/* IR-agnostic target query functions relating to optabs Copyright (C) 1987-2024 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "target.h" #include "insn-codes.h" #include "optabs-query.h" #include "optabs-libfuncs.h" #include "insn-config.h" #include "rtl.h" #include "recog.h" #include "vec-perm-indices.h" #include "internal-fn.h" #include "memmodel.h" #include "optabs.h" struct target_optabs default_target_optabs; struct target_optabs *this_fn_optabs = &default_target_optabs; #if SWITCHABLE_TARGET struct target_optabs *this_target_optabs = &default_target_optabs; #endif /* Return the insn used to perform conversion OP from mode FROM_MODE to mode TO_MODE; return CODE_FOR_nothing if the target does not have such an insn, or if it is unsuitable for optimization type OPT_TYPE. */ insn_code convert_optab_handler (convert_optab optab, machine_mode to_mode, machine_mode from_mode, optimization_type opt_type) { insn_code icode = convert_optab_handler (optab, to_mode, from_mode); if (icode == CODE_FOR_nothing || !targetm.optab_supported_p (optab, to_mode, from_mode, opt_type)) return CODE_FOR_nothing; return icode; } /* Return the insn used to implement mode MODE of OP; return CODE_FOR_nothing if the target does not have such an insn, or if it is unsuitable for optimization type OPT_TYPE. */ insn_code direct_optab_handler (convert_optab optab, machine_mode mode, optimization_type opt_type) { insn_code icode = direct_optab_handler (optab, mode); if (icode == CODE_FOR_nothing || !targetm.optab_supported_p (optab, mode, mode, opt_type)) return CODE_FOR_nothing; return icode; } /* Enumerates the possible types of structure operand to an extraction_insn. */ enum extraction_type { ET_unaligned_mem, ET_reg }; /* Check whether insv, extv or extzv pattern ICODE can be used for an insertion or extraction of type TYPE on a structure of mode MODE. Return true if so and fill in *INSN accordingly. STRUCT_OP is the operand number of the structure (the first sign_extract or zero_extract operand) and FIELD_OP is the operand number of the field (the other side of the set from the sign_extract or zero_extract). */ static bool get_traditional_extraction_insn (extraction_insn *insn, enum extraction_type type, machine_mode mode, enum insn_code icode, int struct_op, int field_op) { const struct insn_data_d *data = &insn_data[icode]; machine_mode struct_mode = data->operand[struct_op].mode; if (struct_mode == VOIDmode) struct_mode = word_mode; if (mode != struct_mode) return false; machine_mode field_mode = data->operand[field_op].mode; if (field_mode == VOIDmode) field_mode = word_mode; machine_mode pos_mode = data->operand[struct_op + 2].mode; if (pos_mode == VOIDmode) pos_mode = word_mode; insn->icode = icode; insn->field_mode = as_a (field_mode); if (type == ET_unaligned_mem) insn->struct_mode = byte_mode; else if (struct_mode == BLKmode) insn->struct_mode = opt_scalar_int_mode (); else insn->struct_mode = as_a (struct_mode); insn->pos_mode = as_a (pos_mode); return true; } /* Return true if an optab exists to perform an insertion or extraction of type TYPE in mode MODE. Describe the instruction in *INSN if so. REG_OPTAB is the optab to use for register structures and MISALIGN_OPTAB is the optab to use for misaligned memory structures. POS_OP is the operand number of the bit position. */ static bool get_optab_extraction_insn (class extraction_insn *insn, enum extraction_type type, machine_mode mode, direct_optab reg_optab, direct_optab misalign_optab, int pos_op) { direct_optab optab = (type == ET_unaligned_mem ? misalign_optab : reg_optab); enum insn_code icode = direct_optab_handler (optab, mode); if (icode == CODE_FOR_nothing) return false; const struct insn_data_d *data = &insn_data[icode]; machine_mode pos_mode = data->operand[pos_op].mode; if (pos_mode == VOIDmode) pos_mode = word_mode; insn->icode = icode; insn->field_mode = as_a (mode); if (type == ET_unaligned_mem) insn->struct_mode = opt_scalar_int_mode (); else insn->struct_mode = insn->field_mode; insn->pos_mode = as_a (pos_mode); return true; } /* Return true if an instruction exists to perform an insertion or extraction (PATTERN says which) of type TYPE in mode MODE. Describe the instruction in *INSN if so. */ static bool get_extraction_insn (extraction_insn *insn, enum extraction_pattern pattern, enum extraction_type type, machine_mode mode) { switch (pattern) { case EP_insv: if (targetm.have_insv () && get_traditional_extraction_insn (insn, type, mode, targetm.code_for_insv, 0, 3)) return true; return get_optab_extraction_insn (insn, type, mode, insv_optab, insvmisalign_optab, 2); case EP_extv: if (targetm.have_extv () && get_traditional_extraction_insn (insn, type, mode, targetm.code_for_extv, 1, 0)) return true; return get_optab_extraction_insn (insn, type, mode, extv_optab, extvmisalign_optab, 3); case EP_extzv: if (targetm.have_extzv () && get_traditional_extraction_insn (insn, type, mode, targetm.code_for_extzv, 1, 0)) return true; return get_optab_extraction_insn (insn, type, mode, extzv_optab, extzvmisalign_optab, 3); default: gcc_unreachable (); } } /* Return true if an instruction exists to access a field of mode FIELDMODE in a structure that has STRUCT_BITS significant bits. Describe the "best" such instruction in *INSN if so. PATTERN and TYPE describe the type of insertion or extraction we want to perform. For an insertion, the number of significant structure bits includes all bits of the target. For an extraction, it need only include the most significant bit of the field. Larger widths are acceptable in both cases. */ static bool get_best_extraction_insn (extraction_insn *insn, enum extraction_pattern pattern, enum extraction_type type, unsigned HOST_WIDE_INT struct_bits, machine_mode field_mode) { opt_scalar_int_mode mode_iter; FOR_EACH_MODE_FROM (mode_iter, smallest_int_mode_for_size (struct_bits)) { scalar_int_mode mode = mode_iter.require (); if (get_extraction_insn (insn, pattern, type, mode)) { FOR_EACH_MODE_FROM (mode_iter, mode) { mode = mode_iter.require (); if (maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (field_mode)) || TRULY_NOOP_TRUNCATION_MODES_P (insn->field_mode, field_mode)) break; get_extraction_insn (insn, pattern, type, mode); } return true; } } return false; } /* Return true if an instruction exists to access a field of mode FIELDMODE in a register structure that has STRUCT_BITS significant bits. Describe the "best" such instruction in *INSN if so. PATTERN describes the type of insertion or extraction we want to perform. For an insertion, the number of significant structure bits includes all bits of the target. For an extraction, it need only include the most significant bit of the field. Larger widths are acceptable in both cases. */ bool get_best_reg_extraction_insn (extraction_insn *insn, enum extraction_pattern pattern, unsigned HOST_WIDE_INT struct_bits, machine_mode field_mode) { return get_best_extraction_insn (insn, pattern, ET_reg, struct_bits, field_mode); } /* Return true if an instruction exists to access a field of BITSIZE bits starting BITNUM bits into a memory structure. Describe the "best" such instruction in *INSN if so. PATTERN describes the type of insertion or extraction we want to perform and FIELDMODE is the natural mode of the extracted field. The instructions considered here only access bytes that overlap the bitfield; they do not touch any surrounding bytes. */ bool get_best_mem_extraction_insn (extraction_insn *insn, enum extraction_pattern pattern, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitnum, machine_mode field_mode) { unsigned HOST_WIDE_INT struct_bits = (bitnum % BITS_PER_UNIT + bitsize + BITS_PER_UNIT - 1); struct_bits -= struct_bits % BITS_PER_UNIT; return get_best_extraction_insn (insn, pattern, ET_unaligned_mem, struct_bits, field_mode); } /* Return the insn code used to extend FROM_MODE to TO_MODE. UNSIGNEDP specifies zero-extension instead of sign-extension. If no such operation exists, CODE_FOR_nothing will be returned. */ enum insn_code can_extend_p (machine_mode to_mode, machine_mode from_mode, int unsignedp) { if (unsignedp < 0 && targetm.have_ptr_extend ()) return targetm.code_for_ptr_extend; convert_optab tab = unsignedp ? zext_optab : sext_optab; return convert_optab_handler (tab, to_mode, from_mode); } /* Return the insn code to convert fixed-point mode FIXMODE to floating-point mode FLTMODE, or CODE_FOR_nothing if no such instruction exists. UNSIGNEDP specifies whether FIXMODE is unsigned. */ enum insn_code can_float_p (machine_mode