/* Decompose OpenACC 'kernels' constructs into parts, a sequence of compute constructs Copyright (C) 2020-2024 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "target.h" #include "tree.h" #include "langhooks.h" #include "gimple.h" #include "tree-pass.h" #include "cgraph.h" #include "fold-const.h" #include "gimplify.h" #include "gimple-iterator.h" #include "gimple-walk.h" #include "gomp-constants.h" #include "omp-general.h" #include "diagnostic-core.h" /* This preprocessing pass is run immediately before lower_omp. It decomposes OpenACC 'kernels' constructs into parts, a sequence of compute constructs. The translation is as follows: - The entire 'kernels' region is turned into a 'data' region with clauses taken from the 'kernels' region. New 'create' clauses are added for all variables declared at the top level in the kernels region. - Any loop nests annotated with an OpenACC 'loop' directive are wrapped in a new compute construct. - 'loop' directives without an explicit 'independent' or 'seq' clause get an 'auto' clause added; other clauses are preserved on the loop or moved to the new surrounding compute construct, as applicable. - Any sequences of other code (non-loops, non-OpenACC 'loop's) are wrapped in new "gang-single" compute construct: 'worker'/'vector' parallelism is preserved, but 'num_gangs (1)' is enforced. - Both points above only apply at the topmost level in the region, that is, the transformation does not introduce new compute constructs inside nested statement bodies. In particular, this means that a gang-parallelizable loop inside an 'if' statement is made "gang-single". - In order to make the host wait only once for the whole region instead of once per device kernel launch, the new compute constructs are annotated 'async'. Unless the original 'kernels' construct already was marked 'async', the entire region ends with a 'wait' directive. If the original 'kernels' construct was marked 'async', the synthesized 'async' clauses use the original 'kernels' construct's 'async' argument (possibly implicit). */ /*TODO Things are conceptually wrong here: 'loop' clauses may be hidden behind 'device_type', so we have to defer a lot of processing until we're in the offloading compilation. "Fortunately", GCC doesn't support the OpenACC 'device_type' clause yet, so we get away that. */ /* Helper function for decompose_kernels_region_body. If STMT contains a "top-level" OMP_FOR statement, returns a pointer to that statement; returns NULL otherwise. A "top-level" OMP_FOR statement is one that is possibly accompanied by small snippets of setup code. Specifically, this function accepts an OMP_FOR possibly wrapped in a singleton bind and a singleton try statement to allow for a local loop variable, but not an OMP_FOR statement nested in any other constructs. Alternatively, it accepts a non-singleton bind containing only assignments and then an OMP_FOR statement at the very end. The former style can be generated by the C frontend, the latter by the Fortran frontend. */ static gimple * top_level_omp_for_in_stmt (gimple *stmt) { if (gimple_code (stmt) == GIMPLE_OMP_FOR) return stmt; if (gimple_code (stmt) == GIMPLE_BIND) { gimple_seq body = gimple_bind_body (as_a (stmt)); if (gimple_seq_singleton_p (body)) { /* Accept an OMP_FOR statement, or a try statement containing only a single OMP_FOR. */ gimple *maybe_for_or_try = gimple_seq_first_stmt (body); if (gimple_code (maybe_for_or_try) == GIMPLE_OMP_FOR) return maybe_for_or_try; else if (gimple_code (maybe_for_or_try) == GIMPLE_TRY) { gimple_seq try_body = gimple_try_eval (maybe_for_or_try); if (!gimple_seq_singleton_p (try_body)) return NULL; gimple *maybe_omp_for_stmt = gimple_seq_first_stmt (try_body); if (gimple_code (maybe_omp_for_stmt) == GIMPLE_OMP_FOR) return maybe_omp_for_stmt; } } else { gimple_stmt_iterator gsi; /* Accept only a block of optional assignments followed by an OMP_FOR at the end. No other kinds of statements allowed. */ for (gsi = gsi_start (body); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *body_stmt = gsi_stmt (gsi); if (gimple_code (body_stmt) == GIMPLE_ASSIGN) continue; else if (gimple_code (body_stmt) == GIMPLE_OMP_FOR && gsi_one_before_end_p (gsi)) return body_stmt; else return NULL; } } } return NULL; } /* Helper for adjust_region_code: evaluate the statement at GSI_P. */ static tree adjust_region_code_walk_stmt_fn (gimple_stmt_iterator *gsi_p, bool *handled_ops_p, struct walk_stmt_info *wi) { int *region_code = (int *) wi->info; gimple *stmt = gsi_stmt (*gsi_p); switch (gimple_code (stmt)) { case GIMPLE_OMP_FOR: { tree clauses = gimple_omp_for_clauses (stmt); if (omp_find_clause (clauses, OMP_CLAUSE_INDEPENDENT)) { /* Explicit 'independent' clause. */ /* Keep going; recurse into loop body. */ break; } else if (omp_find_clause (clauses, OMP_CLAUSE_SEQ)) { /* Explicit 'seq' clause. */ /* We'll "parallelize" if at some level a loop construct has been marked up by the user as unparallelizable ('seq' clause; we'll respect that in the later processing). Given that the user has explicitly marked it up, this loop construct cannot be performance-critical, and in this case it's also fine to "parallelize" instead of "gang-single", because any outer or inner loops may still exploit the available parallelism. */ /* Keep going; recurse into loop body. */ break; } else { /* Explicit or implicit 'auto' clause. */ /* The user would like this loop analyzed ('auto' clause) and typically parallelized, but we don't have available yet the compiler logic to analyze this, so can't parallelize it here, so we'd very likely be running into a performance problem if we were to execute this unparallelized, thus forward the whole loop nest to 'parloops'. */ *region_code = GF_OMP_TARGET_KIND_OACC_KERNELS; /* Terminate: final decision for this region. */ *handled_ops_p = true; return integer_zero_node; } gcc_unreachable (); } case GIMPLE_COND: case GIMPLE_GOTO: case GIMPLE_SWITCH: case GIMPLE_ASM: case GIMPLE_ASSUME: case GIMPLE_TRANSACTION: case GIMPLE_RETURN: /* Statement that might constitute some looping/control flow pattern. */ /* The user would like this code analyzed (implicit inside a 'kernels' region) and typically parallelized, but we don't have available yet the compiler logic to analyze this, so can't parallelize it here, so we'd very likely be running into a performance problem if we were to execute this unparallelized, thus forward the whole thing to 'parloops'. */ *region_code = GF_OMP_TARGET_KIND_OACC_KERNELS; /* Terminate: final decision for this region. */ *handled_ops_p = true; return integer_zero_node; default: /* Keep going. */ break; } return NULL; } /* Adjust the REGION_CODE for the region in GS. */ static void adjust_region_code (gimple_seq gs, int *region_code) { struct walk_stmt_info wi; memset (&wi, 0, sizeof (wi)); wi.info = region_code; walk_gimple_seq (gs, adjust_region_code_walk_stmt_fn, NULL, &wi); } /* Helper function for make_loops_gang_single for walking the tree. If the statement indicated by GSI_P is an OpenACC for loop with a gang clause, issue a warning and remove the clause. */ static tree visit_loops_in_gang_single_region (gimple_stmt_iterator *gsi_p, bool *handled_ops_p, struct walk_stmt_info *) { *handled_ops_p = false; gimple *stmt = gsi_stmt (*gsi_p); switch (gimple_code (stmt)) { case GIMPLE_OMP_FOR: /*TODO Given the current 'adjust_region_code' algorithm, this is actually... */ #if 0 gcc_unreachable (); #else /* ..., but due to bugs (PR100400), we may actually come here. Reliably catch this, regardless of checking level. */ internal_error ("PR100400"); #endif { tree clauses = gimple_omp_for_clauses (stmt); tree prev_clause = NULL; for (tree clause = clauses; clause; clause = OMP_CLAUSE_CHAIN (clause)) { if (OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_GANG) { /* It makes no sense to have a 'gang' clause in a "gang-single" region, so warn and remove it. */ warning_at (gimple_location (stmt), 0, "conditionally executed loop in % region" " will be executed by a single gang;" " ignoring % clause"); if (prev_clause != NULL) OMP_CLAUSE_CHAIN (prev_clause) = OMP_CLAUSE_CHAIN (clause); else clauses = OMP_CLAUSE_CHAIN (clause); break; } prev_clause = clause; } gimple_omp_for_set_clauses (stmt, clauses); } /* No need to recurse into nested statements; no loop nested inside this loop can be gang-partitioned. */ sorry ("% loop in % region"); *handled_ops_p = true; break; default: break; } return NULL; } /* Visit all nested OpenACC loops in the sequence indicated by GS. This statement is expected to be inside a gang-single region. Issue a warning for any loops inside it that have gang clauses and remove the clauses. */ static void make_loops_gang_single (gimple_seq gs) { struct walk_stmt_info wi; memset (&wi, 0, sizeof (wi)); walk_gimple_seq (gs, visit_loops_in_gang_single_region, NULL, &wi); } /* Construct a "gang-single" compute construct at LOC containing the STMTS. Annotate with CLAUSES, which must not contain a 'num_gangs' clause, and an additional 'num_gangs (1)' clause to force "gang-single" execution. */ static gimple * make_region_seq (location_t loc, gimple_seq stmts, tree num_gangs_clause, tree num_workers_clause, tree vector_length_clause, tree clauses) { /* This correctly unshares the entire clause chain rooted here. */ clauses = unshare_expr (clauses); dump_user_location_t