/* Perform simple optimizations to clean up the result of reload.
Copyright (C) 1987-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "predict.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "cfgrtl.h"
#include "cfgbuild.h"
#include "cfgcleanup.h"
#include "reload.h"
#include "cselib.h"
#include "tree-pass.h"
#include "dbgcnt.h"
#include "function-abi.h"
#include "rtl-iter.h"
static int reload_cse_noop_set_p (rtx);
static bool reload_cse_simplify (rtx_insn *, rtx);
static void reload_cse_regs_1 (void);
static int reload_cse_simplify_set (rtx, rtx_insn *);
static int reload_cse_simplify_operands (rtx_insn *, rtx);
static void reload_combine (void);
static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
static void reload_combine_note_store (rtx, const_rtx, void *);
static bool reload_cse_move2add (rtx_insn *);
static void move2add_note_store (rtx, const_rtx, void *);
/* Call cse / combine like post-reload optimization phases.
FIRST is the first instruction. */
static void
reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
{
bool moves_converted;
reload_cse_regs_1 ();
reload_combine ();
moves_converted = reload_cse_move2add (first);
if (flag_expensive_optimizations)
{
if (moves_converted)
reload_combine ();
reload_cse_regs_1 ();
}
}
/* See whether a single set SET is a noop. */
static int
reload_cse_noop_set_p (rtx set)
{
if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
return 0;
return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
}
/* Try to simplify INSN. Return true if the CFG may have changed. */
static bool
reload_cse_simplify (rtx_insn *insn, rtx testreg)
{
rtx body = PATTERN (insn);
basic_block insn_bb = BLOCK_FOR_INSN (insn);
unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
/* If NO_FUNCTION_CSE has been set by the target, then we should not try
to cse function calls. */
if (NO_FUNCTION_CSE && CALL_P (insn))
return false;
/* Remember if this insn has been sp += const_int. */
rtx sp_set = set_for_reg_notes (insn);
rtx sp_addend = NULL_RTX;
if (sp_set
&& SET_DEST (sp_set) == stack_pointer_rtx
&& GET_CODE (SET_SRC (sp_set)) == PLUS
&& XEXP (SET_SRC (sp_set), 0) == stack_pointer_rtx
&& CONST_INT_P (XEXP (SET_SRC (sp_set), 1)))
sp_addend = XEXP (SET_SRC (sp_set), 1);
if (GET_CODE (body) == SET)
{
int count = 0;
/* Simplify even if we may think it is a no-op.
We may think a memory load of a value smaller than WORD_SIZE
is redundant because we haven't taken into account possible
implicit extension. reload_cse_simplify_set() will bring
this out, so it's safer to simplify before we delete. */
count += reload_cse_simplify_set (body, insn);
if (!count && reload_cse_noop_set_p (body))
{
if (check_for_inc_dec (insn))
delete_insn_and_edges (insn);
/* We're done with this insn. */
goto done;
}
if (count > 0)
apply_change_group ();
else
reload_cse_simplify_operands (insn, testreg);
}
else if (GET_CODE (body) == PARALLEL)
{
int i;
int count = 0;
rtx value = NULL_RTX;
/* Registers mentioned in the clobber list for an asm cannot be reused
within the body of the asm. Invalidate those registers now so that
we don't try to substitute values for them. */
if (asm_noperands (body) >= 0)
{
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
{
rtx part = XVECEXP (body, 0, i);
if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
cselib_invalidate_rtx (XEXP (part, 0));
}
}
/* If every action in a PARALLEL is a noop, we can delete
the entire PARALLEL. */
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
{
rtx part = XVECEXP (body, 0, i);
if (GET_CODE (part) == SET)
{
if (! reload_cse_noop_set_p (part))
break;
if (REG_P (SET_DEST (part))
&& REG_FUNCTION_VALUE_P (SET_DEST (part)))
{
if (value)
break;
value = SET_DEST (part);
}
}
else if (GET_CODE (part) != CLOBBER && GET_CODE (part) != USE)
break;
}
if (i < 0)
{
if (check_for_inc_dec (insn))
delete_insn_and_edges (insn);
/* We're done with this insn. */
goto done;
}
/* It's not a no-op, but we can try to simplify it. */
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
if (GET_CODE (XVECEXP (body, 0, i)) == SET)
count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
if (count > 0)
apply_change_group ();
else
reload_cse_simplify_operands (insn, testreg);
}
/* If sp += const_int insn is changed into sp = reg;, add REG_EQUAL
note so that the stack_adjustments pass can undo it if beneficial. */
if (sp_addend
&& SET_DEST (sp_set) == stack_pointer_rtx
&& REG_P (SET_SRC (sp_set)))
set_dst_reg_note (insn, REG_EQUAL,
gen_rtx_PLUS (Pmode, stack_pointer_rtx,
sp_addend), stack_pointer_rtx);
done:
return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
}
/* Do a very simple CSE pass over the hard registers.
This function detects no-op moves where we happened to assign two
different pseudo-registers to the same hard register, and then
copied one to the other. Reload will generate a useless
instruction copying a register to itself.
This function also detects cases where we load a value from memory
into two different registers, and (if memory is more expensive than
registers) changes it to simply copy the first register into the
second register.
Another optimization is performed that scans the operands of each
instruction to see whether the value is already available in a
hard register. It then replaces the operand with the hard register
if possible, much like an optional reload would. */
static void
reload_cse_regs_1 (void)
{
bool cfg_changed = false;
basic_block bb;
rtx_insn *insn;
rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
cselib_init (CSELIB_RECORD_MEMORY);
init_alias_analysis ();
FOR_EACH_BB_FN (bb, cfun)
FOR_BB_INSNS (bb, insn)
{
if (INSN_P (insn))
cfg_changed |= reload_cse_simplify (insn, testreg);
cselib_process_insn (insn);
}
/* Clean up. */
end_alias_analysis ();
cselib_finish ();
if (cfg_changed)
cleanup_cfg (0);
}
/* Try to simplify a single SET instruction. SET is the set pattern.
INSN is the instruction it came from.
This function only handles one case: if we set a register to a value
which is not a register, we try to find that value in some other register
and change the set into a register copy. */
static int
reload_cse_simplify_set (rtx set, rtx_insn *insn)
{
int did_change = 0;
int dreg;
rtx src;
reg_class_t dclass;
int old_cost;
cselib_val *val;
struct elt_loc_list *l;
enum rtx_code extend_op = UNKNOWN;
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
dreg = true_regnum (SET_DEST (set));
if (dreg < 0)
return 0;
src = SET_SRC (set);
if (side_effects_p (src) || true_regnum (src) >= 0)
return 0;
dclass = REGNO_REG_CLASS (dreg);
/* When replacing a memory with a register, we need to honor assumptions
that combine made wrt the contents of sign bits. We'll do this by
generating an extend instruction instead of a reg->reg copy. Thus
the destination must be a register that we can widen. */
if (MEM_P (src)
&& (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
&& !REG_P (SET_DEST (set)))
return 0;
val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
if (! val)
return 0;
/* If memory loads are cheaper than register copies, don't change them. */
if (MEM_P (src))
old_cost = memory_move_cost (GET_MODE (src), dclass, true);
else if (REG_P (src))
old_cost = register_move_cost (GET_MODE (src),
REGNO_REG_CLASS (REGNO (src)), dclass);
else
old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
for (l = val->locs; l; l = l->next)
{
rtx this_rtx = l->loc;
int this_cost;
if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
{
if (extend_op != UNKNOWN)
{
wide_int result;
if (!CONST_SCALAR_INT_P (this_rtx))
continue;
switch (extend_op)
{
case ZERO_EXTEND:
result = wide_int::from (rtx_mode_t (this_rtx,
GET_MODE (src)),
BITS_PER_WORD, UNSIGNED);
break;
case SIGN_EXTEND:
result = wide_int::from (rtx_mode_t (this_rtx,
GET_MODE (src)),
BITS_PER_WORD, SIGNED);
break;
default:
gcc_unreachable ();
}
this_rtx = immed_wide_int_const (result, word_mode);
}
this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
}
else if (REG_P (this_rtx))
{
if (extend_op != UNKNOWN)
{
this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
this_cost = set_src_cost (this_rtx, word_mode, speed);
}
else
this_cost = register_move_cost (GET_MODE (this_rtx),
REGNO_REG_CLASS (REGNO (this_rtx)),
dclass);
}
else
continue;
/* If equal costs, prefer registers over anything else. That
tends to lead to smaller instructions on some machines. */
if (this_cost < old_cost
|| (this_cost == old_cost
&& REG_P (this_rtx)
&& !REG_P (SET_SRC (set))))
{
if (extend_op != UNKNOWN
&& REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
GET_MODE (SET_DEST (set)), word_mode))
{
rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
validate_change (insn, &SET_DEST (set), wide_dest, 1);
}
validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
old_cost = this_cost, did_change = 1;
}
}
return did_change;
}
/* Try to replace operands in INSN with equivalent values that are already
in registers. This can be viewed as optional reloading.
