_regno_max_nregs) this_target_regs->x_hard_regno_max_nregs = nregs; } for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { reg_raw_mode[i] = choose_hard_reg_mode (i, 1, NULL); /* If we couldn't find a valid mode, just use the previous mode if it is suitable, otherwise fall back on word_mode. */ if (reg_raw_mode[i] == VOIDmode) { if (i > 0 && hard_regno_nregs (i, reg_raw_mode[i - 1]) == 1) reg_raw_mode[i] = reg_raw_mode[i - 1]; else reg_raw_mode[i] = word_mode; } } } /* Finish initializing the register sets and initialize the register modes. This function might be invoked more than once, if the target has support for changing register usage conventions on a per-function basis. */ void init_regs (void) { /* This finishes what was started by init_reg_sets, but couldn't be done until after register usage was specified. */ init_reg_sets_1 (); } /* The same as previous function plus initializing IRA. */ void reinit_regs (void) { init_regs (); /* caller_save needs to be re-initialized. */ caller_save_initialized_p = false; if (this_target_rtl->target_specific_initialized) { ira_init (); recog_init (); } } /* Initialize some fake stack-frame MEM references for use in memory_move_secondary_cost. */ void init_fake_stack_mems (void) { int i; for (i = 0; i < MAX_MACHINE_MODE; i++) top_of_stack[i] = gen_rtx_MEM ((machine_mode) i, stack_pointer_rtx); } /* Compute cost of moving data from a register of class FROM to one of TO, using MODE. */ int register_move_cost (machine_mode mode, reg_class_t from, reg_class_t to) { return targetm.register_move_cost (mode, from, to); } /* Compute cost of moving registers to/from memory. */ int memory_move_cost (machine_mode mode, reg_class_t rclass, bool in) { return targetm.memory_move_cost (mode, rclass, in); } /* Compute extra cost of moving registers to/from memory due to reloads. Only needed if secondary reloads are required for memory moves. */ int memory_move_secondary_cost (machine_mode mode, reg_class_t rclass, bool in) { reg_class_t altclass; int partial_cost = 0; /* We need a memory reference to feed to SECONDARY... macros. */ /* mem may be unused even if the SECONDARY_ macros are defined. */ rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode]; altclass = secondary_reload_class (in ? 1 : 0, rclass, mode, mem); if (altclass == NO_REGS) return 0; if (in) partial_cost = register_move_cost (mode, altclass, rclass); else partial_cost = register_move_cost (mode, rclass, altclass); if (rclass == altclass) /* This isn't simply a copy-to-temporary situation. Can't guess what it is, so TARGET_MEMORY_MOVE_COST really ought not to be calling here in that case. I'm tempted to put in an assert here, but returning this will probably only give poor estimates, which is what we would've had before this code anyways. */ return partial_cost; /* Check if the secondary reload register will also need a secondary reload. */ return memory_move_secondary_cost (mode, altclass, in) + partial_cost; } /* Return a machine mode that is legitimate for hard reg REGNO and large enough to save nregs. If we can't find one, return VOIDmode. If ABI is nonnull, only consider modes that are preserved across calls that use ABI. */ machine_mode choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED, unsigned int nregs, const predefined_function_abi *abi) { unsigned int /* machine_mode */ m; machine_mode found_mode = VOIDmode, mode; /* We first look for the largest integer mode that can be validly held in REGNO. If none, we look for the largest floating-point mode. If we still didn't find a valid mode, try CCmode. The tests use maybe_gt rather than known_gt