fltmode, machine_mode fixmode, int unsignedp) { convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab; return convert_optab_handler (tab, fltmode, fixmode); } /* Return the insn code to convert floating-point mode FLTMODE to fixed-point mode FIXMODE, or CODE_FOR_nothing if no such instruction exists. UNSIGNEDP specifies whether FIXMODE is unsigned. On a successful return, set *TRUNCP_PTR to true if it is necessary to output an explicit FTRUNC before the instruction. */ enum insn_code can_fix_p (machine_mode fixmode, machine_mode fltmode, int unsignedp, bool *truncp_ptr) { convert_optab tab; enum insn_code icode; tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab; icode = convert_optab_handler (tab, fixmode, fltmode); if (icode != CODE_FOR_nothing) { *truncp_ptr = false; return icode; } /* FIXME: This requires a port to define both FIX and FTRUNC pattern for this to work. We need to rework the fix* and ftrunc* patterns and documentation. */ tab = unsignedp ? ufix_optab : sfix_optab; icode = convert_optab_handler (tab, fixmode, fltmode); if (icode != CODE_FOR_nothing && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing) { *truncp_ptr = true; return icode; } return CODE_FOR_nothing; } /* Return nonzero if a conditional move of mode MODE is supported. This function is for combine so it can tell whether an insn that looks like a conditional move is actually supported by the hardware. If we guess wrong we lose a bit on optimization, but that's it. */ /* ??? sparc64 supports conditionally moving integers values based on fp comparisons, and vice versa. How do we handle them? */ bool can_conditionally_move_p (machine_mode mode) { return direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing; } /* If a target doesn't implement a permute on a vector with multibyte elements, we can try to do the same permute on byte elements. If this makes sense for vector mode MODE then return the appropriate byte vector mode. */ opt_machine_mode qimode_for_vec_perm (machine_mode mode) { if (GET_MODE_INNER (mode) != QImode) return related_vector_mode (mode, QImode, GET_MODE_SIZE (mode)); return opt_machine_mode (); } /* Return true if selector SEL can be represented in the integer equivalent of vector mode MODE. */ bool selector_fits_mode_p (machine_mode mode, const vec_perm_indices &sel) { unsigned HOST_WIDE_INT mask = GET_MODE_MASK (GET_MODE_INNER (mode)); return (mask == HOST_WIDE_INT_M1U || sel.all_in_range_p (0, mask + 1)); } /* Return true if VEC_PERM_EXPRs with variable selector operands can be expanded using SIMD extensions of the CPU. MODE is the mode of the vectors being permuted. */ bool can_vec_perm_var_p (machine_mode mode) { /* If the target doesn't implement a vector mode for the vector type, then no operations are supported. */ if (!VECTOR_MODE_P (mode)) return false; if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing) return true; /* We allow fallback to a QI vector mode, and adjust the mask. */ machine_mode qimode; if (!qimode_for_vec_perm (mode).exists (&qimode) || maybe_gt (GET_MODE_NUNITS (qimode), GET_MODE_MASK (QImode) + 1)) return false; if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing) return false; /* In order to support the lowering of variable permutations, we need to support shifts and adds. */ if (GET_MODE_UNIT_SIZE (mode) > 2 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing && optab_handler (vashl_optab, mode) == CODE_FOR_nothing) return false; if (optab_handler (add_optab, qimode) == CODE_FOR_nothing) return false; return true; } /* Return true if the target directly supports VEC_PERM_EXPRs on vectors of mode OP_MODE and result vector of mode MODE using the selector SEL. ALLOW_VARIABLE_P is true if it is acceptable to force the selector into a register and use a variable permute (if the target supports that). Note that additional permutations representing whole-vector shifts may also be handled via the vec_shr or vec_shl optab, but only where the second input vector is entirely constant zeroes; this case is not dealt with here. */ bool can_vec_perm_const_p (machine_mode mode, machine_mode op_mode, const vec_perm_indices &sel, bool allow_variable_p) { /* If the target doesn't implement a vector mode for the vector type, then no operations are supported. */ if (!VECTOR_MODE_P (mode)) return false; /* It's probably cheaper to test for the variable case first. */ if (op_mode == mode && allow_variable_p && selector_fits_mode_p (mode, sel)) { if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing) return true; /* Unlike can_vec_perm_var_p, we don't need to test for optabs related computing the QImode selector, since that happens at compile time. */ machine_mode qimode; if (qimode_for_vec_perm (mode).exists (&qimode)) { vec_perm_indices qimode_indices; qimode_indices.new_expanded_vector (sel, GET_MODE_UNIT_SIZE (mode)); if (selector_fits_mode_p (qimode, qimode_indices) && (direct_optab_handler (vec_perm_optab, qimode) != CODE_FOR_nothing)) return true; } } if (targetm.vectorize.vec_perm_const != NULL) { if (targetm.vectorize.vec_perm_const (mode, op_mode, NULL_RTX, NULL_RTX, NULL_RTX, sel)) return true; /* ??? For completeness, we ought to check the QImode version of vec_perm_const_optab. But all users of this implicit lowering feature implement the variable vec_perm_optab, and the ia64 port specifically doesn't want us to lower V2SF operations into integer operations. */ } return false; } /* Find a widening optab even if it doesn't widen as much as we want. E.g. if from_mode is HImode, and to_mode is DImode, and there is no direct HI->SI insn, then return SI->DI, if that exists. */ enum insn_code find_widening_optab_handler_and_mode (optab op, machine_mode to_mode, machine_mode from_mode, machine_mode *found_mode) { machine_mode limit_mode = to_mode; if (is_a (from_mode)) { gcc_checking_assert (is_a (to_mode) && known_lt (GET_MODE_PRECISION (from_mode), GET_MODE_PRECISION (to_mode))); /* The modes after FROM_MODE are all MODE_INT, so the only MODE_PARTIAL_INT mode we consider is FROM_MODE itself. If LIMIT_MODE is MODE_PARTIAL_INT, stop at the containing MODE_INT. */ if (GET_MODE_CLASS (limit_mode) == MODE_PARTIAL_INT) limit_mode = GET_MODE_WIDER_MODE (limit_mode).require (); } else if (is_a (to_mode)) { gcc_checking_assert (VECTOR_MODE_P (from_mode) && GET_MODE_INNER (from_mode) < to_mode); limit_mode = from_mode; } else gcc_checking_assert (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode) && from_mode < to_mode); FOR_EACH_MODE (from_mode, from_mode, limit_mode) { enum insn_code handler = convert_optab_handler (op, to_mode, from_mode); if (handler != CODE_FOR_nothing) { if (found_mode) *found_mode = from_mode; return handler; } } return CODE_FOR_nothing; } /* Return non-zero if a highpart multiply is supported or can be synthesized. For the benefit of expand_mult_highpart, the return value is 1 for direct, 2 for integral widening, 3 for even/odd widening, 4 for hi/lo widening. */ int can_mult_highpart_p (machine_mode mode, bool uns_p) { optab op; scalar_int_mode int_mode, wider_mode; op = uns_p ? umul_highpart_optab : smul_highpart_optab; if (optab_handler (op, mode) != CODE_FOR_nothing) return 1; /* If the mode is integral, synth from widening or larger operations. */ if (is_a (mode, &int_mode) && GET_MODE_WIDER_MODE (int_mode).exists (&wider_mode)) { op = uns_p ? umul_widen_optab : smul_widen_optab; if (convert_optab_handler (op, wider_mode, mode) != CODE_FOR_nothing) return 2; /* The test on the size comes from expmed_mult_highpart_optab. */ if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing && GET_MODE_BITSIZE (int_mode) - 1 < BITS_PER_WORD) return 2; } /* If the mode is an integral vector, synth from widening operations. */ if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT) return 0; poly_int64 nunits = GET_MODE_NUNITS (mode); op = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab; if (optab_handler (op, mode) != CODE_FOR_nothing) { op = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab; if (optab_handler (op, mode) != CODE_FOR_nothing) { /* The encoding has 2 interleaved stepped patterns. */ vec_perm_builder sel (nunits, 2, 3); for (unsigned int i = 0; i < 6; ++i) sel.quick_push (!BYTES_BIG_ENDIAN + (i & ~1) + ((i & 1) ? nunits : 0)); vec_perm_indices indices (sel, 2, nunits); if (can_vec_perm_const_p (mode, mode, indices)) return 3; } } op = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab; if (optab_handler (op, mode) != CODE_FOR_nothing) { op = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab; if (optab_handler (op, mode) != CODE_FOR_nothing) { /* The encoding has a single stepped pattern. */ vec_perm_builder sel (nunits, 1, 3); for (unsigned int i = 0; i < 3; ++i) sel.quick_push (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1)); vec_perm_indices indices (sel, 2, nunits); if (can_vec_perm_const_p (mode, mode, indices)) return 4; } } return 0; } /* Return true if there is a compare_and_swap pattern. */ bool can_compare_and_swap_p (machine_mode mode, bool allow_libcall) { enum insn_code icode; /* Check for __atomic_compare_and_swap. */ icode = direct_optab_handler (atomic_compare_and_swap_optab, mode); if (icode != CODE_FOR_nothing) return true; /* Check for __sync_compare_and_swap. */ icode = optab_handler (sync_compare_and_swap_optab, mode); if (icode != CODE_FOR_nothing) return true; if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode)) return true; /* No inline compare and swap. */ return false; } /* Return true if an atomic exchange can be performed. */ bool can_atomic_exchange_p (machine_mode mode, bool allow_libcall) { enum insn_code icode; /* Check for __atomic_exchange. */ icode = direct_optab_handler (atomic_exchange_optab, mode); if (icode != CODE_FOR_nothing) return true; /* Don't check __sync_test_and_set, as on some platforms that has reduced functionality. Targets that really do support a proper exchange should simply be updated to the __atomics. */ return can_compare_and_swap_p (mode, allow_libcall); } /* Return true if an atomic load can be performed without falling back to a compare-and-swap. */ bool can_atomic_load_p (machine_mode mode) { enum insn_code icode; /* Does the target supports the load directly? */ icode = direct_optab_handler (atomic_load_optab, mode); if (icode != CODE_FOR_nothing) return true; /* If the size of the object is greater than word size on this target, then we assume that a load will not be atomic. Also see expand_atomic_load. */ return known_le (GET_MODE_PRECISION (mode), BITS_PER_WORD); } /* Determine whether "1 << x" is relatively cheap in word_mode. */ bool lshift_cheap_p (bool speed_p) { /* FIXME: This should be made target dependent via this "this_target" mechanism, similar to e.g. can_copy_init_p in gcse.cc. */ static bool init[2] = { false, false }; static bool cheap[2] = { true, true }; /* If the targer has no lshift in word_mode, the operation will most probably not be cheap. ??? Does GCC even work for such targets? */ if (optab_handler (ashl_optab, word_mode) == CODE_FOR_nothing) return false; if (!init[speed_p]) { rtx reg = gen_raw_REG (word_mode, 10000); int cost = set_src_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg), word_mode, speed_p); cheap[speed_p] = cost < COSTS_N_INSNS (3); init[speed_p] = true; } return cheap[speed_p]; } /* If MODE is not VOIDmode, return true if vector conversion optab OP supports that mode, given that the second mode is always an integer vector. If MODE is VOIDmode, return true if OP supports any vector mode. */ static enum insn_code supported_vec_convert_optab (optab op, machine_mode mode) { int start = mode == VOIDmode ? 0 : mode; int end = mode == VOIDmode ? MAX_MACHINE_MODE - 1 : mode; enum insn_code icode = CODE_FOR_nothing; for (int i = start; i <= end; ++i) if (VECTOR_MODE_P ((machine_mode) i)) for (int j = MIN_MODE_VECTOR_INT; j < MAX_MODE_VECTOR_INT; ++j) { if ((icode = convert_optab_handler (op, (machine_mode) i, (machine_mode) j)) != CODE_FOR_nothing) return icode; } return icode; } /* If MODE is not VOIDmode, return true if vec_gather_load is available for that mode. If MODE is VOIDmode, return true if gather_load is available for at least one vector mode. In that case, and if ELSVALS is nonzero, store the supported else values into the vector it points to. */ bool supports_vec_gather_load_p (machine_mode mode, vec *elsvals) { enum insn_code icode = CODE_FOR_nothing; if (!this_fn_optabs->supports_vec_gather_load[mode] || elsvals) { /* Try the masked variants first. In case we later decide that we need a mask after all (thus requiring an else operand) we need to query it below and we cannot do that when using the non-masked optab. */ icode = supported_vec_convert_optab (mask_gather_load_optab, mode); if (icode == CODE_FOR_nothing) icode = supported_vec_convert_optab (mask_len_gather_load_optab, mode); if (icode == CODE_FOR_nothing) icode = supported_vec_convert_optab (gather_load_optab, mode); this_fn_optabs->supports_vec_gather_load[mode] = (icode != CODE_FOR_nothing) ? 