For each non-register operand in the insn, see if any hard regs are
known to be equivalent to that operand. Record the alternatives which
can accept these hard registers. Among all alternatives, select the
ones which are better or equal to the one currently matching, where
"better" is in terms of '?' and '!' constraints. Among the remaining
alternatives, select the one which replaces most operands with
hard registers. */
static int
reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
{
int i, j;
/* For each operand, all registers that are equivalent to it. */
HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
const char *constraints[MAX_RECOG_OPERANDS];
/* Vector recording how bad an alternative is. */
int *alternative_reject;
/* Vector recording how many registers can be introduced by choosing
this alternative. */
int *alternative_nregs;
/* Array of vectors recording, for each operand and each alternative,
which hard register to substitute, or -1 if the operand should be
left as it is. */
int *op_alt_regno[MAX_RECOG_OPERANDS];
/* Array of alternatives, sorted in order of decreasing desirability. */
int *alternative_order;
extract_constrain_insn (insn);
if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
return 0;
alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
/* For each operand, find out which regs are equivalent. */
for (i = 0; i < recog_data.n_operands; i++)
{
cselib_val *v;
struct elt_loc_list *l;
rtx op;
CLEAR_HARD_REG_SET (equiv_regs[i]);
/* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
right, so avoid the problem here. Similarly NOTE_INSN_DELETED_LABEL.
Likewise if we have a constant and the insn pattern doesn't tell us
the mode we need. */
if (LABEL_P (recog_data.operand[i])
|| (NOTE_P (recog_data.operand[i])
&& NOTE_KIND (recog_data.operand[i]) == NOTE_INSN_DELETED_LABEL)
|| (CONSTANT_P (recog_data.operand[i])
&& recog_data.operand_mode[i] == VOIDmode))
continue;
op = recog_data.operand[i];
if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
{
rtx set = single_set (insn);
/* We might have multiple sets, some of which do implicit
extension. Punt on this for now. */
if (! set)
continue;
/* If the destination is also a MEM or a STRICT_LOW_PART, no
extension applies.
Also, if there is an explicit extension, we don't have to
worry about an implicit one. */
else if (MEM_P (SET_DEST (set))
|| GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
|| GET_CODE (SET_SRC (set)) == ZERO_EXTEND
|| GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
; /* Continue ordinary processing. */
/* If the register cannot change mode to word_mode, it follows that
it cannot have been used in word_mode. */
else if (REG_P (SET_DEST (set))
&& !REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
GET_MODE (SET_DEST (set)),
word_mode))
; /* Continue ordinary processing. */
/* If this is a straight load, make the extension explicit. */
else if (REG_P (SET_DEST (set))
&& recog_data.n_operands == 2
&& SET_SRC (set) == op
&& SET_DEST (set) == recog_data.operand[1-i])
{
validate_change (insn, recog_data.operand_loc[i],
gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
word_mode, op),
1);
validate_change (insn, recog_data.operand_loc[1-i],
gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
1);
if (! apply_change_group ())
return 0;
return reload_cse_simplify_operands (insn, testreg);
}
else
/* ??? There might be arithmetic operations with memory that are
safe to optimize, but is it worth the trouble? */
continue;
}
if (side_effects_p (op))
continue;
v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
if (! v)
continue;
for (l = v->locs; l; l = l->next)
if (REG_P (l->loc))
SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
}
alternative_mask preferred = get_preferred_alternatives (insn);
for (i = 0; i < recog_data.n_operands; i++)
{
machine_mode mode;
int regno;
const char *p;
op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
for (j = 0; j < recog_data.n_alternatives; j++)
op_alt_regno[i][j] = -1;
p = constraints[i] = recog_data.constraints[i];
mode = recog_data.operand_mode[i];
/* Add the reject values for each alternative given by the constraints
for this operand. */
j = 0;
while (*p != '\0')
{
char c = *p++;
if (c == ',')
j++;
else if (c == '?')
alternative_reject[j] += 3;
else if (c == '!')
alternative_reject[j] += 300;
}
/* We won't change operands which are already registers. We
also don't want to modify output operands. */
regno = true_regnum (recog_data.operand[i]);
if (regno >= 0
|| constraints[i][0] == '='
|| constraints[i][0] == '+')
continue;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
enum reg_class rclass = NO_REGS;
if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
continue;
set_mode_and_regno (testreg, mode, regno);
/* We found a register equal to this operand. Now look for all
alternatives that can accept this register and have not been
assigned a register they can use yet. */
j = 0;
p = constraints[i];
for (;;)
{
char c = *p;
switch (c)
{
case 'g':
rclass = reg_class_subunion[rclass][GENERAL_REGS];
break;
default:
rclass
= (reg_class_subunion
[rclass]
[reg_class_for_constraint (lookup_constraint (p))]);
break;
case ',': case '\0':
/* See if REGNO fits this alternative, and set it up as the
replacement register if we don't have one for this
alternative yet and the operand being replaced is not
a cheap CONST_INT. */
if (op_alt_regno[i][j] == -1
&& TEST_BIT (preferred, j)
&& reg_fits_class_p (testreg, rclass, 0, mode)
&& (!CONST_INT_P (recog_data.operand[i])
|| (set_src_cost (recog_data.operand[i], mode,
optimize_bb_for_speed_p
(BLOCK_FOR_INSN (insn)))
> set_src_cost (testreg, mode,
optimize_bb_for_speed_p
(BLOCK_FOR_INSN (insn))))))
{
alternative_nregs[j]++;
op_alt_regno[i][j] = regno;
}
j++;
rclass = NO_REGS;
break;
}
p += CONSTRAINT_LEN (c, p);
if (c == '\0')
break;
}
}
}
/* The loop below sets alternative_order[0] but -Wmaybe-uninitialized
can't know that. Clear it here to avoid the warning. */
alternative_order[0] = 0;
gcc_assert (!recog_data.n_alternatives
|| (which_alternative >= 0
&& which_alternative < recog_data.n_alternatives));
/* Record all alternatives which are better or equal to the currently
matching one in the alternative_order array. */
for (i = j = 0; i < recog_data.n_alternatives; i++)
if (alternative_reject[i] <= alternative_reject[which_alternative])
alternative_order[j++] = i;
recog_data.n_alternatives = j;
/* Sort it. Given a small number of alternatives, a dumb algorithm
won't hurt too much. */
for (i = 0; i < recog_data.n_alternatives - 1; i++)
{
int best = i;
int best_reject = alternative_reject[alternative_order[i]];
int best_nregs = alternative_nregs[alternative_order[i]];
for (j = i + 1; j < recog_data.n_alternatives; j++)
{
int this_reject = alternative_reject[alternative_order[j]];
int this_nregs = alternative_nregs[alternative_order[j]];
if (this_reject < best_reject
|| (this_reject == best_reject && this_nregs > best_nregs))
{
best = j;
best_reject = this_reject;
best_nregs = this_nregs;
}
}
std::swap (alternative_order[best], alternative_order[i]);
}
/* Substitute the operands as determined by op_alt_regno for the best
alternative. */
j = alternative_order[0];
for (i = 0; i < recog_data.n_operands; i++)
{
machine_mode mode = recog_data.operand_mode[i];
if (op_alt_regno[i][j] == -1)
continue;
validate_change (insn, recog_data.operand_loc[i],
gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
}
for (i = recog_data.n_dups - 1; i >= 0; i--)
{
int op = recog_data.dup_num[i];
machine_mode mode = recog_data.operand_mode[op];
if (op_alt_regno[op][j] == -1)
continue;
validate_change (insn, recog_data.dup_loc[i],
gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
}
return apply_change_group ();
}
/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
addressing now.