because we want (for example) N V4SFs to win over plain V4SF even though N might be 1. */ FOR_EACH_MODE_IN_CLASS (mode, MODE_INT) if (hard_regno_nregs (regno, mode) == nregs && targetm.hard_regno_mode_ok (regno, mode) && (!abi || !abi->clobbers_reg_p (mode, regno)) && maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode))) found_mode = mode; FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT) if (hard_regno_nregs (regno, mode) == nregs && targetm.hard_regno_mode_ok (regno, mode) && (!abi || !abi->clobbers_reg_p (mode, regno)) && maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode))) found_mode = mode; FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT) if (hard_regno_nregs (regno, mode) == nregs && targetm.hard_regno_mode_ok (regno, mode) && (!abi || !abi->clobbers_reg_p (mode, regno)) && maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode))) found_mode = mode; FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT) if (hard_regno_nregs (regno, mode) == nregs && targetm.hard_regno_mode_ok (regno, mode) && (!abi || !abi->clobbers_reg_p (mode, regno)) && maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode))) found_mode = mode; if (found_mode != VOIDmode) return found_mode; /* Iterate over all of the CCmodes. */ for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m) { mode = (machine_mode) m; if (hard_regno_nregs (regno, mode) == nregs && targetm.hard_regno_mode_ok (regno, mode) && (!abi || !abi->clobbers_reg_p (mode, regno))) return mode; } /* We can't find a mode valid for this register. */ return VOIDmode; } /* Specify the usage characteristics of the register named NAME. It should be a fixed register if FIXED and a call-used register if CALL_USED. */ void fix_register (const char *name, int fixed, int call_used) { int i; int reg, nregs; /* Decode the name and update the primary form of the register info. */ if ((reg = decode_reg_name_and_count (name, &nregs)) >= 0) { gcc_assert (nregs >= 1); for (i = reg; i < reg + nregs; i++) { if ((i == STACK_POINTER_REGNUM #ifdef HARD_FRAME_POINTER_REGNUM || i == HARD_FRAME_POINTER_REGNUM #else || i == FRAME_POINTER_REGNUM #endif ) && (fixed == 0 || call_used == 0)) { switch (fixed) { case 0: switch (call_used) { case 0: error ("cannot use %qs as a call-saved register", name); break; case 1: error ("cannot use %qs as a call-used register", name); break; default: gcc_unreachable (); } break; case 1: switch (call_used) { case 1: error ("cannot use %qs as a fixed register", name); break; case 0: default: gcc_unreachable (); } break; default: gcc_unreachable (); } } else { fixed_regs[i] = fixed; #ifdef CALL_REALLY_USED_REGISTERS if (fixed == 0) call_used_regs[i] = call_used; #else call_used_regs[i] = call_used; #endif } } } else { warning (0, "unknown register name: %s", name); } } /* Mark register number I as global. */ void globalize_reg (tree decl, int i) { location_t loc = DECL_SOURCE_LOCATION (decl); #ifdef STACK_REGS if (IN_RANGE (i, FIRST_STACK_REG, LAST_STACK_REG)) { error ("stack register used for global register variable"); return; } #endif if (fixed_regs[i] == 0 && no_global_reg_vars) error_at (loc, "global register variable follows a function definition"); if (global_regs[i]) { auto_diagnostic_group d; warning_at (loc, 0, "register of %qD used for multiple global register variables", decl); inform (DECL_SOURCE_LOCATION (global_regs_decl[i]), "conflicts with %qD", global_regs_decl[i]); return; } if (call_used_regs[i] && ! fixed_regs[i]) warning_at (loc, 0, "call-clobbered register used for global register variable"); global_regs[i] = 1; global_regs_decl[i] = decl; SET_HARD_REG_BIT (global_reg_set, i); /* If we're globalizing the frame pointer, we need to set the appropriate regs_invalidated_by_call bit, even if it's already set in fixed_regs. */ if (i != STACK_POINTER_REGNUM) { SET_HARD_REG_BIT (regs_invalidated_by_call, i); for (unsigned int j = 0; j < NUM_ABI_IDS; ++j) function_abis[j].add_full_reg_clobber (i); } /* If already fixed, nothing else to do. */ if (fixed_regs[i]) return; fixed_regs[i] = call_used_regs[i] = 1; SET_HARD_REG_BIT (fixed_reg_set, i); reinit_regs (); } /* Structure used to record preferences of given pseudo. */ struct reg_pref { /* (enum reg_class) prefclass is the preferred class. May be NO_REGS if no class is better than memory. */ char prefclass; /* altclass is a register class that we should use for allocating pseudo if no register in the preferred class is available. If no register in this class is available, memory is preferred. It might appear to be more general to have a bitmask of classes here, but since it is recommended that there be a class corresponding to the union of most major pair of classes, that generality is not required. */ char altclass; /* allocnoclass is a register class that IRA uses for allocating the pseudo. */ char allocnoclass; }; /* Record preferences of each pseudo. This is available after RA is run. */ static struct reg_pref *reg_pref; /* Current size of reg_info. */ static int reg_info_size; /* Max_reg_num still last resize_reg_info call. */ static int max_regno_since_last_resize; /* Return the reg_class in which pseudo reg number REGNO is best allocated. This function is sometimes called before the info has been computed. When that happens, just return GENERAL_REGS, which is innocuous. */ enum reg_class reg_preferred_class (int regno) { if (reg_pref == 0) return GENERAL_REGS; gcc_assert (regno < reg_info_size); return (enum reg_class) reg_pref[regno].prefclass; } enum reg_class reg_alternate_class (int regno) { if (reg_pref == 0) return ALL_REGS; gcc_assert (regno < reg_info_size); return (enum reg_class) reg_pref[regno].altclass; } /* Return the reg_class which is used by IRA for its allocation. */ enum reg_class reg_allocno_class (int regno) { if (reg_pref == 0) return NO_REGS; gcc_assert (regno < reg_info_size); return (enum reg_class) reg_pref[regno].allocnoclass; } /* Allocate space for reg info and initilize it. */ static void allocate_reg_info (void) { int i; max_regno_since_last_resize = max_reg_num (); reg_info_size = max_regno_since_last_resize * 3 / 2 + 1; gcc_assert (! reg_pref && ! reg_renumber); reg_renumber = XNEWVEC (short, reg_info_size); reg_pref = XCNEWVEC (struct reg_pref, reg_info_size); memset (reg_renumber, -1, reg_info_size * sizeof (short)); for (i = 0; i < reg_info_size; i++) { reg_pref[i].prefclass = GENERAL_REGS; reg_pref[i].altclass = ALL_REGS; reg_pref[i].allocnoclass = GENERAL_REGS; } } /* Resize reg info. The new elements will be initialized. Return TRUE if new pseudos were added since the last call. */ bool resize_reg_info (void) { int old, i; bool change_p; if (reg_pref == NULL) { allocate_reg_info (); return true; } change_p = max_regno_since_last_resize != max_reg_num (); max_regno_since_last_resize = max_reg_num (); if (reg_info_size >= max_reg_num ()) return change_p; old = reg_info_size; reg_info_size = max_reg_num () * 3 / 2 + 1; gcc_assert (reg_pref && reg_renumber); reg_renumber = XRESIZEVEC (short, reg_renumber, reg_info_size); reg_pref = XRESIZEVEC (struct reg_pref, reg_pref, reg_info_size); memset (reg_pref + old, -1, (reg_info_size - old) * sizeof (struct reg_pref)); memset (reg_renumber + old, -1, (reg_info_size - old) * sizeof (short)); for (i = old; i < reg_info_size; i++) { reg_pref[i].prefclass = GENERAL_REGS; reg_pref[i].altclass = ALL_REGS; reg_pref[i].allocnoclass = GENERAL_REGS; } return true; } /* Free up the space allocated by allocate_reg_info. */ void free_reg_info (void) { if (reg_pref) { free (reg_pref); reg_pref = NULL; } if (reg_renumber) { free (reg_renumber); reg_renumber = NULL; } } /* Initialize some global data for this pass. */ static unsigned int reginfo_init (void) { if (df) df_compute_regs_ever_live (true); /* This prevents dump_reg_info from losing if called before reginfo is run. */ reg_pref = NULL; reg_info_size = max_regno_since_last_resize = 0; /* No more global register variables may be declared. */ no_global_reg_vars = 1; return 1; } namespace { const pass_data pass_data_reginfo_init = { RTL_PASS, /* type */ "reginfo", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_reginfo_init : public rtl_opt_pass { public: pass_reginfo_init (gcc::context *ctxt) : rtl_opt_pass (pass_data_reginfo_init, ctxt) {} /* opt_pass methods: */ unsigned int execute (function *) final override { return reginfo_init (); } }; // class pass_reginfo_init } // anon namespace rtl_opt_pass * make_pass_reginfo_init (gcc::context *ctxt) { return new pass_reginfo_init (ctxt); } /* Set up preferred, alternate, and allocno classes for REGNO as PREFCLASS, ALTCLASS, and ALLOCNOCLASS. */ void setup_reg_classes (int regno, enum reg_class prefclass, enum reg_class altclass, enum reg_class allocnoclass) { if (reg_pref == NULL) return; gcc_assert (reg_info_size >= max_reg_num ()); reg_pref[regno].prefclass = prefclass; reg_pref[regno].altclass = altclass; reg_pref[regno].allocnoclass = allocnoclass; } /* This is the `regscan' pass of the compiler, run just before cse and again just before loop. It finds the first and last use of each pseudo-register. */ static void reg_scan_mark_refs (rtx, rtx_insn *); void reg_scan (rtx_insn *f, unsigned int nregs ATTRIBUTE_UNUSED) { rtx_insn *insn; timevar_push (TV_REG_SCAN); for (insn = f; insn; insn = NEXT_INSN (insn)) if (INSN_P (insn)) { reg_scan_mark_refs (PATTERN (insn), insn); if (REG_NOTES (insn)) reg_scan_mark_refs (REG_NOTES (insn), insn); } timevar_pop (TV_REG_SCAN); } /* X is the expression to scan. INSN is the insn it appears in. NOTE_FLAG is nonzero if X is from INSN's notes rather than its body. We should only record information for REGs with numbers greater than or equal to MIN_REGNO. */ static void reg_scan_mark_refs (rtx x, rtx_insn *insn) { enum rtx_code code; rtx dest; rtx note; if (!x) return; code = GET_CODE (x); switch (code) { case CONST: CASE_CONST_ANY: case PC: case SYMBOL_REF: case LABEL_REF: case ADDR_VEC: case ADDR_DIFF_VEC: case REG: return; case EXPR_LIST: if (XEXP (x, 0)) reg_scan_mark_refs (XEXP (x, 0), insn); if (XEXP (x, 1)) reg_scan_mark_refs (XEXP (x, 1), insn); break; case INSN_LIST: case INT_LIST: if (XEXP (x, 1)) reg_scan_mark_refs (XEXP (x, 1), insn); break; case CLOBBER: if (MEM_P (XEXP (x, 0))) reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn); break; case SET: /* Count a set of the destination if it is a register. */ for (dest = SET_DEST (x); GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == ZERO_EXTRACT; dest = XEXP (dest, 0)) ; /* If this is setting a pseudo from another pseudo or the sum of a pseudo and a constant integer and the other pseudo is known to be a pointer, set the destination to be a pointer as well. Likewise if it is setting the destination from an address or from a value equivalent to an address or to the sum of an address and something else. But don't do any of this if the pseudo corresponds