/* Print RTL for GCC.
Copyright (C) 1987-2024 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
/* This file is compiled twice: once for the generator programs,
once for the compiler. */
#ifdef GENERATOR_FILE
#include "bconfig.h"
#else
#include "config.h"
#endif
#define INCLUDE_MEMORY
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
/* These headers all define things which are not available in
generator programs. */
#ifndef GENERATOR_FILE
#include "alias.h"
#include "tree.h"
#include "basic-block.h"
#include "print-tree.h"
#include "flags.h"
#include "predict.h"
#include "function.h"
#include "cfg.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-pretty-print.h"
#include "alloc-pool.h"
#include "cselib.h"
#include "dumpfile.h" /* for dump_flags */
#include "dwarf2out.h"
#include "pretty-print.h"
#endif
#include "print-rtl.h"
#include "rtl-iter.h"
/* Disable warnings about quoting issues in the pp_xxx calls below
that (intentionally) don't follow GCC diagnostic conventions. */
#if __GNUC__ >= 10
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wformat-diag"
#endif
/* String printed at beginning of each RTL when it is dumped.
This string is set to ASM_COMMENT_START when the RTL is dumped in
the assembly output file. */
const char *print_rtx_head = "";
#ifdef GENERATOR_FILE
/* These are defined from the .opt file when not used in generator
programs. */
/* Nonzero means suppress output of instruction numbers
in debugging dumps.
This must be defined here so that programs like gencodes can be linked. */
int flag_dump_unnumbered = 0;
/* Nonzero means suppress output of instruction numbers for previous
and next insns in debugging dumps.
This must be defined here so that programs like gencodes can be linked. */
int flag_dump_unnumbered_links = 0;
#endif
/* Constructor for rtx_writer. */
rtx_writer::rtx_writer (FILE *outf, int ind, bool simple, bool compact,
rtx_reuse_manager *reuse_manager ATTRIBUTE_UNUSED)
: m_outfile (outf), m_indent (ind), m_sawclose (false),
m_in_call_function_usage (false), m_simple (simple), m_compact (compact)
#ifndef GENERATOR_FILE
, m_rtx_reuse_manager (reuse_manager)
#endif
{
}
#ifndef GENERATOR_FILE
/* rtx_reuse_manager's ctor. */
rtx_reuse_manager::rtx_reuse_manager ()
: m_next_id (0)
{
}
/* Determine if X is of a kind suitable for dumping via reuse_rtx. */
static bool
uses_rtx_reuse_p (const_rtx x)
{
if (x == NULL)
return false;
switch (GET_CODE (x))
{
case DEBUG_EXPR:
case VALUE:
case SCRATCH:
return true;
/* We don't use reuse_rtx for consts. */
CASE_CONST_UNIQUE:
default:
return false;
}
}
/* Traverse X and its descendents, determining if we see any rtx more than
once. Any rtx suitable for "reuse_rtx" that is seen more than once is
assigned an ID. */
void
rtx_reuse_manager::preprocess (const_rtx x)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, NONCONST)
if (uses_rtx_reuse_p (*iter))
{
if (int *count = m_rtx_occurrence_count.get (*iter))
{
if (*(count++) == 1)
m_rtx_reuse_ids.put (*iter, m_next_id++);
}
else
m_rtx_occurrence_count.put (*iter, 1);
}
}
/* Return true iff X has been assigned a reuse ID. If it has,
and OUT is non-NULL, then write the reuse ID to *OUT. */
bool
rtx_reuse_manager::has_reuse_id (const_rtx x, int *out)
{
int *id = m_rtx_reuse_ids.get (x);
if (id)
{
if (out)
*out = *id;
return true;
}
else
return false;
}
/* Determine if set_seen_def has been called for the given reuse ID. */
bool
rtx_reuse_manager::seen_def_p (int reuse_id)
{
return bitmap_bit_p (m_defs_seen, reuse_id);
}
/* Record that the definition of the given reuse ID has been seen. */
void
rtx_reuse_manager::set_seen_def (int reuse_id)
{
bitmap_set_bit (m_defs_seen, reuse_id);
}
#endif /* #ifndef GENERATOR_FILE */
#ifndef GENERATOR_FILE
void
print_mem_expr (FILE *outfile, const_tree expr)
{
fputc (' ', outfile);
print_generic_expr (outfile, CONST_CAST_TREE (expr),
dump_flags | TDF_SLIM);
}
#endif
/* Print X to FILE. */
static void
print_poly_int (FILE *file, poly_int64 x)
{
HOST_WIDE_INT const_x;
if (x.is_constant (&const_x))
fprintf (file, HOST_WIDE_INT_PRINT_DEC, const_x);
else
{
fprintf (file, "[" HOST_WIDE_INT_PRINT_DEC, x.coeffs[0]);
for (int i = 1; i < NUM_POLY_INT_COEFFS; ++i)
fprintf (file, ", " HOST_WIDE_INT_PRINT_DEC, x.coeffs[i]);
fprintf (file, "]");
}
}
/* Subroutine of print_rtx_operand for handling code '0'.
0 indicates a field for internal use that should not be printed.
However there are various special cases, such as the third field
of a NOTE, where it indicates that the field has several different
valid contents. */
void
rtx_writer::print_rtx_operand_code_0 (const_rtx in_rtx ATTRIBUTE_UNUSED,
int idx ATTRIBUTE_UNUSED)
{
#ifndef GENERATOR_FILE
if (idx == 1 && GET_CODE (in_rtx) == SYMBOL_REF)
{
int flags = SYMBOL_REF_FLAGS (in_rtx);
if (flags)
fprintf (m_outfile, " [flags %#x]", flags);
tree decl = SYMBOL_REF_DECL (in_rtx);
if (decl)
print_node_brief (m_outfile, "", decl, dump_flags);
}
else if (idx == 3 && NOTE_P (in_rtx))
{
switch (NOTE_KIND (in_rtx))
{
case NOTE_INSN_EH_REGION_BEG:
case NOTE_INSN_EH_REGION_END:
if (flag_dump_unnumbered)
fprintf (m_outfile, " #");
else
fprintf (m_outfile, " %d", NOTE_EH_HANDLER (in_rtx));
m_sawclose = true;
break;
case NOTE_INSN_BLOCK_BEG:
case NOTE_INSN_BLOCK_END:
dump_addr (m_outfile, " ", NOTE_BLOCK (in_rtx));
m_sawclose = true;
break;
case NOTE_INSN_BASIC_BLOCK:
{
basic_block bb = NOTE_BASIC_BLOCK (in_rtx);
if (bb != 0)
fprintf (m_outfile, " [bb %d]", bb->index);
break;
}
case NOTE_INSN_DELETED_LABEL:
case NOTE_INSN_DELETED_DEBUG_LABEL:
{
const char *label = NOTE_DELETED_LABEL_NAME (in_rtx);
if (label)
fprintf (m_outfile, " (\"%s\")", label);
else
fprintf (m_outfile, " \"\"");
}
break;
case NOTE_INSN_SWITCH_TEXT_SECTIONS:
{
basic_block bb = NOTE_BASIC_BLOCK (in_rtx);
if (bb != 0)
fprintf (m_outfile, " [bb %d]", bb->index);
break;
}
case NOTE_INSN_VAR_LOCATION:
fputc (' ', m_outfile);
print_rtx (NOTE_VAR_LOCATION (in_rtx));
break;
case NOTE_INSN_CFI:
fputc ('\n', m_outfile);
output_cfi_directive (m_outfile, NOTE_CFI (in_rtx));
fputc ('\t', m_outfile);
break;
case NOTE_INSN_BEGIN_STMT:
case NOTE_INSN_INLINE_ENTRY:
#ifndef GENERATOR_FILE
{
expanded_location xloc
= expand_location (NOTE_MARKER_LOCATION (in_rtx));
fprintf (m_outfile, " %s:%i", xloc.file, xloc.line);
}
#endif
break;
default:
break;
}
}
else if (idx == 7 && JUMP_P (in_rtx) && JUMP_LABEL (in_rtx) != NULL
&& !m_compact)
{
/* Output the JUMP_LABEL reference. */
fprintf (m_outfile, "\n%s%*s -> ", print_rtx_head, m_indent * 2, "");
if (GET_CODE (JUMP_LABEL (in_rtx)) == RETURN)
fprintf (m_outfile, "return");
else if (GET_CODE (JUMP_LABEL (in_rtx)) == SIMPLE_RETURN)
fprintf (m_outfile, "simple_return");
else
fprintf (m_outfile, "%d", INSN_UID (JUMP_LABEL (in_rtx)));
}
else if (idx == 0 && GET_CODE (in_rtx) == VALUE)
{
cselib_val *val = CSELIB_VAL_PTR (in_rtx);
fprintf (m_outfile, " %u:%u", val->uid, val->hash);
dump_addr (m_outfile, " @", in_rtx);
dump_addr (m_outfile, "/", (void*)val);
}
else if (idx == 0 && GET_CODE (in_rtx) == DEBUG_EXPR)
{
fprintf (m_outfile, " D#%i",
DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (in_rtx)));
}
else if (idx == 0 && GET_CODE (in_rtx) == ENTRY_VALUE)
{
m_indent += 2;
if (!m_sawclose)
fprintf (m_outfile, " ");
print_rtx (ENTRY_VALUE_EXP (in_rtx));
m_indent -= 2;
}
#endif
}
/* Subroutine of print_rtx_operand for handling code 'e'.