This code might also be useful when reload gave up on reg+reg addressing
because of clashes between the return register and INDEX_REG_CLASS. */
/* The maximum number of uses of a register we can keep track of to
replace them with reg+reg addressing. */
#define RELOAD_COMBINE_MAX_USES 16
/* Describes a recorded use of a register. */
struct reg_use
{
/* The insn where a register has been used. */
rtx_insn *insn;
/* Points to the memory reference enclosing the use, if any, NULL_RTX
otherwise. */
rtx containing_mem;
/* Location of the register within INSN. */
rtx *usep;
/* The reverse uid of the insn. */
int ruid;
};
/* If the register is used in some unknown fashion, USE_INDEX is negative.
If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
indicates where it is first set or clobbered.
Otherwise, USE_INDEX is the index of the last encountered use of the
register (which is first among these we have seen since we scan backwards).
USE_RUID indicates the first encountered, i.e. last, of these uses.
If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
with a constant offset; OFFSET contains this constant in that case.
STORE_RUID is always meaningful if we only want to use a value in a
register in a different place: it denotes the next insn in the insn
stream (i.e. the last encountered) that sets or clobbers the register.
REAL_STORE_RUID is similar, but clobbers are ignored when updating it.
EXPR is the expression used when storing the register. */
static struct
{
struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
rtx offset;
int use_index;
int store_ruid;
int real_store_ruid;
int use_ruid;
bool all_offsets_match;
rtx expr;
} reg_state[FIRST_PSEUDO_REGISTER];
/* Reverse linear uid. This is increased in reload_combine while scanning
the instructions from last to first. It is used to set last_label_ruid
and the store_ruid / use_ruid fields in reg_state. */
static int reload_combine_ruid;
/* The RUID of the last label we encountered in reload_combine. */
static int last_label_ruid;
/* The RUID of the last jump we encountered in reload_combine. */
static int last_jump_ruid;
/* The register numbers of the first and last index register. A value of
-1 in LAST_INDEX_REG indicates that we've previously computed these
values and found no suitable index registers. */
static int first_index_reg = -1;
static int last_index_reg;
#define LABEL_LIVE(LABEL) \
(label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
/* Subroutine of reload_combine_split_ruids, called to fix up a single
ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
static inline void
reload_combine_split_one_ruid (int *pruid, int split_ruid)
{
if (*pruid > split_ruid)
(*pruid)++;
}
/* Called when we insert a new insn in a position we've already passed in
the scan. Examine all our state, increasing all ruids that are higher
than SPLIT_RUID by one in order to make room for a new insn. */
static void
reload_combine_split_ruids (int split_ruid)
{
unsigned i;
reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
int j, idx = reg_state[i].use_index;
reload_combine_split_one_ruid (®_state[i].use_ruid, split_ruid);
reload_combine_split_one_ruid (®_state[i].store_ruid, split_ruid);
reload_combine_split_one_ruid (®_state[i].real_store_ruid,
split_ruid);
if (idx < 0)
continue;
for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
{
reload_combine_split_one_ruid (®_state[i].reg_use[j].ruid,
split_ruid);
}
}
}
/* Called when we are about to rescan a previously encountered insn with
reload_combine_note_use after modifying some part of it. This clears all
information about uses in that particular insn. */
static void
reload_combine_purge_insn_uses (rtx_insn *insn)
{
unsigned i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
int j, k, idx = reg_state[i].use_index;
if (idx < 0)
continue;
j = k = RELOAD_COMBINE_MAX_USES;
while (j-- > idx)
{
if (reg_state[i].reg_use[j].insn != insn)
{
k--;
if (k != j)
reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
}
}
reg_state[i].use_index = k;
}
}
/* Called when we need to forget about all uses of REGNO after an insn
which is identified by RUID. */
static void
reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
{
int j, k, idx = reg_state[regno].use_index;
if (idx < 0)
return;
j = k = RELOAD_COMBINE_MAX_USES;
while (j-- > idx)
{
if (reg_state[regno].reg_use[j].ruid >= ruid)
{
k--;
if (k != j)
reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
}
}
reg_state[regno].use_index = k;
}
/* Find the use of REGNO with the ruid that is highest among those
lower than RUID_LIMIT, and return it if it is the only use of this
reg in the insn. Return NULL otherwise. */
static struct reg_use *
reload_combine_closest_single_use (unsigned regno, int ruid_limit)
{
int i, best_ruid = 0;
int use_idx = reg_state[regno].use_index;
struct reg_use *retval;
if (use_idx < 0)
return NULL;
retval = NULL;
for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
{
struct reg_use *use = reg_state[regno].reg_use + i;
int this_ruid = use->ruid;
if (this_ruid >= ruid_limit)
continue;
if (this_ruid > best_ruid)
{
best_ruid = this_ruid;
retval = use;
}
else if (this_ruid == best_ruid)
retval = NULL;
}
if (last_label_ruid >= best_ruid)
return NULL;
return retval;
}
/* After we've moved an add insn, fix up any debug insns that occur
between the old location of the add and the new location. REG is
the destination register of the add insn; REPLACEMENT is the
SET_SRC of the add. FROM and TO specify the range in which we
should make this change on debug insns. */
static void
fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
{
rtx_insn *insn;
for (insn = from; insn != to; insn = NEXT_INSN (insn))
{
rtx t;
if (!DEBUG_BIND_INSN_P (insn))
continue;
t = INSN_VAR_LOCATION_LOC (insn);
t = simplify_replace_rtx (t, reg, replacement);
validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
}
}
/* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
with SRC in the insn described by USE, taking costs into account. Return
true if we made the replacement. */
static bool
try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
{
rtx_insn *use_insn = use->insn;
rtx mem = use->containing_mem;
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
if (mem != NULL_RTX)
{
addr_space_t as = MEM_ADDR_SPACE (mem);
rtx oldaddr = XEXP (mem, 0);
rtx newaddr = NULL_RTX;
int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
int new_cost;
newaddr = simplify_replace_rtx (oldaddr, reg, src);
if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
{
XEXP (mem, 0) = newaddr;
new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
XEXP (mem, 0) = oldaddr;
if (new_cost <= old_cost
&& validate_change (use_insn,
&XEXP (mem, 0), newaddr, 0))
return true;
}
}
else
{
rtx new_set = single_set (use_insn);
if (new_set
&& REG_P (SET_DEST (new_set))
&& GET_CODE (SET_SRC (new_set)) == PLUS
&& REG_P (XEXP (SET_SRC (new_set), 0))
&& CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
{
rtx new_src;
machine_mode mode = GET_MODE (SET_DEST (new_set));
int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
if (set_src_cost (new_src, mode, speed) <= old_cost
&& validate_change (use_insn, &SET_SRC (new_set),
new_src, 0))
return true;
}
}
return false;
}
/* Called by reload_combine when scanning INSN. This function tries to detect
patterns where a constant is added to a register, and the result is used
in an address.