loc_stmts_first = gimple_seq_first (stmts); /* Figure out the region code for this region. */ /* Optimistic default: assume "setup code", no looping; thus not performance-critical. */ int region_code = GF_OMP_TARGET_KIND_OACC_PARALLEL_KERNELS_GANG_SINGLE; adjust_region_code (stmts, ®ion_code); if (region_code == GF_OMP_TARGET_KIND_OACC_PARALLEL_KERNELS_GANG_SINGLE) { if (dump_enabled_p ()) /*TODO MSG_MISSED_OPTIMIZATION? */ dump_printf_loc (MSG_NOTE, loc_stmts_first, "beginning % part" " in OpenACC % region\n"); /* Synthesize a 'num_gangs (1)' clause. */ tree gang_single_clause = build_omp_clause (loc, OMP_CLAUSE_NUM_GANGS); OMP_CLAUSE_OPERAND (gang_single_clause, 0) = integer_one_node; OMP_CLAUSE_CHAIN (gang_single_clause) = clauses; clauses = gang_single_clause; /* Remove and issue warnings about gang clauses on any OpenACC loops nested inside this sequentially executed statement. */ make_loops_gang_single (stmts); } else if (region_code == GF_OMP_TARGET_KIND_OACC_KERNELS) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, loc_stmts_first, "beginning % part" " in OpenACC % region\n"); /* As we're transforming a 'GF_OMP_TARGET_KIND_OACC_KERNELS' into another 'GF_OMP_TARGET_KIND_OACC_KERNELS', this isn't doing any of the clauses mangling that 'make_region_loop_nest' is doing. */ /* Re-assemble the clauses stripped off earlier. */ if (num_gangs_clause != NULL) { tree c = unshare_expr (num_gangs_clause); OMP_CLAUSE_CHAIN (c) = clauses; clauses = c; } if (num_workers_clause != NULL) { tree c = unshare_expr (num_workers_clause); OMP_CLAUSE_CHAIN (c) = clauses; clauses = c; } if (vector_length_clause != NULL) { tree c = unshare_expr (vector_length_clause); OMP_CLAUSE_CHAIN (c) = clauses; clauses = c; } } else gcc_unreachable (); /* Build the gang-single region. */ gimple *single_region = gimple_build_omp_target (NULL, region_code, clauses); gimple_set_location (single_region, loc); gbind *single_body = gimple_build_bind (NULL, stmts, make_node (BLOCK)); gimple_omp_set_body (single_region, single_body); return single_region; } /* Helper function for make_region_loop_nest. Adds a 'num_gangs' ('num_workers', 'vector_length') clause to the given CLAUSES, either the one from the parent compute construct (PARENT_CLAUSE) or a new one based on the loop's own LOOP_CLAUSE ('gang (num: N)' or similar for 'worker' or 'vector' clauses) with the given CLAUSE_CODE. Does nothing if neither PARENT_CLAUSE nor LOOP_CLAUSE exist. Returns the new clauses. */ static tree add_parent_or_loop_num_clause (tree parent_clause, tree loop_clause, omp_clause_code clause_code, tree clauses) { if (parent_clause != NULL) { tree num_clause = unshare_expr (parent_clause); OMP_CLAUSE_CHAIN (num_clause) = clauses; clauses = num_clause; } else if (loop_clause != NULL) { /* The kernels region does not have a 'num_gangs' clause, but the loop itself had a 'gang (num: N)' clause. Honor it by adding a 'num_gangs (N)' clause on the compute construct. */ tree num = OMP_CLAUSE_OPERAND (loop_clause, 0); tree new_num_clause = build_omp_clause (OMP_CLAUSE_LOCATION (loop_clause), clause_code); OMP_CLAUSE_OPERAND (new_num_clause, 0) = num; OMP_CLAUSE_CHAIN (new_num_clause) = clauses; clauses = new_num_clause; } return clauses; } /* Helper for make_region_loop_nest, looking for 'worker (num: N)' or 'vector (length: N)' clauses in nested loops. Removes the argument, transferring it to the enclosing compute construct (via WI->INFO). If arguments within the same loop nest conflict, emits a warning. This function also decides whether to add an 'auto' clause on each of these nested loops. */ struct adjust_nested_loop_clauses_wi_info { tree *loop_gang_clause_ptr; tree *loop_worker_clause_ptr; tree *loop_vector_clause_ptr; }; static tree adjust_nested_loop_clauses (gimple_stmt_iterator *gsi_p, bool *, struct walk_stmt_info *wi) { struct adjust_nested_loop_clauses_wi_info *wi_info = (struct adjust_nested_loop_clauses_wi_info *) wi->info; gimple *stmt = gsi_stmt (*gsi_p); if (gimple_code (stmt) == GIMPLE_OMP_FOR) { bool add_auto_clause = true; tree loop_clauses = gimple_omp_for_clauses (stmt); tree loop_clause = loop_clauses; for (; loop_clause; loop_clause = OMP_CLAUSE_CHAIN (loop_clause)) { tree *outer_clause_ptr = NULL; switch (OMP_CLAUSE_CODE (loop_clause)) { case OMP_CLAUSE_GANG: outer_clause_ptr = wi_info->loop_gang_clause_ptr; break; case OMP_CLAUSE_WORKER: outer_clause_ptr = wi_info->loop_worker_clause_ptr; break; case OMP_CLAUSE_VECTOR: outer_clause_ptr = wi_info->loop_vector_clause_ptr; break; case OMP_CLAUSE_SEQ: case OMP_CLAUSE_INDEPENDENT: case OMP_CLAUSE_AUTO: add_auto_clause = false; default: break; } if (outer_clause_ptr != NULL) { if (OMP_CLAUSE_OPERAND (loop_clause, 0) != NULL && *outer_clause_ptr == NULL) { /* Transfer the clause to the enclosing compute construct and remove the numerical argument from the 'loop'. */ *outer_clause_ptr = unshare_expr (loop_clause); OMP_CLAUSE_OPERAND (loop_clause, 0) = NULL; } else if (OMP_CLAUSE_OPERAND (loop_clause, 0) != NULL && OMP_CLAUSE_OPERAND (*outer_clause_ptr, 0) != NULL) { /* See if both of these are the same constant. If they aren't, emit a warning. */ tree old_op = OMP_CLAUSE_OPERAND (*outer_clause_ptr, 0); tree new_op = OMP_CLAUSE_OPERAND (loop_clause, 0); if (!