/* Header file for range operator class. Copyright (C) 2017-2023 Free Software Foundation, Inc. Contributed by Andrew MacLeod and Aldy Hernandez . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_RANGE_OP_H #define GCC_RANGE_OP_H // This class is implemented for each kind of operator supported by // the range generator. It serves various purposes. // // 1 - Generates range information for the specific operation between // two ranges. This provides the ability to fold ranges for an // expression. // // 2 - Performs range algebra on the expression such that a range can be // adjusted in terms of one of the operands: // // def = op1 + op2 // // Given a range for def, we can adjust the range so that it is in // terms of either operand. // // op1_range (def_range, op2) will adjust the range in place so it // is in terms of op1. Since op1 = def - op2, it will subtract // op2 from each element of the range. // // 3 - Creates a range for an operand based on whether the result is 0 or // non-zero. This is mostly for logical true false, but can serve other // purposes. // ie 0 = op1 - op2 implies op2 has the same range as op1. // // 4 - All supported range combinations are explicitly specified. // Any desired combinations should be implemented for each operator. // When new range classes are added, new matching prototypes should be // added. class range_operator { friend class range_op_table; public: // Perform an operation between 2 ranges and return it. virtual bool fold_range (irange &r, tree type, const irange &lh, const irange &rh, relation_trio = TRIO_VARYING) const; virtual bool fold_range (frange &r, tree type, const frange &lh, const frange &rh, relation_trio = TRIO_VARYING) const; virtual bool fold_range (irange &r, tree type, const frange &lh, const irange &rh, relation_trio = TRIO_VARYING) const; virtual bool fold_range (irange &r, tree type, const frange &lh, const frange &rh, relation_trio = TRIO_VARYING) const; virtual bool fold_range (frange &r, tree type, const irange &lh, const irange &rh, relation_trio = TRIO_VARYING) const; // Return the range for op[12] in the general case. LHS is the range for // the LHS of the expression, OP[12]is the range for the other // // The operand and the result is returned in R. // // TYPE is the expected type of the range. // // Return TRUE if the operation is performed and a valid range is available. // // i.e. [LHS] = ??? + OP2 // is re-formed as R = [LHS] - OP2. virtual bool op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio = TRIO_VARYING) const; virtual bool op1_range (frange &r, tree type, const frange &lhs, const frange &op2, relation_trio = TRIO_VARYING) const; virtual bool op1_range (frange &r, tree type, const irange &lhs, const frange &op2, relation_trio = TRIO_VARYING) const; virtual bool op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio = TRIO_VARYING) const; virtual bool op2_range (frange &r, tree type, const frange &lhs, const frange &op1, relation_trio = TRIO_VARYING) const; virtual bool op2_range (frange &r, tree type, const irange &lhs, const frange &op1, relation_trio = TRIO_VARYING) const; // The following routines are used to represent relations between the // various operations. If the caller knows where the symbolics are, // it can query for relationships between them given known ranges. // the optional relation passed in is the relation between op1 and op2. virtual relation_kind lhs_op1_relation (const irange &lhs, const irange &op1, const irange &op2, relation_kind = VREL_VARYING) const; virtual relation_kind lhs_op1_relation (const frange &lhs, const frange &op1, const frange &op2, relation_kind = VREL_VARYING) const; virtual relation_kind lhs_op1_relation (const irange &lhs, const frange &op1, const frange &op2, relation_kind = VREL_VARYING) const; virtual relation_kind lhs_op2_relation (const irange &lhs, const irange &op1, const irange &op2, relation_kind = VREL_VARYING) const; virtual relation_kind lhs_op2_relation (const frange &lhs, const frange &op1, const frange &op2, relation_kind = VREL_VARYING) const; virtual relation_kind lhs_op2_relation (const irange &lhs, const frange &op1, const frange &op2, relation_kind = VREL_VARYING) const; virtual relation_kind op1_op2_relation (const irange &lhs, const irange &op1, const irange &op2) const; virtual relation_kind op1_op2_relation (const irange &lhs, const frange &op1, const frange &op2) const; virtual relation_kind