Return true if no further processing is needed on INSN; false if it wasn't
recognized and should be handled normally. */
static bool
reload_combine_recognize_const_pattern (rtx_insn *insn)
{
int from_ruid = reload_combine_ruid;
rtx set, pat, reg, src, addreg;
unsigned int regno;
struct reg_use *use;
bool must_move_add;
rtx_insn *add_moved_after_insn = NULL;
int add_moved_after_ruid = 0;
int clobbered_regno = -1;
set = single_set (insn);
if (set == NULL_RTX)
return false;
reg = SET_DEST (set);
src = SET_SRC (set);
if (!REG_P (reg)
|| REG_NREGS (reg) != 1
|| GET_MODE (reg) != Pmode
|| reg == stack_pointer_rtx)
return false;
regno = REGNO (reg);
/* We look for a REG1 = REG2 + CONSTANT insn, followed by either
uses of REG1 inside an address, or inside another add insn. If
possible and profitable, merge the addition into subsequent
uses. */
if (GET_CODE (src) != PLUS
|| !REG_P (XEXP (src, 0))
|| !CONSTANT_P (XEXP (src, 1)))
return false;
addreg = XEXP (src, 0);
must_move_add = rtx_equal_p (reg, addreg);
pat = PATTERN (insn);
if (must_move_add && set != pat)
{
/* We have to be careful when moving the add; apart from the
single_set there may also be clobbers. Recognize one special
case, that of one clobber alongside the set (likely a clobber
of the CC register). */
gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
|| GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
|| !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
return false;
clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
}
do
{
use = reload_combine_closest_single_use (regno, from_ruid);
if (use)
/* Start the search for the next use from here. */
from_ruid = use->ruid;
if (use && GET_MODE (*use->usep) == Pmode)
{
bool delete_add = false;
rtx_insn *use_insn = use->insn;
int use_ruid = use->ruid;
/* Avoid moving the add insn past a jump. */
if (must_move_add && use_ruid <= last_jump_ruid)
break;
/* If the add clobbers another hard reg in parallel, don't move
it past a real set of this hard reg. */
if (must_move_add && clobbered_regno >= 0
&& reg_state[clobbered_regno].real_store_ruid >= use_ruid)
break;
gcc_assert (reg_state[regno].store_ruid <= use_ruid);
/* Avoid moving a use of ADDREG past a point where it is stored. */
if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
break;
/* We also must not move the addition past an insn that sets
the same register, unless we can combine two add insns. */
if (must_move_add && reg_state[regno].store_ruid == use_ruid)
{
if (use->containing_mem == NULL_RTX)
delete_add = true;
else
break;
}
if (try_replace_in_use (use, reg, src))
{
reload_combine_purge_insn_uses (use_insn);
reload_combine_note_use (&PATTERN (use_insn), use_insn,
use_ruid, NULL_RTX);
if (delete_add)
{
fixup_debug_insns (reg, src, insn, use_insn);
delete_insn (insn);
return true;
}
if (must_move_add)
{
add_moved_after_insn = use_insn;
add_moved_after_ruid = use_ruid;
}
continue;
}
}
/* If we get here, we couldn't handle this use. */
if (must_move_add)
break;
}
while (use);
if (!must_move_add || add_moved_after_insn == NULL_RTX)
/* Process the add normally. */
return false;
fixup_debug_insns (reg, src, insn, add_moved_after_insn);
reorder_insns (insn, insn, add_moved_after_insn);
reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
reload_combine_split_ruids (add_moved_after_ruid - 1);
reload_combine_note_use (&PATTERN (insn), insn,
add_moved_after_ruid, NULL_RTX);
reg_state[regno].store_ruid = add_moved_after_ruid;
return true;
}
/* Called by reload_combine when scanning INSN. Try to detect a pattern we
can handle and improve. Return true if no further processing is needed on
INSN; false if it wasn't recognized and should be handled normally. */
static bool
reload_combine_recognize_pattern (rtx_insn *insn)
{
rtx set, reg, src;
set = single_set (insn);
if (set == NULL_RTX)
return false;
reg = SET_DEST (set);
src = SET_SRC (set);
if (!REG_P (reg) || REG_NREGS (reg) != 1)
return false;
unsigned int regno = REGNO (reg);
machine_mode mode = GET_MODE (reg);
if (reg_state[regno].use_index < 0
|| reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
return false;
for (int i = reg_state[regno].use_index;
i < RELOAD_COMBINE_MAX_USES; i++)
{
struct reg_use *use = reg_state[regno].reg_use + i;
if (GET_MODE (*use->usep) != mode)
return false;
/* Don't try to adjust (use (REGX)). */
if (GET_CODE (PATTERN (use->insn)) == USE
&& &XEXP (PATTERN (use->insn), 0) == use->usep)
return false;
}
/* Look for (set (REGX) (CONST_INT))
(set (REGX) (PLUS (REGX) (REGY)))
...
... (MEM (REGX)) ...
and convert it to
(set (REGZ) (CONST_INT))
...
... (MEM (PLUS (REGZ) (REGY)))... .
First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
and that we know all uses of REGX before it dies.