Also called by print_rtx_operand_code_u for handling code 'u'
for LABEL_REFs when they don't reference a CODE_LABEL. */
void
rtx_writer::print_rtx_operand_code_e (const_rtx in_rtx, int idx)
{
m_indent += 2;
if (idx == 6 && INSN_P (in_rtx))
/* Put REG_NOTES on their own line. */
fprintf (m_outfile, "\n%s%*s",
print_rtx_head, m_indent * 2, "");
if (!m_sawclose)
fprintf (m_outfile, " ");
if (idx == 7 && CALL_P (in_rtx))
{
m_in_call_function_usage = true;
print_rtx (XEXP (in_rtx, idx));
m_in_call_function_usage = false;
}
else
print_rtx (XEXP (in_rtx, idx));
m_indent -= 2;
}
/* Subroutine of print_rtx_operand for handling codes 'E' and 'V'. */
void
rtx_writer::print_rtx_operand_codes_E_and_V (const_rtx in_rtx, int idx)
{
m_indent += 2;
if (m_sawclose)
{
fprintf (m_outfile, "\n%s%*s",
print_rtx_head, m_indent * 2, "");
m_sawclose = false;
}
if (GET_CODE (in_rtx) == CONST_VECTOR
&& !GET_MODE_NUNITS (GET_MODE (in_rtx)).is_constant ()
&& CONST_VECTOR_DUPLICATE_P (in_rtx))
fprintf (m_outfile, " repeat");
fputs (" [", m_outfile);
if (XVEC (in_rtx, idx) != NULL)
{
m_indent += 2;
if (XVECLEN (in_rtx, idx))
m_sawclose = true;
int barrier = XVECLEN (in_rtx, idx);
if (GET_CODE (in_rtx) == CONST_VECTOR
&& !GET_MODE_NUNITS (GET_MODE (in_rtx)).is_constant ())
barrier = CONST_VECTOR_NPATTERNS (in_rtx);
for (int j = 0; j < XVECLEN (in_rtx, idx); j++)
{
int j1;
if (j == barrier)
{
fprintf (m_outfile, "\n%s%*s",
print_rtx_head, m_indent * 2, "");
if (!CONST_VECTOR_STEPPED_P (in_rtx))
fprintf (m_outfile, "repeat [");
else if (CONST_VECTOR_NPATTERNS (in_rtx) == 1)
fprintf (m_outfile, "stepped [");
else
fprintf (m_outfile, "stepped (interleave %d) [",
CONST_VECTOR_NPATTERNS (in_rtx));
m_indent += 2;
}
print_rtx (XVECEXP (in_rtx, idx, j));
int limit = MIN (barrier, XVECLEN (in_rtx, idx));
for (j1 = j + 1; j1 < limit; j1++)
if (XVECEXP (in_rtx, idx, j) != XVECEXP (in_rtx, idx, j1))
break;
if (j1 != j + 1)
{
fprintf (m_outfile, " repeated x%i", j1 - j);
j = j1 - 1;
}
}
if (barrier < XVECLEN (in_rtx, idx))
{
m_indent -= 2;
fprintf (m_outfile, "\n%s%*s]", print_rtx_head, m_indent * 2, "");
}
m_indent -= 2;
}
if (m_sawclose)
fprintf (m_outfile, "\n%s%*s", print_rtx_head, m_indent * 2, "");
fputs ("]", m_outfile);
m_sawclose = true;
m_indent -= 2;
}
/* Subroutine of print_rtx_operand for handling code 'i'. */
void
rtx_writer::print_rtx_operand_code_i (const_rtx in_rtx, int idx)
{
if (idx == 4 && INSN_P (in_rtx))
{
#ifndef GENERATOR_FILE
const rtx_insn *in_insn = as_a (in_rtx);
/* Pretty-print insn locations. Ignore scoping as it is mostly
redundant with line number information and do not print anything
when there is no location information available. */
if (INSN_HAS_LOCATION (in_insn))
{
expanded_location xloc = insn_location (in_insn);
fprintf (m_outfile, " \"%s\":%i:%i", xloc.file, xloc.line,
xloc.column);
int discriminator = insn_discriminator (in_insn);
if (discriminator)
fprintf (m_outfile, " discrim %d", discriminator);
}
#endif
}
else if (idx == 6 && GET_CODE (in_rtx) == ASM_OPERANDS)
{
#ifndef GENERATOR_FILE
if (ASM_OPERANDS_SOURCE_LOCATION (in_rtx) != UNKNOWN_LOCATION)
fprintf (m_outfile, " %s:%i",
LOCATION_FILE (ASM_OPERANDS_SOURCE_LOCATION (in_rtx)),
LOCATION_LINE (ASM_OPERANDS_SOURCE_LOCATION (in_rtx)));
#endif
}
else if (idx == 1 && GET_CODE (in_rtx) == ASM_INPUT)
{
#ifndef GENERATOR_FILE
if (ASM_INPUT_SOURCE_LOCATION (in_rtx) != UNKNOWN_LOCATION)
fprintf (m_outfile, " %s:%i",
LOCATION_FILE (ASM_INPUT_SOURCE_LOCATION (in_rtx)),
LOCATION_LINE (ASM_INPUT_SOURCE_LOCATION (in_rtx)));
#endif
}
else if (idx == 5 && NOTE_P (in_rtx))
{
/* This field is only used for NOTE_INSN_DELETED_LABEL, and
other times often contains garbage from INSN->NOTE death. */
if (NOTE_KIND (in_rtx) == NOTE_INSN_DELETED_LABEL
|| NOTE_KIND (in_rtx) == NOTE_INSN_DELETED_DEBUG_LABEL)
fprintf (m_outfile, " %d", XINT (in_rtx, idx));
}
#if !defined(GENERATOR_FILE) && NUM_UNSPECV_VALUES > 0
else if (idx == 1
&& GET_CODE (in_rtx) == UNSPEC_VOLATILE
&& XINT (in_rtx, 1) >= 0
&& XINT (in_rtx, 1) < NUM_UNSPECV_VALUES)
fprintf (m_outfile, " %s", unspecv_strings[XINT (in_rtx, 1)]);
#endif
#if !defined(GENERATOR_FILE) && NUM_UNSPEC_VALUES > 0
else if (idx == 1
&& (GET_CODE (in_rtx) == UNSPEC
|| GET_CODE (in_rtx) == UNSPEC_VOLATILE)
&& XINT (in_rtx, 1) >= 0
&& XINT (in_rtx, 1) < NUM_UNSPEC_VALUES)
fprintf (m_outfile, " %s", unspec_strings[XINT (in_rtx, 1)]);
#endif
else
{
int value = XINT (in_rtx, idx);
const char *name;
int is_insn = INSN_P (in_rtx);
/* Don't print INSN_CODEs in compact mode. */
if (m_compact && is_insn && &INSN_CODE (in_rtx) == &XINT (in_rtx, idx))
{
m_sawclose = false;
return;
}
if (flag_dump_unnumbered
&& (is_insn || NOTE_P (in_rtx)))
fputc ('#', m_outfile);
else
fprintf (m_outfile, " %d", value);
if (is_insn && &INSN_CODE (in_rtx) == &XINT (in_rtx, idx)
&& XINT (in_rtx, idx) >= 0
&& (name = get_insn_name (XINT (in_rtx, idx))) != NULL)
fprintf (m_outfile, " {%s}", name);
m_sawclose = false;
}
}
/* Subroutine of print_rtx_operand for handling code 'r'. */
void