(cst_and_fits_in_hwi (old_op) && cst_and_fits_in_hwi (new_op) && int_cst_value (old_op) == int_cst_value (new_op))) { const char *clause_name = omp_clause_code_name[OMP_CLAUSE_CODE (loop_clause)]; error_at (gimple_location (stmt), "cannot honor conflicting %qs clause", clause_name); inform (OMP_CLAUSE_LOCATION (*outer_clause_ptr), "location of the previous clause" " in the same loop nest"); } OMP_CLAUSE_OPERAND (loop_clause, 0) = NULL; } } } if (add_auto_clause) { tree auto_clause = build_omp_clause (gimple_location (stmt), OMP_CLAUSE_AUTO); OMP_CLAUSE_CHAIN (auto_clause) = loop_clauses; gimple_omp_for_set_clauses (stmt, auto_clause); } } return NULL; } /* Helper for make_region_loop_nest. Transform OpenACC 'kernels'/'loop' construct clauses into OpenACC 'parallel'/'loop' construct ones. */ static tree transform_kernels_loop_clauses (gimple *omp_for, tree num_gangs_clause, tree num_workers_clause, tree vector_length_clause, tree clauses) { /* If this loop in a kernels region does not have an explicit 'seq', 'independent', or 'auto' clause, we must give it an explicit 'auto' clause. We also check for 'gang (num: N)' clauses. These must not appear in kernels regions that have their own 'num_gangs' clause. Otherwise, they must be converted and put on the region; similarly for 'worker' and 'vector' clauses. */ bool add_auto_clause = true; tree loop_gang_clause = NULL, loop_worker_clause = NULL, loop_vector_clause = NULL; tree loop_clauses = gimple_omp_for_clauses (omp_for); for (tree loop_clause = loop_clauses; loop_clause; loop_clause = OMP_CLAUSE_CHAIN (loop_clause)) { bool found_num_clause = false; tree *clause_ptr, clause_to_check; switch (OMP_CLAUSE_CODE (loop_clause)) { case OMP_CLAUSE_GANG: found_num_clause = true; clause_ptr = &loop_gang_clause; clause_to_check = num_gangs_clause; break; case OMP_CLAUSE_WORKER: found_num_clause = true; clause_ptr = &loop_worker_clause; clause_to_check = num_workers_clause; break; case OMP_CLAUSE_VECTOR: found_num_clause = true; clause_ptr = &loop_vector_clause; clause_to_check = vector_length_clause; break; case OMP_CLAUSE_INDEPENDENT: case OMP_CLAUSE_SEQ: case OMP_CLAUSE_AUTO: add_auto_clause = false; default: break; } if (found_num_clause && OMP_CLAUSE_OPERAND (loop_clause, 0) != NULL) { if (clause_to_check) { const char *clause_name = omp_clause_code_name[OMP_CLAUSE_CODE (loop_clause)]; const char *parent_clause_name = omp_clause_code_name[OMP_CLAUSE_CODE (clause_to_check)]; error_at (OMP_CLAUSE_LOCATION (loop_clause), "argument not permitted on %qs clause" " in OpenACC % region with a %qs clause", clause_name, parent_clause_name); inform (OMP_CLAUSE_LOCATION (clause_to_check), "location of OpenACC %"); } /* Copy the 'gang (N)'/'worker (N)'/'vector (N)' clause to the enclosing compute construct. */ *clause_ptr = unshare_expr (loop_clause); OMP_CLAUSE_CHAIN (*clause_ptr) = NULL; /* Leave a 'gang'/'worker'/'vector' clause on the 'loop', but without argument. */ OMP_CLAUSE_OPERAND (loop_clause, 0) = NULL; } } if (add_auto_clause) { tree auto_clause = build_omp_clause (gimple_location (omp_for), OMP_CLAUSE_AUTO); OMP_CLAUSE_CHAIN (auto_clause) = loop_clauses; loop_clauses = auto_clause; } gimple_omp_for_set_clauses (omp_for, loop_clauses); /* We must also recurse into the loop; it might contain nested loops having their own 'worker (num: W)' or 'vector (length: V)' clauses. Turn these into 'worker'/'vector' clauses on the compute construct. */ struct walk_stmt_info wi; memset (&wi, 0, sizeof (wi)); struct adjust_nested_loop_clauses_wi_info wi_info; wi_info.loop_gang_clause_ptr = &loop_gang_clause; wi_info.loop_worker_clause_ptr = &loop_worker_clause; wi_info.loop_vector_clause_ptr = &loop_vector_clause; wi.info = &wi_info; gimple *body = gimple_omp_body (omp_for); walk_gimple_seq (body, adjust_nested_loop_clauses, NULL, &wi); /* Check if there were conflicting numbers of workers or vector length. */ if (loop_gang_clause != NULL && OMP_CLAUSE_OPERAND (loop_gang_clause, 0) == NULL) loop_gang_clause = NULL; if (loop_worker_clause != NULL && OMP_CLAUSE_OPERAND (loop_worker_clause, 