/* Profile counter container type. Copyright (C) 2017-2024 Free Software Foundation, Inc. Contributed by Jan Hubicka This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "profile-count.h" #include "options.h" #include "tree.h" #include "basic-block.h" #include "function.h" #include "cfg.h" #include "gimple.h" #include "data-streamer.h" #include "cgraph.h" #include "wide-int.h" #include "sreal.h" /* Names from profile_quality enum values. */ const char *profile_quality_names[] = { "uninitialized", "guessed_local", "guessed_global0", "guessed_global0adjusted", "guessed", "afdo", "adjusted", "precise" }; /* Get a string describing QUALITY. */ const char * profile_quality_as_string (enum profile_quality quality) { return profile_quality_names[quality]; } /* Parse VALUE as profile quality and return true when a valid QUALITY. */ bool parse_profile_quality (const char *value, profile_quality *quality) { for (unsigned i = 0; i < ARRAY_SIZE (profile_quality_names); i++) if (strcmp (profile_quality_names[i], value) == 0) { *quality = (profile_quality)i; return true; } return false; } /* Display names from profile_quality enum values. */ const char *profile_quality_display_names[] = { NULL, "estimated locally", "estimated locally, globally 0", "estimated locally, globally 0 adjusted", "guessed", "auto FDO", "adjusted", "precise" }; /* Dump THIS to F. */ void profile_count::dump (FILE *f, struct function *fun) const { if (!initialized_p ()) fprintf (f, "uninitialized"); else if (fun && initialized_p () && fun->cfg && ENTRY_BLOCK_PTR_FOR_FN (fun)->count.initialized_p ()) fprintf (f, "%" PRId64 " (%s, freq %.4f)", m_val, profile_quality_display_names[m_quality], to_sreal_scale (ENTRY_BLOCK_PTR_FOR_FN (fun)->count).to_double ()); else fprintf (f, "%" PRId64 " (%s)", m_val, profile_quality_display_names[m_quality]); } /* Dump THIS to stderr. */ void profile_count::debug () const { dump (stderr, cfun); fprintf (stderr, "\n"); } /* Return true if THIS differs from OTHER; tolerate small differences. */ bool profile_count::differs_from_p (profile_count other) const { gcc_checking_assert (compatible_p (other)); if (!initialized_p () || !other.initialized_p ()) return initialized_p () != other.initialized_p (); if ((uint64_t)m_val - (uint64_t)other.m_val < 100 || (uint64_t)other.m_val - (uint64_t)m_val < 100) return false; if (!other.m_val) return true; uint64_t ratio; safe_scale_64bit (m_val, 100, other.m_val, &ratio); return ratio < 99 || ratio > 101; } /* Stream THIS from IB. */ profile_count profile_count::stream_in (class lto_input_block *ib) { profile_count ret; ret.m_val = streamer_read_gcov_count (ib); ret.m_quality = (profile_quality) streamer_read_uhwi (ib); return ret; } /* Stream THIS to OB. */ void profile_count::stream_out (struct output_block *ob) { streamer_write_gcov_count (ob, m_val); streamer_write_uhwi (ob, m_quality); } /* Stream THIS to OB. */ void profile_count::stream_out (struct lto_output_stream *ob) { streamer_write_gcov_count_stream (ob, m_val); streamer_write_uhwi_stream (ob, m_quality); } /* Output THIS to BUFFER. */ void profile_probability::dump (char *buffer) const { if (!initialized_p ()) sprintf (buffer, "uninitialized"); else { /* Make difference between 0.00 as a roundoff error and actual 0. Similarly for 1. */ if (m_val == 0) buffer += sprintf (buffer, "never"); else if (m_val == max_probability) buffer += sprintf (buffer, "always"); else buffer += sprintf (buffer, "%3.1f%%", (double)m_val * 100 / max_probability); if (m_quality == ADJUSTED) sprintf (buffer, " (adjusted)"); else if (m_quality == AFDO) sprintf (buffer, " (auto FDO)"); else if (m_quality == GUESSED) sprintf (buffer, " (guessed)"); } } /* Dump THIS to F. */ void profile_probability::dump (FILE *f) const { char buffer[64]; dump (buffer); fputs (buffer, f); } /* Dump THIS to stderr. */ void profile_probability::debug () const { dump (stderr); fprintf (stderr, "\n"); } /* Return true if THIS differs from OTHER; tolerate small differences. */ bool