/* OpenACC worker partitioning via middle end neutering/broadcasting scheme Copyright (C) 2015-2024 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "rtl.h" #include "tree.h" #include "gimple.h" #include "tree-pass.h" #include "ssa.h" #include "cgraph.h" #include "pretty-print.h" #include "fold-const.h" #include "gimplify.h" #include "gimple-iterator.h" #include "gimple-walk.h" #include "tree-inline.h" #include "langhooks.h" #include "omp-general.h" #include "omp-low.h" #include "gimple-pretty-print.h" #include "cfghooks.h" #include "insn-config.h" #include "recog.h" #include "internal-fn.h" #include "bitmap.h" #include "tree-nested.h" #include "stor-layout.h" #include "tree-ssa-threadupdate.h" #include "tree-into-ssa.h" #include "splay-tree.h" #include "target.h" #include "cfgloop.h" #include "tree-cfg.h" #include "omp-offload.h" #include "attribs.h" #include "targhooks.h" #include "diagnostic-core.h" /* Loop structure of the function. The entire function is described as a NULL loop. */ /* Adapted from 'gcc/config/nvptx/nvptx.cc:struct parallel'. */ struct parallel_g { /* Parent parallel. */ parallel_g *parent; /* Next sibling parallel. */ parallel_g *next; /* First child parallel. */ parallel_g *inner; /* Partitioning mask of the parallel. */ unsigned mask; /* Partitioning used within inner parallels. */ unsigned inner_mask; /* Location of parallel forked and join. The forked is the first block in the parallel and the join is the first block after of the partition. */ basic_block forked_block; basic_block join_block; gimple *forked_stmt; gimple *join_stmt; gimple *fork_stmt; gimple *joining_stmt; /* Basic blocks in this parallel, but not in child parallels. The FORKED and JOINING blocks are in the partition. The FORK and JOIN blocks are not. */ auto_vec blocks; tree record_type; tree sender_decl; tree receiver_decl; public: parallel_g (parallel_g *parent, unsigned mode); ~parallel_g (); }; /* Constructor links the new parallel into it's parent's chain of children. */ parallel_g::parallel_g (parallel_g *parent_, unsigned mask_) :parent (parent_), next (0), inner (0), mask (mask_), inner_mask (0) { forked_block = join_block = 0; forked_stmt = join_stmt = NULL; fork_stmt = joining_stmt = NULL; record_type = NULL_TREE; sender_decl = NULL_TREE; receiver_decl = NULL_TREE; if (parent) { next = parent->inner; parent->inner = this; } } parallel_g::~parallel_g () { delete inner; delete next; } static bool local_var_based_p (tree decl) { switch (TREE_CODE (decl)) { case VAR_DECL: return !is_global_var (decl); case COMPONENT_REF: case BIT_FIELD_REF: case ARRAY_REF: return local_var_based_p (TREE_OPERAND (decl, 0)); default: return false; } } /* Map of basic blocks to gimple stmts. */ typedef hash_map bb_stmt_map_t; /* Calls to OpenACC routines are made by all workers/wavefronts/warps, since the routine likely contains partitioned loops (else will do its own neutering and variable propagation). Return TRUE if a function call CALL should be made in (worker) single mode instead, rather than redundant mode. */ static bool omp_sese_active_worker_call (gcall *call) { #define GOMP_DIM_SEQ GOMP_DIM_MAX tree fndecl = gimple_call_fndecl (call); if (!fndecl) return true; tree attrs = oacc_get_fn_attrib (fndecl); if (!attrs) return true; int level = oacc_fn_attrib_level (attrs); /* Neither regular functions nor "seq" routines should be run by all threads in worker-single mode. */ return level == -1 || level == GOMP_DIM_SEQ; #undef GOMP_DIM_SEQ } /* Split basic blocks such that each forked and join unspecs are at the start of their basic blocks. Thus afterwards each block will have a single partitioning mode. We also do the same for return insns, as they are executed by every thread. Return the partitioning mode of the function as a whole. Populate MAP with head and tail blocks. We also clear the BB visited flag, which is used when finding partitions. */ /* Adapted from 'gcc/config/nvptx/nvptx.cc:nvptx_split_blocks'. */ static void omp_sese_split_blocks (bb_stmt_map_t *map) { auto_vec worklist; basic_block block; /* Locate all the reorg instructions of interest. */ FOR_ALL_BB_FN (block, cfun) { /* Clear visited flag, for use by parallel locator */ block->flags &= ~BB_VISITED; for (gimple_stmt_iterator gsi = gsi_start_bb (block); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); if (gimple_call_internal_p (stmt, IFN_UNIQUE)) { enum ifn_unique_kind k = ((enum ifn_unique_kind) TREE_INT_CST_LOW (gimple_call_arg (stmt, 0))); if (k == IFN_UNIQUE_OACC_JOIN) worklist.safe_push (stmt); else if (k == IFN_UNIQUE_OACC_FORK) { gcc_assert (gsi_one_before_end_p (gsi)); basic_block forked_block = single_succ (block); gimple_stmt_iterator gsi2 = gsi_start_bb (forked_block); /* We push a NOP as a placeholder for the "forked" stmt. This is then recognized in omp_sese_find_par. */ gimple *nop = gimple_build_nop (); gsi_insert_before (&gsi2, nop, GSI_SAME_STMT); worklist.safe_push (nop); } } else if (gimple_code (stmt) == GIMPLE_RETURN || gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH || (gimple_code (stmt) == GIMPLE_CALL && !gimple_call_internal_p (stmt) && !omp_sese_active_worker_call (as_a (stmt)))) worklist.safe_push (stmt); else if (is_gimple_assign (stmt)) { tree lhs = gimple_assign_lhs (stmt); /* Force assignments to components/fields/elements of local aggregates into fully-partitioned (redundant) mode. This avoids having to broadcast the whole aggregate. The RHS of the assignment will be propagated using the normal mechanism. */ switch (TREE_CODE (lhs)) { case COMPONENT_REF: case BIT_FIELD_REF: case ARRAY_REF: { tree aggr = TREE_OPERAND (lhs, 0); if (local_var_based_p (aggr)) worklist.safe_push (stmt); } break; default: ; } } } } /* Split blocks on the worklist. */ unsigned ix; gimple *stmt; for (ix = 0; worklist.iterate (ix, &stmt); ix++) { basic_block block = gimple_bb (stmt); if (gimple_code (stmt) == GIMPLE_COND) { gcond *orig_cond = as_a (stmt); tree_code code = gimple_expr_code (orig_cond); tree pred = make_ssa_name (boolean_type_node); gimple *asgn = gimple_build_assign (pred, code, gimple_cond_lhs (orig_cond), gimple_cond_rhs (orig_cond)); gcond *new_cond = gimple_build_cond (NE_EXPR, pred, boolean_false_node, gimple_cond_true_label (orig_cond), gimple_cond_false_label (orig_cond)); gimple_stmt_iterator gsi = gsi_for_stmt (stmt); gsi_insert_before (&gsi, asgn, GSI_SAME_STMT); gsi_replace (&gsi, new_cond, true); edge e = split_block (block, asgn); block = e->dest; map->get_or_insert (block) = new_cond; } else if ((gimple_code (stmt) == GIMPLE_CALL && !gimple_call_internal_p (stmt)) || is_gimple_assign (stmt)) { gimple_stmt_iterator gsi = gsi_for_stmt (stmt); gsi_prev (&gsi); edge call = split_block (block, gsi_stmt (gsi)); gimple *call_stmt = gsi_stmt (gsi_start_bb (call->dest)); edge call_to_ret = split_block (call->dest, call_stmt); map->get_or_insert (call_to_ret->src) = call_stmt; } else { gimple_stmt_iterator gsi = gsi_for_stmt (stmt); gsi_prev (&gsi); if (gsi_end_p (gsi)) map->get_or_insert (block) = stmt; else { /* Split block before insn. The insn is in the new block. */ edge e = split_block (block, gsi_stmt (gsi)); block = e->dest; map->get_or_insert (block) = stmt; } } } } static const char * mask_name (unsigned mask) { switch (mask) { case 0: return "gang redundant"; case 1: return "gang partitioned"; case 2: return "worker partitioned"; case 3: return "gang+worker partitioned"; case 4: return "vector partitioned"; case 5: return "gang+vector partitioned"; case 6: return "worker+vector partitioned"; case 7: return "fully partitioned"; default: return ""; } } /* Dump this parallel and all its inner parallels. */ /* Adapted from 'gcc/config/nvptx/nvptx.cc:nvptx_dump_pars'. */ static void omp_sese_dump_pars (parallel_g *par, unsigned depth) { fprintf (dump_file, "%u: mask %d (%s) head=%d, tail=%d\n", depth, par->mask, mask_name (par->mask), par->forked_block ? par->forked_block->index : -1, par->join_block ? par->join_block->index : -1); fprintf (dump_file, " blocks:"); basic_block block; for (unsigned ix = 0; par->blocks.iterate (ix, &block); ix++) fprintf (dump_file, " %d", block->index); fprintf (dump_file, "\n"); if (par->inner) omp_sese_dump_pars (par->inner, depth + 1); if (par->next) omp_sese_dump_pars (par->next, depth); } /* If BLOCK contains a fork/join marker, process it to create or terminate a loop structure. Add this block to the current loop, and then walk successor blocks. */ /* Adapted from 'gcc/config/nvptx/nvptx.cc:nvptx_find_par'. */ static parallel_g * omp_sese_find_par (bb_stmt_map_t *map, parallel_g *par, basic_block block) { if (block->flags & BB_VISITED) return par; block->flags |= BB_VISITED; if (gimple **stmtp = map->get (block)) { gimple *stmt = *stmtp; if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH || gimple_code (stmt) == GIMPLE_RETURN || (gimple_code (stmt) == GIMPLE_CALL && !gimple_call_internal_p (stmt)) || is_gimple_assign (stmt)) { /* A single block that is forced to be at the maximum partition level. Make a singleton par for it. */ par = new parallel_g (par, GOMP_DIM_MASK (GOMP_DIM_GANG) | GOMP_DIM_MASK (GOMP_DIM_WORKER) | GOMP_DIM_MASK (GOMP_DIM_VECTOR)); par->forked_block = block; par->forked_stmt = stmt; par->blocks.safe_push (block); par = par->parent; goto walk_successors; } else if (gimple_nop_p (stmt)) { basic_block pred = single_pred (block); gcc_assert (pred); gimple_stmt_iterator gsi = gsi_last_bb (pred); gimple *final_stmt = gsi_stmt (gsi); if (gimple_call_internal_p (final_stmt, IFN_UNIQUE)) { gcall *call = as_a (final_stmt); enum ifn_unique_kind k = ((enum ifn_unique_kind) TREE_INT_CST_LOW (gimple_call_arg (call, 0))); if (k == IFN_UNIQUE_OACC_FORK) { HOST_WIDE_INT dim = TREE_INT_CST_LOW (gimple_call_arg (call, 2)); unsigned mask = (dim >= 0) ? GOMP_DIM_MASK (dim) : 0; par = new parallel_g (par, mask); par->forked_block = block; par->forked_stmt = final_stmt; par->fork_stmt = stmt; } else gcc_unreachable (); } else gcc_unreachable (); } else if (gimple_call_internal_p (stmt, IFN_UNIQUE)) { gcall *call = as_a (stmt); enum ifn_unique_kind k = ((enum ifn_unique_kind) TREE_INT_CST_LOW (gimple_call_arg (call, 0))); if (k == IFN_UNIQUE_OACC_JOIN) { HOST_WIDE_INT dim = TREE_INT_CST_LOW (gimple_call_arg (stmt, 2)); unsigned mask = (dim >= 0) ? GOMP_DIM_MASK (dim) : 0; gcc_assert (par->mask == mask); par->join_block = block; par->join_stmt = stmt; par = par->parent; } else gcc_unreachable (); } else gcc_unreachable (); } if (par) /* Add this block onto the current loop's list of blocks. */ par->blocks.safe_push (block); else /* This must be the entry block. Create a NULL parallel. */ par = new parallel_g (0, 0); walk_successors: /* Walk successor blocks. */ edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, block->succs) omp_sese_find_par (map, par, e->dest); return par; } /* DFS walk the CFG looking for fork & join markers. Construct loop structures as we go. MAP is a mapping of basic blocks to head & tail markers, discovered when splitting blocks. This speeds up the discovery. We rely on the BB visited flag having been cleared when splitting blocks. */ /* Adapted from 'gcc/config/nvptx/nvptx.cc:nvptx_discover_pars'. */ static parallel_g * omp_sese_discover_pars (bb_stmt_map_t *map) { basic_block block; /* Mark exit blocks as visited. */ block = EXIT_BLOCK_PTR_FOR_FN (cfun); block->flags |= BB_VISITED; /* And entry block as not. */ block = ENTRY_BLOCK_PTR_FOR_FN (cfun); block->flags &= ~BB_VISITED; parallel_g *par = omp_sese_find_par (map, 0, block); if (dump_file) { fprintf (dump_file, "\nLoops\n"); omp_sese_dump_pars (par, 0); fprintf (dump_file, "\n"); } return par; } static void populate_single_mode_bitmaps (parallel_g *par, bitmap worker_single, bitmap vector_single, unsigned outer_mask, int depth) { unsigned mask = outer_mask | par->mask; basic_block block; for (unsigned i = 0; par->blocks.iterate (i, &block); i++) { if ((mask & GOMP_DIM_MASK (GOMP_DIM_WORKER)) == 0) bitmap_set_bit (worker_single, block->index); if ((mask & GOMP_DIM_MASK (GOMP_DIM_VECTOR)) == 0) bitmap_set_bit (vector_single, block->index); } if (par->inner) populate_single_mode_bitmaps (par->inner, worker_single, vector_single, mask, depth + 1); if (par->next) populate_single_mode_bitmaps (par->next, worker_single, vector_single, outer_mask, depth); } /* A map from SSA names or var decls to record fields. */ typedef hash_map field_map_t; /* For each propagation record type, this is a map from SSA names or var decls to propagate, to the field in the record type that should be used for transmission and reception. */ typedef hash_map record_field_map_t; static void install_var_field (tree var, tree record_type, field_map_t *fields) { tree name; char tmp[20]; if (TREE_CODE (var) == SSA_NAME) { name = SSA_NAME_IDENTIFIER (var); if (!name) { sprintf (tmp, "_%u", (unsigned) SSA_NAME_VERSION (var)); name = get_identifier (tmp); } } else if (VAR_P (var)) { name = DECL_NAME (var); if (!name) { sprintf (tmp, "D_%u", (unsigned) DECL_UID (var)); name = get_identifier (tmp); } } else gcc_unreachable (); gcc_assert (!fields->get (var)); tree type = TREE_TYPE (var); if (POINTER_TYPE_P (type) && TYPE_RESTRICT (type)) type = build_qualified_type (type, TYPE_QUALS (type) & ~TYPE_QUAL_RESTRICT); tree field = build_decl (BUILTINS_LOCATION, FIELD_DECL, name, type); if (VAR_P (var) && type == TREE_TYPE (var)) { SET_DECL_ALIGN (field, DECL_ALIGN (var)); DECL_USER_ALIGN (field) = DECL_USER_ALIGN (var); TREE_THIS_VOLATILE (field) = TREE_THIS_VOLATILE (var); } else SET_DECL_ALIGN (field, TYPE_ALIGN (type)); fields->put (var, field); insert_field_into_struct (record_type, field); } /* Sets of SSA_NAMES or VAR_DECLs to propagate. */ typedef hash_set propagation_set; static void find_ssa_names_to_propagate (parallel_g *par, unsigned outer_mask, bitmap worker_single, bitmap vector_single, vec *prop_set) { unsigned mask = outer_mask | par->mask; if (par->inner) find_ssa_names_to_propagate (par->inner, mask, worker_single, vector_single, prop_set); if (par->next) find_ssa_names_to_propagate (par->next, outer_mask, worker_single, vector_single, prop_set); if (mask & GOMP_DIM_MASK (GOMP_DIM_WORKER)) { basic_block block; int ix; for (ix = 0; par->blocks.iterate (ix, &block); ix++) { for (gphi_iterator psi = gsi_start_phis (block); !gsi_end_p (psi); gsi_next (&psi)) { gphi *phi = psi.phi (); use_operand_p use; ssa_op_iter iter; FOR_EACH_PHI_ARG (use, phi, iter, SSA_OP_USE) { tree var = USE_FROM_PTR (use); if (TREE_CODE (var) != SSA_NAME) continue; gimple *def_stmt = SSA_NAME_DEF_STMT (var); if (gimple_nop_p (def_stmt)) continue; basic_block def_bb = gimple_bb (def_stmt); if (bitmap_bit_p (worker_single, def_bb->index)) { if (!(*prop_set)[def_bb->index]) (*prop_set)[def_bb->index] = new propagation_set; propagation_set *ws_prop = (*prop_set)[def_bb->index]; ws_prop->add (var); } } } for (gimple_stmt_iterator gsi = gsi_start_bb (block); !gsi_end_p (gsi); gsi_next (&gsi)) { use_operand_p use; ssa_op_iter iter; gimple *stmt = gsi_stmt (gsi); FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE) { tree var = USE_FROM_PTR (use); gimple *def_stmt = SSA_NAME_DEF_STMT (var); if (gimple_nop_p (def_stmt)) continue; basic_block def_bb = gimple_bb (def_stmt); if (bitmap_bit_p (worker_single, def_bb->index)) { if (!(*prop_set)[def_bb->index]) (*prop_set)[def_bb->index] = new propagation_set; propagation_set *ws_prop = (*prop_set)[def_bb->index]; ws_prop->add (var); } } } } } } /* Callback for walk_gimple_stmt to find RHS VAR_DECLs (uses) in a statement. */ static tree find_partitioned_var_uses_1 (tree *node, int *, void *data) { walk_stmt_info *wi = (walk_stmt_info *) data; hash_set *partitioned_var_uses = (hash_set *) wi->info; if (!wi->is_lhs && VAR_P (*node)) partitioned_var_uses->add (*node); return NULL_TREE; } static void find_partitioned_var_uses (parallel_g *par, unsigned outer_mask, hash_set *partitioned_var_uses) { unsigned mask = outer_mask | par->mask; if (par->inner) find_partitioned_var_uses (par->inner, mask, partitioned_var_uses); if (par->next) find_partitioned_var_uses (par->next, outer_mask, partitioned_var_uses); if (mask & GOMP_DIM_MASK (GOMP_DIM_WORKER)) { basic_block block; int ix; for (ix = 0; par->blocks.iterate (ix, &block); ix++) for (gimple_stmt_iterator gsi = gsi_start_bb (block); !gsi_end_p (gsi); gsi_next (&gsi)) { walk_stmt_info wi; memset (&wi, 0, sizeof (wi)); wi.info = (void *) partitioned_var_uses; walk_gimple_stmt (&gsi, NULL, find_partitioned_var_uses_1, &wi); } } } /* Gang-private variables (typically placed in a GPU's shared memory) do not need to be processed by the worker-propagation mechanism. Populate the GANG_PRIVATE_VARS set with any such variables found in the current function. */ static void find_gang_private_vars (hash_set *gang_private_vars) { basic_block block; FOR_EACH_BB_FN (block, cfun) { for (gimple_stmt_iterator gsi = gsi_start_bb (block); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); if (gimple_call_internal_p (stmt, IFN_UNIQUE)) { enum ifn_unique_kind k = ((enum ifn_unique_kind) TREE_INT_CST_LOW (gimple_call_arg (stmt, 0))); if (k == IFN_UNIQUE_OACC_PRIVATE) { HOST_WIDE_INT level = TREE_INT_CST_LOW (gimple_call_arg (stmt, 2)); if (level != GOMP_DIM_GANG) continue; for (unsigned i = 3; i < gimple_call_num_args (stmt); i++) { tree arg = gimple_call_arg (stmt, i); gcc_assert (TREE_CODE (arg) == ADDR_EXPR); tree decl = TREE_OPERAND (arg, 0); gang_private_vars->add (decl); } } } } } } static void find_local_vars_to_propagate (parallel_g *par, unsigned outer_mask, hash_set *partitioned_var_uses, hash_set *gang_private_vars, bitmap writes_gang_private, vec *prop_set) { unsigned mask = outer_mask | par->mask; if (par->inner) find_local_vars_to_propagate (par->inner, mask, partitioned_var_uses, gang_private_vars, writes_gang_private, prop_set); if (par->next) find_local_vars_to_propagate (par->next, outer_mask, partitioned_var_uses, gang_private_vars, writes_gang_private, prop_set); if (!