to a user variable since it should have already been set as a pointer based on the type. */ if (REG_P (SET_DEST (x)) && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER /* If the destination pseudo is set more than once, then other sets might not be to a pointer value (consider access to a union in two threads of control in the presence of global optimizations). So only set REG_POINTER on the destination pseudo if this is the only set of that pseudo. */ && DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1 && ! REG_USERVAR_P (SET_DEST (x)) && ! REG_POINTER (SET_DEST (x)) && ((REG_P (SET_SRC (x)) && REG_POINTER (SET_SRC (x))) || ((GET_CODE (SET_SRC (x)) == PLUS || GET_CODE (SET_SRC (x)) == LO_SUM) && CONST_INT_P (XEXP (SET_SRC (x), 1)) && REG_P (XEXP (SET_SRC (x), 0)) && REG_POINTER (XEXP (SET_SRC (x), 0))) || GET_CODE (SET_SRC (x)) == CONST || GET_CODE (SET_SRC (x)) == SYMBOL_REF || GET_CODE (SET_SRC (x)) == LABEL_REF || (GET_CODE (SET_SRC (x)) == HIGH && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF)) || ((GET_CODE (SET_SRC (x)) == PLUS || GET_CODE (SET_SRC (x)) == LO_SUM) && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF)) || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0 && (GET_CODE (XEXP (note, 0)) == CONST || GET_CODE (XEXP (note, 0)) == SYMBOL_REF || GET_CODE (XEXP (note, 0)) == LABEL_REF)))) REG_POINTER (SET_DEST (x)) = 1; /* If this is setting a register from a register or from a simple conversion of a register, propagate REG_EXPR. */ if (REG_P (dest) && !REG_ATTRS (dest)) set_reg_attrs_from_value (dest, SET_SRC (x)); /* fall through */ default: { const char *fmt = GET_RTX_FORMAT (code); int i; for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') reg_scan_mark_refs (XEXP (x, i), insn); else if (fmt[i] == 'E' && XVEC (x, i) != 0) { int j; for (j = XVECLEN (x, i) - 1; j >= 0; j--) reg_scan_mark_refs (XVECEXP (x, i, j), insn); } } } } } /* Return true if C1 is a subset of C2, i.e., if every register in C1 is also in C2. */ bool reg_class_subset_p (reg_class_t c1, reg_class_t c2) { return (c1 == c2 || c2 == ALL_REGS || hard_reg_set_subset_p (reg_class_contents[(int) c1], reg_class_contents[(int) c2])); } /* Return true if there is a register that is in both C1 and C2. */ bool reg_classes_intersect_p (reg_class_t c1, reg_class_t c2) { return (c1 == c2 || c1 == ALL_REGS || c2 == ALL_REGS || hard_reg_set_intersect_p (reg_class_contents[(int) c1], reg_class_contents[(int) c2])); } inline hashval_t simplifiable_subregs_hasher::hash (const simplifiable_subreg *value) { inchash::hash h; h.add_hwi (value->shape.unique_id ()); return h.end (); } inline bool simplifiable_subregs_hasher::equal (const simplifiable_subreg *value, const subreg_shape *compare) { return value->shape == *compare; } inline simplifiable_subreg::simplifiable_subreg (const subreg_shape &shape_in) : shape (shape_in) { CLEAR_HARD_REG_SET (simplifiable_regs); } /* Return the set of hard registers that are able to form the subreg described by SHAPE. */ const HARD_REG_SET & simplifiable_subregs (const subreg_shape &shape) { if (!this_target_hard_regs->x_simplifiable_subregs) this_target_hard_regs->x_simplifiable_subregs = new hash_table (30); inchash::hash h; h.add_hwi (shape.unique_id ()); simplifiable_subreg **slot = (this_target_hard_regs->x_simplifiable_subregs ->find_slot_with_hash (&shape, h.end (), INSERT)); if (!