1 : -1; } /* For gather the optab's operand indices do not match the IFN's because the latter does not have the extension operand (operand 3). It is implicitly added during expansion so we use the IFN's else index + 1. */ if (elsvals && icode != CODE_FOR_nothing) get_supported_else_vals (icode, internal_fn_else_index (IFN_MASK_GATHER_LOAD) + 1, *elsvals); return this_fn_optabs->supports_vec_gather_load[mode] > 0; } /* If MODE is not VOIDmode, return true if vec_scatter_store is available for that mode. If MODE is VOIDmode, return true if scatter_store is available for at least one vector mode. */ bool supports_vec_scatter_store_p (machine_mode mode) { enum insn_code icode; if (!this_fn_optabs->supports_vec_scatter_store[mode]) { icode = supported_vec_convert_optab (scatter_store_optab, mode); if (icode == CODE_FOR_nothing) icode = supported_vec_convert_optab (mask_scatter_store_optab, mode); if (icode == CODE_FOR_nothing) icode = supported_vec_convert_optab (mask_len_scatter_store_optab, mode); this_fn_optabs->supports_vec_scatter_store[mode] = (icode != CODE_FOR_nothing) ? 1 : -1; } return this_fn_optabs->supports_vec_scatter_store[mode] > 0; } /* Whether we can extract part of the vector mode MODE as (scalar or vector) mode EXTR_MODE. */ bool can_vec_extract (machine_mode mode, machine_mode extr_mode) { unsigned m; if (!VECTOR_MODE_P (mode) || !constant_multiple_p (GET_MODE_SIZE (mode), GET_MODE_SIZE (extr_mode), &m)) return false; if (convert_optab_handler (vec_extract_optab, mode, extr_mode) != CODE_FOR_nothing) return true; /* Besides a direct vec_extract we can also use an element extract from an integer vector mode with elements of the size of the extr_mode. */ scalar_int_mode imode; machine_mode vmode; if (!int_mode_for_size (GET_MODE_BITSIZE (extr_mode), 0).exists (&imode) || !related_vector_mode (mode, imode, m).exists (&vmode) || (convert_optab_handler (vec_extract_optab, vmode, imode) == CODE_FOR_nothing)) return false; /* We assume we can pun mode to vmode and imode to extr_mode. */ return true; } /* OP is either neg_optab or abs_optab and FMODE is the floating-point inner mode of MODE. Check whether we can implement OP for mode MODE by using xor_optab to flip the sign bit (for neg_optab) or and_optab to clear the sign bit (for abs_optab). If so, return the integral mode that should be used to do the operation and set *BITPOS to the index of the sign bit (counting from the lsb). */ opt_machine_mode get_absneg_bit_mode (optab op, machine_mode mode, scalar_float_mode fmode, int *bitpos) { /* The format has to have a simple sign bit. */ auto fmt = REAL_MODE_FORMAT (fmode); if (fmt == NULL) return {}; *bitpos = fmt->signbit_rw; if (*bitpos < 0) return {}; /* Don't create negative zeros if the format doesn't support them. */ if (op == neg_optab && !fmt->has_signed_zero) return {}; if (VECTOR_MODE_P (mode)) return related_int_vector_mode (mode); if (GET_MODE_SIZE (fmode) <= UNITS_PER_WORD) return int_mode_for_mode (fmode); return word_mode; } /* Return true if we can implement OP for mode MODE directly, without resorting to a libfunc. This usually means that OP will be implemented inline. Note that this function cannot tell whether the target pattern chooses to use libfuncs internally. */ bool can_open_code_p (optab op, machine_mode mode) { if (optab_handler (op, mode) != CODE_FOR_nothing) return true; if (op == umul_highpart_optab) return can_mult_highpart_p (mode, true); if (op == smul_highpart_optab) return can_mult_highpart_p (mode, false); machine_mode new_mode; scalar_float_mode fmode; int bitpos; if ((op == neg_optab || op == abs_optab) && is_a (GET_MODE_INNER (mode), &fmode) && get_absneg_bit_mode (op, mode, fmode, &bitpos).exists (&new_mode) && can_implement_p (op == neg_optab ? xor_optab : and_optab, new_mode)) return true; return false; } /* Return true if we can implement OP for mode MODE in some way, either by open-coding it or by calling a libfunc. */ bool can_implement_p (optab op, machine_mode mode) { return can_open_code_p (op, mode) || optab_libfunc (op, mode); }