(mask & GOMP_DIM_MASK (GOMP_DIM_WORKER))) { basic_block block; int ix; for (ix = 0; par->blocks.iterate (ix, &block); ix++) { for (gimple_stmt_iterator gsi = gsi_start_bb (block); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); tree var; unsigned i; FOR_EACH_LOCAL_DECL (cfun, i, var) { if (!VAR_P (var) || is_global_var (var) || AGGREGATE_TYPE_P (TREE_TYPE (var)) || !partitioned_var_uses->contains (var)) continue; if (stmt_may_clobber_ref_p (stmt, var)) { if (dump_file) { fprintf (dump_file, "bb %u: local variable may be " "clobbered in %s mode: ", block->index, mask_name (mask)); print_generic_expr (dump_file, var, TDF_SLIM); fprintf (dump_file, "\n"); } if (gang_private_vars->contains (var)) { /* If we write a gang-private variable, we want a barrier at the end of the block. */ bitmap_set_bit (writes_gang_private, block->index); continue; } if (!(*prop_set)[block->index]) (*prop_set)[block->index] = new propagation_set; propagation_set *ws_prop = (*prop_set)[block->index]; ws_prop->add (var); } } } } } } /* Transform basic blocks FROM, TO (which may be the same block) into: if (GOACC_single_start ()) BLOCK; GOACC_barrier (); \ | / +----+ | | (new) predicate block +----+-- \ | / \ | / |t \ +----+ +----+ +----+ | | | | | ===> | | | f (old) from block +----+ +----+ +----+ | | t/ \f | / +----+/ (split (split before | | skip block at end) condition) +----+ t/ \f */ static void worker_single_simple (basic_block from, basic_block to, hash_set *def_escapes_block) { gimple *call, *cond; tree lhs, decl; basic_block skip_block; gimple_stmt_iterator gsi = gsi_last_bb (to); if (EDGE_COUNT (to->succs) > 1) { gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_COND); gsi_prev (&gsi); } edge e = split_block (to, gsi_stmt (gsi)); skip_block = e->dest; gimple_stmt_iterator start = gsi_after_labels (from); decl = builtin_decl_explicit (BUILT_IN_GOACC_SINGLE_START); lhs = create_tmp_var (TREE_TYPE (TREE_TYPE (decl))); call = gimple_build_call (decl, 0); gimple_call_set_lhs (call, lhs); gsi_insert_before (&start, call, GSI_NEW_STMT); update_stmt (call); cond = gimple_build_cond (EQ_EXPR, lhs, fold_convert_loc (UNKNOWN_LOCATION, TREE_TYPE (lhs), boolean_true_node), NULL_TREE, NULL_TREE); gsi_insert_after (&start, cond, GSI_NEW_STMT); update_stmt (cond); edge et = split_block (from, cond); et->flags &= ~EDGE_FALLTHRU; et->flags |= EDGE_TRUE_VALUE; /* Make the active worker the more probable path so we prefer fallthrough (letting the idle workers jump around more). */ et->probability = profile_probability::likely (); edge ef = make_edge (from, skip_block, EDGE_FALSE_VALUE); ef->probability = et->probability.invert (); basic_block neutered = split_edge (ef); gimple_stmt_iterator neut_gsi = gsi_last_bb (neutered); for (gsi = gsi_start_bb (et->dest); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); ssa_op_iter iter; tree var; FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF) { if (def_escapes_block->contains (var)) { gphi *join_phi = create_phi_node (NULL_TREE, skip_block); create_new_def_for (var, join_phi, gimple_phi_result_ptr (join_phi)); add_phi_arg (join_phi, var, e, UNKNOWN_LOCATION); tree neutered_def = copy_ssa_name (var, NULL); /* We really want "don't care" or some value representing undefined here, but optimizers will probably get rid of the zero-assignments anyway. */ gassign *zero = gimple_build_assign (neutered_def, build_zero_cst (TREE_TYPE (neutered_def))); gsi_insert_after (&neut_gsi, zero, GSI_CONTINUE_LINKING); update_stmt (zero); add_phi_arg (join_phi, neutered_def, single_succ_edge (neutered), UNKNOWN_LOCATION); update_stmt (join_phi); } } } } static tree build_receiver_ref (tree var, tree receiver_decl, field_map_t *fields) { tree x = build_simple_mem_ref (receiver_decl); tree field = *fields->get (var); TREE_THIS_NOTRAP (x) = 1; x = omp_build_component_ref (x, field); return x; } static tree build_sender_ref (tree var, tree sender_decl, field_map_t *fields) { if (POINTER_TYPE_P (TREE_TYPE (sender_decl))) sender_decl = build_simple_mem_ref (sender_decl); tree field = *fields->get (var); return omp_build_component_ref (sender_decl, field); } static int sort_by_ssa_version_or_uid (const void *p1, const void *p2) { const tree t1 = *(const tree *)p1; const tree t2 = *(const tree *)p2; if (TREE_CODE (t1) == SSA_NAME && TREE_CODE (t2) == SSA_NAME) return SSA_NAME_VERSION (t1) - SSA_NAME_VERSION (t2); else if (TREE_CODE (t1) == SSA_NAME && TREE_CODE (t2) != SSA_NAME) return -1; else if (TREE_CODE (t1) != SSA_NAME && TREE_CODE (t2) == SSA_NAME) return 1; else return DECL_UID (t1) - DECL_UID (t2); } static int sort_by_size_then_ssa_version_or_uid (const void *p1, const void *p2) { const tree t1 = *(const tree *)p1; const tree t2 = *(const tree *)p2; unsigned HOST_WIDE_INT s1 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t1))); unsigned HOST_WIDE_INT s2 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t2))); if (s1 != s2) return s2 - s1; else return sort_by_ssa_version_or_uid (p1, p2); } static void worker_single_copy (basic_block from, basic_block to, hash_set *def_escapes_block, hash_set *worker_partitioned_uses, tree record_type, record_field_map_t *record_field_map, unsigned HOST_WIDE_INT placement, bool isolate_broadcasts, bool has_gang_private_write) { /* If we only have virtual defs, we'll have no record type, but we still want to emit single_copy_start and (particularly) single_copy_end to act as a vdef source on the neutered edge representing memory writes on the non-neutered edge. */ if (!record_type) record_type = char_type_node; tree sender_decl = targetm.goacc.create_worker_broadcast_record (record_type, true, ".oacc_worker_o", placement); tree receiver_decl = targetm.goacc.create_worker_broadcast_record (record_type, false, ".oacc_worker_i", placement); gimple_stmt_iterator gsi = gsi_last_bb (to); if (EDGE_COUNT (to->succs) > 1) gsi_prev (&gsi); edge e = split_block (to, gsi_stmt (gsi)); basic_block barrier_block = e->dest; gimple_stmt_iterator start = gsi_after_labels (from); tree decl = builtin_decl_explicit (BUILT_IN_GOACC_SINGLE_COPY_START); tree lhs = create_tmp_var (TREE_TYPE (TREE_TYPE (decl))); gimple *call = gimple_build_call (decl, 1, POINTER_TYPE_P (TREE_TYPE (sender_decl)) ? sender_decl : build_fold_addr_expr (sender_decl)); gimple_call_set_lhs (call, lhs); gsi_insert_before (&start, call, GSI_NEW_STMT); update_stmt (call); /* The shared-memory range for this block overflowed. Add a barrier before the GOACC_single_copy_start call. */ if (isolate_broadcasts) { decl = builtin_decl_explicit (BUILT_IN_GOACC_BARRIER); gimple *acc_bar = gimple_build_call (decl, 0); gsi_insert_before (&start, acc_bar, GSI_SAME_STMT); } tree conv_tmp = make_ssa_name (TREE_TYPE (receiver_decl)); gimple *conv = gimple_build_assign (conv_tmp, fold_convert (TREE_TYPE (receiver_decl), lhs)); update_stmt (conv); gsi_insert_after (&start, conv, GSI_NEW_STMT); gimple *asgn = gimple_build_assign (receiver_decl, conv_tmp); gsi_insert_after (&start, asgn, GSI_NEW_STMT); update_stmt (asgn); tree zero_ptr = build_int_cst (TREE_TYPE (receiver_decl), 0); tree recv_tmp = make_ssa_name (TREE_TYPE (receiver_decl)); asgn = gimple_build_assign (recv_tmp, receiver_decl); gsi_insert_after (&start, asgn, GSI_NEW_STMT); update_stmt (asgn); gimple *cond = gimple_build_cond (EQ_EXPR, recv_tmp, zero_ptr, NULL_TREE, NULL_TREE); update_stmt (cond); gsi_insert_after (&start, cond, GSI_NEW_STMT); edge et = split_block (from, cond); et->flags &= ~EDGE_FALLTHRU; et->flags |= EDGE_TRUE_VALUE; /* Make the active worker the more probable path so we prefer fallthrough (letting the idle workers jump around more). */ et->probability = profile_probability::likely (); basic_block body = et->dest; edge ef = make_edge (from, barrier_block, EDGE_FALSE_VALUE); ef->probability = et->probability.invert (); gimple_stmt_iterator bar_gsi = gsi_start_bb (barrier_block); cond = gimple_build_cond (NE_EXPR, recv_tmp, zero_ptr, NULL_TREE, NULL_TREE); if (record_type != char_type_node || has_gang_private_write) { decl = builtin_decl_explicit (BUILT_IN_GOACC_BARRIER); gimple *acc_bar = gimple_build_call (decl, 0); gsi_insert_before (&bar_gsi, acc_bar, GSI_NEW_STMT); gsi_insert_after (&bar_gsi, cond, GSI_NEW_STMT); } else gsi_insert_before (&bar_gsi, cond, GSI_NEW_STMT); edge et2 = split_block (barrier_block, cond); et2->flags &= ~EDGE_FALLTHRU; et2->flags |= EDGE_TRUE_VALUE; et2->probability = profile_probability::unlikely (); basic_block exit_block = et2->dest; basic_block copyout_block = split_edge (et2); edge ef2 = make_edge (barrier_block, exit_block, EDGE_FALSE_VALUE); ef2->probability = et2->probability.invert (); gimple_stmt_iterator copyout_gsi = gsi_start_bb (copyout_block); edge copyout_to_exit = single_succ_edge (copyout_block); gimple_seq sender_seq = NULL; /* Make sure we iterate over definitions in a stable order. */ auto_vec escape_vec (def_escapes_block->elements ()); for (hash_set::iterator it = def_escapes_block->begin (); it != def_escapes_block->end (); ++it) escape_vec.quick_push (*it); escape_vec.qsort (sort_by_ssa_version_or_uid); for (unsigned i = 0; i < escape_vec.length (); i++) { tree var = escape_vec[i]; if (TREE_CODE (var) == SSA_NAME && SSA_NAME_IS_VIRTUAL_OPERAND (var)) continue; tree barrier_def = 0; if (TREE_CODE (var) == SSA_NAME) { gimple *def_stmt = SSA_NAME_DEF_STMT (var); if (gimple_nop_p (def_stmt)) continue; /* The barrier phi takes one result from the actual work of the block we're neutering, and the other result is constant zero of the same type. */ gphi *barrier_phi = create_phi_node (NULL_TREE, barrier_block); barrier_def = create_new_def_for (var, barrier_phi, gimple_phi_result_ptr (barrier_phi)); add_phi_arg (barrier_phi, var, e, UNKNOWN_LOCATION); add_phi_arg (barrier_phi, build_zero_cst (TREE_TYPE (var)), ef, UNKNOWN_LOCATION); update_stmt (barrier_phi); } else gcc_assert (VAR_P (var)); /* If we had no record type, we will have no fields map. */ field_map_t *fields = record_field_map->get (record_type); if (worker_partitioned_uses->contains (var) && fields && fields->get (var)) { tree neutered_def = make_ssa_name (TREE_TYPE (var)); /* Receive definition from shared memory block. */ tree receiver_ref = build_receiver_ref (var, receiver_decl, fields); gassign *recv = gimple_build_assign (neutered_def, receiver_ref); gsi_insert_after (©out_gsi, recv, GSI_CONTINUE_LINKING); update_stmt (recv); if (VAR_P (var)) { /* If it's a VAR_DECL, we only copied to an SSA temporary. Copy to the final location now. */ gassign *asgn = gimple_build_assign (var, neutered_def); gsi_insert_after (©out_gsi, asgn, GSI_CONTINUE_LINKING); update_stmt (asgn); } else { /* If it's an SSA name, create a new phi at the join node to represent either the output from the active worker (the barrier) or the inactive workers (the copyout block). */ gphi *join_phi = create_phi_node (NULL_TREE, exit_block); create_new_def_for (barrier_def, join_phi, gimple_phi_result_ptr (join_phi)); add_phi_arg (join_phi, barrier_def, ef2, UNKNOWN_LOCATION); add_phi_arg (join_phi, neutered_def, copyout_to_exit, UNKNOWN_LOCATION); update_stmt (join_phi); } /* Send definition to shared memory block. */ tree sender_ref = build_sender_ref (var, sender_decl, fields); if (TREE_CODE (var) == SSA_NAME) { gassign *send = gimple_build_assign (sender_ref, var); gimple_seq_add_stmt (&sender_seq, send); update_stmt (send); } else if (VAR_P (var)) { tree tmp = make_ssa_name (TREE_TYPE (var)); gassign *send = gimple_build_assign (tmp, var); gimple_seq_add_stmt (&sender_seq, send); update_stmt (send); send = gimple_build_assign (sender_ref, tmp); gimple_seq_add_stmt (&sender_seq, send); update_stmt (send); } else gcc_unreachable (); } } /* The shared-memory range for this block overflowed. Add a barrier at the end. */ if (isolate_broadcasts) { gsi = gsi_start_bb (exit_block); decl = builtin_decl_explicit (BUILT_IN_GOACC_BARRIER); gimple *acc_bar = gimple_build_call (decl, 0); gsi_insert_before (&gsi, acc_bar, GSI_SAME_STMT); } /* It's possible for the ET->DEST block (the work done by the active thread) to finish with a control-flow insn, e.g. a UNIQUE function call. Split the block and add SENDER_SEQ in the latter part to avoid having control flow in the middle of a BB. */ decl = builtin_decl_explicit (BUILT_IN_GOACC_SINGLE_COPY_END); call = gimple_build_call (decl, 1, POINTER_TYPE_P (TREE_TYPE (sender_decl)) ? sender_decl : build_fold_addr_expr (sender_decl)); gimple_seq_add_stmt (&sender_seq, call); gsi = gsi_last_bb (body); gimple *last = gsi_stmt (gsi); basic_block sender_block = split_block (body, last)->dest; gsi = gsi_last_bb (sender_block); gsi_insert_seq_after (&gsi, sender_seq, GSI_CONTINUE_LINKING); } typedef hash_map > blk_offset_map_t; static void neuter_worker_single (parallel_g *par, unsigned outer_mask, bitmap worker_single, bitmap vector_single, vec *prop_set, hash_set *partitioned_var_uses, record_field_map_t *record_field_map, blk_offset_map_t *blk_offset_map, bitmap writes_gang_private) { unsigned mask = outer_mask | par->mask; if ((mask & GOMP_DIM_MASK (GOMP_DIM_WORKER)) == 0) { basic_block block; for (unsigned i = 0; par->blocks.iterate (i, &block); i++) { bool has_defs = false; hash_set def_escapes_block; hash_set worker_partitioned_uses; unsigned j; tree var; FOR_EACH_SSA_NAME (j, var, cfun) { if (SSA_NAME_IS_VIRTUAL_OPERAND (var)) { has_defs = true; continue; } gimple *def_stmt = SSA_NAME_DEF_STMT (var); if (gimple_nop_p (def_stmt)) continue; if (gimple_bb (def_stmt)->index != block->index) continue; gimple *use_stmt; imm_use_iterator use_iter; bool uses_outside_block = false; bool worker_partitioned_use = false; FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, var) { int blocknum = gimple_bb (use_stmt)->index; /* Don't propagate SSA names that are only used in the current block, unless the usage is in a phi node: that means the name left the block, then came back in at the top. */ if (blocknum != block->index || gimple_code (use_stmt) == GIMPLE_PHI) uses_outside_block = true; if (!bitmap_bit_p (worker_single, blocknum)) worker_partitioned_use = true; } if (uses_outside_block) def_escapes_block.add (var); if (worker_partitioned_use) { worker_partitioned_uses.add (var); has_defs = true; } } propagation_set *ws_prop = (*prop_set)[block->index]; if (ws_prop) { for (propagation_set::iterator it = ws_prop->begin (); it != ws_prop->end (); ++it) { tree var = *it; if (TREE_CODE (var) == VAR_DECL) { def_escapes_block.add (var); if (partitioned_var_uses->contains (var)) { worker_partitioned_uses.add (var); has_defs = true; } } } delete ws_prop; (*prop_set)[block->index] = 0; } bool only_marker_fns = true; bool join_block = false; for (gimple_stmt_iterator gsi = gsi_start_bb (block); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); if (gimple_code (stmt) == GIMPLE_CALL && gimple_call_internal_p (stmt, IFN_UNIQUE)) { enum ifn_unique_kind k = ((enum ifn_unique_kind) TREE_INT_CST_LOW (gimple_call_arg (stmt, 0))); if (k != IFN_UNIQUE_OACC_PRIVATE && k != IFN_UNIQUE_OACC_JOIN && k != IFN_UNIQUE_OACC_FORK && k != IFN_UNIQUE_OACC_HEAD_MARK && k != IFN_UNIQUE_OACC_TAIL_MARK) only_marker_fns = false; else if (k == IFN_UNIQUE_OACC_JOIN) /* The JOIN marker is special in that it *cannot* be predicated for worker zero, because it may be lowered to a barrier instruction and all workers must typically execute that barrier. We shouldn't be doing any broadcasts from the join block anyway. */ join_block = true; } else if (gimple_code (stmt) == GIMPLE_CALL && gimple_call_internal_p (stmt, IFN_GOACC_LOOP)) /* Empty. */; else if (gimple_nop_p (stmt)) /* Empty. */; else only_marker_fns = false; } /* We can skip predicating this block for worker zero if the only thing it contains is marker functions that will be removed in the oaccdevlow pass anyway. Don't do this if the block has (any) phi nodes, because those might define SSA names that need broadcasting. TODO: We might be able to skip transforming blocks that only contain some other trivial statements too. */ if (only_marker_fns && !phi_nodes (block)) continue; gcc_assert (!join_block); if (has_defs) { tree record_type = (tree) block->aux; std::pair *off_rngalloc = blk_offset_map->get (block); gcc_assert (!record_type || off_rngalloc); unsigned HOST_WIDE_INT offset = off_rngalloc ? off_rngalloc->first : 0; bool range_allocated = off_rngalloc ? off_rngalloc->second : true; bool has_gang_private_write = bitmap_bit_p (writes_gang_private, block->index); worker_single_copy (block, block, &def_escapes_block, &worker_partitioned_uses, record_type, record_field_map, offset, !range_allocated, has_gang_private_write); } else worker_single_simple (block, block, &def_escapes_block); } } if ((outer_mask & GOMP_DIM_MASK (GOMP_DIM_WORKER)) == 0) { basic_block block; for (unsigned i = 0; par->blocks.iterate (i, &block); i++) for (gimple_stmt_iterator gsi = gsi_start_bb (block); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); if (gimple_code (stmt) == GIMPLE_CALL && !gimple_call_internal_p (stmt) && !omp_sese_active_worker_call (as_a (stmt))) { /* If we have an OpenACC routine call in worker-single mode, place barriers before and afterwards to prevent clobbering re-used shared memory regions (as are used for AMDGCN at present, for example). */ tree decl = builtin_decl_explicit (BUILT_IN_GOACC_BARRIER); gsi_insert_before (&gsi, gimple_build_call (decl, 0), GSI_SAME_STMT); gsi_insert_after (&gsi, gimple_build_call (decl, 0), GSI_NEW_STMT); } } } if (par->inner) neuter_worker_single (par->inner, mask, worker_single, vector_single, prop_set, partitioned_var_uses, record_field_map, blk_offset_map, writes_gang_private); if (par->next) neuter_worker_single (par->next, outer_mask, worker_single, vector_single, prop_set, partitioned_var_uses, record_field_map, blk_offset_map, writes_gang_private); } static void dfs_broadcast_reachable_1 (basic_block bb, sbitmap reachable) { if (bb->flags & BB_VISITED) return; bb->flags |= BB_VISITED; if (bb->succs) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->succs) { basic_block dest = e->dest; if (dest->aux) bitmap_set_bit (reachable, dest->index); else dfs_broadcast_reachable_1 (dest, reachable); } } } typedef std::pair idx_decl_pair_t; typedef auto_vec used_range_vec_t; static int sort_size_descending (const void *a, const void *b) { const idx_decl_pair_t *pa = (const idx_decl_pair_t *) a; const idx_decl_pair_t *pb = (const idx_decl_pair_t *) b; unsigned HOST_WIDE_INT asize = tree_to_uhwi (TYPE_SIZE_UNIT (pa->second)); unsigned