Also, explicitly check that REGX != REGY; our life information
does not yet show whether REGY changes in this insn. */
if (GET_CODE (src) == PLUS
&& reg_state[regno].all_offsets_match
&& last_index_reg != -1
&& REG_P (XEXP (src, 1))
&& rtx_equal_p (XEXP (src, 0), reg)
&& !rtx_equal_p (XEXP (src, 1), reg)
&& last_label_ruid < reg_state[regno].use_ruid)
{
rtx base = XEXP (src, 1);
rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
rtx prev_set = prev ? single_set (prev) : NULL_RTX;
rtx index_reg = NULL_RTX;
rtx reg_sum = NULL_RTX;
int i;
/* Now we need to set INDEX_REG to an index register (denoted as
REGZ in the illustration above) and REG_SUM to the expression
register+register that we want to use to substitute uses of REG
(typically in MEMs) with. First check REG and BASE for being
index registers; we can use them even if they are not dead. */
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
|| TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
REGNO (base)))
{
index_reg = reg;
reg_sum = src;
}
else
{
/* Otherwise, look for a free index register. Since we have
checked above that neither REG nor BASE are index registers,
if we find anything at all, it will be different from these
two registers. */
for (i = first_index_reg; i <= last_index_reg; i++)
{
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
&& reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
&& reg_state[i].store_ruid <= reg_state[regno].use_ruid
&& (crtl->abi->clobbers_full_reg_p (i)
|| df_regs_ever_live_p (i))
&& (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
&& !fixed_regs[i] && !global_regs[i]
&& hard_regno_nregs (i, GET_MODE (reg)) == 1
&& targetm.hard_regno_scratch_ok (i))
{
index_reg = gen_rtx_REG (GET_MODE (reg), i);
reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
break;
}
}
}
/* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
(REGY), i.e. BASE, is not clobbered before the last use we'll
create. */
if (reg_sum
&& prev_set
&& CONST_INT_P (SET_SRC (prev_set))
&& rtx_equal_p (SET_DEST (prev_set), reg)
&& (reg_state[REGNO (base)].store_ruid
<= reg_state[regno].use_ruid))
{
/* Change destination register and, if necessary, the constant
value in PREV, the constant loading instruction. */
validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
if (reg_state[regno].offset != const0_rtx)
{
HOST_WIDE_INT c
= trunc_int_for_mode (UINTVAL (SET_SRC (prev_set))
+ UINTVAL (reg_state[regno].offset),
GET_MODE (index_reg));
validate_change (prev, &SET_SRC (prev_set), GEN_INT (c), 1);
}
/* Now for every use of REG that we have recorded, replace REG
with REG_SUM. */
for (i = reg_state[regno].use_index;
i < RELOAD_COMBINE_MAX_USES; i++)
validate_unshare_change (reg_state[regno].reg_use[i].insn,
reg_state[regno].reg_use[i].usep,
/* Each change must have its own
replacement. */
reg_sum, 1);
if (apply_change_group ())
{
struct reg_use *lowest_ruid = NULL;
/* For every new use of REG_SUM, we have to record the use
of BASE therein, i.e. operand 1. */
for (i = reg_state[regno].use_index;
i < RELOAD_COMBINE_MAX_USES; i++)
{
struct reg_use *use = reg_state[regno].reg_use + i;
reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
use->ruid, use->containing_mem);
if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
lowest_ruid = use;
}
fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
/* Delete the reg-reg addition. */
delete_insn (insn);
if (reg_state[regno].offset != const0_rtx)
/* Previous REG_EQUIV / REG_EQUAL notes for PREV
are now invalid. */
remove_reg_equal_equiv_notes (prev);
reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
return true;
}
}
}
return false;
}
static void
reload_combine (void)
{
rtx_insn *insn, *prev;
basic_block bb;
unsigned int r;
int min_labelno, n_labels;
HARD_REG_SET ever_live_at_start, *label_live;
/* To avoid wasting too much time later searching for an index register,
determine the minimum and maximum index register numbers. */
if (INDEX_REG_CLASS == NO_REGS)
last_index_reg = -1;
else if (first_index_reg == -1 && last_index_reg == 0)
{
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
{
if (first_index_reg == -1)
first_index_reg = r;
last_index_reg = r;
}
/* If no index register is available, we can quit now. Set LAST_INDEX_REG
to -1 so we'll know to quit early the next time we get here. */
if (first_index_reg == -1)
{
last_index_reg = -1;
return;
}
}
/* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
information is a bit fuzzy immediately after reload, but it's
still good enough to determine which registers are live at a jump
destination. */
min_labelno = get_first_label_num ();
n_labels = max_label_num () - min_labelno;
label_live = XNEWVEC (HARD_REG_SET, n_labels);
CLEAR_HARD_REG_SET (ever_live_at_start);
FOR_EACH_BB_REVERSE_FN (bb, cfun)
{
insn = BB_HEAD (bb);
if (LABEL_P (insn))
{
HARD_REG_SET live;
bitmap live_in = df_get_live_in (bb);
REG_SET_TO_HARD_REG_SET (live, live_in);
compute_use_by_pseudos (&live, live_in);
LABEL_LIVE (insn) = live;
ever_live_at_start |= live;
}
}
/* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
{
reg_state[r].store_ruid = 0;
reg_state[r].real_store_ruid = 0;
if (fixed_regs[r])
reg_state[r].use_index = -1;
else
reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
}
for (insn = get_last_insn (); insn; insn = prev)
{
bool control_flow_insn;
rtx note;
prev = PREV_INSN (insn);
/* We cannot do our optimization across labels. Invalidating all the use
information we have would be costly, so we just note where the label
is and then later disable any optimization that would cross it. */
if (LABEL_P (insn))
last_label_ruid = reload_combine_ruid;
else if (BARRIER_P (insn))
{
/* Crossing a barrier resets all the use information. */
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (! fixed_regs[r])
reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
}
else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
/* Optimizations across insns being marked as volatile must be
prevented. All the usage information is invalidated
here. */
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (! fixed_regs[r]
&& reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
reg_state[r].use_index = -1;
if (! NONDEBUG_INSN_P (insn))
continue;
reload_combine_ruid++;
control_flow_insn = control_flow_insn_p (insn);
if (control_flow_insn)
last_jump_ruid = reload_combine_ruid;
if (reload_combine_recognize_const_pattern (insn)
|| reload_combine_recognize_pattern (insn))
continue;
note_stores (insn, reload_combine_note_store, NULL);
if (CALL_P (insn))
{
rtx link;
HARD_REG_SET used_regs = insn_callee_abi (insn).full_reg_clobbers ();
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (TEST_HARD_REG_BIT (used_regs, r))
{
reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
reg_state[r].store_ruid = reload_combine_ruid;
}
for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
link = XEXP (link, 1))
{
rtx setuse = XEXP (link, 0);
rtx usage_rtx = XEXP (setuse, 0);
if (GET_CODE (setuse) == USE && REG_P (usage_rtx))
{
unsigned int end_regno = END_REGNO (usage_rtx);
for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
reg_state[i].use_index = -1;
}
}
}
if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
{
/* Non-spill registers might be used at the call destination in
some unknown fashion, so we have to mark the unknown use. */
HARD_REG_SET *live;
if ((condjump_p (insn) || condjump_in_parallel_p (insn))
&& JUMP_LABEL (insn))
{
if (ANY_RETURN_P (JUMP_LABEL (insn)))
live = NULL;
else
live = &LABEL_LIVE (JUMP_LABEL (insn));
}
else
live = &ever_live_at_start;
if (live)
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (TEST_HARD_REG_BIT (*live, r))
reg_state[r].use_index = -1;
}
reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
NULL_RTX);
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
{
if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
{
int regno = REGNO (XEXP (note, 0));
reg_state[regno].store_ruid = reload_combine_ruid;
reg_state[regno].real_store_ruid = reload_combine_ruid;
reg_state[regno].use_index = -1;
}
}
}
free (label_live);
}
/* Check if DST is a register or a subreg of a register; if it is,
update store_ruid, real_store_ruid and use_index in the reg_state
structure accordingly. Called via note_stores from reload_combine. */
static void
reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
{
int regno = 0;
int i;
machine_mode mode = GET_MODE (dst);
if (GET_CODE (dst) == SUBREG)
{
regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
GET_MODE (SUBREG_REG (dst)),
SUBREG_BYTE (dst),
GET_MODE (dst));
dst = SUBREG_REG (dst);
}
/* Some targets do argument pushes without adding REG_INC notes. */
if (MEM_P (dst))
{
dst = XEXP (dst, 0);
if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
|| GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
|| GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
{
unsigned int end_regno = END_REGNO (XEXP (dst, 0));
for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
{
/* We could probably do better, but for now mark the register
as used in an unknown fashion and set/clobbered at this
insn. */
reg_state[i].use_index = -1;
reg_state[i].store_ruid = reload_combine_ruid;
reg_state[i].real_store_ruid = reload_combine_ruid;
}
}
else
return;
}
if (!REG_P (dst))
return;
regno += REGNO (dst);
/* note_stores might have stripped a STRICT_LOW_PART, so we have to be
careful with registers / register parts that are not full words.
Similarly for ZERO_EXTRACT. */
if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
|| GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
{
for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
{
reg_state[i].use_index = -1;
reg_state[i].store_ruid = reload_combine_ruid;
reg_state[i].real_store_ruid = reload_combine_ruid;
}
}
else
{
for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
{
reg_state[i].store_ruid = reload_combine_ruid;
if (GET_CODE (set) == SET)
reg_state[i].real_store_ruid = reload_combine_ruid;
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
}
}
}
/* XP points to a piece of rtl that has to be checked for any uses of
registers.
*XP is the pattern of INSN, or a part of it.
