/* Code for range operators. Copyright (C) 2017-2023 Free Software Foundation, Inc. Contributed by Andrew MacLeod and Aldy Hernandez . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "insn-codes.h" #include "rtl.h" #include "tree.h" #include "gimple.h" #include "cfghooks.h" #include "tree-pass.h" #include "ssa.h" #include "optabs-tree.h" #include "gimple-pretty-print.h" #include "diagnostic-core.h" #include "flags.h" #include "fold-const.h" #include "stor-layout.h" #include "calls.h" #include "cfganal.h" #include "gimple-iterator.h" #include "gimple-fold.h" #include "tree-eh.h" #include "gimple-walk.h" #include "tree-cfg.h" #include "wide-int.h" #include "value-relation.h" #include "range-op.h" #include "tree-ssa-ccp.h" #include "range-op-mixed.h" // Instantiate the operators which apply to multiple types here. operator_equal op_equal; operator_not_equal op_not_equal; operator_lt op_lt; operator_le op_le; operator_gt op_gt; operator_ge op_ge; operator_identity op_ident; operator_cst op_cst; operator_cast op_cast; operator_plus op_plus; operator_abs op_abs; operator_minus op_minus; operator_negate op_negate; operator_mult op_mult; operator_addr_expr op_addr; operator_bitwise_not op_bitwise_not; operator_bitwise_xor op_bitwise_xor; operator_bitwise_and op_bitwise_and; operator_bitwise_or op_bitwise_or; operator_min op_min; operator_max op_max; // Instantaite a range operator table. range_op_table operator_table; // Invoke the initialization routines for each class of range. range_op_table::range_op_table () { initialize_integral_ops (); initialize_pointer_ops (); initialize_float_ops (); set (EQ_EXPR, op_equal); set (NE_EXPR, op_not_equal); set (LT_EXPR, op_lt); set (LE_EXPR, op_le); set (GT_EXPR, op_gt); set (GE_EXPR, op_ge); set (SSA_NAME, op_ident); set (PAREN_EXPR, op_ident); set (OBJ_TYPE_REF, op_ident); set (REAL_CST, op_cst); set (INTEGER_CST, op_cst); set (NOP_EXPR, op_cast); set (CONVERT_EXPR, op_cast); set (PLUS_EXPR, op_plus); set (ABS_EXPR, op_abs); set (MINUS_EXPR, op_minus); set (NEGATE_EXPR, op_negate); set (MULT_EXPR, op_mult); // Occur in both integer and pointer tables, but currently share // integral implementation. set (ADDR_EXPR, op_addr); set (BIT_NOT_EXPR, op_bitwise_not); set (BIT_XOR_EXPR, op_bitwise_xor); // These are in both integer and pointer tables, but pointer has a different // implementation. // If commented out, there is a hybrid version in range-op-ptr.cc which // is used until there is a pointer range class. Then we can simply // uncomment the operator here and use the unified version. // set (BIT_AND_EXPR, op_bitwise_and); // set (BIT_IOR_EXPR, op_bitwise_or); // set (MIN_EXPR, op_min); // set (MAX_EXPR, op_max); } // Instantiate a default range operator for opcodes with no entry. range_operator default_operator; // Create a default range_op_handler. range_op_handler::range_op_handler () { m_operator = &default_operator; } // Create a range_op_handler for CODE. Use a default operatoer if CODE // does not have an entry. range_op_handler::range_op_handler (unsigned code) { m_operator = operator_table[code]; if (!m_operator) m_operator = &default_operator; } // Return TRUE if this handler has a non-default operator. range_op_handler::operator bool () const { return m_operator != &default_operator; } // Return a pointer to the range operator assocaited with this handler. // If it is a default operator, return NULL. // This is the equivalent of indexing the range table. range_operator * range_op_handler::range_op () const { if (m_operator != &default_operator) return m_operator; return NULL; } // Create a dispatch pattern for value range discriminators LHS, OP1, and OP2. // This is used to produce a unique value for each dispatch pattern. Shift // values are based on the size of the m_discriminator field in value_range.h. constexpr unsigned dispatch_trio (unsigned lhs, unsigned op1, unsigned op2) { return ((lhs << 8) + (op1 << 4) + (op2)); } // These are the supported dispatch patterns. These map to the parameter list // of the routines in range_operator. Note the last 3 characters are // shorthand for the LHS, OP1, and OP2 range discriminator class. const unsigned RO_III = dispatch_trio (VR_IRANGE, VR_IRANGE, VR_IRANGE); const unsigned RO_IFI = dispatch_trio (VR_IRANGE, VR_FRANGE, VR_IRANGE); const unsigned RO_IFF = dispatch_trio (VR_IRANGE, VR_FRANGE, VR_FRANGE); const unsigned RO_FFF = dispatch_trio (VR_FRANGE, VR_FRANGE, VR_FRANGE); const unsigned RO_FIF = dispatch_trio (VR_FRANGE, VR_IRANGE, VR_FRANGE); const unsigned RO_FII = dispatch_trio (VR_FRANGE, VR_IRANGE, VR_IRANGE); // Return a dispatch value for parameter types LHS, OP1 and OP2. unsigned range_op_handler::dispatch_kind (const vrange &lhs, const vrange &op1, const vrange& op2) const { return dispatch_trio (lhs.m_discriminator, op1.m_discriminator, op2.m_discriminator); } // Dispatch a call to fold_range based on the types of R, LH and RH. bool range_op_handler::fold_range (vrange &r, tree type, const vrange &lh, const vrange &rh, relation_trio rel) const { gcc_checking_assert (m_operator); switch (dispatch_kind (r, lh, rh)) { case RO_III: return m_operator->fold_range (as_a (r), type, as_a (lh), as_a (rh), rel); case RO_IFI: return m_operator->fold_range (as_a (r), type, as_a (lh), as_a (rh), rel); case RO_IFF: return m_operator->fold_range (as_a (r), type, as_a (lh), as_a (rh), rel); case RO_FFF: return m_operator->fold_range (as_a (r), type, as_a (lh), as_a (rh), rel); case RO_FII: return m_operator->fold_range (as_a (r), type, as_a (lh), as_a (rh), rel); default: return false; } } // Dispatch a call to op1_range based on the types of R, LHS and OP2. bool range_op_handler::op1_range (vrange &r, tree type, const vrange &lhs, const vrange &op2, relation_trio rel) const { gcc_checking_assert (m_operator); if (lhs.undefined_p ()) return false; switch (dispatch_kind (r, lhs, op2)) { case RO_III: return m_operator->op1_range (as_a (r), type, as_a (lhs), as_a (op2), rel); case RO_FIF: return m_operator->op1_range (as_a (r), type, as_a (lhs), as_a (op2), rel); case RO_FFF: return m_operator->op1_range (as_a (r), type, as_a (lhs), as_a (op2), rel); default: return false; } } // Dispatch a call to op2_range based on the types of R, LHS and OP1. bool range_op_handler::op2_range (vrange &r, tree type, const vrange &lhs, const vrange &op1, relation_trio rel) const { gcc_checking_assert (m_operator); if (lhs.undefined_p ()) return false; switch (dispatch_kind (r, lhs, op1)) { case RO_III: return m_operator->op2_range (as_a (r), type, as_a (lhs), as_a (op1), rel); case RO_FIF: return m_operator->op2_range (as_a (r), type, as_a (lhs), as_a (op1), rel); case RO_FFF: return m_operator->op2_range (as_a (r), type, as_a (lhs), as_a (op1), rel); default: return false; } } // Dispatch a call to lhs_op1_relation based on the types of LHS, OP1 and OP2. relation_kind range_op_handler::lhs_op1_relation (const vrange &lhs, const vrange &op1, const vrange &op2, relation_kind rel) const { gcc_checking_assert (m_operator); switch (dispatch_kind (lhs, op1, op2)) { case RO_III: return m_operator->lhs_op1_relation (as_a (lhs), as_a (op1), as_a (op2), rel); case RO_IFF: return m_operator->lhs_op1_relation (as_a (lhs), as_a (op1), as_a (op2), rel); case RO_FFF: return m_operator->lhs_op1_relation (as_a (lhs), as_a (op1), as_a (op2), rel); default: return VREL_VARYING; } } // Dispatch a call to lhs_op2_relation based on the types of LHS, OP1 and OP2. relation_kind range_op_handler::lhs_op2_relation (const vrange &lhs, const vrange &op1, const vrange &op2, relation_kind rel) const { gcc_checking_assert (m_operator); switch (dispatch_kind (lhs, op1, op2)) { case RO_III: return m_operator->lhs_op2_relation (as_a (lhs), as_a (op1), as_a (op2), rel); case RO_IFF: return m_operator->lhs_op2_relation (as_a (lhs), as_a (op1), as_a (op2), rel); case RO_FFF: return m_operator->lhs_op2_relation (as_a (lhs), as_a (op1), as_a (op2), rel); default: return VREL_VARYING; } } // Dispatch a call to op1_op2_relation based on the type of LHS. relation_kind range_op_handler::op1_op2_relation (const vrange &lhs, const vrange &op1, const vrange &op2) const { gcc_checking_assert (m_operator); switch (dispatch_kind (lhs, op1, op2)) { case RO_III: return m_operator->op1_op2_relation (as_a (lhs), as_a (op1), as_a (op2)); case RO_IFF: return m_operator->op1_op2_relation (as_a (lhs), as_a (op1), as_a (op2)); case RO_FFF: return m_operator->op1_op2_relation (as_a (lhs), as_a (op1), as_a (op2)); default: return VREL_VARYING; } } // Update the known bitmasks in R when applying the operation CODE to // LH and RH. void update_known_bitmask (irange &r, tree_code code, const irange &lh, const irange &rh) { if (r.undefined_p () || lh.undefined_p () || rh.undefined_p () || r.singleton_p ()) return; widest_int widest_value, widest_mask; tree type = r.type (); signop sign = TYPE_SIGN (type); int prec = TYPE_PRECISION (type); irange_bitmask lh_bits = lh.get_bitmask (); irange_bitmask rh_bits = rh.get_bitmask (); switch (get_gimple_rhs_class (code)) { case GIMPLE_UNARY_RHS: bit_value_unop (code, sign, prec, &widest_value, &widest_mask, TYPE_SIGN (lh.type ()), TYPE_PRECISION (lh.type ()), widest_int::from (lh_bits.value (), sign), widest_int::from (lh_bits.mask (), sign)); break; case GIMPLE_BINARY_RHS: bit_value_binop (code, sign, prec, &widest_value, &widest_mask, TYPE_SIGN (lh.type ()), TYPE_PRECISION (lh.type ()), widest_int::from (lh_bits.value (), sign), widest_int::from (lh_bits.mask (), sign), TYPE_SIGN (rh.type ()), TYPE_PRECISION (rh.type ()), widest_int::from (rh_bits.value (), sign), widest_int::from (rh_bits.mask (), sign)); break; default: gcc_unreachable (); } wide_int mask = wide_int::from (widest_mask, prec, sign); wide_int value = wide_int::from (widest_value, prec, sign); // Bitmasks must have the unknown value bits cleared. value &= ~mask; irange_bitmask bm (value, mask); r.update_bitmask (bm); } // Return the upper limit for a type. static inline wide_int max_limit (const_tree type) { return irange_val_max (type); } // Return the lower limit for a type. static inline wide_int min_limit (const_tree type) { return irange_val_min (type); } // Return false if shifting by OP is undefined behavior. Otherwise, return // true and the range it is to be shifted by. This allows trimming out of // undefined ranges, leaving only valid ranges if there are any. static inline bool get_shift_range (irange &r, tree type, const irange &op) { if (op.undefined_p ()) return false; // Build valid range and intersect it with the shift range. r = value_range (op.type (), wi::shwi (0, TYPE_PRECISION (op.type ())), wi::shwi (TYPE_PRECISION (type) - 1, TYPE_PRECISION (op.type ()))); r.intersect (op); // If there are no valid ranges in the shift range, returned false. if (r.undefined_p ()) return false; return true; } // Default wide_int fold operation returns [MIN, MAX]. void range_operator::wi_fold (irange &r, tree type, const wide_int &lh_lb ATTRIBUTE_UNUSED, const wide_int &lh_ub ATTRIBUTE_UNUSED, const wide_int &rh_lb ATTRIBUTE_UNUSED, const wide_int &rh_ub ATTRIBUTE_UNUSED) const { gcc_checking_assert (r.supports_type_p (type)); r.set_varying (type); } // Call wi_fold when both op1 and op2 are equivalent. Further split small // subranges into constants. This can provide better precision. // For x + y, when x == y with a range of [0,4] instead of [0, 8] produce // [0,0][2, 2][4,4][6, 6][8, 8] // LIMIT is the maximum number of elements in range allowed before we // do not process them individually. void range_operator::wi_fold_in_parts_equiv (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, unsigned limit) const { int_range_max tmp; widest_int lh_range = wi::sub (widest_int::from (lh_ub, TYPE_SIGN (type)), widest_int::from (lh_lb, TYPE_SIGN (type))); // if there are 1 to 8 values in the LH range, split them up. r.set_undefined (); if (lh_range >= 0 && lh_range < limit) { for (unsigned x = 0; x <= lh_range; x++) { wide_int val = lh_lb + x; wi_fold (tmp, type, val, val, val, val); r.union_ (tmp); } } // Otherwise just call wi_fold. else wi_fold (r, type, lh_lb, lh_ub, lh_lb, lh_ub); } // Call wi_fold, except further split small subranges into constants. // This can provide better precision. For something 8 >> [0,1] // Instead of [8, 16], we will produce [8,8][16,16] void range_operator::wi_fold_in_parts (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const { int_range_max tmp; widest_int rh_range = wi::sub (widest_int::from (rh_ub, TYPE_SIGN (type)), widest_int::from (rh_lb, TYPE_SIGN (type))); widest_int lh_range = wi::sub (widest_int::from (lh_ub, TYPE_SIGN (type)), widest_int::from (lh_lb, TYPE_SIGN (type))); // If there are 2, 3, or 4 values in the RH range, do them separately. // Call wi_fold_in_parts to check the RH side. if (rh_range > 0 && rh_range < 4) { wi_fold_in_parts (r, type, lh_lb, lh_ub, rh_lb, rh_lb); if (rh_range > 1) { wi_fold_in_parts (tmp, type, lh_lb, lh_ub, rh_lb + 1, rh_lb + 1); r.union_ (tmp); if (rh_range == 3) { wi_fold_in_parts (tmp, type, lh_lb, lh_ub, rh_lb + 2, rh_lb + 2); r.union_ (tmp); } } wi_fold_in_parts (tmp, type, lh_lb, lh_ub, rh_ub, rh_ub); r.union_ (tmp); } // Otherwise check for 2, 3, or 4 values in the LH range and split them up. // The RH side has been checked, so no recursion needed. else if (lh_range > 0 && lh_range < 4) { wi_fold (r, type, lh_lb, lh_lb, rh_lb, rh_ub); if (lh_range > 1) { wi_fold (tmp, type, lh_lb + 1, lh_lb + 1, rh_lb, rh_ub); r.union_ (tmp); if (lh_range == 3) { wi_fold (tmp, type, lh_lb + 2, lh_lb + 2, rh_lb, rh_ub); r.union_ (tmp); } } wi_fold (tmp, type, lh_ub, lh_ub, rh_lb, rh_ub); r.union_ (tmp); } // Otherwise just call wi_fold. else wi_fold (r, type, lh_lb, lh_ub, rh_lb, rh_ub); } // The default for fold is to break all ranges into sub-ranges and // invoke the wi_fold method on each sub-range pair. bool range_operator::fold_range (irange &r, tree type, const irange &lh, const irange &rh, relation_trio trio) const { gcc_checking_assert (r.supports_type_p (type)); if (empty_range_varying (r, type, lh, rh)) return true; relation_kind rel = trio.op1_op2 (); unsigned num_lh = lh.num_pairs (); unsigned num_rh = rh.num_pairs (); // If op1 and op2 are equivalences, then we don't need a complete cross // product, just pairs of matching elements. if (relation_equiv_p (rel) && lh == rh) { int_range_max tmp; r.set_undefined (); for (unsigned x = 0; x < num_lh; ++x) { // If the number of subranges is too high, limit subrange creation. unsigned limit = (r.num_pairs () > 32) ? 