profile_probability::differs_from_p (profile_probability other) const { if (!initialized_p () || !other.initialized_p ()) return false; if ((uint64_t)m_val - (uint64_t)other.m_val < max_probability / 1000 || (uint64_t)other.m_val - (uint64_t)max_probability < 1000) return false; if (!other.m_val) return true; int64_t ratio = (int64_t)m_val * 100 / other.m_val; return ratio < 99 || ratio > 101; } /* Return true if THIS differs significantly from OTHER. */ bool profile_probability::differs_lot_from_p (profile_probability other) const { if (!initialized_p () || !other.initialized_p ()) return false; uint32_t d = m_val > other.m_val ? m_val - other.m_val : other.m_val - m_val; return d > max_probability / 2; } /* Stream THIS from IB. */ profile_probability profile_probability::stream_in (class lto_input_block *ib) { profile_probability ret; ret.m_val = streamer_read_uhwi (ib); ret.m_quality = (profile_quality) streamer_read_uhwi (ib); return ret; } /* Stream THIS to OB. */ void profile_probability::stream_out (struct output_block *ob) { streamer_write_uhwi (ob, m_val); streamer_write_uhwi (ob, m_quality); } /* Stream THIS to OB. */ void profile_probability::stream_out (struct lto_output_stream *ob) { streamer_write_uhwi_stream (ob, m_val); streamer_write_uhwi_stream (ob, m_quality); } /* Compute RES=(a*b + c/2)/c capping and return false if overflow happened. */ bool slow_safe_scale_64bit (uint64_t a, uint64_t b, uint64_t c, uint64_t *res) { FIXED_WIDE_INT (128) tmp = a; wi::overflow_type overflow; tmp = wi::udiv_floor (wi::umul (tmp, b, &overflow) + (c / 2), c); gcc_checking_assert (!overflow); if (wi::fits_uhwi_p (tmp)) { *res = tmp.to_uhwi (); return true; } *res = (uint64_t) -1; return false; } /* Return count as frequency within FUN scaled in range 0 to REG_FREQ_MAX Used for legacy code and should not be used anymore. */ int profile_count::to_frequency (struct function *fun) const { if (!initialized_p ()) return BB_FREQ_MAX; if (*this == zero ()) return 0; STATIC_ASSERT (REG_BR_PROB_BASE == BB_FREQ_MAX); gcc_assert (fun->cfg->count_max.initialized_p ()); profile_probability prob = probability_in (fun->cfg->count_max); if (!prob.initialized_p ()) return REG_BR_PROB_BASE; return prob.to_reg_br_prob_base (); } /* Return count as frequency within FUN scaled in range 0 to CGRAPH_FREQ_MAX where CGRAPH_FREQ_BASE means that count equals to entry block count. Used for legacy code and should not be used anymore. */ int profile_count::to_cgraph_frequency (profile_count entry_bb_count) const { if (!initialized_p () || !entry_bb_count.initialized_p ()) return CGRAPH_FREQ_BASE; if (*this == zero ()) return 0; gcc_checking_assert (entry_bb_count.initialized_p ()); uint64_t scale; gcc_checking_assert (compatible_p (entry_bb_count)); if (!safe_scale_64bit (!entry_bb_count.m_val ? m_val + 1 : m_val, CGRAPH_FREQ_BASE, MAX (1, entry_bb_count.m_val), &scale)) return CGRAPH_FREQ_MAX; return MIN (scale, CGRAPH_FREQ_MAX); } /* Return THIS/IN as sreal value. */ sreal profile_count::to_sreal_scale (profile_count in, bool *known) const { if (*this == zero () && !(in == zero ())) { if (known) *known = true; return 0; } if (!initialized_p () || !in.initialized_p ()) { if (known) *known = false; return 1; } if (known) *known = in.m_val != 0; if (*this == in) return 1; gcc_checking_assert (compatible_p (in)); if (m_val == in.m_val) return 1; if (!in.m_val) return m_val * 4; return (sreal)m_val / (sreal)in.m_val; } /* We want to scale profile across function boundary from NUM to DEN. Take care of the side case when DEN is zeros. We still want to behave sanely here which means - scale to profile_count::zero () if NUM is profile_count::zero - do not affect anything if NUM == DEN - preserve counter value but adjust quality in other cases. */ void profile_count::adjust_for_ipa_scaling (profile_count *num, profile_count *den) { /* Scaling is no-op if NUM and DEN are the same. */ if (*num == *den) return; /* Scaling to zero is always zero. */ if (*num == zero ()) return; /* If den is non-zero we