0) == NULL) loop_worker_clause = NULL; if (loop_vector_clause != NULL && OMP_CLAUSE_OPERAND (loop_vector_clause, 0) == NULL) vector_length_clause = NULL; /* If the kernels region had 'num_gangs', 'num_worker', 'vector_length' clauses, add these to this new compute construct. */ clauses = add_parent_or_loop_num_clause (num_gangs_clause, loop_gang_clause, OMP_CLAUSE_NUM_GANGS, clauses); clauses = add_parent_or_loop_num_clause (num_workers_clause, loop_worker_clause, OMP_CLAUSE_NUM_WORKERS, clauses); clauses = add_parent_or_loop_num_clause (vector_length_clause, loop_vector_clause, OMP_CLAUSE_VECTOR_LENGTH, clauses); return clauses; } /* Construct a possibly gang-parallel compute construct containing the STMT, which must be identical to, or a bind containing, the loop OMP_FOR. The NUM_GANGS_CLAUSE, NUM_WORKERS_CLAUSE, and VECTOR_LENGTH_CLAUSE are optional clauses from the original kernels region and must not be contained in the other CLAUSES. The newly created compute construct is annotated with the optional NUM_GANGS_CLAUSE as well as the other CLAUSES. If there is no NUM_GANGS_CLAUSE but the loop has a 'gang (num: N)' clause, that is converted to a 'num_gangs (N)' clause on the new compute construct, and similarly for 'worker' and 'vector' clauses. The outermost loop gets an 'auto' clause unless there already is an 'seq'/'independent'/'auto' clause. Nested loops inside OMP_FOR are treated similarly by the adjust_nested_loop_clauses function. */ static gimple * make_region_loop_nest (gimple *omp_for, gimple_seq stmts, tree num_gangs_clause, tree num_workers_clause, tree vector_length_clause, tree clauses) { /* This correctly unshares the entire clause chain rooted here. */ clauses = unshare_expr (clauses); /* Figure out the region code for this region. */ /* Optimistic default: assume that the loop nest is parallelizable (essentially, no GIMPLE_OMP_FOR with (explicit or implicit) 'auto' clause, and no un-annotated loops). */ int region_code = GF_OMP_TARGET_KIND_OACC_PARALLEL_KERNELS_PARALLELIZED; adjust_region_code (stmts, ®ion_code); if (region_code == GF_OMP_TARGET_KIND_OACC_PARALLEL_KERNELS_PARALLELIZED) { if (dump_enabled_p ()) /* This is not MSG_OPTIMIZED_LOCATIONS, as we're just doing what the user asked us to. */ dump_printf_loc (MSG_NOTE, omp_for, "parallelized loop nest" " in OpenACC % region\n"); clauses = transform_kernels_loop_clauses (omp_for, num_gangs_clause, num_workers_clause, vector_length_clause, clauses); } else if (region_code == GF_OMP_TARGET_KIND_OACC_KERNELS) { if (dump_enabled_p ()) dump_printf_loc (MSG_NOTE, omp_for, "forwarded loop nest" " in OpenACC % region" " to % for analysis\n"); /* We're transforming one 'GF_OMP_TARGET_KIND_OACC_KERNELS' into another 'GF_OMP_TARGET_KIND_OACC_KERNELS', so don't have to 'transform_kernels_loop_clauses'. */ /* Re-assemble the clauses stripped off earlier. */ clauses = add_parent_or_loop_num_clause (num_gangs_clause, NULL, OMP_CLAUSE_NUM_GANGS, clauses); clauses = add_parent_or_loop_num_clause (num_workers_clause, NULL, OMP_CLAUSE_NUM_WORKERS, clauses); clauses = add_parent_or_loop_num_clause (vector_length_clause, NULL, OMP_CLAUSE_VECTOR_LENGTH, clauses); } else gcc_unreachable (); gimple *parallel_body_bind = gimple_build_bind (NULL, stmts, make_node (BLOCK)); gimple *parallel_region = gimple_build_omp_target (parallel_body_bind, region_code, clauses); gimple_set_location (parallel_region, gimple_location (omp_for)); return parallel_region; } /* Eliminate any binds directly inside BIND by adding their statements to BIND (i.e., modifying it in place), excluding binds that hold only an OMP_FOR loop and associated setup/cleanup code. Recurse into binds but not other statements. Return a chain of the local variables of eliminated binds, i.e., the local variables found in nested binds. If INCLUDE_TOPLEVEL_VARS is true, this also includes the variables belonging to BIND itself. */ static tree flatten_binds (gbind *bind, bool include_toplevel_vars = false) { tree vars = NULL, last_var = NULL; if (include_toplevel_vars) { vars = gimple_bind_vars (bind); last_var = vars; } gimple_seq new_body = NULL; gimple_seq body_sequence = gimple_bind_body (bind); gimple_stmt_iterator gsi, gsi_n; for (gsi = gsi_start (body_sequence); !gsi_end_p (gsi); gsi = gsi_n) { /* Advance the iterator here because otherwise it would be invalidated by moving statements below. */ gsi_n = gsi; gsi_next (&gsi_n); gimple *stmt = gsi_stmt (gsi); /* Flatten bind statements, except the ones that contain only an OpenACC for loop. */ if (gimple_code (stmt) == GIMPLE_BIND && !top_level_omp_for_in_stmt (stmt)) { gbind *inner_bind = as_a (stmt); /* Flatten recursively, and