0 : 8; wide_int lh_lb = lh.lower_bound (x); wide_int lh_ub = lh.upper_bound (x); wi_fold_in_parts_equiv (tmp, type, lh_lb, lh_ub, limit); r.union_ (tmp); if (r.varying_p ()) break; } op1_op2_relation_effect (r, type, lh, rh, rel); update_bitmask (r, lh, rh); return true; } // If both ranges are single pairs, fold directly into the result range. // If the number of subranges grows too high, produce a summary result as the // loop becomes exponential with little benefit. See PR 103821. if ((num_lh == 1 && num_rh == 1) || num_lh * num_rh > 12) { wi_fold_in_parts (r, type, lh.lower_bound (), lh.upper_bound (), rh.lower_bound (), rh.upper_bound ()); op1_op2_relation_effect (r, type, lh, rh, rel); update_bitmask (r, lh, rh); return true; } int_range_max tmp; r.set_undefined (); for (unsigned x = 0; x < num_lh; ++x) for (unsigned y = 0; y < num_rh; ++y) { wide_int lh_lb = lh.lower_bound (x); wide_int lh_ub = lh.upper_bound (x); wide_int rh_lb = rh.lower_bound (y); wide_int rh_ub = rh.upper_bound (y); wi_fold_in_parts (tmp, type, lh_lb, lh_ub, rh_lb, rh_ub); r.union_ (tmp); if (r.varying_p ()) { op1_op2_relation_effect (r, type, lh, rh, rel); update_bitmask (r, lh, rh); return true; } } op1_op2_relation_effect (r, type, lh, rh, rel); update_bitmask (r, lh, rh); return true; } // The default for op1_range is to return false. bool range_operator::op1_range (irange &r ATTRIBUTE_UNUSED, tree type ATTRIBUTE_UNUSED, const irange &lhs ATTRIBUTE_UNUSED, const irange &op2 ATTRIBUTE_UNUSED, relation_trio) const { return false; } // The default for op2_range is to return false. bool range_operator::op2_range (irange &r ATTRIBUTE_UNUSED, tree type ATTRIBUTE_UNUSED, const irange &lhs ATTRIBUTE_UNUSED, const irange &op1 ATTRIBUTE_UNUSED, relation_trio) const { return false; } // The default relation routines return VREL_VARYING. relation_kind range_operator::lhs_op1_relation (const irange &lhs ATTRIBUTE_UNUSED, const irange &op1 ATTRIBUTE_UNUSED, const irange &op2 ATTRIBUTE_UNUSED, relation_kind rel ATTRIBUTE_UNUSED) const { return VREL_VARYING; } relation_kind range_operator::lhs_op2_relation (const irange &lhs ATTRIBUTE_UNUSED, const irange &op1 ATTRIBUTE_UNUSED, const irange &op2 ATTRIBUTE_UNUSED, relation_kind rel ATTRIBUTE_UNUSED) const { return VREL_VARYING; } relation_kind range_operator::op1_op2_relation (const irange &lhs ATTRIBUTE_UNUSED, const irange &op1 ATTRIBUTE_UNUSED, const irange &op2 ATTRIBUTE_UNUSED) const { return VREL_VARYING; } // Default is no relation affects the LHS. bool range_operator::op1_op2_relation_effect (irange &lhs_range ATTRIBUTE_UNUSED, tree type ATTRIBUTE_UNUSED, const irange &op1_range ATTRIBUTE_UNUSED, const irange &op2_range ATTRIBUTE_UNUSED, relation_kind rel ATTRIBUTE_UNUSED) const { return false; } // Apply any known bitmask updates based on this operator. void range_operator::update_bitmask (irange &, const irange &, const irange &) const { } // Create and return a range from a pair of wide-ints that are known // to have overflowed (or underflowed). static void value_range_from_overflowed_bounds (irange &r, tree type, const wide_int &wmin, const wide_int &wmax) { const signop sgn = TYPE_SIGN (type); const unsigned int prec = TYPE_PRECISION (type); wide_int tmin = wide_int::from (wmin, prec, sgn); wide_int tmax = wide_int::from (wmax, prec, sgn); bool covers = false; wide_int tem = tmin; tmin = tmax + 1; if (wi::cmp (tmin, tmax, sgn) < 0) covers = true; tmax = tem - 1; if (wi::cmp (tmax, tem, sgn) > 0) covers = true; // If the anti-range would cover nothing, drop to varying. // Likewise if the anti-range bounds are outside of the types // values. if (covers || wi::cmp (tmin, tmax, sgn) > 0) r.set_varying (type); else r.set (type, tmin, tmax, VR_ANTI_RANGE); } // Create and return a range from a pair of wide-ints. MIN_OVF and // MAX_OVF describe any overflow that might have occurred while // calculating WMIN and WMAX respectively. static void value_range_with_overflow (irange &r, tree type, const wide_int &wmin, const wide_int &wmax, wi::overflow_type min_ovf = wi::OVF_NONE, wi::overflow_type max_ovf = wi::OVF_NONE) { const signop sgn = TYPE_SIGN (type); const unsigned int prec = TYPE_PRECISION (type); const bool overflow_wraps = TYPE_OVERFLOW_WRAPS (type); // For one bit precision if max != min, then the range covers all // values. if (prec == 1 && wi::ne_p (wmax, wmin)) { r.set_varying (type); return; } if (overflow_wraps) { // If overflow wraps, truncate the values and adjust the range, // kind, and bounds appropriately. if ((min_ovf != wi::OVF_NONE) == (max_ovf != wi::OVF_NONE)) { wide_int tmin = wide_int::from (wmin, prec, sgn); wide_int tmax = wide_int::from (wmax, prec, sgn); // If the limits are swapped, we wrapped around and cover // the entire range. if (wi::gt_p (tmin, tmax, sgn)) r.set_varying (type); else // No overflow or both overflow or underflow. The range // kind stays normal. r.set (type, tmin, tmax); return; } if ((min_ovf == wi::OVF_UNDERFLOW && max_ovf == wi::OVF_NONE) || (max_ovf == wi::OVF_OVERFLOW && min_ovf == wi::OVF_NONE)) value_range_from_overflowed_bounds (r, type, wmin, wmax); else // Other underflow and/or overflow, drop to VR_VARYING. r.set_varying (type); } else { // If both bounds either underflowed or overflowed, then the result // is undefined. if ((min_ovf == wi::OVF_OVERFLOW && max_ovf == wi::OVF_OVERFLOW) || (min_ovf == wi::OVF_UNDERFLOW && max_ovf == wi::OVF_UNDERFLOW)) { r.set_undefined (); return; } // If overflow does not wrap, saturate to [MIN, MAX]. wide_int new_lb, new_ub; if (min_ovf == wi::OVF_UNDERFLOW) new_lb = wi::min_value (prec, sgn); else if (min_ovf == wi::OVF_OVERFLOW) new_lb = wi::max_value (prec, sgn); else new_lb = wmin; if (max_ovf == wi::OVF_UNDERFLOW) new_ub = wi::min_value (prec, sgn); else if (max_ovf == wi::OVF_OVERFLOW) new_ub = wi::max_value (prec, sgn); else new_ub = wmax; r.set (type, new_lb, new_ub); } } // Create and return a range from a pair of wide-ints. Canonicalize // the case where the bounds are swapped. In which case, we transform // [10,5] into [MIN,5][10,MAX]. static inline void create_possibly_reversed_range (irange &r, tree type, const wide_int &new_lb, const wide_int &new_ub) { signop s = TYPE_SIGN (type); // If the bounds are swapped, treat the result as if an overflow occurred. if (wi::gt_p (new_lb, new_ub, s)) value_range_from_overflowed_bounds (r, type, new_lb, new_ub); else // Otherwise it's just a normal range. r.set (type, new_lb, new_ub); } // Return the summary information about boolean range LHS. If EMPTY/FULL, // return the equivalent range for TYPE in R; if FALSE/TRUE, do nothing. bool_range_state get_bool_state (vrange &r, const vrange &lhs, tree val_type) { // If there is no result, then this is unexecutable. if (lhs.undefined_p ()) { r.set_undefined (); return BRS_EMPTY; } if (lhs.zero_p ()) return BRS_FALSE; // For TRUE, we can't just test for [1,1] because Ada can have // multi-bit booleans, and TRUE values can be: [1, MAX], ~[0], etc. if (lhs.contains_p (build_zero_cst (lhs.type ()))) { r.set_varying (val_type); return BRS_FULL; } return BRS_TRUE; } // ------------------------------------------------------------------------ void operator_equal::update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, EQ_EXPR, lh, rh); } // Check if the LHS range indicates a relation between OP1 and OP2. relation_kind operator_equal::op1_op2_relation (const irange &lhs, const irange &, const irange &) const { if (lhs.undefined_p ()) return VREL_UNDEFINED; // FALSE = op1 == op2 indicates NE_EXPR. if (lhs.zero_p ()) return VREL_NE; // TRUE = op1 == op2 indicates EQ_EXPR. if (lhs.undefined_p () || !contains_zero_p (lhs)) return VREL_EQ; return VREL_VARYING; } bool operator_equal::fold_range (irange &r, tree type, const irange &op1, const irange &op2, relation_trio rel) const { if (relop_early_resolve (r, type, op1, op2, rel, VREL_EQ)) return true; // We can be sure the values are always equal or not if both ranges // consist of a single value, and then compare them. if (wi::eq_p (op1.lower_bound (), op1.upper_bound ()) && wi::eq_p (op2.lower_bound (), op2.upper_bound ())) { if (wi::eq_p (op1.lower_bound (), op2.upper_bound())) r = range_true (type); else r = range_false (type); } else { // If ranges do not intersect, we know the range is not equal, // otherwise we don't know anything for sure. int_range_max tmp = op1; tmp.intersect (op2); if (tmp.undefined_p ()) r = range_false (type); else r = range_true_and_false (type); } return true; } bool operator_equal::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { switch (get_bool_state (r, lhs, type)) { case BRS_TRUE: // If it's true, the result is the same as OP2. r = op2; break; case BRS_FALSE: // If the result is false, the only time we know anything is // if OP2 is a constant. if (!op2.undefined_p () && wi::eq_p (op2.lower_bound(), op2.upper_bound())) { r = op2; r.invert (); } else r.set_varying (type); break; default: break; } return true; } bool operator_equal::op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio rel) const { return operator_equal::op1_range (r, type, lhs, op1, rel.swap_op1_op2 ()); } // ------------------------------------------------------------------------- void operator_not_equal::update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, NE_EXPR, lh, rh); } // Check if the LHS range indicates a relation between OP1 and OP2. relation_kind operator_not_equal::op1_op2_relation (const irange &lhs, const irange &, const irange &) const { if (lhs.undefined_p ()) return VREL_UNDEFINED; // FALSE = op1 != op2 indicates EQ_EXPR. if (lhs.zero_p ()) return VREL_EQ; // TRUE = op1 != op2 indicates NE_EXPR. if (lhs.undefined_p () || !contains_zero_p (lhs)) return VREL_NE; return VREL_VARYING; } bool operator_not_equal::fold_range (irange &r, tree type, const irange &op1, const irange &op2, relation_trio rel) const { if (relop_early_resolve (r, type, op1, op2, rel, VREL_NE)) return true; // We can be sure the values are always equal or not if both ranges // consist of a single value, and then compare them. if (wi::eq_p (op1.lower_bound (), op1.upper_bound ()) && wi::eq_p (op2.lower_bound (), op2.upper_bound ())) { if (wi::ne_p (op1.lower_bound (), op2.upper_bound())) r = range_true (type); else r = range_false (type); } else { // If ranges do not intersect, we know the range is not equal, // otherwise we don't know anything for sure. int_range_max tmp = op1; tmp.intersect (op2); if (tmp.undefined_p ()) r = range_true (type); else r = range_true_and_false (type); } return true; } bool operator_not_equal::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { switch (get_bool_state (r, lhs, type)) { case BRS_TRUE: // If the result is true, the only time we know anything is if // OP2 is a constant. if (!op2.undefined_p () && wi::eq_p (op2.lower_bound(), op2.upper_bound())) { r = op2; r.invert (); } else r.set_varying (type); break; case BRS_FALSE: // If it's false, the result is the same as OP2. r = op2; break; default: break; } return true; } bool operator_not_equal::op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio rel) const { return operator_not_equal::op1_range (r, type, lhs, op1, rel.swap_op1_op2 ()); } // (X < VAL) produces the range of [MIN, VAL - 1]. static void build_lt (irange &r, tree type, const wide_int &val) { wi::overflow_type ov; wide_int lim; signop sgn = TYPE_SIGN (type); // Signed 1 bit cannot represent 1 for subtraction. if (sgn == SIGNED) lim = wi::add (val, -1, sgn, &ov); else lim = wi::sub (val, 1, sgn, &ov); // If val - 1 underflows, check if X < MIN, which is an empty range. if (ov) r.set_undefined (); else r = int_range<1> (type, min_limit (type), lim); } // (X <= VAL) produces the range of [MIN, VAL]. static void build_le (irange &r, tree type, const wide_int &val) { r = int_range<1> (type, min_limit (type), val); } // (X > VAL) produces the range of [VAL + 1, MAX]. static void build_gt (irange &r, tree type, const wide_int &val) { wi::overflow_type ov; wide_int lim; signop sgn = TYPE_SIGN (type); // Signed 1 bit cannot represent 1 for addition. if (sgn == SIGNED) lim = wi::sub (val, -1, sgn, &ov); else lim = wi::add (val, 1, sgn, &ov); // If val + 1 overflows, check is for X > MAX, which is an empty range. if (ov) r.set_undefined (); else r = int_range<1> (type, lim, max_limit (type)); } // (X >= val) produces the range of [VAL, MAX]. static void build_ge (irange &r, tree type, const wide_int &val) { r = int_range<1> (type, val, max_limit (type)); } void operator_lt::update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, LT_EXPR, lh, rh); } // Check if the LHS range indicates a relation between OP1 and OP2. relation_kind operator_lt::op1_op2_relation (const irange &lhs, const irange &, const irange &) const { if (lhs.undefined_p ()) return VREL_UNDEFINED; // FALSE = op1 < op2 indicates GE_EXPR. if (lhs.zero_p ()) return VREL_GE; // TRUE = op1 < op2 indicates LT_EXPR. if (lhs.undefined_p () || !contains_zero_p (lhs)) return VREL_LT; return VREL_VARYING; } bool operator_lt::fold_range (irange &r, tree type, const irange &op1, const irange &op2, relation_trio rel) const { if (relop_early_resolve (r, type, op1, op2, rel, VREL_LT)) return true; signop sign = TYPE_SIGN (op1.type ()); gcc_checking_assert (sign == TYPE_SIGN (op2.type ())); if (wi::lt_p (op1.upper_bound (), op2.lower_bound (), sign)) r = range_true (type); else if (!wi::lt_p (op1.lower_bound (), op2.upper_bound (), sign)) r = range_false (type); // Use nonzero bits to determine if < 0 is false. else if (op2.zero_p () && !wi::neg_p (op1.get_nonzero_bits (), sign)) r = range_false (type); else r = range_true_and_false (type); return true; } bool operator_lt::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { if (op2.undefined_p ()) return false; switch (get_bool_state (r, lhs, type)) { case BRS_TRUE: build_lt (r, type, op2.upper_bound ()); break; case BRS_FALSE: build_ge (r, type, op2.lower_bound ()); break; default: break; } return true; } bool operator_lt::op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio) const { if (op1.undefined_p ()) return false; switch (get_bool_state (r, lhs, type)) { case BRS_TRUE: build_gt (r, type, op1.lower_bound ()); break; case BRS_FALSE: build_le (r, type, op1.upper_bound ()); break; default: break; } return true; } void operator_le::update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, LE_EXPR, lh, rh); } // Check if the LHS range indicates a relation between OP1 and OP2. relation_kind operator_le::op1_op2_relation (const irange &lhs, const irange &, const irange &) const { if (lhs.undefined_p ()) return VREL_UNDEFINED; // FALSE = op1 <= op2 indicates GT_EXPR. if (lhs.zero_p ()) return VREL_GT; // TRUE = op1 <= op2 indicates LE_EXPR. if (lhs.undefined_p () || !contains_zero_p (lhs)) return VREL_LE; return VREL_VARYING; } bool operator_le::fold_range (irange &r, tree type, const irange &op1, const irange &op2, relation_trio rel) const { if (relop_early_resolve (r, type, op1, op2, rel, VREL_LE)) return true; signop sign = TYPE_SIGN (op1.type ()); gcc_checking_assert (sign == TYPE_SIGN (op2.type ())); if (wi::le_p (op1.upper_bound (), op2.lower_bound (), sign)) r = range_true (type); else if (!wi::le_p (op1.lower_bound (), op2.upper_bound (), sign)) r = range_false (type); else r = range_true_and_false (type); return true; } bool operator_le::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { if (op2.undefined_p ()) return false; switch (get_bool_state (r, lhs, type)) { case BRS_TRUE: build_le (r, type, op2.upper_bound ()); break; case BRS_FALSE: build_gt (r, type, op2.lower_bound ()); break; default: break; } return true; } bool operator_le::op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio) const { if (op1.undefined_p ()) return false; switch (get_bool_state (r, lhs, type)) { case BRS_TRUE: build_ge (r, type, op1.lower_bound ()); break; case BRS_FALSE: build_lt (r, type, op1.upper_bound ()); break; default: break; } return true; } void operator_gt::update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, GT_EXPR, lh, rh); } // Check if the LHS range indicates a relation between OP1 and OP2. relation_kind operator_gt::op1_op2_relation (const irange &lhs, const irange &, const irange &) const { if (lhs.undefined_p ()) return VREL_UNDEFINED; // FALSE = op1 > op2 indicates LE_EXPR. if (lhs.zero_p ()) return VREL_LE; // TRUE = op1 > op2 indicates GT_EXPR. if (!contains_zero_p (lhs)) return VREL_GT; return VREL_VARYING; } bool operator_gt::fold_range (irange &r, tree type, const irange &op1, const irange &op2, relation_trio rel) const { if (relop_early_resolve (r, type, op1, op2, rel, VREL_GT)) return true; signop sign = TYPE_SIGN (op1.type ()); gcc_checking_assert (sign == TYPE_SIGN (op2.type ())); if (wi::gt_p (op1.lower_bound (), op2.upper_bound (), sign)) r = range_true (type); else if (!wi::gt_p (op1.upper_bound (), op2.lower_bound (), sign)) r = range_false (type); else r = range_true_and_false (type); return true; } bool operator_gt::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { if (op2.undefined_p ()) return false; switch (get_bool_state (r, lhs, type)) { case BRS_TRUE: build_gt (r, type, op2.lower_bound ()); break; case BRS_FALSE: build_le (r, type, op2.upper_bound ()); break; default: break; } return true; } bool operator_gt::op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio) const { if (op1.undefined_p ()) return false; switch (get_bool_state (r, lhs, type)) { case BRS_TRUE: build_lt (r, type, op1.upper_bound ()); break; case BRS_FALSE: build_ge (r, type, op1.lower_bound ()); break; default: break; } return true; } void operator_ge::update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, GE_EXPR, lh, rh); } // Check if the LHS range indicates a relation between OP1 and OP2. relation_kind operator_ge::op1_op2_relation (const irange &lhs, const irange &, const irange &) const { if (lhs.undefined_p ()) return VREL_UNDEFINED; // FALSE = op1 >= op2 indicates LT_EXPR. if (lhs.zero_p ()) return VREL_LT; // TRUE = op1 >= op2 indicates GE_EXPR. if (!contains_zero_p (lhs)) return VREL_GE; return VREL_VARYING; } bool operator_ge::fold_range (irange &r, tree type, const irange &op1, const irange &op2, relation_trio rel) const { if (relop_early_resolve (r, type, op1, op2, rel, VREL_GE)) return true; signop sign = TYPE_SIGN (op1.type ()); gcc_checking_assert (sign == TYPE_SIGN (op2.type ())); if (wi::ge_p (op1.lower_bound (), op2.upper_bound (), sign)) r = range_true (type); else if (!wi::ge_p (op1.upper_bound (), op2.lower_bound (), sign)) r = range_false (type); else r = range_true_and_false (type); return true; } bool operator_ge::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { if (op2.undefined_p ()) return false; switch (get_bool_state (r, lhs, type)) { case BRS_TRUE: build_ge (r, type, op2.lower_bound ()); break; case BRS_FALSE: build_lt (r, type, op2.upper_bound ()); break; default: break; } return true; } bool operator_ge::op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio) const { if (op1.undefined_p ()) return false; switch (get_bool_state (r, lhs, type)) { case BRS_TRUE: build_le (r, type, op1.upper_bound ()); break; case BRS_FALSE: build_gt (r, type, op1.lower_bound ()); break; default: break; } return true; } void operator_plus::update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, PLUS_EXPR, lh, rh); } // Check to see if the range of OP2 indicates anything about the relation // between LHS and OP1. relation_kind operator_plus::lhs_op1_relation (const irange &lhs, const irange &op1, const irange &op2, relation_kind) const { if (lhs.undefined_p () || op1.undefined_p () || op2.undefined_p ()) return VREL_VARYING; tree type = lhs.type (); unsigned prec = TYPE_PRECISION (type); wi::overflow_type ovf1, ovf2; signop sign = TYPE_SIGN (type); // LHS = OP1 + 0 indicates LHS == OP1. if (op2.zero_p ()) return VREL_EQ; if (TYPE_OVERFLOW_WRAPS (type)) { wi::add (op1.lower_bound (), op2.lower_bound (), sign, &ovf1); wi::add (op1.upper_bound (), op2.upper_bound (), sign, &ovf2); } else ovf1 = ovf2 = wi::OVF_NONE; // Never wrapping additions. if (!ovf1 && !ovf2) { // Positive op2 means lhs > op1. if (wi::gt_p (op2.lower_bound (), wi::zero (prec), sign)) return VREL_GT; if (wi::ge_p (op2.lower_bound (), wi::zero (prec), sign)) return VREL_GE; // Negative op2 means lhs < op1. if (wi::lt_p (op2.upper_bound (), wi::zero (prec), sign)) return VREL_LT; if (wi::le_p (op2.upper_bound (), wi::zero (prec), sign)) return VREL_LE; } // Always wrapping additions. else if (ovf1 && ovf1 == ovf2) { // Positive op2 means lhs < op1. if (wi::gt_p (op2.lower_bound (), wi::zero (prec), sign)) return VREL_LT; if (wi::ge_p (op2.lower_bound (), wi::zero (prec), sign)) return VREL_LE; // Negative op2 means lhs > op1. if (wi::lt_p (op2.upper_bound (), wi::zero (prec), sign)) return VREL_GT; if (wi::le_p (op2.upper_bound (), wi::zero (prec), sign)) return VREL_GE; } // If op2 does not contain 0, then LHS and OP1 can never be equal. if (!range_includes_zero_p (&op2)) return VREL_NE; return VREL_VARYING; } // PLUS is symmetrical, so we can simply call lhs_op1_relation with reversed // operands. relation_kind operator_plus::lhs_op2_relation (const irange &lhs, const irange &op1, const irange &op2, relation_kind rel) const { return lhs_op1_relation (lhs, op2, op1, rel); } void operator_plus::wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const { wi::overflow_type ov_lb, ov_ub; signop s = TYPE_SIGN (type); wide_int new_lb = wi::add (lh_lb, rh_lb, s, &ov_lb); wide_int new_ub = wi::add (lh_ub, rh_ub, s, &ov_ub); value_range_with_overflow (r, type, new_lb, new_ub, ov_lb, ov_ub); } // Given addition or subtraction, determine the possible NORMAL ranges and // OVERFLOW ranges given an OFFSET range. ADD_P is true for addition. // Return the relation that exists between the LHS and OP1 in order for the // NORMAL range to apply. // a return value of VREL_VARYING means no ranges were applicable. static relation_kind plus_minus_ranges (irange &r_ov, irange &r_normal, const irange &offset, bool add_p) { relation_kind kind = VREL_VARYING; // For now, only deal with constant adds. This could be extended to ranges // when someone is so motivated. if (!offset.singleton_p () || offset.zero_p ()) return kind; // Always work with a positive offset. ie a+ -2 -> a-2 and a- -2 > a+2 wide_int off = offset.lower_bound (); if (wi::neg_p (off, SIGNED)) { add_p = !add_p; off = wi::neg (off); } wi::overflow_type ov; tree type = offset.type (); unsigned prec = TYPE_PRECISION (type); wide_int ub; wide_int lb; // calculate the normal range and relation for the operation. if (add_p) { // [ 0 , INF - OFF] lb = wi::zero (prec); ub = wi::sub (irange_val_max (type), off, UNSIGNED, &ov); kind = VREL_GT; } else { // [ OFF, INF ] lb = off; ub = irange_val_max (type); kind = VREL_LT; } int_range<2> normal_range (type, lb, ub); int_range<2> ov_range (type, lb, ub, VR_ANTI_RANGE); r_ov = ov_range; r_normal = normal_range; return kind; } // Once op1 has been calculated by operator_plus or operator_minus, check // to see if the relation passed causes any part of the calculation to // be not possible. ie // a_2 = b_3 + 1 with a_2 < b_3 can refine the range of b_3 to [INF, INF] // and that further refines a_2 to [0, 0]. // R is the value of op1, OP2 is the offset being added/subtracted, REL is the // relation between LHS relation OP1 and ADD_P is true for PLUS, false for // MINUS. IF any adjustment can be made, R will reflect it. static void adjust_op1_for_overflow (irange &r, const irange &op2, relation_kind rel, bool add_p) { if (r.undefined_p ()) return; tree type = r.type (); // Check for unsigned overflow and calculate the overflow part. signop s = TYPE_SIGN (type); if (!TYPE_OVERFLOW_WRAPS (type) || s == SIGNED) return; // Only work with <, <=, >, >= relations. if (!relation_lt_le_gt_ge_p (rel)) return; // Get the ranges for this offset. int_range_max normal, overflow; relation_kind k = plus_minus_ranges (overflow, normal, op2, add_p); // VREL_VARYING means there are no adjustments. if (k == VREL_VARYING) return; // If the relations match use the normal range, otherwise use overflow range. if (relation_intersect (k, rel) == k) r.intersect (normal); else r.intersect (overflow); return; } bool operator_plus::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio trio) const { if (lhs.undefined_p ()) return false; // Start with the default operation. range_op_handler minus (MINUS_EXPR); if (!minus) return false; bool res = minus.fold_range (r, type, lhs, op2); relation_kind rel = trio.lhs_op1 (); // Check for a relation refinement. if (res) adjust_op1_for_overflow (r, op2, rel, true /* PLUS_EXPR */); return res; } bool operator_plus::op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio rel) const { return op1_range (r, type, lhs, op1, rel.swap_op1_op2 ()); } class operator_widen_plus_signed : public range_operator { public: virtual void wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const; } op_widen_plus_signed; void operator_widen_plus_signed::wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const { wi::overflow_type ov_lb, ov_ub; signop s = TYPE_SIGN (type); wide_int lh_wlb = wide_int::from (lh_lb, wi::get_precision (lh_lb) * 2, SIGNED); wide_int lh_wub = wide_int::from (lh_ub, wi::get_precision (lh_ub) * 2, SIGNED); wide_int rh_wlb = wide_int::from (rh_lb, wi::get_precision (rh_lb) * 2, s); wide_int rh_wub = wide_int::from (rh_ub, wi::get_precision (rh_ub) * 2, s); wide_int new_lb = wi::add (lh_wlb, rh_wlb, s, &ov_lb); wide_int new_ub = wi::add (lh_wub, rh_wub, s, &ov_ub); r = int_range<2> (type, new_lb, new_ub); } class operator_widen_plus_unsigned : public range_operator { public: virtual void wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const; } op_widen_plus_unsigned; void operator_widen_plus_unsigned::wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const { wi::overflow_type ov_lb, ov_ub; signop s = TYPE_SIGN (type); wide_int lh_wlb = wide_int::from (lh_lb, wi::get_precision (lh_lb) * 2, UNSIGNED); wide_int lh_wub = wide_int::from (lh_ub, wi::get_precision (lh_ub) * 2, UNSIGNED); wide_int rh_wlb = wide_int::from (rh_lb, wi::get_precision (rh_lb) * 2, s); wide_int rh_wub = wide_int::from (rh_ub, wi::get_precision (rh_ub) * 2, s); wide_int new_lb = wi::add (lh_wlb, rh_wlb, s, &ov_lb); wide_int new_ub = wi::add (lh_wub, rh_wub, s, &ov_ub); r = int_range<2> (type, new_lb, new_ub); } void operator_minus::update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, MINUS_EXPR, lh, rh); } void operator_minus::wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const { wi::overflow_type ov_lb, ov_ub; signop s = TYPE_SIGN (type); wide_int new_lb = wi::sub (lh_lb, rh_ub, s, &ov_lb); wide_int new_ub = wi::sub (lh_ub, rh_lb, s, &ov_ub); value_range_with_overflow (r, type, new_lb, new_ub, ov_lb, ov_ub); } // Return the relation between LHS and OP1 based on the relation between // OP1 and OP2. relation_kind operator_minus::lhs_op1_relation (const irange &, const irange &op1, const irange &, relation_kind rel) const { if (!op1.undefined_p () && TYPE_SIGN (op1.type ()) == UNSIGNED) switch (rel) { case VREL_GT: case VREL_GE: return VREL_LE; default: break; } return VREL_VARYING; } // Check to see if the relation REL between OP1 and OP2 has any effect on the // LHS of the expression. If so, apply it to LHS_RANGE. This is a helper // function for both MINUS_EXPR and POINTER_DIFF_EXPR. bool minus_op1_op2_relation_effect (irange &lhs_range, tree type, const irange &op1_range ATTRIBUTE_UNUSED, const irange &op2_range ATTRIBUTE_UNUSED, relation_kind rel) { if (rel == VREL_VARYING) return false; int_range<2> rel_range; unsigned prec = TYPE_PRECISION (type); signop sgn = TYPE_SIGN (type); // == and != produce [0,0] and ~[0,0] regardless of wrapping. if (rel == VREL_EQ) rel_range = int_range<2> (type, wi::zero (prec), wi::zero (prec)); else if (rel == VREL_NE) rel_range = int_range<2> (type, wi::zero (prec), wi::zero (prec), VR_ANTI_RANGE); else if (TYPE_OVERFLOW_WRAPS (type)) { switch (rel) { // For wrapping signed values and unsigned, if op1 > op2 or // op1 < op2, then op1 - op2 can be restricted to ~[0, 0]. case VREL_GT: case VREL_LT: rel_range = int_range<2> (type, wi::zero (prec), wi::zero (prec), VR_ANTI_RANGE); break; default: return false; } } else { switch (rel) { // op1 > op2, op1 - op2 can be restricted to [1, +INF] case VREL_GT: rel_range = int_range<2> (type, wi::one (prec), wi::max_value (prec, sgn)); break; // op1 >= op2, op1 - op2 can be restricted to [0, +INF] case VREL_GE: rel_range = int_range<2> (type, wi::zero (prec), wi::max_value (prec, sgn)); break; // op1 < op2, op1 - op2 can be restricted to [-INF, -1] case VREL_LT: rel_range = int_range<2> (type, wi::min_value (prec, sgn), wi::minus_one (prec)); break; // op1 <= op2, op1 - op2 can be restricted to [-INF, 0] case VREL_LE: rel_range = int_range<2> (type, wi::min_value (prec, sgn), wi::zero (prec)); break; default: return false; } } lhs_range.intersect (rel_range); return true; } bool operator_minus::op1_op2_relation_effect (irange &lhs_range, tree type, const irange &op1_range, const irange &op2_range, relation_kind rel) const { return minus_op1_op2_relation_effect (lhs_range, type, op1_range, op2_range, rel); } bool operator_minus::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio trio) const { if (lhs.undefined_p ()) return false; // Start with the default operation. range_op_handler minus (PLUS_EXPR); if (!minus) return false; bool res = minus.fold_range (r, type, lhs, op2); relation_kind rel = trio.lhs_op1 (); if (res) adjust_op1_for_overflow (r, op2, rel, false /* PLUS_EXPR */); return res; } bool operator_minus::op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio) const { if (lhs.undefined_p ()) return false; return fold_range (r, type, op1, lhs); } void operator_min::update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, MIN_EXPR, lh, rh); } void operator_min::wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const { signop s = TYPE_SIGN (type); wide_int new_lb = wi::min (lh_lb, rh_lb, s); wide_int new_ub = wi::min (lh_ub, rh_ub, s); value_range_with_overflow (r, type, new_lb, new_ub); } void operator_max::update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, MAX_EXPR, lh, rh); } void operator_max::wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const { signop s = TYPE_SIGN (type); wide_int new_lb = wi::max (lh_lb, rh_lb, s); wide_int new_ub = wi::max (lh_ub, rh_ub, s); value_range_with_overflow (r, type, new_lb, new_ub); } // Calculate the cross product of two sets of ranges and return it. // // Multiplications, divisions and shifts are a bit tricky to handle, // depending on the mix of signs we have in the two ranges, we need to // operate on different values to get the minimum and maximum values // for the new range. One approach is to figure out all the // variations of range combinations and do the operations. // // However, this involves several calls to compare_values and it is // pretty convoluted. It's simpler to do the 4 operations (MIN0 OP // MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP MAX1) and then // figure the smallest and largest values to form the new range. void cross_product_operator::wi_cross_product (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const { wide_int cp1, cp2, cp3, cp4; // Default to varying. r.set_varying (type); // Compute the 4 cross operations, bailing if we get an overflow we // can't handle. if (wi_op_overflows (cp1, type, lh_lb, rh_lb)) return; if (wi::eq_p (lh_lb, lh_ub)) cp3 = cp1; else if (wi_op_overflows (cp3, type, lh_ub, rh_lb)) return; if (wi::eq_p (rh_lb, rh_ub)) cp2 = cp1; else if (wi_op_overflows (cp2, type, lh_lb, rh_ub)) return; if (wi::eq_p (lh_lb, lh_ub)) cp4 = cp2; else if (wi_op_overflows (cp4, type, lh_ub, rh_ub)) return; // Order pairs. signop sign = TYPE_SIGN (type); if (wi::gt_p (cp1, cp2, sign)) std::swap (cp1, cp2); if (wi::gt_p (cp3, cp4, sign)) std::swap (cp3, cp4); // Choose min and max from the ordered pairs. wide_int res_lb = wi::min (cp1, cp3, sign); wide_int res_ub = wi::max (cp2, cp4, sign); value_range_with_overflow (r, type, res_lb, res_ub); } void operator_mult::update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, MULT_EXPR, lh, rh); } bool operator_mult::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { if (lhs.undefined_p ()) return false; // We can't solve 0 = OP1 * N by dividing by N with a wrapping type. // For example: For 0 = OP1 * 2, OP1 could be 0, or MAXINT, whereas // for 4 = OP1 * 2, OP1 could be 2 or 130 (unsigned 8-bit) if (TYPE_OVERFLOW_WRAPS (type)) return false; wide_int offset; if (op2.singleton_p (offset) && offset != 0) return range_op_handler (TRUNC_DIV_EXPR).fold_range (r, type, lhs, op2); return false; } bool operator_mult::op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio rel) const { return operator_mult::op1_range (r, type, lhs, op1, rel.swap_op1_op2 ()); } bool operator_mult::wi_op_overflows (wide_int &res, tree type, const wide_int &w0, const wide_int &w1) const { wi::overflow_type overflow = wi::OVF_NONE; signop sign = TYPE_SIGN (type); res = wi::mul (w0, w1, sign, &overflow); if (overflow && TYPE_OVERFLOW_UNDEFINED (type)) { // For multiplication, the sign of the overflow is given // by the comparison of the signs of the operands. if (sign == UNSIGNED || w0.sign_mask () == w1.sign_mask ()) res = wi::max_value (w0.get_precision (), sign); else res = wi::min_value (w0.get_precision (), sign); return false; } return overflow; } void operator_mult::wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const { if (TYPE_OVERFLOW_UNDEFINED (type)) { wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub); return; } // Multiply the ranges when overflow wraps. This is basically fancy // code so we don't drop to varying with an unsigned // [-3,-1]*[-3,-1]. // // This test requires 2*prec bits if both operands are signed and // 2*prec + 2 bits if either is not. Therefore, extend the values // using the sign of the result to PREC2. From here on out, // everything is just signed math no matter what the input types // were. signop sign = TYPE_SIGN (type); unsigned prec = TYPE_PRECISION (type); widest2_int min0 = widest2_int::from (lh_lb, sign); widest2_int max0 = widest2_int::from (lh_ub, sign); widest2_int min1 = widest2_int::from (rh_lb, sign); widest2_int max1 = widest2_int::from (rh_ub, sign); widest2_int sizem1 = wi::mask (prec, false); widest2_int size = sizem1 + 1; // Canonicalize the intervals. if (sign == UNSIGNED) { if (wi::ltu_p (size, min0 + max0)) { min0 -= size; max0 -= size; } if (wi::ltu_p (size, min1 + max1)) { min1 -= size; max1 -= size; } } // Sort the 4 products so that min is in prod0 and max is in // prod3. widest2_int prod0 = min0 * min1; widest2_int prod1 = min0 * max1; widest2_int prod2 = max0 * min1; widest2_int prod3 = max0 * max1; // min0min1 > max0max1 if (prod0 > prod3) std::swap (prod0, prod3); // min0max1 > max0min1 if (prod1 > prod2) std::swap (prod1, prod2); if (prod0 > prod1) std::swap (prod0, prod1); if (prod2 > prod3) std::swap (prod2, prod3); // diff = max - min prod2 = prod3 - prod0; if (wi::geu_p (prod2, sizem1)) { // Multiplying by X, where X is a power of 2 is [0,0][X,+INF]. if (TYPE_UNSIGNED (type) && rh_lb == rh_ub && wi::exact_log2 (rh_lb) != -1 && prec > 1) { r.set (type, rh_lb, wi::max_value (prec, sign)); int_range<2> zero; zero.set_zero (type); r.union_ (zero); } else // The range covers all values. r.set_varying (type); } else { wide_int new_lb = wide_int::from (prod0, prec, sign); wide_int new_ub = wide_int::from (prod3, prec, sign); create_possibly_reversed_range (r, type, new_lb, new_ub); } } class operator_widen_mult_signed : public range_operator { public: virtual void wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const; } op_widen_mult_signed; void operator_widen_mult_signed::wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const { signop s = TYPE_SIGN (type); wide_int lh_wlb = wide_int::from (lh_lb, wi::get_precision (lh_lb) * 2, SIGNED); wide_int lh_wub = wide_int::from (lh_ub, wi::get_precision (lh_ub) * 2, SIGNED); wide_int rh_wlb = wide_int::from (rh_lb, wi::get_precision (rh_lb) * 2, s); wide_int rh_wub = wide_int::from (rh_ub, wi::get_precision (rh_ub) * 2, s); /* We don't expect a widening multiplication to be able to overflow but range calculations for multiplications are complicated. After widening the operands lets call the base class. */ return op_mult.wi_fold (r, type, lh_wlb, lh_wub, rh_wlb, rh_wub); } class operator_widen_mult_unsigned : public range_operator { public: virtual void wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const; } op_widen_mult_unsigned; void operator_widen_mult_unsigned::wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const { signop s = TYPE_SIGN (type); wide_int lh_wlb = wide_int::from (lh_lb, wi::get_precision (lh_lb) * 2, UNSIGNED); wide_int lh_wub = wide_int::from (lh_ub, wi::get_precision (lh_ub) * 2, UNSIGNED); wide_int rh_wlb = wide_int::from (rh_lb, wi::get_precision (rh_lb) * 2, s); wide_int rh_wub = wide_int::from (rh_ub, wi::get_precision (rh_ub) * 2, s); /* We don't expect a widening multiplication to be able to overflow but range calculations for multiplications are complicated. After widening the operands lets call the base class. */ return op_mult.wi_fold (r, type, lh_wlb, lh_wub, rh_wlb, rh_wub); } class operator_div : public cross_product_operator { public: operator_div (tree_code div_kind) { m_code = div_kind; } virtual void wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const final override; virtual bool wi_op_overflows (wide_int &res, tree type, const wide_int &, const wide_int &) const final override; void update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, m_code, lh, rh); } protected: tree_code m_code; }; static operator_div op_trunc_div (TRUNC_DIV_EXPR); static operator_div op_floor_div (FLOOR_DIV_EXPR); static operator_div op_round_div (ROUND_DIV_EXPR); static operator_div op_ceil_div (CEIL_DIV_EXPR); bool operator_div::wi_op_overflows (wide_int &res, tree type, const wide_int &w0, const wide_int &w1) const { if (w1 == 0) return true; wi::overflow_type overflow = wi::OVF_NONE; signop sign = TYPE_SIGN (type); switch (m_code) { case EXACT_DIV_EXPR: case TRUNC_DIV_EXPR: res = wi::div_trunc (w0, w1, sign, &overflow); break; case FLOOR_DIV_EXPR: res = wi::div_floor (w0, w1, sign, &overflow); break; case ROUND_DIV_EXPR: res = wi::div_round (w0, w1, sign, &overflow); break; case CEIL_DIV_EXPR: res = wi::div_ceil (w0, w1, sign, &overflow); break; default: gcc_unreachable (); } if (overflow && TYPE_OVERFLOW_UNDEFINED (type)) { // For division, the only case is -INF / -1 = +INF. res = wi::max_value (w0.get_precision (), sign); return false; } return overflow; } void operator_div::wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const { const wide_int dividend_min = lh_lb; const wide_int dividend_max = lh_ub; const wide_int divisor_min = rh_lb; const wide_int divisor_max = rh_ub; signop sign = TYPE_SIGN (type); unsigned prec = TYPE_PRECISION (type); wide_int extra_min, extra_max; // If we know we won't divide by zero, just do the division. if (!wi_includes_zero_p (type, divisor_min, divisor_max)) { wi_cross_product (r, type, dividend_min, dividend_max, divisor_min, divisor_max); return; } // If we're definitely dividing by zero, there's nothing to do. if (wi_zero_p (type, divisor_min, divisor_max)) { r.set_undefined (); return; } // Perform the division in 2 parts, [LB, -1] and [1, UB], which will // skip any division by zero. // First divide by the negative numbers, if any. if (wi::neg_p (divisor_min, sign)) wi_cross_product (r, type, dividend_min, dividend_max, divisor_min, wi::minus_one (prec)); else r.set_undefined (); // Then divide by the non-zero positive numbers, if any. if (wi::gt_p (divisor_max, wi::zero (prec), sign)) { int_range_max tmp; wi_cross_product (tmp, type, dividend_min, dividend_max, wi::one (prec), divisor_max); r.union_ (tmp); } // We shouldn't still have undefined here. gcc_checking_assert (!r.undefined_p ()); } class operator_exact_divide : public operator_div { using range_operator::op1_range; public: operator_exact_divide () : operator_div (EXACT_DIV_EXPR) { } virtual bool op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const; } op_exact_div; bool operator_exact_divide::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { if (lhs.undefined_p ()) return false; wide_int offset; // [2, 4] = op1 / [3,3] since its exact divide, no need to worry about // remainders in the endpoints, so op1 = [2,4] * [3,3] = [6,12]. // We wont bother trying to enumerate all the in between stuff :-P // TRUE accuracy is [6,6][9,9][12,12]. This is unlikely to matter most of // the time however. // If op2 is a multiple of 2, we would be able to set some non-zero bits. if (op2.singleton_p (offset) && offset != 0) return range_op_handler (MULT_EXPR).fold_range (r, type, lhs, op2); return false; } class operator_lshift : public cross_product_operator { using range_operator::fold_range; using range_operator::op1_range; public: virtual bool op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio rel = TRIO_VARYING) const final override; virtual bool fold_range (irange &r, tree type, const irange &op1, const irange &op2, relation_trio rel = TRIO_VARYING) const final override; virtual void wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const final override; virtual bool wi_op_overflows (wide_int &res, tree type, const wide_int &, const wide_int &) const final override; void update_bitmask (irange &r, const irange &lh, const irange &rh) const final override { update_known_bitmask (r, LSHIFT_EXPR, lh, rh); } } op_lshift; class operator_rshift : public cross_product_operator { using range_operator::fold_range; using range_operator::op1_range; using range_operator::lhs_op1_relation; public: virtual bool fold_range (irange &r, tree type, const irange &op1, const irange &op2, relation_trio rel = TRIO_VARYING) const final override; virtual void wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const final override; virtual bool wi_op_overflows (wide_int &res, tree type, const wide_int &w0, const wide_int &w1) const final override; virtual bool op1_range (irange &, tree type, const irange &lhs, const irange &op2, relation_trio rel = TRIO_VARYING) const final override; virtual relation_kind lhs_op1_relation (const irange &lhs, const irange &op1, const irange &op2, relation_kind rel) const final override; void update_bitmask (irange &r, const irange &lh, const irange &rh) const final override { update_known_bitmask (r, RSHIFT_EXPR, lh, rh); } } op_rshift; relation_kind operator_rshift::lhs_op1_relation (const irange &lhs ATTRIBUTE_UNUSED, const irange &op1, const irange &op2, relation_kind) const { // If both operands range are >= 0, then the LHS <= op1. if (!op1.undefined_p () && !op2.undefined_p () && wi::ge_p (op1.lower_bound (), 0, TYPE_SIGN (op1.type ())) && wi::ge_p (op2.lower_bound (), 0, TYPE_SIGN (op2.type ()))) return VREL_LE; return VREL_VARYING; } bool operator_lshift::fold_range (irange &r, tree type, const irange &op1, const irange &op2, relation_trio rel) const { int_range_max shift_range; if (!get_shift_range (shift_range, type, op2)) { if (op2.undefined_p ()) r.set_undefined (); else r.set_zero (type); return true; } // Transform left shifts by constants into multiplies. if (shift_range.singleton_p ()) { unsigned shift = shift_range.lower_bound ().to_uhwi (); wide_int tmp = wi::set_bit_in_zero (shift, TYPE_PRECISION (type)); int_range<1> mult (type, tmp, tmp); // Force wrapping multiplication. bool saved_flag_wrapv = flag_wrapv; bool saved_flag_wrapv_pointer = flag_wrapv_pointer; flag_wrapv = 1; flag_wrapv_pointer = 1; bool b = op_mult.fold_range (r, type, op1, mult); flag_wrapv = saved_flag_wrapv; flag_wrapv_pointer = saved_flag_wrapv_pointer; return b; } else // Otherwise, invoke the generic fold routine. return range_operator::fold_range (r, type, op1, shift_range, rel); } void operator_lshift::wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const { signop sign = TYPE_SIGN (type); unsigned prec = TYPE_PRECISION (type); int overflow_pos = sign == SIGNED ? prec - 1 : prec; int bound_shift = overflow_pos - rh_ub.to_shwi (); // If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can // overflow. However, for that to happen, rh.max needs to be zero, // which means rh is a singleton range of zero, which means we simply return // [lh_lb, lh_ub] as the range. if (wi::eq_p (rh_ub, rh_lb) && wi::eq_p (rh_ub, 0)) { r = int_range<2> (type, lh_lb, lh_ub); return; } wide_int bound = wi::set_bit_in_zero (bound_shift, prec); wide_int complement = ~(bound - 1); wide_int low_bound, high_bound; bool in_bounds = false; if (sign == UNSIGNED) { low_bound = bound; high_bound = complement; if (wi::ltu_p (lh_ub, low_bound)) { // [5, 6] << [1, 2] == [10, 24]. // We're shifting out only zeroes, the value increases // monotonically. in_bounds = true; } else if (wi::ltu_p (high_bound, lh_lb)) { // [0xffffff00, 0xffffffff] << [1, 2] // == [0xfffffc00, 0xfffffffe]. // We're shifting out only ones, the value decreases // monotonically. in_bounds = true; } } else { // [-1, 1] << [1, 2] == [-4, 4] low_bound = complement; high_bound = bound; if (wi::lts_p (lh_ub, high_bound) && wi::lts_p (low_bound, lh_lb)) { // For non-negative numbers, we're shifting out only zeroes, // the value increases monotonically. For negative numbers, // we're shifting out only ones, the value decreases // monotonically. in_bounds = true; } } if (in_bounds) wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub); else r.set_varying (type); } bool operator_lshift::wi_op_overflows (wide_int &res, tree type, const wide_int &w0, const wide_int &w1) const { signop sign = TYPE_SIGN (type); if (wi::neg_p (w1)) { // It's unclear from the C standard whether shifts can overflow. // The following code ignores overflow; perhaps a C standard // interpretation ruling is needed. res = wi::rshift (w0, -w1, sign); } else res = wi::lshift (w0, w1); return false; } bool operator_lshift::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { if (lhs.undefined_p ()) return false; if (!contains_zero_p (lhs)) r.set_nonzero (type); else r.set_varying (type); wide_int shift; if (op2.singleton_p (shift)) { if (wi::lt_p (shift, 0, SIGNED)) return false; if (wi::ge_p (shift, wi::uhwi (TYPE_PRECISION (type), TYPE_PRECISION (op2.type ())), UNSIGNED)) return false; if (shift == 0) { r.intersect (lhs); return true; } // Work completely in unsigned mode to start. tree utype = type; int_range_max tmp_range; if (TYPE_SIGN (type) == SIGNED) { int_range_max tmp = lhs; utype = unsigned_type_for (type); range_cast (tmp, utype); op_rshift.fold_range (tmp_range, utype, tmp, op2); } else op_rshift.fold_range (tmp_range, utype, lhs, op2); // Start with ranges which can produce the LHS by right shifting the // result by the shift amount. // ie [0x08, 0xF0] = op1 << 2 will start with // [00001000, 11110000] = op1 << 2 // [0x02, 0x4C] aka [00000010, 00111100] // Then create a range from the LB with the least significant upper bit // set, to the upper bound with all the bits set. // This would be [0x42, 0xFC] aka [01000010, 11111100]. // Ideally we do this for each subrange, but just lump them all for now. unsigned low_bits = TYPE_PRECISION (utype) - shift.to_uhwi (); wide_int up_mask = wi::mask (low_bits, true, TYPE_PRECISION (utype)); wide_int new_ub = wi::bit_or (up_mask, tmp_range.upper_bound ()); wide_int new_lb = wi::set_bit (tmp_range.lower_bound (), low_bits); int_range<2> fill_range (utype, new_lb, new_ub); tmp_range.union_ (fill_range); if (utype != type) range_cast (tmp_range, type); r.intersect (tmp_range); return true; } return !r.varying_p (); } bool operator_rshift::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { if (lhs.undefined_p ()) return false; wide_int shift; if (op2.singleton_p (shift)) { // Ignore nonsensical shifts. unsigned prec = TYPE_PRECISION (type); if (wi::ge_p (shift, wi::uhwi (prec, TYPE_PRECISION (op2.type ())), UNSIGNED)) return false; if (shift == 0) { r = lhs; return true; } // Folding the original operation may discard some impossible // ranges from the LHS. int_range_max lhs_refined; op_rshift.fold_range (lhs_refined, type, int_range<1> (type), op2); lhs_refined.intersect (lhs); if (lhs_refined.undefined_p ()) { r.set_undefined (); return true; } int_range_max shift_range (op2.type (), shift, shift); int_range_max lb, ub; op_lshift.fold_range (lb, type, lhs_refined, shift_range); // LHS // 0000 0111 = OP1 >> 3 // // OP1 is anything from 0011 1000 to 0011 1111. That is, a // range from LHS<<3 plus a mask of the 3 bits we shifted on the // right hand side (0x07). wide_int mask = wi::bit_not (wi::lshift (wi::minus_one (prec), shift)); int_range_max mask_range (type, wi::zero (TYPE_PRECISION (type)), mask); op_plus.fold_range (ub, type, lb, mask_range); r = lb; r.union_ (ub); if (!contains_zero_p (lhs_refined)) { mask_range.invert (); r.intersect (mask_range); } return true; } return false; } bool operator_rshift::wi_op_overflows (wide_int &res, tree type, const wide_int &w0, const wide_int &w1) const { signop sign = TYPE_SIGN (type); if (wi::neg_p (w1)) res = wi::lshift (w0, -w1); else { // It's unclear from the C standard whether shifts can overflow. // The following code ignores overflow; perhaps a C standard // interpretation ruling is needed. res = wi::rshift (w0, w1, sign); } return false; } bool operator_rshift::fold_range (irange &r, tree type, const irange &op1, const irange &op2, relation_trio rel) const { int_range_max shift; if (!get_shift_range (shift, type, op2)) { if (op2.undefined_p ()) r.set_undefined (); else r.set_zero (type); return true; } return range_operator::fold_range (r, type, op1, shift, rel); } void operator_rshift::wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const { wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub); } // Add a partial equivalence between the LHS and op1 for casts. relation_kind operator_cast::lhs_op1_relation (const irange &lhs, const irange &op1, const irange &op2 ATTRIBUTE_UNUSED, relation_kind) const { if (lhs.undefined_p () || op1.undefined_p ()) return VREL_VARYING; unsigned lhs_prec = TYPE_PRECISION (lhs.type ()); unsigned op1_prec = TYPE_PRECISION (op1.type ()); // If the result gets sign extended into a larger type check first if this // qualifies as a partial equivalence. if (TYPE_SIGN (op1.type ()) == SIGNED && lhs_prec > op1_prec) { // If the result is sign extended, and the LHS is larger than op1, // check if op1's range can be negative as the sign extension will // cause the upper bits to be 1 instead of 0, invalidating the PE. int_range<3> negs = range_negatives (op1.type ()); negs.intersect (op1); if (!negs.undefined_p ()) return VREL_VARYING; } unsigned prec = MIN (lhs_prec, op1_prec); return bits_to_pe (prec); } // Return TRUE if casting from INNER to OUTER is a truncating cast. inline bool operator_cast::truncating_cast_p (const irange &inner, const irange &outer) const { return TYPE_PRECISION (outer.type ()) < TYPE_PRECISION (inner.type ()); } // Return TRUE if [MIN,MAX] is inside the domain of RANGE's type. bool operator_cast::inside_domain_p (const wide_int &min, const wide_int &max, const irange &range) const { wide_int domain_min = irange_val_min (range.type ()); wide_int domain_max = irange_val_max (range.type ()); signop domain_sign = TYPE_SIGN (range.type ()); return (wi::le_p (min, domain_max, domain_sign) && wi::le_p (max, domain_max, domain_sign) && wi::ge_p (min, domain_min, domain_sign) && wi::ge_p (max, domain_min, domain_sign)); } // Helper for fold_range which work on a pair at a time. void operator_cast::fold_pair (irange &r, unsigned index, const irange &inner, const irange &outer) const { tree inner_type = inner.type (); tree outer_type = outer.type (); signop inner_sign = TYPE_SIGN (inner_type); unsigned outer_prec = TYPE_PRECISION (outer_type); // check to see if casting from INNER to OUTER is a conversion that // fits in the resulting OUTER type. wide_int inner_lb = inner.lower_bound (index); wide_int inner_ub = inner.upper_bound (index); if (truncating_cast_p (inner, outer)) { // We may be able to accommodate a truncating cast if the // resulting range can be represented in the target type... if (wi::rshift (wi::sub (inner_ub, inner_lb), wi::uhwi (outer_prec, TYPE_PRECISION (inner.type ())), inner_sign) != 0) { r.set_varying (outer_type); return; } } // ...but we must still verify that the final range fits in the // domain. This catches -fstrict-enum restrictions where the domain // range is smaller than what fits in the underlying type. wide_int min = wide_int::from (inner_lb, outer_prec, inner_sign); wide_int max = wide_int::from (inner_ub, outer_prec, inner_sign); if (inside_domain_p (min, max, outer)) create_possibly_reversed_range (r, outer_type, min, max); else r.set_varying (outer_type); } bool operator_cast::fold_range (irange &r, tree type ATTRIBUTE_UNUSED, const irange &inner, const irange &outer, relation_trio) const { if (empty_range_varying (r, type, inner, outer)) return true; gcc_checking_assert (outer.varying_p ()); gcc_checking_assert (inner.num_pairs () > 0); // Avoid a temporary by folding the first pair directly into the result. fold_pair (r, 0, inner, outer); // Then process any additional pairs by unioning with their results. for (unsigned x = 1; x < inner.num_pairs (); ++x) { int_range_max tmp; fold_pair (tmp, x, inner, outer); r.union_ (tmp); if (r.varying_p ()) return true; } update_bitmask (r, inner, outer); return true; } void operator_cast::update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, CONVERT_EXPR, lh, rh); } bool operator_cast::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { if (lhs.undefined_p ()) return false; tree lhs_type = lhs.type (); gcc_checking_assert (types_compatible_p (op2.type(), type)); // If we are calculating a pointer, shortcut to what we really care about. if (POINTER_TYPE_P (type)) { // Conversion from other pointers or a constant (including 0/NULL) // are straightforward. if (POINTER_TYPE_P (lhs.type ()) || (lhs.singleton_p () && TYPE_PRECISION (lhs.type ()) >= TYPE_PRECISION (type))) { r = lhs; range_cast (r, type); } else { // If the LHS is not a pointer nor a singleton, then it is // either VARYING or non-zero. if (!contains_zero_p (lhs)) r.set_nonzero (type); else r.set_varying (type); } r.intersect (op2); return true; } if (truncating_cast_p (op2, lhs)) { if (lhs.varying_p ()) r.set_varying (type); else { // We want to insert the LHS as an unsigned value since it // would not trigger the signed bit of the larger type. int_range_max converted_lhs = lhs; range_cast (converted_lhs, unsigned_type_for (lhs_type)); range_cast (converted_lhs, type); // Start by building the positive signed outer range for the type. wide_int lim = wi::set_bit_in_zero (TYPE_PRECISION (lhs_type), TYPE_PRECISION (type)); create_possibly_reversed_range (r, type, lim, wi::max_value (TYPE_PRECISION (type), SIGNED)); // For the signed part, we need to simply union the 2 ranges now. r.union_ (converted_lhs); // Create maximal negative number outside of LHS bits. lim = wi::mask (TYPE_PRECISION (lhs_type), true, TYPE_PRECISION (type)); // Add this to the unsigned LHS range(s). int_range_max lim_range (type, lim, lim); int_range_max lhs_neg; range_op_handler (PLUS_EXPR).fold_range (lhs_neg, type, converted_lhs, lim_range); // lhs_neg now has all the negative versions of the LHS. // Now union in all the values from SIGNED MIN (0x80000) to // lim-1 in order to fill in all the ranges with the upper // bits set. // PR 97317. If the lhs has only 1 bit less precision than the rhs, // we don't need to create a range from min to lim-1 // calculate neg range traps trying to create [lim, lim - 1]. wide_int min_val = wi::min_value (TYPE_PRECISION (type), SIGNED); if (lim != min_val) { int_range_max neg (type, wi::min_value (TYPE_PRECISION (type), SIGNED), lim - 1); lhs_neg.union_ (neg); } // And finally, munge the signed and unsigned portions. r.union_ (lhs_neg); } // And intersect with any known value passed in the extra operand. r.intersect (op2); return true; } int_range_max tmp; if (TYPE_PRECISION (lhs_type) == TYPE_PRECISION (type)) tmp = lhs; else { // The cast is not truncating, and the range is restricted to // the range of the RHS by this assignment. // // Cast the range of the RHS to the type of the LHS. fold_range (tmp, lhs_type, int_range<1> (type), int_range<1> (lhs_type)); // Intersect this with the LHS range will produce the range, // which will be cast to the RHS type before returning. tmp.intersect (lhs); } // Cast the calculated range to the type of the RHS. fold_range (r, type, tmp, int_range<1> (type)); return true; } class operator_logical_and : public range_operator { using range_operator::fold_range; using range_operator::op1_range; using range_operator::op2_range; public: virtual bool fold_range (irange &r, tree type, const irange &lh, const irange &rh, relation_trio rel = TRIO_VARYING) const; virtual bool op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio rel = TRIO_VARYING) const; virtual bool op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio rel = TRIO_VARYING) const; } op_logical_and; bool operator_logical_and::fold_range (irange &r, tree type, const irange &lh, const irange &rh, relation_trio) const { if (empty_range_varying (r, type, lh, rh)) return true; // 0 && anything is 0. if ((wi::eq_p (lh.lower_bound (), 0) && wi::eq_p (lh.upper_bound (), 0)) || (wi::eq_p (lh.lower_bound (), 0) && wi::eq_p (rh.upper_bound (), 0))) r = range_false (type); else if (contains_zero_p (lh) || contains_zero_p (rh)) // To reach this point, there must be a logical 1 on each side, and // the only remaining question is whether there is a zero or not. r = range_true_and_false (type); else r = range_true (type); return true; } bool operator_logical_and::op1_range (irange &r, tree type, const irange &lhs, const irange &op2 ATTRIBUTE_UNUSED, relation_trio) const { switch (get_bool_state (r, lhs, type)) { case BRS_TRUE: // A true result means both sides of the AND must be true. r = range_true (type); break; default: // Any other result means only one side has to be false, the // other side can be anything. So we cannot be sure of any // result here. r = range_true_and_false (type); break; } return true; } bool operator_logical_and::op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio) const { return operator_logical_and::op1_range (r, type, lhs, op1); } void operator_bitwise_and::update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, BIT_AND_EXPR, lh, rh); } // Optimize BIT_AND_EXPR, BIT_IOR_EXPR and BIT_XOR_EXPR of signed types // by considering the number of leading redundant sign bit copies. // clrsb (X op Y) = min (clrsb (X), clrsb (Y)), so for example // [-1, 0] op [-1, 0] is [-1, 0] (where nonzero_bits doesn't help). static bool wi_optimize_signed_bitwise_op (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) { int lh_clrsb = MIN (wi::clrsb (lh_lb), wi::clrsb (lh_ub)); int rh_clrsb = MIN (wi::clrsb (rh_lb), wi::clrsb (rh_ub)); int new_clrsb = MIN (lh_clrsb, rh_clrsb); if (new_clrsb == 0) return false; int type_prec = TYPE_PRECISION (type); int rprec = (type_prec - new_clrsb) - 1; value_range_with_overflow (r, type, wi::mask (rprec, true, type_prec), wi::mask (rprec, false, type_prec)); return true; } // An AND of 8,16, 32 or 64 bits can produce a partial equivalence between // the LHS and op1. relation_kind operator_bitwise_and::lhs_op1_relation (const irange &lhs, const irange &op1, const irange &op2, relation_kind) const { if (lhs.undefined_p () || op1.undefined_p () || op2.undefined_p ()) return VREL_VARYING; if (!op2.singleton_p ()) return VREL_VARYING; // if val == 0xff or 0xFFFF OR 0Xffffffff OR 0Xffffffffffffffff, return TRUE int prec1 = TYPE_PRECISION (op1.type ()); int prec2 = TYPE_PRECISION (op2.type ()); int mask_prec = 0; wide_int mask = op2.lower_bound (); if (wi::eq_p (mask, wi::mask (8, false, prec2))) mask_prec = 8; else if (wi::eq_p (mask, wi::mask (16, false, prec2))) mask_prec = 16; else if (wi::eq_p (mask, wi::mask (32, false, prec2))) mask_prec = 32; else if (wi::eq_p (mask, wi::mask (64, false, prec2))) mask_prec = 64; return bits_to_pe (MIN (prec1, mask_prec)); } // Optimize BIT_AND_EXPR and BIT_IOR_EXPR in terms of a mask if // possible. Basically, see if we can optimize: // // [LB, UB] op Z // into: // [LB op Z, UB op Z] // // If the optimization was successful, accumulate the range in R and // return TRUE. static bool wi_optimize_and_or (irange &r, enum tree_code code, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) { // Calculate the singleton mask among the ranges, if any. wide_int lower_bound, upper_bound, mask; if (wi::eq_p (rh_lb, rh_ub)) { mask = rh_lb; lower_bound = lh_lb; upper_bound = lh_ub; } else if (wi::eq_p (lh_lb, lh_ub)) { mask = lh_lb; lower_bound = rh_lb; upper_bound = rh_ub; } else return false; // If Z is a constant which (for op | its bitwise not) has n // consecutive least significant bits cleared followed by m 1 // consecutive bits set immediately above it and either // m + n == precision, or (x >> (m + n)) == (y >> (m + n)). // // The least significant n bits of all the values in the range are // cleared or set, the m bits above it are preserved and any bits // above these are required to be the same for all values in the // range. wide_int w = mask; int m = 0, n = 0; if (code == BIT_IOR_EXPR) w = ~w; if (wi::eq_p (w, 0)) n = w.get_precision (); else { n = wi::ctz (w); w = ~(w | wi::mask (n, false, w.get_precision ())); if (wi::eq_p (w, 0)) m = w.get_precision () - n; else m = wi::ctz (w) - n; } wide_int new_mask = wi::mask (m + n, true, w.get_precision ()); if ((new_mask & lower_bound) != (new_mask & upper_bound)) return false; wide_int res_lb, res_ub; if (code == BIT_AND_EXPR) { res_lb = wi::bit_and (lower_bound, mask); res_ub = wi::bit_and (upper_bound, mask); } else if (code == BIT_IOR_EXPR) { res_lb = wi::bit_or (lower_bound, mask); res_ub = wi::bit_or (upper_bound, mask); } else gcc_unreachable (); value_range_with_overflow (r, type, res_lb, res_ub); // Furthermore, if the mask is non-zero, an IOR cannot contain zero. if (code == BIT_IOR_EXPR && wi::ne_p (mask, 0)) { int_range<2> tmp; tmp.set_nonzero (type); r.intersect (tmp); } return true; } // For range [LB, UB] compute two wide_int bit masks. // // In the MAYBE_NONZERO bit mask, if some bit is unset, it means that // for all numbers in the range the bit is 0, otherwise it might be 0 // or 1. // // In the MUSTBE_NONZERO bit mask, if some bit is set, it means that // for all numbers in the range the bit is 1, otherwise it might be 0 // or 1. void wi_set_zero_nonzero_bits (tree type, const wide_int &lb, const wide_int &ub, wide_int &maybe_nonzero, wide_int &mustbe_nonzero) { signop sign = TYPE_SIGN (type); if (wi::eq_p (lb, ub)) maybe_nonzero = mustbe_nonzero = lb; else if (wi::ge_p (lb, 0, sign) || wi::lt_p (ub, 0, sign)) { wide_int xor_mask = lb ^ ub; maybe_nonzero = lb | ub; mustbe_nonzero = lb & ub; if (xor_mask != 0) { wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false, maybe_nonzero.get_precision ()); maybe_nonzero = maybe_nonzero | mask; mustbe_nonzero = wi::bit_and_not (mustbe_nonzero, mask); } } else { maybe_nonzero = wi::minus_one (lb.get_precision ()); mustbe_nonzero = wi::zero (lb.get_precision ()); } } void operator_bitwise_and::wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const { if (wi_optimize_and_or (r, BIT_AND_EXPR, type, lh_lb, lh_ub, rh_lb, rh_ub)) return; wide_int maybe_nonzero_lh, mustbe_nonzero_lh; wide_int maybe_nonzero_rh, mustbe_nonzero_rh; wi_set_zero_nonzero_bits (type, lh_lb, lh_ub, maybe_nonzero_lh, mustbe_nonzero_lh); wi_set_zero_nonzero_bits (type, rh_lb, rh_ub, maybe_nonzero_rh, mustbe_nonzero_rh); wide_int new_lb = mustbe_nonzero_lh & mustbe_nonzero_rh; wide_int new_ub = maybe_nonzero_lh & maybe_nonzero_rh; signop sign = TYPE_SIGN (type); unsigned prec = TYPE_PRECISION (type); // If both input ranges contain only negative values, we can // truncate the result range maximum to the minimum of the // input range maxima. if (wi::lt_p (lh_ub, 0, sign) && wi::lt_p (rh_ub, 0, sign)) { new_ub = wi::min (new_ub, lh_ub, sign); new_ub = wi::min (new_ub, rh_ub, sign); } // If either input range contains only non-negative values // we can truncate the result range maximum to the respective // maximum of the input range. if (wi::ge_p (lh_lb, 0, sign)) new_ub = wi::min (new_ub, lh_ub, sign); if (wi::ge_p (rh_lb, 0, sign)) new_ub = wi::min (new_ub, rh_ub, sign); // PR68217: In case of signed & sign-bit-CST should // result in [-INF, 0] instead of [-INF, INF]. if (wi::gt_p (new_lb, new_ub, sign)) { wide_int sign_bit = wi::set_bit_in_zero (prec - 1, prec); if (sign == SIGNED && ((wi::eq_p (lh_lb, lh_ub) && !wi::cmps (lh_lb, sign_bit)) || (wi::eq_p (rh_lb, rh_ub) && !wi::cmps (rh_lb, sign_bit)))) { new_lb = wi::min_value (prec, sign); new_ub = wi::zero (prec); } } // If the limits got swapped around, return varying. if (wi::gt_p (new_lb, new_ub,sign)) { if (sign == SIGNED && wi_optimize_signed_bitwise_op (r, type, lh_lb, lh_ub, rh_lb, rh_ub)) return; r.set_varying (type); } else value_range_with_overflow (r, type, new_lb, new_ub); } static void set_nonzero_range_from_mask (irange &r, tree type, const irange &lhs) { if (!contains_zero_p (lhs)) r = range_nonzero (type); else r.set_varying (type); } /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any (otherwise return VAL). VAL and MASK must be zero-extended for precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT (to transform signed values into unsigned) and at the end xor SGNBIT back. */ wide_int masked_increment (const wide_int &val_in, const wide_int &mask, const wide_int &sgnbit, unsigned int prec) { wide_int bit = wi::one (prec), res; unsigned int i; wide_int val = val_in ^ sgnbit; for (i = 0; i < prec; i++, bit += bit) { res = mask; if ((res & bit) == 0) continue; res = bit - 1; res = wi::bit_and_not (val + bit, res); res &= mask; if (wi::gtu_p (res, val)) return res ^ sgnbit; } return val ^ sgnbit; } // This was shamelessly stolen from register_edge_assert_for_2 and // adjusted to work with iranges. void operator_bitwise_and::simple_op1_range_solver (irange &r, tree type, const irange &lhs, const irange &op2) const { if (!op2.singleton_p ()) { set_nonzero_range_from_mask (r, type, lhs); return; } unsigned int nprec = TYPE_PRECISION (type); wide_int cst2v = op2.lower_bound (); bool cst2n = wi::neg_p (cst2v, TYPE_SIGN (type)); wide_int sgnbit; if (cst2n) sgnbit = wi::set_bit_in_zero (nprec - 1, nprec); else sgnbit = wi::zero (nprec); // Solve [lhs.lower_bound (), +INF] = x & MASK. // // Minimum unsigned value for >= if (VAL & CST2) == VAL is VAL and // maximum unsigned value is ~0. For signed comparison, if CST2 // doesn't have the most significant bit set, handle it similarly. If // CST2 has MSB set, the minimum is the same, and maximum is ~0U/2. wide_int valv = lhs.lower_bound (); wide_int minv = valv & cst2v, maxv; bool we_know_nothing = false; if (minv != valv) { // If (VAL & CST2) != VAL, X & CST2 can't be equal to VAL. minv = masked_increment (valv, cst2v, sgnbit, nprec); if (minv == valv) { // If we can't determine anything on this bound, fall // through and conservatively solve for the other end point. we_know_nothing = true; } } maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec); if (we_know_nothing) r.set_varying (type); else create_possibly_reversed_range (r, type, minv, maxv); // Solve [-INF, lhs.upper_bound ()] = x & MASK. // // Minimum unsigned value for <= is 0 and maximum unsigned value is // VAL | ~CST2 if (VAL & CST2) == VAL. Otherwise, find smallest // VAL2 where // VAL2 > VAL && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2 // as maximum. // For signed comparison, if CST2 doesn't have most significant bit // set, handle it similarly. If CST2 has MSB set, the maximum is // the same and minimum is INT_MIN. valv = lhs.upper_bound (); minv = valv & cst2v; if (minv == valv) maxv = valv; else { maxv = masked_increment (valv, cst2v, sgnbit, nprec); if (maxv == valv) { // If we couldn't determine anything on either bound, return // undefined. if (we_know_nothing) r.set_undefined (); return; } maxv -= 1; } maxv |= ~cst2v; minv = sgnbit; int_range<2> upper_bits; create_possibly_reversed_range (upper_bits, type, minv, maxv); r.intersect (upper_bits); } bool operator_bitwise_and::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { if (lhs.undefined_p ()) return false; if (types_compatible_p (type, boolean_type_node)) return op_logical_and.op1_range (r, type, lhs, op2); r.set_undefined (); for (unsigned i = 0; i < lhs.num_pairs (); ++i) { int_range_max chunk (lhs.type (), lhs.lower_bound (i), lhs.upper_bound (i)); int_range_max res; simple_op1_range_solver (res, type, chunk, op2); r.union_ (res); } if (r.undefined_p ()) set_nonzero_range_from_mask (r, type, lhs); // For MASK == op1 & MASK, all the bits in MASK must be set in op1. wide_int mask; if (lhs == op2 && lhs.singleton_p (mask)) { r.update_bitmask (irange_bitmask (mask, ~mask)); return true; } // For 0 = op1 & MASK, op1 is ~MASK. if (lhs.zero_p () && op2.singleton_p ()) { wide_int nz = wi::bit_not (op2.get_nonzero_bits ()); int_range<2> tmp (type); tmp.set_nonzero_bits (nz); r.intersect (tmp); } return true; } bool operator_bitwise_and::op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio) const { return operator_bitwise_and::op1_range (r, type, lhs, op1); } class operator_logical_or : public range_operator { using range_operator::fold_range; using range_operator::op1_range; using range_operator::op2_range; public: virtual bool fold_range (irange &r, tree type, const irange &lh, const irange &rh, relation_trio rel = TRIO_VARYING) const; virtual bool op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio rel = TRIO_VARYING) const; virtual bool op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio rel = TRIO_VARYING) const; } op_logical_or; bool operator_logical_or::fold_range (irange &r, tree type ATTRIBUTE_UNUSED, const irange &lh, const irange &rh, relation_trio) const { if (empty_range_varying (r, type, lh, rh)) return true; r = lh; r.union_ (rh); return true; } bool operator_logical_or::op1_range (irange &r, tree type, const irange &lhs, const irange &op2 ATTRIBUTE_UNUSED, relation_trio) const { switch (get_bool_state (r, lhs, type)) { case BRS_FALSE: // A false result means both sides of the OR must be false. r = range_false (type); break; default: // Any other result means only one side has to be true, the // other side can be anything. so we can't be sure of any result // here. r = range_true_and_false (type); break; } return true; } bool operator_logical_or::op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio) const { return operator_logical_or::op1_range (r, type, lhs, op1); } void operator_bitwise_or::update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, BIT_IOR_EXPR, lh, rh); } void operator_bitwise_or::wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const { if (wi_optimize_and_or (r, BIT_IOR_EXPR, type, lh_lb, lh_ub, rh_lb, rh_ub)) return; wide_int maybe_nonzero_lh, mustbe_nonzero_lh; wide_int maybe_nonzero_rh, mustbe_nonzero_rh; wi_set_zero_nonzero_bits (type, lh_lb, lh_ub, maybe_nonzero_lh, mustbe_nonzero_lh); wi_set_zero_nonzero_bits (type, rh_lb, rh_ub, maybe_nonzero_rh, mustbe_nonzero_rh); wide_int new_lb = mustbe_nonzero_lh | mustbe_nonzero_rh; wide_int new_ub = maybe_nonzero_lh | maybe_nonzero_rh; signop sign = TYPE_SIGN (type); // If the input ranges contain only positive values we can // truncate the minimum of the result range to the maximum // of the input range minima. if (wi::ge_p (lh_lb, 0, sign) && wi::ge_p (rh_lb, 0, sign)) { new_lb = wi::max (new_lb, lh_lb, sign); new_lb = wi::max (new_lb, rh_lb, sign); } // If either input range contains only negative values // we can truncate the minimum of the result range to the // respective minimum range. if (wi::lt_p (lh_ub, 0, sign)) new_lb = wi::max (new_lb, lh_lb, sign); if (wi::lt_p (rh_ub, 0, sign)) new_lb = wi::max (new_lb, rh_lb, sign); // If the limits got swapped around, return a conservative range. if (wi::gt_p (new_lb, new_ub, sign)) { // Make sure that nonzero|X is nonzero. if (wi::gt_p (lh_lb, 0, sign) || wi::gt_p (rh_lb, 0, sign) || wi::lt_p (lh_ub, 0, sign) || wi::lt_p (rh_ub, 0, sign)) r.set_nonzero (type); else if (sign == SIGNED && wi_optimize_signed_bitwise_op (r, type, lh_lb, lh_ub, rh_lb, rh_ub)) return; else r.set_varying (type); return; } value_range_with_overflow (r, type, new_lb, new_ub); } bool operator_bitwise_or::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { if (lhs.undefined_p ()) return false; // If this is really a logical wi_fold, call that. if (types_compatible_p (type, boolean_type_node)) return op_logical_or.op1_range (r, type, lhs, op2); if (lhs.zero_p ()) { r.set_zero (type); return true; } r.set_varying (type); return true; } bool operator_bitwise_or::op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio) const { return operator_bitwise_or::op1_range (r, type, lhs, op1); } void operator_bitwise_xor::update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, BIT_XOR_EXPR, lh, rh); } void operator_bitwise_xor::wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const { signop sign = TYPE_SIGN (type); wide_int maybe_nonzero_lh, mustbe_nonzero_lh; wide_int maybe_nonzero_rh, mustbe_nonzero_rh; wi_set_zero_nonzero_bits (type, lh_lb, lh_ub, maybe_nonzero_lh, mustbe_nonzero_lh); wi_set_zero_nonzero_bits (type, rh_lb, rh_ub, maybe_nonzero_rh, mustbe_nonzero_rh); wide_int result_zero_bits = ((mustbe_nonzero_lh & mustbe_nonzero_rh) | ~(maybe_nonzero_lh | maybe_nonzero_rh)); wide_int result_one_bits = (wi::bit_and_not (mustbe_nonzero_lh, maybe_nonzero_rh) | wi::bit_and_not (mustbe_nonzero_rh, maybe_nonzero_lh)); wide_int new_ub = ~result_zero_bits; wide_int new_lb = result_one_bits; // If the range has all positive or all negative values, the result // is better than VARYING. if (wi::lt_p (new_lb, 0, sign) || wi::ge_p (new_ub, 0, sign)) value_range_with_overflow (r, type, new_lb, new_ub); else if (sign == SIGNED && wi_optimize_signed_bitwise_op (r, type, lh_lb, lh_ub, rh_lb, rh_ub)) ; /* Do nothing. */ else r.set_varying (type); /* Furthermore, XOR is non-zero if its arguments can't be equal. */ if (wi::lt_p (lh_ub, rh_lb, sign) || wi::lt_p (rh_ub, lh_lb, sign) || wi::ne_p (result_one_bits, 0)) { int_range<2> tmp; tmp.set_nonzero (type); r.intersect (tmp); } } bool operator_bitwise_xor::op1_op2_relation_effect (irange &lhs_range, tree type, const irange &, const irange &, relation_kind rel) const { if (rel == VREL_VARYING) return false; int_range<2> rel_range; switch (rel) { case VREL_EQ: rel_range.set_zero (type); break; case VREL_NE: rel_range.set_nonzero (type); break; default: return false; } lhs_range.intersect (rel_range); return true; } bool operator_bitwise_xor::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { if (lhs.undefined_p () || lhs.varying_p ()) { r = lhs; return true; } if (types_compatible_p (type, boolean_type_node)) { switch (get_bool_state (r, lhs, type)) { case BRS_TRUE: if (op2.varying_p ()) r.set_varying (type); else if (op2.zero_p ()) r = range_true (type); // See get_bool_state for the rationale else if (contains_zero_p (op2)) r = range_true_and_false (type); else r = range_false (type); break; case BRS_FALSE: r = op2; break; default: break; } return true; } r.set_varying (type); return true; } bool operator_bitwise_xor::op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio) const { return operator_bitwise_xor::op1_range (r, type, lhs, op1); } class operator_trunc_mod : public range_operator { using range_operator::op1_range; using range_operator::op2_range; public: virtual void wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const; virtual bool op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const; virtual bool op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio) const; void update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, TRUNC_MOD_EXPR, lh, rh); } } op_trunc_mod; void operator_trunc_mod::wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const { wide_int new_lb, new_ub, tmp; signop sign = TYPE_SIGN (type); unsigned prec = TYPE_PRECISION (type); // Mod 0 is undefined. if (wi_zero_p (type, rh_lb, rh_ub)) { r.set_undefined (); return; } // Check for constant and try to fold. if (lh_lb == lh_ub && rh_lb == rh_ub) { wi::overflow_type ov = wi::OVF_NONE; tmp = wi::mod_trunc (lh_lb, rh_lb, sign, &ov); if (ov == wi::OVF_NONE) { r = int_range<2> (type, tmp, tmp); return; } } // ABS (A % B) < ABS (B) and either 0 <= A % B <= A or A <= A % B <= 0. new_ub = rh_ub - 1; if (sign == SIGNED) { tmp = -1 - rh_lb; new_ub = wi::smax (new_ub, tmp); } if (sign == UNSIGNED) new_lb = wi::zero (prec); else { new_lb = -new_ub; tmp = lh_lb; if (wi::gts_p (tmp, 0)) tmp = wi::zero (prec); new_lb = wi::smax (new_lb, tmp); } tmp = lh_ub; if (sign == SIGNED && wi::neg_p (tmp)) tmp = wi::zero (prec); new_ub = wi::min (new_ub, tmp, sign); value_range_with_overflow (r, type, new_lb, new_ub); } bool operator_trunc_mod::op1_range (irange &r, tree type, const irange &lhs, const irange &, relation_trio) const { if (lhs.undefined_p ()) return false; // PR 91029. signop sign = TYPE_SIGN (type); unsigned prec = TYPE_PRECISION (type); // (a % b) >= x && x > 0 , then a >= x. if (wi::gt_p (lhs.lower_bound (), 0, sign)) { r = value_range (type, lhs.lower_bound (), wi::max_value (prec, sign)); return true; } // (a % b) <= x && x < 0 , then a <= x. if (wi::lt_p (lhs.upper_bound (), 0, sign)) { r = value_range (type, wi::min_value (prec, sign), lhs.upper_bound ()); return true; } return false; } bool operator_trunc_mod::op2_range (irange &r, tree type, const irange &lhs, const irange &, relation_trio) const { if (lhs.undefined_p ()) return false; // PR 91029. signop sign = TYPE_SIGN (type); unsigned prec = TYPE_PRECISION (type); // (a % b) >= x && x > 0 , then b is in ~[-x, x] for signed // or b > x for unsigned. if (wi::gt_p (lhs.lower_bound (), 0, sign)) { if (sign == SIGNED) r = value_range (type, wi::neg (lhs.lower_bound ()), lhs.lower_bound (), VR_ANTI_RANGE); else if (wi::lt_p (lhs.lower_bound (), wi::max_value (prec, sign), sign)) r = value_range (type, lhs.lower_bound () + 1, wi::max_value (prec, sign)); else return false; return true; } // (a % b) <= x && x < 0 , then b is in ~[x, -x]. if (wi::lt_p (lhs.upper_bound (), 0, sign)) { if (wi::gt_p (lhs.upper_bound (), wi::min_value (prec, sign), sign)) r = value_range (type, lhs.upper_bound (), wi::neg (lhs.upper_bound ()), VR_ANTI_RANGE); else return false; return true; } return false; } class operator_logical_not : public range_operator { using range_operator::fold_range; using range_operator::op1_range; public: virtual bool fold_range (irange &r, tree type, const irange &lh, const irange &rh, relation_trio rel = TRIO_VARYING) const; virtual bool op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio rel = TRIO_VARYING) const; } op_logical_not; // Folding a logical NOT, oddly enough, involves doing nothing on the // forward pass through. During the initial walk backwards, the // logical NOT reversed the desired outcome on the way back, so on the // way forward all we do is pass the range forward. // // b_2 = x_1 < 20 // b_3 = !b_2 // if (b_3) // to determine the TRUE branch, walking backward // if (b_3) if ([1,1]) // b_3 = !b_2 [1,1] = ![0,0] // b_2 = x_1 < 20 [0,0] = x_1 < 20, false, so x_1 == [20, 255] // which is the result we are looking for.. so.. pass it through. bool operator_logical_not::fold_range (irange &r, tree type, const irange &lh, const irange &rh ATTRIBUTE_UNUSED, relation_trio) const { if (empty_range_varying (r, type, lh, rh)) return true; r = lh; if (!lh.varying_p () && !lh.undefined_p ()) r.invert (); return true; } bool operator_logical_not::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { // Logical NOT is involutary...do it again. return fold_range (r, type, lhs, op2); } bool operator_bitwise_not::fold_range (irange &r, tree type, const irange &lh, const irange &rh, relation_trio) const { if (empty_range_varying (r, type, lh, rh)) return true; if (types_compatible_p (type, boolean_type_node)) return op_logical_not.fold_range (r, type, lh, rh); // ~X is simply -1 - X. int_range<1> minusone (type, wi::minus_one (TYPE_PRECISION (type)), wi::minus_one (TYPE_PRECISION (type))); return range_op_handler (MINUS_EXPR).fold_range (r, type, minusone, lh); } bool operator_bitwise_not::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { if (lhs.undefined_p ()) return false; if (types_compatible_p (type, boolean_type_node)) return op_logical_not.op1_range (r, type, lhs, op2); // ~X is -1 - X and since bitwise NOT is involutary...do it again. return fold_range (r, type, lhs, op2); } void operator_bitwise_not::update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, BIT_NOT_EXPR, lh, rh); } bool operator_cst::fold_range (irange &r, tree type ATTRIBUTE_UNUSED, const irange &lh, const irange &rh ATTRIBUTE_UNUSED, relation_trio) const { r = lh; return true; } // Determine if there is a relationship between LHS and OP1. relation_kind operator_identity::lhs_op1_relation (const irange &lhs, const irange &op1 ATTRIBUTE_UNUSED, const irange &op2 ATTRIBUTE_UNUSED, relation_kind) const { if (lhs.undefined_p ()) return VREL_VARYING; // Simply a copy, so they are equivalent. return VREL_EQ; } bool operator_identity::fold_range (irange &r, tree type ATTRIBUTE_UNUSED, const irange &lh, const irange &rh ATTRIBUTE_UNUSED, relation_trio) const { r = lh; return true; } bool operator_identity::op1_range (irange &r, tree type ATTRIBUTE_UNUSED, const irange &lhs, const irange &op2 ATTRIBUTE_UNUSED, relation_trio) const { r = lhs; return true; } class operator_unknown : public range_operator { using range_operator::fold_range; public: virtual bool fold_range (irange &r, tree type, const irange &op1, const irange &op2, relation_trio rel = TRIO_VARYING) const; } op_unknown; bool operator_unknown::fold_range (irange &r, tree type, const irange &lh ATTRIBUTE_UNUSED, const irange &rh ATTRIBUTE_UNUSED, relation_trio) const { r.set_varying (type); return true; } void operator_abs::wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb ATTRIBUTE_UNUSED, const wide_int &rh_ub ATTRIBUTE_UNUSED) const { wide_int min, max; signop sign = TYPE_SIGN (type); unsigned prec = TYPE_PRECISION (type); // Pass through LH for the easy cases. if (sign == UNSIGNED || wi::ge_p (lh_lb, 0, sign)) { r = int_range<1> (type, lh_lb, lh_ub); return; } // -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get // a useful range. wide_int min_value = wi::min_value (prec, sign); wide_int max_value = wi::max_value (prec, sign); if (!TYPE_OVERFLOW_UNDEFINED (type) && wi::eq_p (lh_lb, min_value)) { r.set_varying (type); return; } // ABS_EXPR may flip the range around, if the original range // included negative values. if (wi::eq_p (lh_lb, min_value)) { // ABS ([-MIN, -MIN]) isn't representable, but we have traditionally // returned [-MIN,-MIN] so this preserves that behavior. PR37078 if (wi::eq_p (lh_ub, min_value)) { r = int_range<1> (type, min_value, min_value); return; } min = max_value; } else min = wi::abs (lh_lb); if (wi::eq_p (lh_ub, min_value)) max = max_value; else max = wi::abs (lh_ub); // If the range contains zero then we know that the minimum value in the // range will be zero. if (wi::le_p (lh_lb, 0, sign) && wi::ge_p (lh_ub, 0, sign)) { if (wi::gt_p (min, max, sign)) max = min; min = wi::zero (prec); } else { // If the range was reversed, swap MIN and MAX. if (wi::gt_p (min, max, sign)) std::swap (min, max); } // If the new range has its limits swapped around (MIN > MAX), then // the operation caused one of them to wrap around. The only thing // we know is that the result is positive. if (wi::gt_p (min, max, sign)) { min = wi::zero (prec); max = max_value; } r = int_range<1> (type, min, max); } bool operator_abs::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { if (empty_range_varying (r, type, lhs, op2)) return true; if (TYPE_UNSIGNED (type)) { r = lhs; return true; } // Start with the positives because negatives are an impossible result. int_range_max positives = range_positives (type); positives.intersect (lhs); r = positives; // Then add the negative of each pair: // ABS(op1) = [5,20] would yield op1 => [-20,-5][5,20]. for (unsigned i = 0; i < positives.num_pairs (); ++i) r.union_ (int_range<1> (type, -positives.upper_bound (i), -positives.lower_bound (i))); // With flag_wrapv, -TYPE_MIN_VALUE = TYPE_MIN_VALUE which is // unrepresentable. Add -TYPE_MIN_VALUE in this case. wide_int min_value = wi::min_value (TYPE_PRECISION (type), TYPE_SIGN (type)); wide_int lb = lhs.lower_bound (); if (!TYPE_OVERFLOW_UNDEFINED (type) && wi::eq_p (lb, min_value)) r.union_ (int_range<2> (type, lb, lb)); return true; } void operator_abs::update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, ABS_EXPR, lh, rh); } class operator_absu : public range_operator { public: virtual void wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const; virtual void update_bitmask (irange &r, const irange &lh, const irange &rh) const final override; } op_absu; void operator_absu::wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb ATTRIBUTE_UNUSED, const wide_int &rh_ub ATTRIBUTE_UNUSED) const { wide_int new_lb, new_ub; // Pass through VR0 the easy cases. if (wi::ges_p (lh_lb, 0)) { new_lb = lh_lb; new_ub = lh_ub; } else { new_lb = wi::abs (lh_lb); new_ub = wi::abs (lh_ub); // If the range contains zero then we know that the minimum // value in the range will be zero. if (wi::ges_p (lh_ub, 0)) { if (wi::gtu_p (new_lb, new_ub)) new_ub = new_lb; new_lb = wi::zero (TYPE_PRECISION (type)); } else std::swap (new_lb, new_ub); } gcc_checking_assert (TYPE_UNSIGNED (type)); r = int_range<1> (type, new_lb, new_ub); } void operator_absu::update_bitmask (irange &r, const irange &lh, const irange &rh) const { update_known_bitmask (r, ABSU_EXPR, lh, rh); } bool operator_negate::fold_range (irange &r, tree type, const irange &lh, const irange &rh, relation_trio) const { if (empty_range_varying (r, type, lh, rh)) return true; // -X is simply 0 - X. return range_op_handler (MINUS_EXPR).fold_range (r, type, range_zero (type), lh); } bool operator_negate::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { // NEGATE is involutory. return fold_range (r, type, lhs, op2); } bool operator_addr_expr::fold_range (irange &r, tree type, const irange &lh, const irange &rh, relation_trio) const { if (empty_range_varying (r, type, lh, rh)) return true; // Return a non-null pointer of the LHS type (passed in op2). if (lh.zero_p ()) r = range_zero (type); else if (!contains_zero_p (lh)) r = range_nonzero (type); else r.set_varying (type); return true; } bool operator_addr_expr::op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio) const { if (empty_range_varying (r, type, lhs, op2)) return true; // Return a non-null pointer of the LHS type (passed in op2), but only // if we cant overflow, eitherwise a no-zero offset could wrap to zero. // See PR 111009. if (!contains_zero_p (lhs) && TYPE_OVERFLOW_UNDEFINED (type)) r = range_nonzero (type); else r.set_varying (type); return true; } // Initialize any integral operators to the primary table void range_op_table::initialize_integral_ops () { set (TRUNC_DIV_EXPR, op_trunc_div); set (FLOOR_DIV_EXPR, op_floor_div); set (ROUND_DIV_EXPR, op_round_div); set (CEIL_DIV_EXPR, op_ceil_div); set (EXACT_DIV_EXPR, op_exact_div); set (LSHIFT_EXPR, op_lshift); set (RSHIFT_EXPR, op_rshift); set (TRUTH_AND_EXPR, op_logical_and); set (TRUTH_OR_EXPR, op_logical_or); set (TRUNC_MOD_EXPR, op_trunc_mod); set (TRUTH_NOT_EXPR, op_logical_not); set (IMAGPART_EXPR, op_unknown); set (REALPART_EXPR, op_unknown); set (ABSU_EXPR, op_absu); set (OP_WIDEN_MULT_SIGNED, op_widen_mult_signed); set (OP_WIDEN_MULT_UNSIGNED, op_widen_mult_unsigned); set (OP_WIDEN_PLUS_SIGNED, op_widen_plus_signed); set (OP_WIDEN_PLUS_UNSIGNED, op_widen_plus_unsigned); } #if CHECKING_P #include "selftest.h" namespace selftest { #define INT(x) wi::shwi ((x), TYPE_PRECISION (integer_type_node)) #define UINT(x) wi::uhwi ((x), TYPE_PRECISION (unsigned_type_node)) #define INT16(x) wi::shwi ((x), TYPE_PRECISION (short_integer_type_node)) #define UINT16(x) wi::uhwi ((x), TYPE_PRECISION (short_unsigned_type_node)) #define SCHAR(x) wi::shwi ((x), TYPE_PRECISION (signed_char_type_node)) #define UCHAR(x) wi::uhwi ((x), TYPE_PRECISION (unsigned_char_type_node)) static void range_op_cast_tests () { int_range<2> r0, r1, r2, rold; r0.set_varying (integer_type_node); wide_int maxint = r0.upper_bound (); // If a range is in any way outside of the range for the converted // to range, default to the range for the new type. r0.set_varying (short_integer_type_node); wide_int minshort = r0.lower_bound (); wide_int maxshort = r0.upper_bound (); if (TYPE_PRECISION (integer_type_node) > TYPE_PRECISION (short_integer_type_node)) { r1 = int_range<1> (integer_type_node, wi::zero (TYPE_PRECISION (integer_type_node)), maxint); range_cast (r1, short_integer_type_node); ASSERT_TRUE (r1.lower_bound () == minshort && r1.upper_bound() == maxshort); } // (unsigned char)[-5,-1] => [251,255]. r0 = rold = int_range<1> (signed_char_type_node, SCHAR (-5), SCHAR (-1)); range_cast (r0, unsigned_char_type_node); ASSERT_TRUE (r0 == int_range<1> (unsigned_char_type_node, UCHAR (251), UCHAR (255))); range_cast (r0, signed_char_type_node); ASSERT_TRUE (r0 == rold); // (signed char)[15, 150] => [-128,-106][15,127]. r0 = rold = int_range<1> (unsigned_char_type_node, UCHAR (15), UCHAR (150)); range_cast (r0, signed_char_type_node); r1 = int_range<1> (signed_char_type_node, SCHAR (15), SCHAR (127)); r2 = int_range<1> (signed_char_type_node, SCHAR (-128), SCHAR (-106)); r1.union_ (r2); ASSERT_TRUE (r1 == r0); range_cast (r0, unsigned_char_type_node); ASSERT_TRUE (r0 == rold); // (unsigned char)[-5, 5] => [0,5][251,255]. r0 = rold = int_range<1> (signed_char_type_node, SCHAR (-5), SCHAR (5)); range_cast (r0, unsigned_char_type_node); r1 = int_range<1> (unsigned_char_type_node, UCHAR (251), UCHAR (255)); r2 = int_range<1> (unsigned_char_type_node, UCHAR (0), UCHAR (5)); r1.union_ (r2); ASSERT_TRUE (r0 == r1); range_cast (r0, signed_char_type_node); ASSERT_TRUE (r0 == rold); // (unsigned char)[-5,5] => [0,5][251,255]. r0 = int_range<1> (integer_type_node, INT (-5), INT (5)); range_cast (r0, unsigned_char_type_node); r1 = int_range<1> (unsigned_char_type_node, UCHAR (0), UCHAR (5)); r1.union_ (int_range<1> (unsigned_char_type_node, UCHAR (251), UCHAR (255))); ASSERT_TRUE (r0 == r1); // (unsigned char)[5U,1974U] => [0,255]. r0 = int_range<1> (unsigned_type_node, UINT (5), UINT (1974)); range_cast (r0, unsigned_char_type_node); ASSERT_TRUE (r0 == int_range<1> (unsigned_char_type_node, UCHAR (0), UCHAR (255))); range_cast (r0, integer_type_node); // Going to a wider range should not sign extend. ASSERT_TRUE (r0 == int_range<1> (integer_type_node, INT (0), INT (255))); // (unsigned char)[-350,15] => [0,255]. r0 = int_range<1> (integer_type_node, INT (-350), INT (15)); range_cast (r0, unsigned_char_type_node); ASSERT_TRUE (r0 == (int_range<1> (unsigned_char_type_node, min_limit (unsigned_char_type_node), max_limit (unsigned_char_type_node)))); // Casting [-120,20] from signed char to unsigned short. // => [0, 20][0xff88, 0xffff]. r0 = int_range<1> (signed_char_type_node, SCHAR (-120), SCHAR (20)); range_cast (r0, short_unsigned_type_node); r1 = int_range<1> (short_unsigned_type_node, UINT16 (0), UINT16 (20)); r2 = int_range<1> (short_unsigned_type_node, UINT16 (0xff88), UINT16 (0xffff)); r1.union_ (r2); ASSERT_TRUE (r0 == r1); // A truncating cast back to signed char will work because [-120, 20] // is representable in signed char. range_cast (r0, signed_char_type_node); ASSERT_TRUE (r0 == int_range<1> (signed_char_type_node, SCHAR (-120), SCHAR (20))); // unsigned char -> signed short // (signed short)[(unsigned char)25, (unsigned char)250] // => [(signed short)25, (signed short)250] r0 = rold = int_range<1> (unsigned_char_type_node, UCHAR (25), UCHAR (250)); range_cast (r0, short_integer_type_node); r1 = int_range<1> (short_integer_type_node, INT16 (25), INT16 (250)); ASSERT_TRUE (r0 == r1); range_cast (r0, unsigned_char_type_node); ASSERT_TRUE (r0 == rold); // Test casting a wider signed [-MIN,MAX] to a narrower unsigned. r0 = int_range<1> (long_long_integer_type_node, min_limit (long_long_integer_type_node), max_limit (long_long_integer_type_node)); range_cast (r0, short_unsigned_type_node); r1 = int_range<1> (short_unsigned_type_node, min_limit (short_unsigned_type_node), max_limit (short_unsigned_type_node)); ASSERT_TRUE (r0 == r1); // Casting NONZERO to a narrower type will wrap/overflow so // it's just the entire range for the narrower type. // // "NOT 0 at signed 32-bits" ==> [-MIN_32,-1][1, +MAX_32]. This is // is outside of the range of a smaller range, return the full // smaller range. if (TYPE_PRECISION (integer_type_node) > TYPE_PRECISION (short_integer_type_node)) { r0 = range_nonzero (integer_type_node); range_cast (r0, short_integer_type_node); r1 = int_range<1> (short_integer_type_node, min_limit (short_integer_type_node), max_limit (short_integer_type_node)); ASSERT_TRUE (r0 == r1); } // Casting NONZERO from a narrower signed to a wider signed. // // NONZERO signed 16-bits is [-MIN_16,-1][1, +MAX_16]. // Converting this to 32-bits signed is [-MIN_16,-1][1, +MAX_16]. r0 = range_nonzero (short_integer_type_node); range_cast (r0, integer_type_node); r1 = int_range<1> (integer_type_node, INT (-32768), INT (-1)); r2 = int_range<1> (integer_type_node, INT (1), INT (32767)); r1.union_ (r2); ASSERT_TRUE (r0 == r1); } static void range_op_lshift_tests () { // Test that 0x808.... & 0x8.... still contains 0x8.... // for a large set of numbers. { int_range_max res; tree big_type = long_long_unsigned_type_node; unsigned big_prec = TYPE_PRECISION (big_type); // big_num = 0x808,0000,0000,0000 wide_int big_num = wi::lshift (wi::uhwi (0x808, big_prec), wi::uhwi (48, big_prec)); op_bitwise_and.fold_range (res, big_type, int_range <1> (big_type), int_range <1> (big_type, big_num, big_num)); // val = 0x8,0000,0000,0000 wide_int val = wi::lshift (wi::uhwi (8, big_prec), wi::uhwi (48, big_prec)); ASSERT_TRUE (res.contains_p (val)); } if (TYPE_PRECISION (unsigned_type_node) > 31) { // unsigned VARYING = op1 << 1 should be VARYING. int_range<2> lhs (unsigned_type_node); int_range<2> shift (unsigned_type_node, INT (1), INT (1)); int_range_max op1; op_lshift.op1_range (op1, unsigned_type_node, lhs, shift); ASSERT_TRUE (op1.varying_p ()); // 0 = op1 << 1 should be [0,0], [0x8000000, 0x8000000]. int_range<2> zero (unsigned_type_node, UINT (0), UINT (0)); op_lshift.op1_range (op1, unsigned_type_node, zero, shift); ASSERT_TRUE (op1.num_pairs () == 2); // Remove the [0,0] range. op1.intersect (zero); ASSERT_TRUE (op1.num_pairs () == 1); // op1 << 1 should be [0x8000,0x8000] << 1, // which should result in [0,0]. int_range_max result; op_lshift.fold_range (result, unsigned_type_node, op1, shift); ASSERT_TRUE (result == zero); } // signed VARYING = op1 << 1 should be VARYING. if (TYPE_PRECISION (integer_type_node) > 31) { // unsigned VARYING = op1 << 1 should be VARYING. int_range<2> lhs (integer_type_node); int_range<2> shift (integer_type_node, INT (1), INT (1)); int_range_max op1; op_lshift.op1_range (op1, integer_type_node, lhs, shift); ASSERT_TRUE (op1.varying_p ()); // 0 = op1 << 1 should be [0,0], [0x8000000, 0x8000000]. int_range<2> zero (integer_type_node, INT (0), INT (0)); op_lshift.op1_range (op1, integer_type_node, zero, shift); ASSERT_TRUE (op1.num_pairs () == 2); // Remove the [0,0] range. op1.intersect (zero); ASSERT_TRUE (op1.num_pairs () == 1); // op1 << 1 should be [0x8000,0x8000] << 1, // which should result in [0,0]. int_range_max result; op_lshift.fold_range (result, unsigned_type_node, op1, shift); ASSERT_TRUE (result == zero); } } static void range_op_rshift_tests () { // unsigned: [3, MAX] = OP1 >> 1 { int_range_max lhs (unsigned_type_node, UINT (3), max_limit (unsigned_type_node)); int_range_max one (unsigned_type_node, wi::one (TYPE_PRECISION (unsigned_type_node)), wi::one (TYPE_PRECISION (unsigned_type_node))); int_range_max op1; op_rshift.op1_range (op1, unsigned_type_node, lhs, one); ASSERT_FALSE (op1.contains_p (UINT (3))); } // signed: [3, MAX] = OP1 >> 1 { int_range_max lhs (integer_type_node, INT (3), max_limit (integer_type_node)); int_range_max one (integer_type_node, INT (1), INT (1)); int_range_max op1; op_rshift.op1_range (op1, integer_type_node, lhs, one); ASSERT_FALSE (op1.contains_p (INT (-2))); } // This is impossible, so OP1 should be []. // signed: [MIN, MIN] = OP1 >> 1 { int_range_max lhs (integer_type_node, min_limit (integer_type_node), min_limit (integer_type_node)); int_range_max one (integer_type_node, INT (1), INT (1)); int_range_max op1; op_rshift.op1_range (op1, integer_type_node, lhs, one); ASSERT_TRUE (op1.undefined_p ()); } // signed: ~[-1] = OP1 >> 31 if (TYPE_PRECISION (integer_type_node) > 31) { int_range_max lhs (integer_type_node, INT (-1), INT (-1), VR_ANTI_RANGE); int_range_max shift (integer_type_node, INT (31), INT (31)); int_range_max op1; op_rshift.op1_range (op1, integer_type_node, lhs, shift); int_range_max negatives = range_negatives (integer_type_node); negatives.intersect (op1); ASSERT_TRUE (negatives.undefined_p ()); } } static void range_op_bitwise_and_tests () { int_range_max res; wide_int min = min_limit (integer_type_node); wide_int max = max_limit (integer_type_node); wide_int tiny = wi::add (min, wi::one (TYPE_PRECISION (integer_type_node))); int_range_max i1 (integer_type_node, tiny, max); int_range_max i2 (integer_type_node, INT (255), INT (255)); // [MIN+1, MAX] = OP1 & 255: OP1 is VARYING op_bitwise_and.op1_range (res, integer_type_node, i1, i2); ASSERT_TRUE (res == int_range<1> (integer_type_node)); // VARYING = OP1 & 255: OP1 is VARYING i1 = int_range<1> (integer_type_node); op_bitwise_and.op1_range (res, integer_type_node, i1, i2); ASSERT_TRUE (res == int_range<1> (integer_type_node)); // For 0 = x & MASK, x is ~MASK. { int_range<2> zero (integer_type_node, INT (0), INT (0)); int_range<2> mask = int_range<2> (integer_type_node, INT (7), INT (7)); op_bitwise_and.op1_range (res, integer_type_node, zero, mask); wide_int inv = wi::shwi (~7U, TYPE_PRECISION (integer_type_node)); ASSERT_TRUE (res.get_nonzero_bits () == inv); } // (NONZERO | X) is nonzero. i1.set_nonzero (integer_type_node); i2.set_varying (integer_type_node); op_bitwise_or.fold_range (res, integer_type_node, i1, i2); ASSERT_TRUE (res.nonzero_p ()); // (NEGATIVE | X) is nonzero. i1 = int_range<1> (integer_type_node, INT (-5), INT (-3)); i2.set_varying (integer_type_node); op_bitwise_or.fold_range (res, integer_type_node, i1, i2); ASSERT_FALSE (res.contains_p (INT (0))); } static void range_relational_tests () { int_range<2> lhs (unsigned_char_type_node); int_range<2> op1 (unsigned_char_type_node, UCHAR (8), UCHAR (10)); int_range<2> op2 (unsigned_char_type_node, UCHAR (20), UCHAR (20)); // Never wrapping additions mean LHS > OP1. relation_kind code = op_plus.lhs_op1_relation (lhs, op1, op2, VREL_VARYING); ASSERT_TRUE (code == VREL_GT); // Most wrapping additions mean nothing... op1 = int_range<2> (unsigned_char_type_node, UCHAR (8), UCHAR (10)); op2 = int_range<2> (unsigned_char_type_node, UCHAR (0), UCHAR (255)); code = op_plus.lhs_op1_relation (lhs, op1, op2, VREL_VARYING); ASSERT_TRUE (code == VREL_VARYING); // However, always wrapping additions mean LHS < OP1. op1 = int_range<2> (unsigned_char_type_node, UCHAR (1), UCHAR (255)); op2 = int_range<2> (unsigned_char_type_node, UCHAR (255), UCHAR (255)); code = op_plus.lhs_op1_relation (lhs, op1, op2, VREL_VARYING); ASSERT_TRUE (code == VREL_LT); } void range_op_tests () { range_op_rshift_tests (); range_op_lshift_tests (); range_op_bitwise_and_tests (); range_op_cast_tests (); range_relational_tests (); extern void range_op_float_tests (); range_op_float_tests (); } } // namespace selftest #endif // CHECKING_P