rtx_writer::print_rtx_operand_code_r (const_rtx in_rtx)
{
int is_insn = INSN_P (in_rtx);
unsigned int regno = REGNO (in_rtx);
#ifndef GENERATOR_FILE
/* For hard registers and virtuals, always print the
regno, except in compact mode. */
if (regno <= LAST_VIRTUAL_REGISTER && !m_compact)
fprintf (m_outfile, " %d", regno);
if (regno < FIRST_PSEUDO_REGISTER)
fprintf (m_outfile, " %s", reg_names[regno]);
else if (regno <= LAST_VIRTUAL_REGISTER)
{
if (regno == VIRTUAL_INCOMING_ARGS_REGNUM)
fprintf (m_outfile, " virtual-incoming-args");
else if (regno == VIRTUAL_STACK_VARS_REGNUM)
fprintf (m_outfile, " virtual-stack-vars");
else if (regno == VIRTUAL_STACK_DYNAMIC_REGNUM)
fprintf (m_outfile, " virtual-stack-dynamic");
else if (regno == VIRTUAL_OUTGOING_ARGS_REGNUM)
fprintf (m_outfile, " virtual-outgoing-args");
else if (regno == VIRTUAL_CFA_REGNUM)
fprintf (m_outfile, " virtual-cfa");
else if (regno == VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM)
fprintf (m_outfile, " virtual-preferred-stack-boundary");
else
fprintf (m_outfile, " virtual-reg-%d", regno-FIRST_VIRTUAL_REGISTER);
}
else
#endif
if (flag_dump_unnumbered && is_insn)
fputc ('#', m_outfile);
else if (m_compact)
{
/* In compact mode, print pseudos with '< and '>' wrapping the regno,
offseting it by (LAST_VIRTUAL_REGISTER + 1), so that the
first non-virtual pseudo is dumped as "<0>". */
gcc_assert (regno > LAST_VIRTUAL_REGISTER);
fprintf (m_outfile, " <%d>", regno - (LAST_VIRTUAL_REGISTER + 1));
}
else
fprintf (m_outfile, " %d", regno);
#ifndef GENERATOR_FILE
if (REG_ATTRS (in_rtx))
{
fputs (" [", m_outfile);
if (regno != ORIGINAL_REGNO (in_rtx))
fprintf (m_outfile, "orig:%i", ORIGINAL_REGNO (in_rtx));
if (REG_EXPR (in_rtx))
print_mem_expr (m_outfile, REG_EXPR (in_rtx));
if (maybe_ne (REG_OFFSET (in_rtx), 0))
{
fprintf (m_outfile, "+");
print_poly_int (m_outfile, REG_OFFSET (in_rtx));
}
fputs (" ]", m_outfile);
}
if (regno != ORIGINAL_REGNO (in_rtx))
fprintf (m_outfile, " [%d]", ORIGINAL_REGNO (in_rtx));
#endif
}
/* Subroutine of print_rtx_operand for handling code 'u'. */
void
rtx_writer::print_rtx_operand_code_u (const_rtx in_rtx, int idx)
{
/* Don't print insn UIDs for PREV/NEXT_INSN in compact mode. */
if (m_compact && INSN_CHAIN_CODE_P (GET_CODE (in_rtx)) && idx < 2)
return;
if (XEXP (in_rtx, idx) != NULL)
{
rtx sub = XEXP (in_rtx, idx);
enum rtx_code subc = GET_CODE (sub);
if (GET_CODE (in_rtx) == LABEL_REF)
{
if (subc == NOTE
&& NOTE_KIND (sub) == NOTE_INSN_DELETED_LABEL)
{
if (flag_dump_unnumbered)
fprintf (m_outfile, " [# deleted]");
else
fprintf (m_outfile, " [%d deleted]", INSN_UID (sub));
m_sawclose = false;
return;
}
if (subc != CODE_LABEL)
{
print_rtx_operand_code_e (in_rtx, idx);
return;
}
}
if (flag_dump_unnumbered
|| (flag_dump_unnumbered_links && idx <= 1
&& (INSN_P (in_rtx) || NOTE_P (in_rtx)
|| LABEL_P (in_rtx) || BARRIER_P (in_rtx))))
fputs (" #", m_outfile);
else
fprintf (m_outfile, " %d", INSN_UID (sub));
}
else
fputs (" 0", m_outfile);
m_sawclose = false;
}
/* Subroutine of print_rtx. Print operand IDX of IN_RTX. */
void
rtx_writer::print_rtx_operand (const_rtx in_rtx, int idx)
{
const char *format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
switch (format_ptr[idx])
{
const char *str;
case 'T':
str = XTMPL (in_rtx, idx);
goto string;
case 'S':
case 's':
str = XSTR (in_rtx, idx);
string:
if (str == 0)
fputs (" (nil)", m_outfile);
else
fprintf (m_outfile, " (\"%s\")", str);
m_sawclose = true;
break;
case '0':
print_rtx_operand_code_0 (in_rtx, idx);
break;
case 'e':
print_rtx_operand_code_e (in_rtx, idx);
break;
case 'E':
case 'V':
print_rtx_operand_codes_E_and_V (in_rtx, idx);
break;
case 'w':
if (! m_simple)
fprintf (m_outfile, " ");
fprintf (m_outfile, HOST_WIDE_INT_PRINT_DEC, XWINT (in_rtx, idx));
if (! m_simple && !m_compact)
fprintf (m_outfile, " [" HOST_WIDE_INT_PRINT_HEX "]",
(unsigned HOST_WIDE_INT) XWINT (in_rtx, idx));
break;
case 'i':
print_rtx_operand_code_i (in_rtx, idx);
break;
case 'p':
fprintf (m_outfile, " ");
print_poly_int (m_outfile, SUBREG_BYTE (in_rtx));
break;
case 'r':
print_rtx_operand_code_r (in_rtx);
break;
/* Print NOTE_INSN names rather than integer codes. */
case 'n':
fprintf (m_outfile, " %s", GET_NOTE_INSN_NAME (XINT (in_rtx, idx)));
m_sawclose = false;
break;
case 'u':
print_rtx_operand_code_u (in_rtx, idx);
break;
case 't':
#ifndef GENERATOR_FILE
if (idx == 0 && GET_CODE (in_rtx) == DEBUG_IMPLICIT_PTR)
print_mem_expr (m_outfile, DEBUG_IMPLICIT_PTR_DECL (in_rtx));
else if (idx == 0 && GET_CODE (in_rtx) == DEBUG_PARAMETER_REF)
print_mem_expr (m_outfile, DEBUG_PARAMETER_REF_DECL (in_rtx));
else
dump_addr (m_outfile, " ", XTREE (in_rtx, idx));
#endif
break;
case '*':
fputs (" Unknown", m_outfile);
m_sawclose = false;
break;
case 'B':
/* Don't print basic block ids in compact mode. */
if (m_compact)
break;
#ifndef GENERATOR_FILE
if (XBBDEF (in_rtx, idx))
fprintf (m_outfile, " %i", XBBDEF (in_rtx, idx)->index);
#endif
break;
default:
gcc_unreachable ();
}
}
/* Subroutine of rtx_writer::print_rtx.