collect all variables. */ tree inner_vars = flatten_binds (inner_bind, true); gimple_seq inner_sequence = gimple_bind_body (inner_bind); if (flag_checking) { for (gimple_stmt_iterator inner_gsi = gsi_start (inner_sequence); !gsi_end_p (inner_gsi); gsi_next (&inner_gsi)) { gimple *inner_stmt = gsi_stmt (inner_gsi); gcc_assert (gimple_code (inner_stmt) != GIMPLE_BIND || top_level_omp_for_in_stmt (inner_stmt)); } } gimple_seq_add_seq (&new_body, inner_sequence); /* Find the last variable; we will append others to it. */ while (last_var != NULL && TREE_CHAIN (last_var) != NULL) last_var = TREE_CHAIN (last_var); if (last_var != NULL) { TREE_CHAIN (last_var) = inner_vars; last_var = inner_vars; } else { vars = inner_vars; last_var = vars; } } else gimple_seq_add_stmt (&new_body, stmt); } /* Put the possibly transformed body back into the bind. */ gimple_bind_set_body (bind, new_body); return vars; } /* Helper function for places where we construct data regions. Wraps the BODY inside a try-finally construct at LOC that calls __builtin_GOACC_data_end in its cleanup block. Returns this try statement. */ static gimple * make_data_region_try_statement (location_t loc, gimple *body) { tree data_end_fn = builtin_decl_explicit (BUILT_IN_GOACC_DATA_END); gimple *call = gimple_build_call (data_end_fn, 0); gimple_seq cleanup = NULL; gimple_seq_add_stmt (&cleanup, call); gimple *try_stmt = gimple_build_try (body, cleanup, GIMPLE_TRY_FINALLY); gimple_set_location (body, loc); return try_stmt; } /* If INNER_BIND_VARS holds variables, build an OpenACC data region with location LOC containing BODY and having 'create (var)' clauses for each variable (as a side effect, such variables also get TREE_ADDRESSABLE set). If INNER_CLEANUP is present, add a try-finally statement with this cleanup code in the finally block. Return the new data region, or the original BODY if no data region was needed. */ static gimple * maybe_build_inner_data_region (location_t loc, gimple *body, tree inner_bind_vars, gimple *inner_cleanup) { /* Is this an instantiation of a template? (In this case, we don't care what the generic decl is - just whether the function decl has one.) */ bool generic_inst_p = (lang_hooks.decls.get_generic_function_decl (current_function_decl) != NULL); /* Build data 'create (var)' clauses for these local variables. Below we will add these to a data region enclosing the entire body of the decomposed kernels region. */ tree prev_mapped_var = NULL, next = NULL, artificial_vars = NULL, inner_data_clauses = NULL; for (tree v = inner_bind_vars; v; v = next) { next = TREE_CHAIN (v); if (DECL_ARTIFICIAL (v) || TREE_CODE (v) == CONST_DECL || generic_inst_p) { /* If this is an artificial temporary, it need not be mapped. We move its declaration into the bind inside the data region. Also avoid mapping variables if we are inside a template instantiation; the code does not contain all the copies to temporaries that would make this legal. */ TREE_CHAIN (v) = artificial_vars; artificial_vars = v; if (prev_mapped_var != NULL) TREE_CHAIN (prev_mapped_var) = next; else inner_bind_vars = next; } else { /* Otherwise, build the map clause. */ tree new_clause = build_omp_clause (loc, OMP_CLAUSE_MAP); OMP_CLAUSE_SET_MAP_KIND (new_clause, GOMP_MAP_ALLOC); OMP_CLAUSE_DECL (new_clause) = v; OMP_CLAUSE_SIZE (new_clause) = DECL_SIZE_UNIT (v); OMP_CLAUSE_CHAIN (new_clause) = inner_data_clauses; inner_data_clauses = new_clause; prev_mapped_var = v; /* See . */ if (!TREE_ADDRESSABLE (v)) { /* Request that OMP lowering make 'v' addressable. */ OMP_CLAUSE_MAP_DECL_MAKE_ADDRESSABLE (new_clause) = 1; if (dump_enabled_p ()) { const dump_user_location_t d_u_loc = dump_user_location_t::from_location_t (loc); /* PR100695 "Format decoder, quoting in 'dump_printf' etc." */ #if __GNUC__ >= 10 # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wformat" #endif dump_printf_loc (MSG_NOTE, d_u_loc, "OpenACC % decomposition:" " variable %<%T%> declared in block" " requested to be made addressable\n", v); #if __GNUC__ >= 10 # pragma GCC diagnostic pop #endif } } } } if (artificial_vars) body = gimple_build_bind (artificial_vars, body, make_node (BLOCK)); /* If we determined above that there are variables that need to be created on the device, construct a data region for them and wrap the body inside that. */ if (inner_data_clauses != NULL) { gcc_assert (inner_bind_vars != NULL); gimple *inner_data_region = gimple_build_omp_target (NULL, GF_OMP_TARGET_KIND_OACC_DATA_KERNELS, inner_data_clauses); gimple_set_location (inner_data_region, loc); /* Make sure __builtin_GOACC_data_end is called at the end. */ gimple *try_stmt = make_data_region_try_statement (loc, body); gimple_omp_set_body (inner_data_region, try_stmt); gimple *bind_body; if (inner_cleanup != NULL) /* Clobber all the inner variables that need to be clobbered. */ bind_body = gimple_build_try (inner_data_region, inner_cleanup, GIMPLE_TRY_FINALLY); else bind_body = inner_data_region; body = gimple_build_bind (inner_bind_vars, bind_body, make_node (BLOCK)); } return body; } static void add_wait (location_t loc, gimple_seq *region_body) { /* A "#pragma acc wait" is just a call GOACC_wait (acc_async_sync, 0). */ tree wait_fn = builtin_decl_explicit (BUILT_IN_GOACC_WAIT); tree sync_arg = build_int_cst (integer_type_node, GOMP_ASYNC_SYNC); gimple *wait_call = gimple_build_call (wait_fn, 2, sync_arg, integer_zero_node); gimple_set_location (wait_call, loc); gimple_seq_add_stmt (region_body, wait_call); } /* Helper function of decompose_kernels_region_body. The statements in REGION_BODY are expected to be decomposed parts; add an 'async' clause to each. Also add a 'wait' directive at the end of the sequence. */ static void add_async_clauses_and_wait (location_t loc, gimple_seq *region_body) { tree default_async_queue = build_int_cst (integer_type_node, GOMP_ASYNC_NOVAL); for (gimple_stmt_iterator gsi = gsi_start (*region_body); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); tree target_clauses = gimple_omp_target_clauses (stmt); tree new_async_clause = build_omp_clause (loc, OMP_CLAUSE_ASYNC); OMP_CLAUSE_OPERAND (new_async_clause, 0) = default_async_queue; OMP_CLAUSE_CHAIN (new_async_clause) = target_clauses; target_clauses = new_async_clause; gimple_omp_target_set_clauses (as_a (stmt), target_clauses); } add_wait (loc, region_body); } /* Auxiliary analysis of the body of a kernels region, to determine for each OpenACC loop whether it is control-dependent (i.e., not necessarily executed every time the kernels region is entered) or not. We say that a loop is control-dependent if there is some cond, switch, or goto statement that jumps over it, forwards or backwards. For example, if the loop is controlled by an if statement, then a jump to the true block, the false block, or from one of those blocks to the control flow join point will necessarily jump over the loop. This analysis implements an ad-hoc union-find data structure classifying statements into "control-flow regions" as follows: Most statements are in the same region as their predecessor, except that each OpenACC loop is in a region of its own, and each OpenACC loop's successor starts a new region. We then unite the regions of any statements linked by jumps, placing any cond, switch, or goto statement in the same region as its target label(s). In the end, control dependence of OpenACC loops can be determined by comparing their immediate predecessor and successor statements' regions. A jump crosses the loop if and only if the predecessor and successor are in the same region. (If there is no predecessor or successor, the loop is executed unconditionally.) The methods in this class identify statements by their index in the kernels region's body. */ class control_flow_regions { public: /* Initialize an instance and pre-compute the control-flow region information for the statement sequence SEQ. */ control_flow_regions (gimple_seq seq); /* Return true if the statement with the given index IDX in the analyzed statement sequence is an unconditionally executed OpenACC loop. */ bool is_unconditional_oacc_for_loop (size_t idx); private: /* Find the region representative for the statement identified by index STMT_IDX. */ size_t find_rep (size_t stmt_idx); /* Union the regions containing the statements represented by representatives A and B. */ void union_reps (size_t a, size_t b); /* Helper for the constructor. Performs the actual computation of the control-flow regions in the statement sequence SEQ. */ void compute_regions (gimple_seq seq); /* The mapping from statement indices to region representatives. */ vec representatives; /* A cache mapping statement indices to a flag indicating whether the statement is a top level OpenACC for loop. */ vec omp_for_loops; }; control_flow_regions::control_flow_regions (gimple_seq seq) { representatives.create (1); omp_for_loops.create (1); compute_regions (seq); } bool control_flow_regions::is_unconditional_oacc_for_loop (size_t idx) { if (idx == 0 || idx == representatives.length () - 1) /* The first or last statement in the kernels region. This means that there is no room before or after it for a jump or a label. Thus there cannot be a jump across it, so it is unconditional. */ return true; /* Otherwise, the loop is unconditional if the statements before and after it are in different control flow