are safe. */ if (den->force_nonzero () == *den) return; /* Force both to non-zero so we do not push profiles to 0 when both num == 0 and den == 0. */ *den = den->force_nonzero (); *num = num->force_nonzero (); } /* THIS is a count of bb which is known to be executed IPA times. Combine this information into bb counter. This means returning IPA if it is nonzero, not changing anything if IPA is uninitialized and if IPA is zero, turning THIS into corresponding local profile with global0. */ profile_count profile_count::combine_with_ipa_count (profile_count ipa) { if (!initialized_p ()) return *this; ipa = ipa.ipa (); if (ipa.nonzero_p ()) return ipa; if (!ipa.initialized_p () || *this == zero ()) return *this; if (ipa == zero ()) return this->global0 (); return this->global0adjusted (); } /* Sae as profile_count::combine_with_ipa_count but within function with count IPA2. */ profile_count profile_count::combine_with_ipa_count_within (profile_count ipa, profile_count ipa2) { profile_count ret; if (!initialized_p ()) return *this; if (ipa2.ipa () == ipa2 && ipa.initialized_p ()) ret = ipa; else ret = combine_with_ipa_count (ipa); gcc_checking_assert (ret.compatible_p (ipa2)); return ret; } /* The profiling runtime uses gcov_type, which is usually 64bit integer. Conversions back and forth are used to read the coverage and get it into internal representation. */ profile_count profile_count::from_gcov_type (gcov_type v, profile_quality quality) { profile_count ret; gcc_checking_assert (v >= 0); if (dump_file && v >= (gcov_type)max_count) fprintf (dump_file, "Capping gcov count %" PRId64 " to max_count %" PRId64 "\n", (int64_t) v, (int64_t) max_count); ret.m_val = MIN (v, (gcov_type)max_count); ret.m_quality = quality; return ret; } /* COUNT1 times event happens with *THIS probability, COUNT2 times OTHER happens with COUNT2 probability. Return probability that either *THIS or OTHER happens. */ profile_probability profile_probability::combine_with_count (profile_count count1, profile_probability other, profile_count count2) const { /* If probabilities are same, we are done. If counts are nonzero we can distribute accordingly. In remaining cases just average the values and hope for the best. */ if (*this == other || count1 == count2 || (count2 == profile_count::zero () && !(count1 == profile_count::zero ()))) return *this; if (count1 == profile_count::zero () && !(count2 == profile_count::zero ())) return other; else if (count1.nonzero_p () || count2.nonzero_p ()) return *this * count1.probability_in (count1 + count2) + other * count2.probability_in (count1 + count2); else return *this * even () + other * even (); } /* Return probability as sreal in range [0, 1]. */ sreal profile_probability::to_sreal () const { gcc_checking_assert (initialized_p ()); return ((sreal)m_val) >> (n_bits - 2); } /* Compute square root. */ profile_probability profile_probability::sqrt () const { if (!initialized_p () || *this == never () || *this == always ()) return *this; profile_probability ret = *this; ret.m_quality = MIN (ret.m_quality, ADJUSTED); uint32_t min_range = m_val; uint32_t max_range = max_probability; if (!m_val) max_range = 0; if (m_val == max_probability) min_range = max_probability; while (min_range != max_range) { uint32_t val = (min_range + max_range) / 2; uint32_t val2 = RDIV ((uint64_t)val * val, max_probability); if (val2 == m_val) min_range = max_range = m_val; else if (val2 > m_val) max_range = val - 1; else if (val2 < m_val) min_range = val + 1; } ret.m_val = min_range; return ret; } /* Compute n-th power of THIS. */ profile_probability profile_probability::pow (int n) const { if (n == 1 || !initialized_p ()) return *this; if (!n) return profile_probability::always (); if (!nonzero_p () || !(profile_probability::always () - *this).nonzero_p ()) return *this; profile_probability ret = profile_probability::always (); profile_probability v = *this; int p = 1; while (true) { if (n & p) ret = ret * v; p <<= 1; if (p > n) break; v = v * v; } return ret; }