In compact mode, determine if operand IDX of IN_RTX is interesting
to dump, or (if in a trailing position) it can be omitted. */
bool
rtx_writer::operand_has_default_value_p (const_rtx in_rtx, int idx)
{
const char *format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
switch (format_ptr[idx])
{
case 'e':
case 'u':
return XEXP (in_rtx, idx) == NULL_RTX;
case 's':
return XSTR (in_rtx, idx) == NULL;
case '0':
switch (GET_CODE (in_rtx))
{
case JUMP_INSN:
/* JUMP_LABELs are always omitted in compact mode, so treat
any value here as omittable, so that earlier operands can
potentially be omitted also. */
return m_compact;
default:
return false;
}
default:
return false;
}
}
/* Print IN_RTX onto m_outfile. This is the recursive part of printing. */
void
rtx_writer::print_rtx (const_rtx in_rtx)
{
int idx = 0;
if (m_sawclose)
{
if (m_simple)
fputc (' ', m_outfile);
else
fprintf (m_outfile, "\n%s%*s", print_rtx_head, m_indent * 2, "");
m_sawclose = false;
}
if (in_rtx == 0)
{
fputs ("(nil)", m_outfile);
m_sawclose = true;
return;
}
else if (GET_CODE (in_rtx) > NUM_RTX_CODE)
{
fprintf (m_outfile, "(??? bad code %d\n%s%*s)", GET_CODE (in_rtx),
print_rtx_head, m_indent * 2, "");
m_sawclose = true;
return;
}
fputc ('(', m_outfile);
/* Print name of expression code. */
/* Handle reuse. */
#ifndef GENERATOR_FILE
if (m_rtx_reuse_manager)
{
int reuse_id;
if (m_rtx_reuse_manager->has_reuse_id (in_rtx, &reuse_id))
{
/* Have we already seen the defn of this rtx? */
if (m_rtx_reuse_manager->seen_def_p (reuse_id))
{
fprintf (m_outfile, "reuse_rtx %i)", reuse_id);
m_sawclose = true;
return;
}
else
{
/* First time we've seen this reused-rtx. */
fprintf (m_outfile, "%i|", reuse_id);
m_rtx_reuse_manager->set_seen_def (reuse_id);
}
}
}
#endif /* #ifndef GENERATOR_FILE */
/* In compact mode, prefix the code of insns with "c",
giving "cinsn", "cnote" etc. */
if (m_compact && is_a (in_rtx))
{
/* "ccode_label" is slightly awkward, so special-case it as
just "clabel". */
rtx_code code = GET_CODE (in_rtx);
if (code == CODE_LABEL)
fprintf (m_outfile, "clabel");
else
fprintf (m_outfile, "c%s", GET_RTX_NAME (code));
}
else if (m_simple && CONST_INT_P (in_rtx))
; /* no code. */
else
fprintf (m_outfile, "%s", GET_RTX_NAME (GET_CODE (in_rtx)));
if (! m_simple)
{
if (RTX_FLAG (in_rtx, in_struct))
fputs ("/s", m_outfile);
if (RTX_FLAG (in_rtx, volatil))
fputs ("/v", m_outfile);
if (RTX_FLAG (in_rtx, unchanging))
fputs ("/u", m_outfile);
if (RTX_FLAG (in_rtx, frame_related))
fputs ("/f", m_outfile);
if (RTX_FLAG (in_rtx, jump))
fputs ("/j", m_outfile);
if (RTX_FLAG (in_rtx, call))
fputs ("/c", m_outfile);
if (RTX_FLAG (in_rtx, return_val))
fputs ("/i", m_outfile);
/* Print REG_NOTE names for EXPR_LIST and INSN_LIST. */
if ((GET_CODE (in_rtx) == EXPR_LIST
|| GET_CODE (in_rtx) == INSN_LIST
|| GET_CODE (in_rtx) == INT_LIST)
&& (int)GET_MODE (in_rtx) < REG_NOTE_MAX
&& !m_in_call_function_usage)
fprintf (m_outfile, ":%s",
GET_REG_NOTE_NAME (GET_MODE (in_rtx)));
/* For other rtl, print the mode if it's not VOID. */
else if (GET_MODE (in_rtx) != VOIDmode)
fprintf (m_outfile, ":%s", GET_MODE_NAME (GET_MODE (in_rtx)));
#ifndef GENERATOR_FILE
if (GET_CODE (in_rtx) == VAR_LOCATION)
{
if (TREE_CODE (PAT_VAR_LOCATION_DECL (in_rtx)) == STRING_CST)
fputs (" ", m_outfile);
else
print_mem_expr (m_outfile, PAT_VAR_LOCATION_DECL (in_rtx));
fputc (' ', m_outfile);
print_rtx (PAT_VAR_LOCATION_LOC (in_rtx));
if (PAT_VAR_LOCATION_STATUS (in_rtx)
== VAR_INIT_STATUS_UNINITIALIZED)
fprintf (m_outfile, " [uninit]");
m_sawclose = true;
idx = GET_RTX_LENGTH (VAR_LOCATION);
}
#endif
}
#ifndef GENERATOR_FILE
if (CONST_DOUBLE_AS_FLOAT_P (in_rtx))
idx = 5;
#endif
/* For insns, print the INSN_UID. */
if (INSN_CHAIN_CODE_P (GET_CODE (in_rtx)))
{
if (flag_dump_unnumbered)
fprintf (m_outfile, " #");
else
fprintf (m_outfile, " %d", INSN_UID (in_rtx));
}
/* Determine which is the final operand to print.
In compact mode, skip trailing operands that have the default values
e.g. trailing "(nil)" values. */
int limit = GET_RTX_LENGTH (GET_CODE (in_rtx));
if (m_compact)
while (limit > idx && operand_has_default_value_p (in_rtx, limit - 1))
limit--;
/* Get the format string and skip the first elements if we have handled
them already. */
for (; idx < limit; idx++)
print_rtx_operand (in_rtx, idx);
switch (GET_CODE (in_rtx))
{
#ifndef GENERATOR_FILE
case MEM:
if (UNLIKELY (final_insns_dump_p))
fprintf (m_outfile, " [");
else
fprintf (m_outfile, " [" HOST_WIDE_INT_PRINT_DEC,
(HOST_WIDE_INT) MEM_ALIAS_SET (in_rtx));
if (MEM_EXPR (in_rtx))
print_mem_expr (m_outfile, MEM_EXPR (in_rtx));
else
fputc (' ', m_outfile);
if (MEM_OFFSET_KNOWN_P (in_rtx))
{
fprintf (m_outfile, "+");
print_poly_int (m_outfile, MEM_OFFSET (in_rtx));
}
if (MEM_SIZE_KNOWN_P (in_rtx))
{
fprintf (m_outfile, " S");
print_poly_int (m_outfile, MEM_SIZE (in_rtx));
}
if (MEM_ALIGN (in_rtx) != 1)
fprintf (m_outfile, " A%u", MEM_ALIGN (in_rtx));
if (!ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (in_rtx)))
fprintf (m_outfile, " AS%u", MEM_ADDR_SPACE (in_rtx));
fputc (']', m_outfile);
break;
case CONST_DOUBLE:
if (FLOAT_MODE_P (GET_MODE (in_rtx)))
{
char s[60];
real_to_decimal (s, CONST_DOUBLE_REAL_VALUE (in_rtx),
sizeof (s), 0, 1);
fprintf (m_outfile, " %s", s);
real_to_hexadecimal (s, CONST_DOUBLE_REAL_VALUE (in_rtx),
sizeof (s), 0, 1);
fprintf (m_outfile, " [%s]", s);
}
break;
case CONST_WIDE_INT:
fprintf (m_outfile, " ");
cwi_output_hex (m_outfile, in_rtx);
break;
case CONST_POLY_INT:
fprintf (m_outfile, " [");
print_dec (CONST_POLY_INT_COEFFS (in_rtx)[0], m_outfile, SIGNED);
for (unsigned int i = 1; i < NUM_POLY_INT_COEFFS; ++i)
{
fprintf (m_outfile, ", ");
print_dec (CONST_POLY_INT_COEFFS (in_rtx)[i], m_outfile, SIGNED);
}
fprintf (m_outfile, "]");
break;
#endif
case CODE_LABEL:
if (!m_compact)
fprintf (m_outfile, " [%d uses]", LABEL_NUSES (in_rtx));
switch (LABEL_KIND (in_rtx))
{
case LABEL_NORMAL: break;
case LABEL_STATIC_ENTRY: fputs (" [entry]", m_outfile); break;
case LABEL_GLOBAL_ENTRY: fputs (" [global entry]", m_outfile); break;
case LABEL_WEAK_ENTRY: fputs (" [weak entry]", m_outfile); break;
default: gcc_unreachable ();
}
break;
default:
break;
}
fputc (')', m_outfile);
m_sawclose = true;
}
/* Emit a closing parenthesis and newline. */
void
rtx_writer::finish_directive ()
{
fprintf (m_outfile, ")\n");
m_sawclose = false;
}
/* Print an rtx on the current line of FILE. Initially indent IND
characters. */
void
print_inline_rtx (FILE *outf, const_rtx x, int ind)
{
rtx_writer w (outf, ind, false, false, NULL);
w.print_rtx (x);
}
/* Call this function from the debugger to see what X looks like. */
DEBUG_FUNCTION void
debug_rtx (const_rtx x)
{
rtx_writer w (stderr, 0, false, false, NULL);
w.print_rtx (x);
fprintf (stderr, "\n");
}
/* Dump rtx REF. */
DEBUG_FUNCTION void
debug (const rtx_def &ref)
{
debug_rtx (&ref);
}
DEBUG_FUNCTION void
debug (const rtx_def *ptr)
{
if (ptr)
debug (*ptr);
else
fprintf (stderr, "\n");
}
/* Like debug_rtx but with no newline, as debug_helper will add one.