*slot) { simplifiable_subreg *info = new simplifiable_subreg (shape); for (unsigned int i = 0; i < FIRST_PSEUDO_REGISTER; ++i) if (targetm.hard_regno_mode_ok (i, shape.inner_mode) && simplify_subreg_regno (i, shape.inner_mode, shape.offset, shape.outer_mode) >= 0) SET_HARD_REG_BIT (info->simplifiable_regs, i); *slot = info; } return (*slot)->simplifiable_regs; } /* Passes for keeping and updating info about modes of registers inside subregisters. */ static HARD_REG_SET **valid_mode_changes; static obstack valid_mode_changes_obstack; /* Restrict the choice of register for SUBREG_REG (SUBREG) based on information about SUBREG. If PARTIAL_DEF, SUBREG is a partial definition of a multipart inner register and we want to ensure that the other parts of the inner register are correctly preserved. If !PARTIAL_DEF we need to ensure that SUBREG itself can be formed. */ static void record_subregs_of_mode (rtx subreg, bool partial_def) { unsigned int regno; if (!REG_P (SUBREG_REG (subreg))) return; regno = REGNO (SUBREG_REG (subreg)); if (regno < FIRST_PSEUDO_REGISTER) return; subreg_shape shape (shape_of_subreg (subreg)); if (partial_def) { /* The number of independently-accessible SHAPE.outer_mode values in SHAPE.inner_mode is GET_MODE_SIZE (SHAPE.inner_mode) / SIZE. We need to check that the assignment will preserve all the other SIZE-byte chunks in the inner register besides the one that includes SUBREG. In practice it is enough to check whether an equivalent SHAPE.inner_mode value in an adjacent SIZE-byte chunk can be formed. If the underlying registers are small enough, both subregs will be valid. If the underlying registers are too large, one of the subregs will be invalid. This relies on the fact that we've already been passed SUBREG with PARTIAL_DEF set to false. The size of the outer mode must ordered wrt the size of the inner mode's registers, since otherwise we wouldn't know at compile time how many registers the outer mode occupies. */ poly_uint64 size = ordered_max (REGMODE_NATURAL_SIZE (shape.inner_mode), GET_MODE_SIZE (shape.outer_mode)); gcc_checking_assert (known_lt (size, GET_MODE_SIZE (shape.inner_mode))); if (known_ge (shape.offset, size)) shape.offset -= size; else shape.offset += size; } if (valid_mode_changes[regno]) *valid_mode_changes[regno] &= simplifiable_subregs (shape); else { valid_mode_changes[regno] = XOBNEW (&valid_mode_changes_obstack, HARD_REG_SET); *valid_mode_changes[regno] = simplifiable_subregs (shape); } } /* Call record_subregs_of_mode for all the subregs in X. */ static void find_subregs_of_mode (rtx x) { enum rtx_code code = GET_CODE (x); const char * const fmt = GET_RTX_FORMAT (code); int i; if (code == SUBREG) record_subregs_of_mode (x, false); /* Time for some deep diving. */ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') find_subregs_of_mode (XEXP (x, i)); else if (fmt[i] == 'E') { int j; for (j = XVECLEN (x, i) - 1; j >= 0; j--) find_subregs_of_mode (XVECEXP (x, i, j)); } } } void init_subregs_of_mode (void) { basic_block bb; rtx_insn *insn; gcc_obstack_init (&valid_mode_changes_obstack); valid_mode_changes = XCNEWVEC (HARD_REG_SET *, max_reg_num ()); FOR_EACH_BB_FN (bb, cfun) FOR_BB_INSNS (bb, insn) if (NONDEBUG_INSN_P (insn)) { find_subregs_of_mode (PATTERN (insn)); df_ref def; FOR_EACH_INSN_DEF (def, insn) if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL) && read_modify_subreg_p (DF_REF_REG (def))) record_subregs_of_mode (DF_REF_REG (def), true); } } const HARD_REG_SET * valid_mode_changes_for_regno (unsigned int regno) { return valid_mode_changes[regno]; } void finish_subregs_of_mode (void) { XDELETEVEC (valid_mode_changes); obstack_free (&valid_mode_changes_obstack, NULL); } /* Free all data attached to the structure. This isn't a destructor because we don't want to run on exit. */ void target_hard_regs::finalize () { delete x_simplifiable_subregs; }