Called from reload_combine, and recursively by itself. */
static void
reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
{
rtx x = *xp;
enum rtx_code code = x->code;
const char *fmt;
int i, j;
rtx offset = const0_rtx; /* For the REG case below. */
switch (code)
{
case SET:
if (REG_P (SET_DEST (x)))
{
reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
return;
}
break;
case USE:
/* If this is the USE of a return value, we can't change it. */
if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
{
/* Mark the return register as used in an unknown fashion. */
rtx reg = XEXP (x, 0);
unsigned int end_regno = END_REGNO (reg);
for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
reg_state[regno].use_index = -1;
return;
}
break;
case CLOBBER:
if (REG_P (SET_DEST (x)))
{
/* No spurious CLOBBERs of pseudo registers may remain. */
gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
return;
}
break;
case PLUS:
/* We are interested in (plus (reg) (const_int)) . */
if (!REG_P (XEXP (x, 0))
|| !CONST_INT_P (XEXP (x, 1)))
break;
offset = XEXP (x, 1);
x = XEXP (x, 0);
/* Fall through. */
case REG:
{
int regno = REGNO (x);
int use_index;
int nregs;
/* No spurious USEs of pseudo registers may remain. */
gcc_assert (regno < FIRST_PSEUDO_REGISTER);
nregs = REG_NREGS (x);
/* We can't substitute into multi-hard-reg uses. */
if (nregs > 1)
{
while (--nregs >= 0)
reg_state[regno + nregs].use_index = -1;
return;
}
/* We may be called to update uses in previously seen insns.
Don't add uses beyond the last store we saw. */
if (ruid < reg_state[regno].store_ruid)
return;
/* If this register is already used in some unknown fashion, we
can't do anything.
If we decrement the index from zero to -1, we can't store more
uses, so this register becomes used in an unknown fashion. */
use_index = --reg_state[regno].use_index;
if (use_index < 0)
return;
if (use_index == RELOAD_COMBINE_MAX_USES - 1)
{
/* This is the first use of this register we have seen since we
marked it as dead. */
reg_state[regno].offset = offset;
reg_state[regno].all_offsets_match = true;
reg_state[regno].use_ruid = ruid;
}
else
{
if (reg_state[regno].use_ruid > ruid)
reg_state[regno].use_ruid = ruid;
if (! rtx_equal_p (offset, reg_state[regno].offset))
reg_state[regno].all_offsets_match = false;
}
reg_state[regno].reg_use[use_index].insn = insn;
reg_state[regno].reg_use[use_index].ruid = ruid;
reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
reg_state[regno].reg_use[use_index].usep = xp;
return;
}
case MEM:
containing_mem = x;
break;
default:
break;
}
/* Recursively process the components of X. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
else if (fmt[i] == 'E')
{
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
containing_mem);
}
}
}
/* See if we can reduce the cost of a constant by replacing a move
with an add. We track situations in which a register is set to a
constant or to a register plus a constant. */
/* We cannot do our optimization across labels. Invalidating all the
information about register contents we have would be costly, so we
use move2add_last_label_luid to note where the label is and then
later disable any optimization that would cross it.
reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
are only valid if reg_set_luid[n] is greater than
move2add_last_label_luid.
For a set that established a new (potential) base register with
non-constant value, we use move2add_luid from the place where the
setting insn is encountered; registers based off that base then
get the same reg_set_luid. Constants all get
move2add_last_label_luid + 1 as their reg_set_luid. */
static int reg_set_luid[FIRST_PSEUDO_REGISTER];
/* If reg_base_reg[n] is negative, register n has been set to
reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
If reg_base_reg[n] is non-negative, register n has been set to the
sum of reg_offset[n] and the value of register reg_base_reg[n]
before reg_set_luid[n], calculated in mode reg_mode[n] .
For multi-hard-register registers, all but the first one are
recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
marks it as invalid. */
static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
static int reg_base_reg[FIRST_PSEUDO_REGISTER];
static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
/* move2add_luid is linearly increased while scanning the instructions
from first to last. It is used to set reg_set_luid in
reload_cse_move2add and move2add_note_store. */
static int move2add_luid;
/* move2add_last_label_luid is set whenever a label is found. Labels
invalidate all previously collected reg_offset data. */
static int move2add_last_label_luid;
/* ??? We don't know how zero / sign extension is handled, hence we
can't go from a narrower to a wider mode. */
#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
(GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
|| (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
&& TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
/* Record that REG is being set to a value with the mode of REG. */
static void
move2add_record_mode (rtx reg)
{
int regno, nregs;
machine_mode mode = GET_MODE (reg);
if (GET_CODE (reg) == SUBREG)
{
regno = subreg_regno (reg);
nregs = subreg_nregs (reg);
}
else if (REG_P (reg))
{
regno = REGNO (reg);
nregs = REG_NREGS (reg);
}
else
gcc_unreachable ();
for (int i = nregs - 1; i > 0; i--)
reg_mode[regno + i] = BLKmode;
reg_mode[regno] = mode;
}
/* Record that REG is being set to the sum of SYM and OFF. */
static void
move2add_record_sym_value (rtx reg, rtx sym, rtx off)
{
int regno = REGNO (reg);
move2add_record_mode (reg);
reg_set_luid[regno] = move2add_luid;
reg_base_reg[regno] = -1;
reg_symbol_ref[regno] = sym;
reg_offset[regno] = INTVAL (off);
}
/* Check if REGNO contains a valid value in MODE. */
static bool
move2add_valid_value_p (int regno, scalar_int_mode mode)
{
if (reg_set_luid[regno] <= move2add_last_label_luid)
return false;
if (mode != reg_mode[regno])
{
scalar_int_mode old_mode;
if (!is_a (reg_mode[regno], &old_mode)
|| !MODES_OK_FOR_MOVE2ADD (mode, old_mode)
|| !REG_CAN_CHANGE_MODE_P (regno, old_mode, mode))
return false;
/* The value loaded into regno in reg_mode[regno] is also valid in
mode after truncation only if (REG:mode regno) is the lowpart of
(REG:reg_mode[regno] regno). Now, for big endian, the starting
regno of the lowpart might be different. */
poly_int64 s_off = subreg_lowpart_offset (mode, old_mode);
s_off = subreg_regno_offset (regno, old_mode, s_off, mode);
if (maybe_ne (s_off, 0))
/* We could in principle adjust regno, check reg_mode[regno] to be
BLKmode, and return s_off to the caller (vs. -1 for failure),
but we currently have no callers that could make use of this
information. */
return false;
}
for (int i = end_hard_regno (mode, regno) - 1; i > regno; i--)
if (reg_mode[i] != BLKmode)
return false;
return true;
}
/* This function is called with INSN that sets REG (of mode MODE)
to (SYM + OFF), while REG is known to already have value (SYM + offset).
This function tries to change INSN into an add instruction
(set (REG) (plus (REG) (OFF - offset))) using the known value.
It also updates the information about REG's known value.
Return true if we made a change. */
static bool
move2add_use_add2_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
rtx_insn *insn)
{
rtx pat = PATTERN (insn);
rtx src = SET_SRC (pat);
int regno = REGNO (reg);
rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno], mode);
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
bool changed = false;
/* (set (reg) (plus (reg) (const_int 0))) is not canonical;
use (set (reg) (reg)) instead.