Note: No debug_slim(rtx_insn *) variant implemented, as this
function can serve for both rtx and rtx_insn. */
static void
debug_slim (const_rtx x)
{
rtx_writer w (stderr, 0, false, false, NULL);
w.print_rtx (x);
}
DEFINE_DEBUG_VEC (rtx_def *)
DEFINE_DEBUG_VEC (rtx_insn *)
DEFINE_DEBUG_HASH_SET (rtx_def *)
DEFINE_DEBUG_HASH_SET (rtx_insn *)
/* Count of rtx's to print with debug_rtx_list.
This global exists because gdb user defined commands have no arguments. */
DEBUG_VARIABLE int debug_rtx_count = 0; /* 0 is treated as equivalent to 1 */
/* Call this function to print list from X on.
N is a count of the rtx's to print. Positive values print from the specified
rtx_insn on. Negative values print a window around the rtx_insn.
EG: -5 prints 2 rtx_insn's on either side (in addition to the specified
rtx_insn). */
DEBUG_FUNCTION void
debug_rtx_list (const rtx_insn *x, int n)
{
int i,count;
const rtx_insn *insn;
count = n == 0 ? 1 : n < 0 ? -n : n;
/* If we are printing a window, back up to the start. */
if (n < 0)
for (i = count / 2; i > 0; i--)
{
if (PREV_INSN (x) == 0)
break;
x = PREV_INSN (x);
}
for (i = count, insn = x; i > 0 && insn != 0; i--, insn = NEXT_INSN (insn))
{
debug_rtx (insn);
fprintf (stderr, "\n");
}
}
/* Call this function to print an rtx_insn list from START to END
inclusive. */
DEBUG_FUNCTION void
debug_rtx_range (const rtx_insn *start, const rtx_insn *end)
{
while (1)
{
debug_rtx (start);
fprintf (stderr, "\n");
if (!start || start == end)
break;
start = NEXT_INSN (start);
}
}
/* Call this function to search an rtx_insn list to find one with insn uid UID,
and then call debug_rtx_list to print it, using DEBUG_RTX_COUNT.
The found insn is returned to enable further debugging analysis. */
DEBUG_FUNCTION const rtx_insn *
debug_rtx_find (const rtx_insn *x, int uid)
{
while (x != 0 && INSN_UID (x) != uid)
x = NEXT_INSN (x);
if (x != 0)
{
debug_rtx_list (x, debug_rtx_count);
return x;
}
else
{
fprintf (stderr, "insn uid %d not found\n", uid);
return 0;
}
}
/* External entry point for printing a chain of insns
starting with RTX_FIRST.
A blank line separates insns.
If RTX_FIRST is not an insn, then it alone is printed, with no newline. */
void
rtx_writer::print_rtl (const_rtx rtx_first)
{
const rtx_insn *tmp_rtx;
if (rtx_first == 0)
{
fputs (print_rtx_head, m_outfile);
fputs ("(nil)\n", m_outfile);
}
else
switch (GET_CODE (rtx_first))
{
case INSN:
case JUMP_INSN:
case CALL_INSN:
case NOTE:
case CODE_LABEL:
case JUMP_TABLE_DATA:
case BARRIER:
for (tmp_rtx = as_a (rtx_first);
tmp_rtx != 0;
tmp_rtx = NEXT_INSN (tmp_rtx))
{
fputs (print_rtx_head, m_outfile);
print_rtx (tmp_rtx);
fprintf (m_outfile, "\n");
}
break;
default:
fputs (print_rtx_head, m_outfile);
print_rtx (rtx_first);
}
}
/* External entry point for printing a chain of insns
starting with RTX_FIRST onto file OUTF.
A blank line separates insns.
If RTX_FIRST is not an insn, then it alone is printed, with no newline. */
void
print_rtl (FILE *outf, const_rtx rtx_first)
{
rtx_writer w (outf, 0, false, false, NULL);
w.print_rtl (rtx_first);
}
/* Like print_rtx, except specify a file. */
void
print_rtl_single (FILE *outf, const_rtx x)
{
rtx_writer w (outf, 0, false, false, NULL);
w.print_rtl_single_with_indent (x, 0);
}
/* Like print_rtl_single, except specify an indentation. */
void
rtx_writer::print_rtl_single_with_indent (const_rtx x, int ind)
{
char *s_indent = (char *) alloca ((size_t) ind + 1);
memset ((void *) s_indent, ' ', (size_t) ind);
s_indent[ind] = '\0';
fputs (s_indent, m_outfile);
fputs (print_rtx_head, m_outfile);
int old_indent = m_indent;
m_indent = ind;
m_sawclose = false;
print_rtx (x);
putc ('\n', m_outfile);
m_indent = old_indent;
}
/* Like print_rtl except without all the detail; for example,
if RTX is a CONST_INT then print in decimal format. */
void
print_simple_rtl (FILE *outf, const_rtx x)
{
rtx_writer w (outf, 0, true, false, NULL);
w.print_rtl (x);
}
/* Print the elements of VEC to FILE. */
void
print_rtx_insn_vec (FILE *file, const vec &vec)
{
fputc('{', file);
unsigned int len = vec.length ();
for (unsigned int i = 0; i < len; i++)
{
print_rtl_single (file, vec[i]);
if (i < len - 1)
fputs (", ", file);
}
fputc ('}', file);
}
#ifndef GENERATOR_FILE
/* The functions below try to print RTL in a form resembling assembler
mnemonics. Because this form is more concise than the "traditional" form
of RTL printing in Lisp-style, the form printed by this file is called
"slim". RTL dumps in slim format can be obtained by appending the "-slim"
option to -fdump-rtl-. Control flow graph output as a DOT file is
always printed in slim form.
The normal interface to the functionality provided in this pretty-printer
is through the dump_*_slim functions to print to a stream, or via the
print_*_slim functions to print into a user's pretty-printer.