HOST_WIDE_INT bsize = tree_to_uhwi (TYPE_SIZE_UNIT (pb->second)); return bsize - asize; } class addr_range { public: addr_range (unsigned HOST_WIDE_INT addr_lo, unsigned HOST_WIDE_INT addr_hi) : lo (addr_lo), hi (addr_hi) { } addr_range (const addr_range &ar) : lo (ar.lo), hi (ar.hi) { } addr_range () : lo (0), hi (0) { } bool invalid () { return lo == 0 && hi == 0; } unsigned HOST_WIDE_INT lo; unsigned HOST_WIDE_INT hi; }; static int splay_tree_compare_addr_range (splay_tree_key a, splay_tree_key b) { addr_range *ar = (addr_range *) a; addr_range *br = (addr_range *) b; if (ar->lo == br->lo && ar->hi == br->hi) return 0; if (ar->hi <= br->lo) return -1; else if (ar->lo >= br->hi) return 1; return 0; } static void splay_tree_free_key (splay_tree_key k) { addr_range *ar = (addr_range *) k; delete ar; } static addr_range first_fit_range (splay_tree s, unsigned HOST_WIDE_INT size, unsigned HOST_WIDE_INT align, addr_range *bounds) { splay_tree_node min = splay_tree_min (s); if (min) { splay_tree_node next; while ((next = splay_tree_successor (s, min->key))) { unsigned HOST_WIDE_INT lo = ((addr_range *) min->key)->hi; unsigned HOST_WIDE_INT hi = ((addr_range *) next->key)->lo; unsigned HOST_WIDE_INT base = (lo + align - 1) & ~(align - 1); if (base + size <= hi) return addr_range (base, base + size); min = next; } unsigned HOST_WIDE_INT base = ((addr_range *)min->key)->hi; base = (base + align - 1) & ~(align - 1); if (base + size <= bounds->hi) return addr_range (base, base + size); else return addr_range (); } else { unsigned HOST_WIDE_INT lo = bounds->lo; lo = (lo + align - 1) & ~(align - 1); if (lo + size <= bounds->hi) return addr_range (lo, lo + size); else return addr_range (); } } static int merge_ranges_1 (splay_tree_node n, void *ptr) { splay_tree accum = (splay_tree) ptr; addr_range ar = *(addr_range *) n->key; splay_tree_node old = splay_tree_lookup (accum, n->key); /* We might have an overlap. Create a new range covering the overlapping parts. */ if (old) { addr_range *old_ar = (addr_range *) old->key; ar.lo = MIN (old_ar->lo, ar.lo); ar.hi = MAX (old_ar->hi, ar.hi); splay_tree_remove (accum, old->key); } addr_range *new_ar = new addr_range (ar); splay_tree_insert (accum, (splay_tree_key) new_ar, n->value); return 0; } static void merge_ranges (splay_tree accum, splay_tree sp) { splay_tree_foreach (sp, merge_ranges_1, (void *) accum); } static void oacc_do_neutering (unsigned HOST_WIDE_INT bounds_lo, unsigned HOST_WIDE_INT bounds_hi) { bb_stmt_map_t bb_stmt_map; auto_bitmap worker_single, vector_single; omp_sese_split_blocks (&bb_stmt_map); if (dump_file) { fprintf (dump_file, "\n\nAfter splitting:\n\n"); dump_function_to_file (current_function_decl, dump_file, dump_flags); } unsigned mask = 0; /* If this is a routine, calculate MASK as if the outer levels are already partitioned. */ { tree attr = oacc_get_fn_attrib (current_function_decl); tree dims = TREE_VALUE (attr); unsigned ix; for (ix = 0; ix != GOMP_DIM_MAX; ix++, dims = TREE_CHAIN (dims)) { tree allowed = TREE_PURPOSE (dims); if (allowed && integer_zerop (allowed)) mask |= GOMP_DIM_MASK (ix); } } parallel_g *par = omp_sese_discover_pars (&bb_stmt_map); populate_single_mode_bitmaps (par, worker_single, vector_single, mask, 0); basic_block bb; FOR_ALL_BB_FN (bb, cfun) bb->aux = NULL; vec prop_set (vNULL); prop_set.safe_grow_cleared (last_basic_block_for_fn (cfun), true); find_ssa_names_to_propagate (par, mask, worker_single, vector_single, &prop_set); hash_set partitioned_var_uses; hash_set gang_private_vars; auto_bitmap writes_gang_private; find_gang_private_vars (&gang_private_vars); find_partitioned_var_uses (par, mask, &partitioned_var_uses); find_local_vars_to_propagate (par, mask, &partitioned_var_uses, &gang_private_vars, writes_gang_private, &prop_set); record_field_map_t record_field_map; FOR_ALL_BB_FN (bb, cfun) { propagation_set *ws_prop = prop_set[bb->index]; if (ws_prop) { tree record_type = lang_hooks.types.make_type (RECORD_TYPE); tree name = create_tmp_var_name (".oacc_ws_data_s"); name = build_decl (UNKNOWN_LOCATION, TYPE_DECL, name, record_type); DECL_ARTIFICIAL (name) = 1; DECL_NAMELESS (name) = 1; TYPE_NAME (record_type) = name; TYPE_ARTIFICIAL (record_type) = 1; auto_vec field_vec (ws_prop->elements ()); for (hash_set::iterator it = ws_prop->begin (); it != ws_prop->end (); ++it) field_vec.quick_push (*it); field_vec.qsort (sort_by_size_then_ssa_version_or_uid); bool existed; field_map_t *fields = &record_field_map.get_or_insert (record_type, &existed); gcc_checking_assert (!existed); /* Insert var fields in reverse order, so the last inserted element is the first in the structure. */ for (int i = field_vec.length () - 1; i >= 0; i--) install_var_field (field_vec[i], record_type, fields); layout_type (record_type); bb->aux = (tree) record_type; } } sbitmap *reachable = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), last_basic_block_for_fn (cfun)); bitmap_vector_clear (reachable, last_basic_block_for_fn (cfun)); auto_vec > priority; FOR_ALL_BB_FN (bb, cfun) { if (bb->aux) { tree record_type = (tree) bb->aux; basic_block bb2; FOR_ALL_BB_FN (bb2, cfun) bb2->flags &= ~BB_VISITED; priority.safe_push (std::make_pair (bb->index, record_type)); dfs_broadcast_reachable_1 (bb, reachable[bb->index]); } } sbitmap *inverted = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), last_basic_block_for_fn (cfun)); bitmap_vector_clear (inverted, last_basic_block_for_fn (cfun)); for (int i = 0; i < last_basic_block_for_fn (cfun); i++) { sbitmap_iterator bi; unsigned int j; EXECUTE_IF_SET_IN_BITMAP (reachable[i], 0, j, bi) bitmap_set_bit (inverted[j], i); } for (int i = 0; i < last_basic_block_for_fn (cfun); i++) bitmap_ior (reachable[i], reachable[i], inverted[i]); sbitmap_vector_free (inverted); used_range_vec_t used_ranges; used_ranges.safe_grow_cleared (last_basic_block_for_fn (cfun)); blk_offset_map_t blk_offset_map; addr_range worker_shm_bounds (bounds_lo, bounds_hi); priority.qsort (sort_size_descending); for (unsigned int i = 0; i < priority.length (); i++) { idx_decl_pair_t