op1_op2_relation (const frange &lhs, const frange &op1, const frange &op2) const; virtual bool overflow_free_p (const irange &lh, const irange &rh, relation_trio = TRIO_VARYING) const; protected: // Perform an integral operation between 2 sub-ranges and return it. virtual void wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const; // Effect of relation for generic fold_range clients. virtual bool op1_op2_relation_effect (irange &lhs_range, tree type, const irange &op1_range, const irange &op2_range, relation_kind rel) const; // Called by fold range to split small subranges into parts. void wi_fold_in_parts (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const; // Called by fold range to split small subranges into parts when op1 == op2 void wi_fold_in_parts_equiv (irange &r, tree type, const wide_int &lb, const wide_int &ub, unsigned limit) const; // Apply any bitmasks implied by these ranges. virtual void update_bitmask (irange &, const irange &, const irange &) const; // Perform an float operation between 2 ranges and return it. virtual void rv_fold (frange &r, tree type, const REAL_VALUE_TYPE &lh_lb, const REAL_VALUE_TYPE &lh_ub, const REAL_VALUE_TYPE &rh_lb, const REAL_VALUE_TYPE &rh_ub, relation_kind) const; }; class range_op_handler { public: range_op_handler (); range_op_handler (unsigned); operator bool () const; range_operator *range_op () const; bool fold_range (vrange &r, tree type, const vrange &lh, const vrange &rh, relation_trio = TRIO_VARYING) const; bool op1_range (vrange &r, tree type, const vrange &lhs, const vrange &op2, relation_trio = TRIO_VARYING) const; bool op2_range (vrange &r, tree type, const vrange &lhs, const vrange &op1, relation_trio = TRIO_VARYING) const; relation_kind lhs_op1_relation (const vrange &lhs, const vrange &op1, const vrange &op2, relation_kind = VREL_VARYING) const; relation_kind lhs_op2_relation (const vrange &lhs, const vrange &op1, const vrange &op2, relation_kind = VREL_VARYING) const; relation_kind op1_op2_relation (const vrange &lhs, const vrange &op1, const vrange &op2) const; bool overflow_free_p (const vrange &lh, const vrange &rh, relation_trio = TRIO_VARYING) const; protected: unsigned dispatch_kind (const vrange &lhs, const vrange &op1, const vrange& op2) const; range_operator *m_operator; }; // Cast the range in R to TYPE if R supports TYPE. inline bool range_cast (vrange &r, tree type) { gcc_checking_assert (r.supports_type_p (type)); Value_Range tmp (r); Value_Range varying (type); varying.set_varying (type); // Call op_convert, if it fails, the result is varying. if (!range_op_handler (CONVERT_EXPR).fold_range (r, type, tmp, varying)) { r.set_varying (type); return false; } return true; } // Range cast which is capable of switching range kinds. // ie for float to int. inline bool range_cast (Value_Range &r, tree type) { Value_Range tmp (r); Value_Range varying (type); varying.set_varying (type); // Ensure we are in the correct mode for the call to fold. r.set_type (type); // Call op_convert, if it fails, the result is varying. if (!range_op_handler (CONVERT_EXPR).fold_range (r, type, tmp, varying)) { r.set_varying (type); return false; } return true; } extern void wi_set_zero_nonzero_bits (tree type, const wide_int &, const wide_int &, wide_int &maybe_nonzero, wide_int &mustbe_nonzero); // These are extra operators that do not fit in the normal scheme of things. // Add them to the end of the tree-code vector, and provide a name for // each allowing for easy access when required. #define OP_WIDEN_MULT_SIGNED ((unsigned) MAX_TREE_CODES) #define OP_WIDEN_MULT_UNSIGNED ((unsigned) MAX_TREE_CODES + 1) #define OP_WIDEN_PLUS_SIGNED ((unsigned) MAX_TREE_CODES + 2) #define OP_WIDEN_PLUS_UNSIGNED ((unsigned) MAX_TREE_CODES + 3) #define RANGE_OP_TABLE_SIZE ((unsigned) MAX_TREE_CODES + 4) // This implements the range operator tables as local objects. class range_op_table { public: range_op_table (); inline range_operator *operator[] (unsigned code) { gcc_checking_assert (code < RANGE_OP_TABLE_SIZE); return m_range_tree[code]; } protected: inline void set (unsigned code, range_operator &op) { gcc_checking_assert (code < RANGE_OP_TABLE_SIZE); gcc_checking_assert (m_range_tree[code] == NULL); m_range_tree[code] = &op; } range_operator *m_range_tree[RANGE_OP_TABLE_SIZE]; void initialize_integral_ops (); void initialize_pointer_ops (); void initialize_float_ops (); }; #endif // GCC_RANGE_OP_H