It is also possible to obtain a string for a single pattern as a string
pointer, via str_pattern_slim, but this usage is discouraged. */
/* This recognizes rtx'en classified as expressions. These are always
represent some action on values or results of other expression, that
may be stored in objects representing values. */
static void
print_exp (pretty_printer *pp, const_rtx x, int verbose)
{
const char *st[4];
const char *fun;
rtx op[4];
int i;
fun = (char *) 0;
for (i = 0; i < 4; i++)
{
st[i] = (char *) 0;
op[i] = NULL_RTX;
}
switch (GET_CODE (x))
{
case PLUS:
op[0] = XEXP (x, 0);
if (CONST_INT_P (XEXP (x, 1))
&& INTVAL (XEXP (x, 1)) < 0)
{
st[1] = "-";
op[1] = GEN_INT (-INTVAL (XEXP (x, 1)));
}
else
{
st[1] = "+";
op[1] = XEXP (x, 1);
}
break;
case LO_SUM:
op[0] = XEXP (x, 0);
st[1] = "+low(";
op[1] = XEXP (x, 1);
st[2] = ")";
break;
case MINUS:
op[0] = XEXP (x, 0);
st[1] = "-";
op[1] = XEXP (x, 1);
break;
case COMPARE:
fun = "cmp";
op[0] = XEXP (x, 0);
op[1] = XEXP (x, 1);
break;
case NEG:
st[0] = "-";
op[0] = XEXP (x, 0);
break;
case FMA:
st[0] = "{";
op[0] = XEXP (x, 0);
st[1] = "*";
op[1] = XEXP (x, 1);
st[2] = "+";
op[2] = XEXP (x, 2);
st[3] = "}";
break;
case MULT:
op[0] = XEXP (x, 0);
st[1] = "*";
op[1] = XEXP (x, 1);
break;
case DIV:
op[0] = XEXP (x, 0);
st[1] = "/";
op[1] = XEXP (x, 1);
break;
case UDIV:
fun = "udiv";
op[0] = XEXP (x, 0);
op[1] = XEXP (x, 1);
break;
case MOD:
op[0] = XEXP (x, 0);
st[1] = "%";
op[1] = XEXP (x, 1);
break;
case UMOD:
fun = "umod";
op[0] = XEXP (x, 0);
op[1] = XEXP (x, 1);
break;
case SMIN:
fun = "smin";
op[0] = XEXP (x, 0);
op[1] = XEXP (x, 1);
break;
case SMAX:
fun = "smax";
op[0] = XEXP (x, 0);
op[1] = XEXP (x, 1);
break;
case UMIN:
fun = "umin";
op[0] = XEXP (x, 0);
op[1] = XEXP (x, 1);
break;
case UMAX:
fun = "umax";
op[0] = XEXP (x, 0);
op[1] = XEXP (x, 1);
break;
case NOT:
st[0] = "~";
op[0] = XEXP (x, 0);
break;
case AND:
op[0] = XEXP (x, 0);
st[1] = "&";
op[1] = XEXP (x, 1);
break;
case IOR:
op[0] = XEXP (x, 0);
st[1] = "|";
op[1] = XEXP (x, 1);
break;
case XOR:
op[0] = XEXP (x, 0);
st[1] = "^";
op[1] = XEXP (x, 1);
break;
case ASHIFT:
op[0] = XEXP (x, 0);
st[1] = "<<";
op[1] = XEXP (x, 1);
break;
case LSHIFTRT:
op[0] = XEXP (x, 0);
st[1] = " 0>>";
op[1] = XEXP (x, 1);
break;
case ASHIFTRT:
op[0] = XEXP (x, 0);
st[1] = ">>";
op[1] = XEXP (x, 1);
break;
case ROTATE:
op[0] = XEXP (x, 0);
st[1] = "<-<";
op[1] = XEXP (x, 1);
break;
case ROTATERT:
op[0] = XEXP (x, 0);
st[1] = ">->";
op[1] = XEXP (x, 1);
break;
case NE:
op[0] = XEXP (x, 0);
st[1] = "!=";
op[1] = XEXP (x, 1);
break;
case EQ:
op[0] = XEXP (x, 0);
st[1] = "==";
op[1] = XEXP (x, 1);
break;
case GE:
op[0] = XEXP (x, 0);
st[1] = ">=";
op[1] = XEXP (x, 1);
break;
case GT:
op[0] = XEXP (x, 0);
st[1] = ">";
op[1] = XEXP (x, 1);
break;
case LE:
op[0] = XEXP (x, 0);
st[1] = "<=";
op[1] = XEXP (x, 1);
break;
case LT:
op[0] = XEXP (x, 0);
st[1] = "<";
op[1] = XEXP (x, 1);
break;
case SIGN_EXTRACT:
fun = (verbose) ? "sign_extract" : "sxt";
op[0] = XEXP (x, 0);
op[1] = XEXP (x, 1);
op[2] = XEXP (x, 2);
break;
case ZERO_EXTRACT:
fun = (verbose) ? "zero_extract" : "zxt";
op[0] = XEXP (x, 0);
op[1] = XEXP (x, 1);
op[2] = XEXP (x, 2);
break;
case SIGN_EXTEND:
fun = (verbose) ? "sign_extend" : "sxn";
op[0] = XEXP (x, 0);
break;
case ZERO_EXTEND:
fun = (verbose) ? "zero_extend" : "zxn";
op[0] = XEXP (x, 0);
break;
case FLOAT_EXTEND:
fun = (verbose) ? "float_extend" : "fxn";
op[0] = XEXP (x, 0);
break;
case TRUNCATE:
fun = (verbose) ? "trunc" : "trn";
op[0] = XEXP (x, 0);
break;
case FLOAT_TRUNCATE:
fun = (verbose) ? "float_trunc" : "ftr";
op[0] = XEXP (x, 0);
break;
case FLOAT:
fun = (verbose) ? "float" : "flt";
op[0] = XEXP (x, 0);
break;
case UNSIGNED_FLOAT:
fun = (verbose) ? "uns_float" : "ufl";
op[0] = XEXP (x, 0);
break;
case FIX:
fun = "fix";
op[0] = XEXP (x, 0);
break;
case UNSIGNED_FIX:
fun = (verbose) ? "uns_fix" : "ufx";
op[0] = XEXP (x, 0);
break;
case PRE_DEC:
st[0] = "--";
op[0] = XEXP (x, 0);
break;
case PRE_INC:
st[0] = "++";
op[0] = XEXP (x, 0);
break;
case POST_DEC:
op[0] = XEXP (x, 0);
st[1] = "--";
break;
case POST_INC:
op[0] = XEXP (x, 0);
st[1] = "++";
break;
case PRE_MODIFY:
st[0] = "pre ";
op[0] = XEXP (XEXP (x, 1), 0);
st[1] = "+=";
op[1] = XEXP (XEXP (x, 1), 1);
break;
case POST_MODIFY:
st[0] = "post ";
op[0] = XEXP (XEXP (x, 1), 0);
st[1] = "+=";
op[1] = XEXP (XEXP (x, 1), 1);
break;
case CALL:
st[0] = "call ";
op[0] = XEXP (x, 0);
if (verbose)
{
st[1] = " argc:";
op[1] = XEXP (x, 1);
}
break;
case IF_THEN_ELSE:
st[0] = "{(";
op[0] = XEXP (x, 0);
st[1] = ")?";
op[1] = XEXP (x, 1);
st[2] = ":";
op[2] = XEXP (x, 2);
st[3] = "}";
break;
case TRAP_IF:
fun = "trap_if";
op[0] = TRAP_CONDITION (x);
break;
case PREFETCH:
fun = "prefetch";
op[0] = XEXP (x, 0);
op[1] = XEXP (x, 1);
op[2] = XEXP (x, 2);
break;
case UNSPEC:
case UNSPEC_VOLATILE:
{
pp_string (pp, "unspec");
if (GET_CODE (x) == UNSPEC_VOLATILE)
pp_string (pp, "/v");
pp_left_bracket (pp);
for (i = 0; i < XVECLEN (x, 0); i++)
{
if (i != 0)
pp_comma (pp);
print_pattern (pp, XVECEXP (x, 0, i), verbose);
}
pp_string (pp, "] ");
pp_decimal_int (pp, XINT (x, 1));
}
break;
default:
{
/* Most unhandled codes can be printed as pseudo-functions. */
if (GET_RTX_CLASS (GET_CODE (x)) == RTX_UNARY)
{
fun = GET_RTX_NAME (GET_CODE (x));
op[0] = XEXP (x, 0);
}
else if (GET_RTX_CLASS (GET_CODE (x)) == RTX_COMPARE
|| GET_RTX_CLASS (GET_CODE (x)) == RTX_COMM_COMPARE
|| GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
|| GET_RTX_CLASS (GET_CODE (x)) == RTX_COMM_ARITH)
{
fun = GET_RTX_NAME (GET_CODE (x));
op[0] = XEXP (x, 0);
op[1] = XEXP (x, 1);
}
else if (GET_RTX_CLASS (GET_CODE (x)) == RTX_TERNARY)
{
fun = GET_RTX_NAME (GET_CODE (x));
op[0] = XEXP (x, 0);
op[1] = XEXP (x, 1);
op[2] = XEXP (x, 2);
}
else
/* Give up, just print the RTX name. */