We don't delete this insn, nor do we convert it into a
note, to avoid losing register notes or the return
value flag. jump2 already knows how to get rid of
no-op moves. */
if (new_src == const0_rtx)
{
/* If the constants are different, this is a
truncation, that, if turned into (set (reg)
(reg)), would be discarded. Maybe we should
try a truncMN pattern? */
if (INTVAL (off) == reg_offset [regno])
changed = validate_change (insn, &SET_SRC (pat), reg, 0);
}
else
{
struct full_rtx_costs oldcst, newcst;
rtx tem = gen_rtx_PLUS (mode, reg, new_src);
get_full_set_rtx_cost (pat, &oldcst);
SET_SRC (pat) = tem;
get_full_set_rtx_cost (pat, &newcst);
SET_SRC (pat) = src;
if (costs_lt_p (&newcst, &oldcst, speed)
&& have_add2_insn (reg, new_src))
changed = validate_change (insn, &SET_SRC (pat), tem, 0);
else if (sym == NULL_RTX && mode != BImode)
{
scalar_int_mode narrow_mode;
FOR_EACH_MODE_UNTIL (narrow_mode, mode)
{
if (have_insn_for (STRICT_LOW_PART, narrow_mode)
&& ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
== (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
{
rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
rtx narrow_src = gen_int_mode (INTVAL (off),
narrow_mode);
rtx new_set
= gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
narrow_reg),
narrow_src);
get_full_set_rtx_cost (new_set, &newcst);
if (costs_lt_p (&newcst, &oldcst, speed))
{
changed = validate_change (insn, &PATTERN (insn),
new_set, 0);
if (changed)
break;
}
}
}
}
}
move2add_record_sym_value (reg, sym, off);
return changed;
}
/* This function is called with INSN that sets REG (of mode MODE) to
(SYM + OFF), but REG doesn't have known value (SYM + offset). This
function tries to find another register which is known to already have
value (SYM + offset) and change INSN into an add instruction
(set (REG) (plus (the found register) (OFF - offset))) if such
a register is found. It also updates the information about
REG's known value.
Return true iff we made a change. */
static bool
move2add_use_add3_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
rtx_insn *insn)
{
rtx pat = PATTERN (insn);
rtx src = SET_SRC (pat);
int regno = REGNO (reg);
int min_regno = 0;
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
int i;
bool changed = false;
struct full_rtx_costs oldcst, newcst, mincst;
rtx plus_expr;
init_costs_to_max (&mincst);
get_full_set_rtx_cost (pat, &oldcst);
plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
SET_SRC (pat) = plus_expr;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (move2add_valid_value_p (i, mode)
&& reg_base_reg[i] < 0
&& reg_symbol_ref[i] != NULL_RTX
&& rtx_equal_p (sym, reg_symbol_ref[i]))
{
rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
GET_MODE (reg));
/* (set (reg) (plus (reg) (const_int 0))) is not canonical;
use (set (reg) (reg)) instead.
We don't delete this insn, nor do we convert it into a
note, to avoid losing register notes or the return
value flag. jump2 already knows how to get rid of
no-op moves. */
if (new_src == const0_rtx)
{
init_costs_to_zero (&mincst);
min_regno = i;
break;
}
else
{
XEXP (plus_expr, 1) = new_src;
get_full_set_rtx_cost (pat, &newcst);
if (costs_lt_p (&newcst, &mincst, speed))
{
mincst = newcst;
min_regno = i;
}
}
}
SET_SRC (pat) = src;
if (costs_lt_p (&mincst, &oldcst, speed))
{
rtx tem;
tem = gen_rtx_REG (GET_MODE (reg), min_regno);
if (i != min_regno)
{
rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
GET_MODE (reg));
tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
}
if (validate_change (insn, &SET_SRC (pat), tem, 0))
changed = true;
}
reg_set_luid[regno] = move2add_luid;
move2add_record_sym_value (reg, sym, off);
return changed;
}
/* Convert move insns with constant inputs to additions if they are cheaper.
Return true if any changes were made. */
static bool
reload_cse_move2add (rtx_insn *first)
{
int i;
rtx_insn *insn;
bool changed = false;
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
{
reg_set_luid[i] = 0;
reg_offset[i] = 0;
reg_base_reg[i] = 0;
reg_symbol_ref[i] = NULL_RTX;
reg_mode[i] = VOIDmode;
}
move2add_last_label_luid = 0;
move2add_luid = 2;
for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
{
rtx pat, note;
if (LABEL_P (insn))
{
move2add_last_label_luid = move2add_luid;
/* We're going to increment move2add_luid twice after a
label, so that we can use move2add_last_label_luid + 1 as
the luid for constants. */
move2add_luid++;
continue;
}
if (! INSN_P (insn))
continue;
pat = PATTERN (insn);
/* For simplicity, we only perform this optimization on
straightforward SETs. */
scalar_int_mode mode;
if (GET_CODE (pat) == SET
&& REG_P (SET_DEST (pat))
&& is_a (GET_MODE (SET_DEST (pat)), &mode))
{
rtx reg = SET_DEST (pat);
int regno = REGNO (reg);
rtx src = SET_SRC (pat);
/* Check if we have valid information on the contents of this
register in the mode of REG. */
if (move2add_valid_value_p (regno, mode)
&& dbg_cnt (cse2_move2add))
{
/* Try to transform (set (REGX) (CONST_INT A))
...
(set (REGX) (CONST_INT B))
to
(set (REGX) (CONST_INT A))
...
(set (REGX) (plus (REGX) (CONST_INT B-A)))
or
(set (REGX) (CONST_INT A))
...
(set (STRICT_LOW_PART (REGX)) (CONST_INT B))
*/
if (CONST_INT_P (src)
&& reg_base_reg[regno] < 0
&& reg_symbol_ref[regno] == NULL_RTX)
{
changed |= move2add_use_add2_insn (mode, reg, NULL_RTX,
src, insn);
continue;
}
/* Try to transform (set (REGX) (REGY))
(set (REGX) (PLUS (REGX) (CONST_INT A)))
...
(set (REGX) (REGY))
(set (REGX) (PLUS (REGX) (CONST_INT B)))
to
(set (REGX) (REGY))
(set (REGX) (PLUS (REGX) (CONST_INT A)))
...
(set (REGX) (plus (REGX) (CONST_INT B-A))) */
else if (REG_P (src)
&& reg_set_luid[regno] == reg_set_luid[REGNO (src)]
&& reg_base_reg[regno] == reg_base_reg[REGNO (src)]
&& move2add_valid_value_p (REGNO (src), mode))
{
rtx_insn *next = next_nonnote_nondebug_insn (insn);
rtx set = NULL_RTX;
if (next)
set = single_set (next);
if (set
&& SET_DEST (set) == reg
&& GET_CODE (SET_SRC (set)) == PLUS
&& XEXP (SET_SRC (set), 0) == reg
&& CONST_INT_P (XEXP (SET_SRC (set), 1)))
{
rtx src3 = XEXP (SET_SRC (set), 1);
unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
HOST_WIDE_INT regno_offset = reg_offset[regno];
rtx new_src =
gen_int_mode (added_offset
+ base_offset
- regno_offset,
mode);
bool success = false;
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
if (new_src == const0_rtx)
/* See above why we create (set (reg) (reg)) here. */
success
= validate_change (next, &SET_SRC (set), reg, 0);
else
{
rtx old_src = SET_SRC (set);
struct full_rtx_costs oldcst, newcst;
rtx tem = gen_rtx_PLUS (mode, reg, new_src);
get_full_set_rtx_cost (set, &oldcst);
SET_SRC (set) = tem;
get_full_set_src_cost (tem, mode, &newcst);
SET_SRC (set) = old_src;
costs_add_n_insns (&oldcst, 1);
if (costs_lt_p (&newcst, &oldcst, speed)
&& have_add2_insn (reg, new_src))
{
rtx newpat = gen_rtx_SET (reg, tem);
success
= validate_change (next, &PATTERN (next),
newpat, 0);
}
}
if (success)
delete_insn (insn);
changed |= success;
insn = next;
move2add_record_mode (reg);
reg_offset[regno]
= trunc_int_for_mode (added_offset + base_offset,
mode);
continue;
}
}
}
/* Try to transform
(set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
...