p = priority[i]; int blkno = p.first; tree record_type = p.second; HOST_WIDE_INT size = tree_to_uhwi (TYPE_SIZE_UNIT (record_type)); HOST_WIDE_INT align = TYPE_ALIGN_UNIT (record_type); splay_tree conflicts = splay_tree_new (splay_tree_compare_addr_range, splay_tree_free_key, NULL); if (!used_ranges[blkno]) used_ranges[blkno] = splay_tree_new (splay_tree_compare_addr_range, splay_tree_free_key, NULL); else merge_ranges (conflicts, used_ranges[blkno]); sbitmap_iterator bi; unsigned int j; EXECUTE_IF_SET_IN_BITMAP (reachable[blkno], 0, j, bi) if (used_ranges[j]) merge_ranges (conflicts, used_ranges[j]); addr_range ar = first_fit_range (conflicts, size, align, &worker_shm_bounds); splay_tree_delete (conflicts); if (ar.invalid ()) { unsigned HOST_WIDE_INT base = (bounds_lo + align - 1) & ~(align - 1); if (base + size > bounds_hi) error_at (UNKNOWN_LOCATION, "shared-memory region overflow"); std::pair base_inrng = std::make_pair (base, false); blk_offset_map.put (BASIC_BLOCK_FOR_FN (cfun, blkno), base_inrng); } else { splay_tree_node old = splay_tree_lookup (used_ranges[blkno], (splay_tree_key) &ar); if (old) { fprintf (stderr, "trying to map [%d..%d] but [%d..%d] is " "already mapped in block %d\n", (int) ar.lo, (int) ar.hi, (int) ((addr_range *) old->key)->lo, (int) ((addr_range *) old->key)->hi, blkno); abort (); } addr_range *arp = new addr_range (ar); splay_tree_insert (used_ranges[blkno], (splay_tree_key) arp, (splay_tree_value) blkno); std::pair base_inrng = std::make_pair (ar.lo, true); blk_offset_map.put (BASIC_BLOCK_FOR_FN (cfun, blkno), base_inrng); } } sbitmap_vector_free (reachable); neuter_worker_single (par, mask, worker_single, vector_single, &prop_set, &partitioned_var_uses, &record_field_map, &blk_offset_map, writes_gang_private); record_field_map.empty (); /* These are supposed to have been 'delete'd by 'neuter_worker_single'. */ for (auto it : prop_set) gcc_checking_assert (!it); prop_set.release (); delete par; /* This doesn't seem to make a difference. */ loops_state_clear (LOOP_CLOSED_SSA); /* Neutering worker-single neutered blocks will invalidate dominance info. It may be possible to incrementally update just the affected blocks, but obliterate everything for now. */ free_dominance_info (CDI_DOMINATORS); free_dominance_info (CDI_POST_DOMINATORS); if (dump_file) { fprintf (dump_file, "\n\nAfter neutering:\n\n"); dump_function_to_file (current_function_decl, dump_file, dump_flags); } } static int execute_omp_oacc_neuter_broadcast () { unsigned HOST_WIDE_INT reduction_size[GOMP_DIM_MAX]; unsigned HOST_WIDE_INT private_size[GOMP_DIM_MAX]; for (unsigned i = 0; i < GOMP_DIM_MAX; i++) { reduction_size[i] = 0; private_size[i] = 0; } /* Calculate shared memory size required for reduction variables and gang-private memory for this offloaded function. */ basic_block bb; FOR_ALL_BB_FN (bb, cfun) { for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); if (!is_gimple_call (stmt)) continue; gcall *call = as_a (stmt); if (!gimple_call_internal_p (call)) continue; enum internal_fn ifn_code = gimple_call_internal_fn (call); switch (ifn_code) { default: break; case IFN_GOACC_REDUCTION: if (integer_minus_onep (gimple_call_arg (call, 3))) continue; else { unsigned code = TREE_INT_CST_LOW (gimple_call_arg (call, 0)); /* Only count reduction variables once: the choice to pick the setup call is fairly arbitrary. */ if (code == IFN_GOACC_REDUCTION_SETUP) { int level = TREE_INT_CST_LOW (gimple_call_arg (call, 3)); tree var = gimple_call_arg (call, 2); tree offset = gimple_call_arg (call, 5); tree var_type = TREE_TYPE (var); unsigned HOST_WIDE_INT limit = (tree_to_uhwi (offset) + tree_to_uhwi (TYPE_SIZE_UNIT (var_type))); reduction_size[level] = MAX (reduction_size[level], limit); } } break; case IFN_UNIQUE: { enum ifn_unique_kind kind = ((enum ifn_unique_kind) TREE_INT_CST_LOW (gimple_call_arg (call, 0))); if (kind == IFN_UNIQUE_OACC_PRIVATE) { HOST_WIDE_INT level = TREE_INT_CST_LOW (gimple_call_arg (call, 2)); if (level == -1) break; for (unsigned i = 3; i < gimple_call_num_args (call); i++) { tree arg = gimple_call_arg (call, i); gcc_assert (TREE_CODE (arg) == ADDR_EXPR); tree decl = TREE_OPERAND (arg, 0); unsigned HOST_WIDE_INT align = DECL_ALIGN_UNIT (decl); private_size[level] = ((private_size[level] + align - 1) & ~(align - 1)); unsigned HOST_WIDE_INT decl_size = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (decl))); private_size[level] += decl_size; } } } break; } } } int dims[GOMP_DIM_MAX]; for (unsigned i = 0; i < GOMP_DIM_MAX; i++) dims[i] = oacc_get_fn_dim_size (current_function_decl, i); /* Find bounds of shared-memory buffer space we can use. */ unsigned HOST_WIDE_INT bounds_lo = 0, bounds_hi = 0; if (targetm.goacc.shared_mem_layout) targetm.goacc.shared_mem_layout (&bounds_lo, &bounds_hi, dims, private_size, reduction_size); /* Perform worker partitioning unless we know 'num_workers(1)'. */ if (dims[GOMP_DIM_WORKER] != 1) oacc_do_neutering (bounds_lo, bounds_hi); return 0; } namespace { const pass_data pass_data_omp_oacc_neuter_broadcast = { GIMPLE_PASS, /* type */ "omp_oacc_neuter_broadcast", /* name */ OPTGROUP_OMP, /* optinfo_flags */ TV_NONE, /* tv_id */ PROP_cfg, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_update_ssa | TODO_cleanup_cfg, /* todo_flags_finish */ }; class pass_omp_oacc_neuter_broadcast : public gimple_opt_pass { public: pass_omp_oacc_neuter_broadcast (gcc::context *ctxt) : gimple_opt_pass (pass_data_omp_oacc_neuter_broadcast, ctxt) {} /* opt_pass methods: */ bool gate (function *fun) final override { if (!flag_openacc) return false; if (!targetm.goacc.create_worker_broadcast_record) return false; /* Only relevant for OpenACC offloaded functions. */ tree attr = oacc_get_fn_attrib (fun->decl); if (!attr) return false; return true; } unsigned int execute (function *) final override { return execute_omp_oacc_neuter_broadcast (); } }; // class pass_omp_oacc_neuter_broadcast } // anon namespace gimple_opt_pass * make_pass_omp_oacc_neuter_broadcast (gcc::context *ctxt) { return new pass_omp_oacc_neuter_broadcast (ctxt); }