st[0] = GET_RTX_NAME (GET_CODE (x));
}
break;
}
/* Print this as a function? */
if (fun)
{
pp_string (pp, fun);
pp_left_paren (pp);
}
for (i = 0; i < 4; i++)
{
if (st[i])
pp_string (pp, st[i]);
if (op[i])
{
if (fun && i != 0)
pp_comma (pp);
print_value (pp, op[i], verbose);
}
}
if (fun)
pp_right_paren (pp);
} /* print_exp */
/* Prints rtxes, I customarily classified as values. They're constants,
registers, labels, symbols and memory accesses. */
void
print_value (pretty_printer *pp, const_rtx x, int verbose)
{
char tmp[1024];
if (!x)
{
pp_string (pp, "(nil)");
return;
}
switch (GET_CODE (x))
{
case CONST_INT:
pp_scalar (pp, HOST_WIDE_INT_PRINT_HEX,
(unsigned HOST_WIDE_INT) INTVAL (x));
break;
case CONST_WIDE_INT:
{
const char *sep = "<";
int i;
for (i = CONST_WIDE_INT_NUNITS (x) - 1; i >= 0; i--)
{
pp_string (pp, sep);
sep = ",";
sprintf (tmp, HOST_WIDE_INT_PRINT_HEX,
(unsigned HOST_WIDE_INT) CONST_WIDE_INT_ELT (x, i));
pp_string (pp, tmp);
}
pp_greater (pp);
}
break;
case CONST_POLY_INT:
pp_left_bracket (pp);
pp_wide_int (pp, CONST_POLY_INT_COEFFS (x)[0], SIGNED);
for (unsigned int i = 1; i < NUM_POLY_INT_COEFFS; ++i)
{
pp_string (pp, ", ");
pp_wide_int (pp, CONST_POLY_INT_COEFFS (x)[i], SIGNED);
}
pp_right_bracket (pp);
break;
case CONST_DOUBLE:
if (FLOAT_MODE_P (GET_MODE (x)))
{
real_to_decimal (tmp, CONST_DOUBLE_REAL_VALUE (x),
sizeof (tmp), 0, 1);
pp_string (pp, tmp);
}
else
pp_printf (pp, "<%wx,%wx>",
(unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x),
(unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x));
break;
case CONST_FIXED:
fixed_to_decimal (tmp, CONST_FIXED_VALUE (x), sizeof (tmp));
pp_string (pp, tmp);
break;
case CONST_STRING:
pp_string (pp, "\"");
pretty_print_string (pp, XSTR (x, 0), strlen (XSTR (x, 0)));
pp_string (pp, "\"");
break;
case SYMBOL_REF:
pp_printf (pp, "`%s'", XSTR (x, 0));
break;
case LABEL_REF:
pp_printf (pp, "L%d", INSN_UID (label_ref_label (x)));
break;
case CONST:
case HIGH:
case STRICT_LOW_PART:
pp_printf (pp, "%s(", GET_RTX_NAME (GET_CODE (x)));
print_value (pp, XEXP (x, 0), verbose);
pp_right_paren (pp);
break;
case REG:
if (REGNO (x) < FIRST_PSEUDO_REGISTER)
{
if (ISDIGIT (reg_names[REGNO (x)][0]))
pp_modulo (pp);
pp_string (pp, reg_names[REGNO (x)]);
}
else
pp_printf (pp, "r%d", REGNO (x));
if (verbose)
pp_printf (pp, ":%s", GET_MODE_NAME (GET_MODE (x)));
break;
case SUBREG:
print_value (pp, SUBREG_REG (x), verbose);
pp_printf (pp, "#");
pp_wide_integer (pp, SUBREG_BYTE (x));
break;
case SCRATCH:
case PC:
pp_string (pp, GET_RTX_NAME (GET_CODE (x)));
break;
case MEM:
pp_left_bracket (pp);
print_value (pp, XEXP (x, 0), verbose);
pp_right_bracket (pp);
break;
case DEBUG_EXPR:
pp_printf (pp, "D#%i", DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x)));
break;
default:
print_exp (pp, x, verbose);
break;
}
} /* print_value */
/* The next step in insn detalization, its pattern recognition. */
void
print_pattern (pretty_printer *pp, const_rtx x, int verbose)
{
if (! x)
{
pp_string (pp, "(nil)");
return;
}
switch (GET_CODE (x))
{
case SET:
print_value (pp, SET_DEST (x), verbose);
pp_equal (pp);
print_value (pp, SET_SRC (x), verbose);
break;
case RETURN:
case SIMPLE_RETURN:
case EH_RETURN:
pp_string (pp, GET_RTX_NAME (GET_CODE (x)));
break;
case CALL:
print_exp (pp, x, verbose);
break;
case CLOBBER:
case USE:
pp_printf (pp, "%s ", GET_RTX_NAME (GET_CODE (x)));
print_value (pp, XEXP (x, 0), verbose);
break;
case VAR_LOCATION:
pp_string (pp, "loc ");
print_value (pp, PAT_VAR_LOCATION_LOC (x), verbose);
break;
case COND_EXEC:
pp_left_paren (pp);
if (GET_CODE (COND_EXEC_TEST (x)) == NE
&& XEXP (COND_EXEC_TEST (x), 1) == const0_rtx)
print_value (pp, XEXP (COND_EXEC_TEST (x), 0), verbose);
else if (GET_CODE (COND_EXEC_TEST (x)) == EQ
&& XEXP (COND_EXEC_TEST (x), 1) == const0_rtx)
{
pp_exclamation (pp);
print_value (pp, XEXP (COND_EXEC_TEST (x), 0), verbose);
}
else
print_value (pp, COND_EXEC_TEST (x), verbose);
pp_string (pp, ") ");
print_pattern (pp, COND_EXEC_CODE (x), verbose);
break;
case PARALLEL:
{
int i;
pp_left_brace (pp);
for (i = 0; i < XVECLEN (x, 0); i++)
{
print_pattern (pp, XVECEXP (x, 0, i), verbose);
pp_semicolon (pp);
}
pp_right_brace (pp);
}
break;
case SEQUENCE:
{
const rtx_sequence *seq = as_a (x);
pp_string (pp, "sequence{");
if (INSN_P (seq->element (0)))
{
/* Print the sequence insns indented. */
const char * save_print_rtx_head = print_rtx_head;
char indented_print_rtx_head[32];
pp_newline (pp);
gcc_assert (strlen (print_rtx_head) < sizeof (indented_print_rtx_head) - 4);
snprintf (indented_print_rtx_head,
sizeof (indented_print_rtx_head),
"%s ", print_rtx_head);
print_rtx_head = indented_print_rtx_head;
for (int i = 0; i < seq->len (); i++)
print_insn_with_notes (pp, seq->insn (i));
pp_printf (pp, "%s ", save_print_rtx_head);
print_rtx_head = save_print_rtx_head;
}
else
{
for (int i = 0; i < seq->len (); i++)
{
print_pattern (pp, seq->element (i), verbose);
pp_semicolon (pp);
}
}
pp_right_brace (pp);
}
break;
case ASM_INPUT:
pp_printf (pp, "asm {%s}", XSTR (x, 0));
break;
case ADDR_VEC:
for (int i = 0; i < XVECLEN (x, 0); i++)
{
print_value (pp, XVECEXP (x, 0, i), verbose);
pp_semicolon (pp);
}
break;
case ADDR_DIFF_VEC:
for (int i = 0; i < XVECLEN (x, 1); i++)
{
print_value (pp, XVECEXP (x, 1, i), verbose);
pp_semicolon (pp);
}
break;
case TRAP_IF:
pp_string (pp, "trap_if ");
print_value (pp, TRAP_CONDITION (x), verbose);
break;
case UNSPEC:
case UNSPEC_VOLATILE:
/* Fallthru -- leave UNSPECs to print_exp. */
default:
print_value (pp, x, verbose);
}
} /* print_pattern */
/* This is the main function in slim rtl visualization mechanism.
X is an insn, to be printed into PP.
This function tries to print it properly in human-readable form,
resembling assembler mnemonics (instead of the older Lisp-style
form).