(set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
to
(set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
...
(set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
if ((GET_CODE (src) == SYMBOL_REF
|| (GET_CODE (src) == CONST
&& GET_CODE (XEXP (src, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
&& CONST_INT_P (XEXP (XEXP (src, 0), 1))))
&& dbg_cnt (cse2_move2add))
{
rtx sym, off;
if (GET_CODE (src) == SYMBOL_REF)
{
sym = src;
off = const0_rtx;
}
else
{
sym = XEXP (XEXP (src, 0), 0);
off = XEXP (XEXP (src, 0), 1);
}
/* If the reg already contains the value which is sum of
sym and some constant value, we can use an add2 insn. */
if (move2add_valid_value_p (regno, mode)
&& reg_base_reg[regno] < 0
&& reg_symbol_ref[regno] != NULL_RTX
&& rtx_equal_p (sym, reg_symbol_ref[regno]))
changed |= move2add_use_add2_insn (mode, reg, sym, off, insn);
/* Otherwise, we have to find a register whose value is sum
of sym and some constant value. */
else
changed |= move2add_use_add3_insn (mode, reg, sym, off, insn);
continue;
}
}
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
{
if (REG_NOTE_KIND (note) == REG_INC
&& REG_P (XEXP (note, 0)))
{
/* Reset the information about this register. */
int regno = REGNO (XEXP (note, 0));
if (regno < FIRST_PSEUDO_REGISTER)
{
move2add_record_mode (XEXP (note, 0));
reg_mode[regno] = VOIDmode;
}
}
}
/* There are no REG_INC notes for SP autoinc. */
subrtx_var_iterator::array_type array;
FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
{
rtx mem = *iter;
if (mem
&& MEM_P (mem)
&& GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
{
if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
reg_mode[STACK_POINTER_REGNUM] = VOIDmode;
}
}
note_stores (insn, move2add_note_store, insn);
/* If INSN is a conditional branch, we try to extract an
implicit set out of it. */
if (any_condjump_p (insn))
{
rtx cnd = fis_get_condition (insn);
if (cnd != NULL_RTX
&& GET_CODE (cnd) == NE
&& REG_P (XEXP (cnd, 0))
&& !reg_set_p (XEXP (cnd, 0), insn)
/* The following two checks, which are also in
move2add_note_store, are intended to reduce the
number of calls to gen_rtx_SET to avoid memory
allocation if possible. */
&& SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
&& REG_NREGS (XEXP (cnd, 0)) == 1
&& CONST_INT_P (XEXP (cnd, 1)))
{
rtx implicit_set =
gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
}
}
/* If this is a CALL_INSN, all call used registers are stored with
unknown values. */
if (CALL_P (insn))
{
function_abi callee_abi = insn_callee_abi (insn);
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
if (reg_mode[i] != VOIDmode
&& reg_mode[i] != BLKmode
&& callee_abi.clobbers_reg_p (reg_mode[i], i))
/* Reset the information about this register. */
reg_mode[i] = VOIDmode;
}
}
return changed;
}
/* SET is a SET or CLOBBER that sets DST. DATA is the insn which
contains SET.
Update reg_set_luid, reg_offset and reg_base_reg accordingly.
Called from reload_cse_move2add via note_stores. */
static void
move2add_note_store (rtx dst, const_rtx set, void *data)
{
rtx_insn *insn = (rtx_insn *) data;
unsigned int regno = 0;
scalar_int_mode mode;
if (GET_CODE (dst) == SUBREG)
regno = subreg_regno (dst);
else if (REG_P (dst))
regno = REGNO (dst);
else
return;
if (!is_a (GET_MODE (dst), &mode))
goto invalidate;
if (GET_CODE (set) == SET)
{
rtx note, sym = NULL_RTX;
rtx off;
note = find_reg_equal_equiv_note (insn);
if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
{
sym = XEXP (note, 0);
off = const0_rtx;
}
else if (note && GET_CODE (XEXP (note, 0)) == CONST
&& GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
&& GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
&& CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
{
sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
off = XEXP (XEXP (XEXP (note, 0), 0), 1);
}
if (sym != NULL_RTX)
{
move2add_record_sym_value (dst, sym, off);
return;
}
}
if (GET_CODE (set) == SET
&& GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
&& GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
{
rtx src = SET_SRC (set);
rtx base_reg;
unsigned HOST_WIDE_INT offset;
int base_regno;
switch (GET_CODE (src))
{
case PLUS:
if (REG_P (XEXP (src, 0)))
{
base_reg = XEXP (src, 0);
if (CONST_INT_P (XEXP (src, 1)))
offset = UINTVAL (XEXP (src, 1));
else if (REG_P (XEXP (src, 1))
&& move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
{
if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
&& reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
offset = reg_offset[REGNO (XEXP (src, 1))];
/* Maybe the first register is known to be a
constant. */
else if (move2add_valid_value_p (REGNO (base_reg), mode)
&& reg_base_reg[REGNO (base_reg)] < 0
&& reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
{
offset = reg_offset[REGNO (base_reg)];
base_reg = XEXP (src, 1);
}
else
goto invalidate;
}
else
goto invalidate;
break;
}
goto invalidate;
case REG:
base_reg = src;
offset = 0;
break;
case CONST_INT:
/* Start tracking the register as a constant. */
reg_base_reg[regno] = -1;
reg_symbol_ref[regno] = NULL_RTX;
reg_offset[regno] = INTVAL (SET_SRC (set));
/* We assign the same luid to all registers set to constants. */
reg_set_luid[regno] = move2add_last_label_luid + 1;
move2add_record_mode (dst);
return;
default:
goto invalidate;
}
base_regno = REGNO (base_reg);
/* If information about the base register is not valid, set it
up as a new base register, pretending its value is known
starting from the current insn. */
if (!move2add_valid_value_p (base_regno, mode))
{
reg_base_reg[base_regno] = base_regno;
reg_symbol_ref[base_regno] = NULL_RTX;
reg_offset[base_regno] = 0;
reg_set_luid[base_regno] = move2add_luid;
gcc_assert (GET_MODE (base_reg) == mode);
move2add_record_mode (base_reg);
}
/* Copy base information from our base register. */
reg_set_luid[regno] = reg_set_luid[base_regno];
reg_base_reg[regno] = reg_base_reg[base_regno];
reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
/* Compute the sum of the offsets or constants. */
reg_offset[regno]
= trunc_int_for_mode (offset + reg_offset[base_regno], mode);
move2add_record_mode (dst);
}
else
{
invalidate:
/* Invalidate the contents of the register. */
move2add_record_mode (dst);
reg_mode[regno] = VOIDmode;
}
}
namespace {
const pass_data pass_data_postreload_cse =
{
RTL_PASS, /* type */
"postreload", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_RELOAD_CSE_REGS, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_df_finish, /* todo_flags_finish */
};
class pass_postreload_cse : public rtl_opt_pass
{
public:
pass_postreload_cse (gcc::context *ctxt)
: rtl_opt_pass (pass_data_postreload_cse, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
virtual unsigned int execute (function *);
}; // class pass_postreload_cse
unsigned int
pass_postreload_cse::execute (function *fun)
{
if (!dbg_cnt (postreload_cse))
return 0;
/* Do a very simple CSE pass over just the hard registers. */
reload_cse_regs (get_insns ());
/* Reload_cse_regs can eliminate potentially-trapping MEMs.
Remove any EH edges associated with them. */
if (fun->can_throw_non_call_exceptions
&& purge_all_dead_edges ())
cleanup_cfg (0);
return 0;
}
} // anon namespace
rtl_opt_pass *
make_pass_postreload_cse (gcc::context *ctxt)
{
return new pass_postreload_cse (ctxt);
}