If VERBOSE is TRUE, insns are printed with more complete (but
longer) pattern names and with extra information, and prefixed
with their INSN_UIDs. */
void
print_insn (pretty_printer *pp, const rtx_insn *x, int verbose)
{
if (verbose)
{
/* Blech, pretty-print can't print integers with a specified width. */
char uid_prefix[32];
snprintf (uid_prefix, sizeof uid_prefix, " %4d: ", INSN_UID (x));
pp_string (pp, uid_prefix);
}
switch (GET_CODE (x))
{
case INSN:
print_pattern (pp, PATTERN (x), verbose);
break;
case DEBUG_INSN:
{
if (DEBUG_MARKER_INSN_P (x))
{
switch (INSN_DEBUG_MARKER_KIND (x))
{
case NOTE_INSN_BEGIN_STMT:
pp_string (pp, "debug begin stmt marker");
break;
case NOTE_INSN_INLINE_ENTRY:
pp_string (pp, "debug inline entry marker");
break;
default:
gcc_unreachable ();
}
break;
}
const char *name = "?";
char idbuf[32];
if (DECL_P (INSN_VAR_LOCATION_DECL (x)))
{
tree id = DECL_NAME (INSN_VAR_LOCATION_DECL (x));
if (id)
name = IDENTIFIER_POINTER (id);
else if (TREE_CODE (INSN_VAR_LOCATION_DECL (x))
== DEBUG_EXPR_DECL)
{
sprintf (idbuf, "D#%i",
DEBUG_TEMP_UID (INSN_VAR_LOCATION_DECL (x)));
name = idbuf;
}
else
{
sprintf (idbuf, "D.%i",
DECL_UID (INSN_VAR_LOCATION_DECL (x)));
name = idbuf;
}
}
pp_printf (pp, "debug %s => ", name);
if (VAR_LOC_UNKNOWN_P (INSN_VAR_LOCATION_LOC (x)))
pp_string (pp, "optimized away");
else
print_pattern (pp, INSN_VAR_LOCATION_LOC (x), verbose);
}
break;
case JUMP_INSN:
print_pattern (pp, PATTERN (x), verbose);
break;
case CALL_INSN:
if (GET_CODE (PATTERN (x)) == PARALLEL)
print_pattern (pp, XVECEXP (PATTERN (x), 0, 0), verbose);
else
print_pattern (pp, PATTERN (x), verbose);
break;
case CODE_LABEL:
pp_printf (pp, "L%d:", INSN_UID (x));
break;
case JUMP_TABLE_DATA:
pp_string (pp, "jump_table_data{\n");
print_pattern (pp, PATTERN (x), verbose);
pp_right_brace (pp);
break;
case BARRIER:
pp_string (pp, "barrier");
break;
case NOTE:
{
pp_string (pp, GET_NOTE_INSN_NAME (NOTE_KIND (x)));
switch (NOTE_KIND (x))
{
case NOTE_INSN_EH_REGION_BEG:
case NOTE_INSN_EH_REGION_END:
pp_printf (pp, " %d", NOTE_EH_HANDLER (x));
break;
case NOTE_INSN_BLOCK_BEG:
case NOTE_INSN_BLOCK_END:
pp_printf (pp, " %d", BLOCK_NUMBER (NOTE_BLOCK (x)));
break;
case NOTE_INSN_BASIC_BLOCK:
pp_printf (pp, " %d", NOTE_BASIC_BLOCK (x)->index);
break;
case NOTE_INSN_DELETED_LABEL:
case NOTE_INSN_DELETED_DEBUG_LABEL:
{
const char *label = NOTE_DELETED_LABEL_NAME (x);
if (label == NULL)
label = "";
pp_printf (pp, " (\"%s\")", label);
}
break;
case NOTE_INSN_VAR_LOCATION:
pp_left_brace (pp);
print_pattern (pp, NOTE_VAR_LOCATION (x), verbose);
pp_right_brace (pp);
break;
default:
break;
}
break;
}
default:
gcc_unreachable ();
}
} /* print_insn */
/* Pretty-print a slim dump of X (an insn) to PP, including any register
note attached to the instruction. */
void
print_insn_with_notes (pretty_printer *pp, const rtx_insn *x)
{
pp_string (pp, print_rtx_head);
print_insn (pp, x, 1);
pp_newline (pp);
if (INSN_P (x) && REG_NOTES (x))
for (rtx note = REG_NOTES (x); note; note = XEXP (note, 1))
{
pp_printf (pp, "%s %s ", print_rtx_head,
GET_REG_NOTE_NAME (REG_NOTE_KIND (note)));
if (GET_CODE (note) == INT_LIST)
pp_printf (pp, "%d", XINT (note, 0));
else
print_pattern (pp, XEXP (note, 0), 1);
pp_newline (pp);
}
}
/* Print X, an RTL value node, to file F in slim format. Include
additional information if VERBOSE is nonzero.
Value nodes are constants, registers, labels, symbols and
memory. */
void
dump_value_slim (FILE *f, const_rtx x, int verbose)
{
pretty_printer rtl_slim_pp;
rtl_slim_pp.set_output_stream (f);
print_value (&rtl_slim_pp, x, verbose);
pp_flush (&rtl_slim_pp);
}
/* Emit a slim dump of X (an insn) to the file F, including any register
note attached to the instruction. */
void
dump_insn_slim (FILE *f, const rtx_insn *x)
{
pretty_printer rtl_slim_pp;
rtl_slim_pp.set_output_stream (f);
print_insn_with_notes (&rtl_slim_pp, x);
pp_flush (&rtl_slim_pp);
}
/* Same as above, but stop at LAST or when COUNT == 0.
If COUNT < 0 it will stop only at LAST or NULL rtx. */
void
dump_rtl_slim (FILE *f, const rtx_insn *first, const rtx_insn *last,
int count, int flags ATTRIBUTE_UNUSED)
{
const rtx_insn *insn, *tail;
pretty_printer rtl_slim_pp;
rtl_slim_pp.set_output_stream (f);
tail = last ? NEXT_INSN (last) : NULL;
for (insn = first;
(insn != NULL) && (insn != tail) && (count != 0);
insn = NEXT_INSN (insn))
{
print_insn_with_notes (&rtl_slim_pp, insn);
if (count > 0)
count--;
}
pp_flush (&rtl_slim_pp);
}
/* Dumps basic block BB to pretty-printer PP in slim form and without and
no indentation, for use as a label of a DOT graph record-node. */
void
rtl_dump_bb_for_graph (pretty_printer *pp, basic_block bb)
{
rtx_insn *insn;
bool first = true;
/* TODO: inter-bb stuff. */
FOR_BB_INSNS (bb, insn)
{
if (! first)
{
pp_bar (pp);
pp_write_text_to_stream (pp);
}
first = false;
print_insn_with_notes (pp, insn);
pp_write_text_as_dot_label_to_stream (pp, /*for_record=*/true);
}
}
/* Pretty-print pattern X of some insn in non-verbose mode.
Return a string pointer to the pretty-printer buffer.
This function is only exported exists only to accommodate some older users
of the slim RTL pretty printers. Please do not use it for new code. */
const char *
str_pattern_slim (const_rtx x)
{
pretty_printer rtl_slim_pp;
print_pattern (&rtl_slim_pp, x, 0);
return ggc_strdup (pp_formatted_text (&rtl_slim_pp));
}
/* Emit a slim dump of X (an insn) to stderr. */
extern void debug_insn_slim (const rtx_insn *);
DEBUG_FUNCTION void
debug_insn_slim (const rtx_insn *x)
{
dump_insn_slim (stderr, x);
}
/* Same as above, but using dump_rtl_slim. */
extern void debug_rtl_slim (FILE *, const rtx_insn *, const rtx_insn *,
int, int);
DEBUG_FUNCTION void
debug_rtl_slim (const rtx_insn *first, const rtx_insn *last, int count,
int flags)
{
dump_rtl_slim (stderr, first, last, count, flags);
}
extern void debug_bb_slim (basic_block);
DEBUG_FUNCTION void
debug_bb_slim (basic_block bb)
{
debug_bb (bb, TDF_SLIM | TDF_BLOCKS);
}
extern void debug_bb_n_slim (int);
DEBUG_FUNCTION void
debug_bb_n_slim (int n)
{
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, n);
debug_bb_slim (bb);
}
#endif
#if __GNUC__ >= 10
# pragma GCC diagnostic pop
#endif