regions. Scan forward and backward, skipping over neighboring OpenACC for loops, to find these preceding statements. */ size_t prev_index = idx - 1; while (prev_index > 0 && omp_for_loops [prev_index] == true) prev_index--; /* If all preceding statements are also OpenACC loops, all of these are unconditional. */ if (prev_index == 0) return true; size_t succ_index = idx + 1; while (succ_index < omp_for_loops.length () && omp_for_loops [succ_index] == true) succ_index++; /* If all following statements are also OpenACC loops, all of these are unconditional. */ if (succ_index == omp_for_loops.length ()) return true; return (find_rep (prev_index) != find_rep (succ_index)); } size_t control_flow_regions::find_rep (size_t stmt_idx) { size_t rep = stmt_idx, aux = stmt_idx; /* Find the root representative of this statement. */ while (representatives[rep] != rep) rep = representatives[rep]; /* Compress the path from the original statement to the representative. */ while (representatives[aux] != rep) { size_t tmp = representatives[aux]; representatives[aux] = rep; aux = tmp; } return rep; } void control_flow_regions::union_reps (size_t a, size_t b) { a = find_rep (a); b = find_rep (b); representatives[b] = a; } void control_flow_regions::compute_regions (gimple_seq seq) { hash_map control_flow_reps; hash_map label_reps; size_t current_region = 0, idx = 0; /* In a first pass, assign an initial region to each statement. Except in the case of OpenACC loops, each statement simply gets the same region representative as its predecessor. */ for (gimple_stmt_iterator gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); gimple *omp_for = top_level_omp_for_in_stmt (stmt); omp_for_loops.safe_push (omp_for != NULL); if (omp_for != NULL) { /* Assign a new region to this loop and to its successor. */ current_region = idx; representatives.safe_push (current_region); current_region++; } else { representatives.safe_push (current_region); /* Remember any jumps and labels for the second pass below. */ if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH || gimple_code (stmt) == GIMPLE_GOTO) control_flow_reps.put (stmt, current_region); else if (gimple_code (stmt) == GIMPLE_LABEL) label_reps.put (gimple_label_label (as_a (stmt)), current_region); } idx++; } gcc_assert (representatives.length () == omp_for_loops.length ()); /* Revisit all the control flow statements and union the region of each cond, switch, or goto statement with the target labels' regions. */ for (hash_map ::iterator it = control_flow_reps.begin (); it != control_flow_reps.end (); ++it) { gimple *stmt = (*it).first; size_t stmt_rep = (*it).second; switch (gimple_code (stmt)) { tree label; unsigned int n; case GIMPLE_COND: label = gimple_cond_true_label (as_a (stmt)); union_reps (stmt_rep, *label_reps.get (label)); label = gimple_cond_false_label (as_a (stmt)); union_reps (stmt_rep, *label_reps.get (label)); break; case GIMPLE_SWITCH: n = gimple_switch_num_labels (as_a (stmt)); for (unsigned int i = 0; i < n; i++) { tree switch_case = gimple_switch_label (as_a (stmt), i); label = CASE_LABEL (switch_case); union_reps (stmt_rep, *label_reps.get (label)); } break; case GIMPLE_GOTO: label = gimple_goto_dest (stmt); union_reps (stmt_rep, *label_reps.get (label)); break; default: gcc_unreachable (); } } } /* Decompose the body of the KERNELS_REGION, which was originally annotated with the KERNELS_CLAUSES, into a series of compute constructs. */ static gimple * decompose_kernels_region_body (gimple *kernels_region, tree kernels_clauses) { location_t loc = gimple_location (kernels_region); /* The kernels clauses will be propagated to the child clauses unmodified, except that the 'num_gangs', 'num_workers', and 'vector_length' clauses will only be added to loop regions. The other regions are "gang-single" and get an explicit 'num_gangs (1)' clause. So separate out the 'num_gangs', 'num_workers', and 'vector_length' clauses here. Also check for the presence of an 'async' clause but do not remove it from the 'kernels' clauses. */ tree num_gangs_clause = NULL, num_workers_clause = NULL, vector_length_clause = NULL; tree async_clause = NULL; tree prev_clause = NULL, next_clause = NULL; tree parallel_clauses = kernels_clauses; for (tree c = parallel_clauses; c; c = next_clause) { /* Preserve this here, as we might NULL it later. */ next_clause = OMP_CLAUSE_CHAIN (c); if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_NUM_GANGS || OMP_CLAUSE_CODE (c) == OMP_CLAUSE_NUM_WORKERS || OMP_CLAUSE_CODE (c) == OMP_CLAUSE_VECTOR_LENGTH) { /* Cut this clause out of the chain. */ if (prev_clause != NULL) OMP_CLAUSE_CHAIN (prev_clause) = OMP_CLAUSE_CHAIN (c); else kernels_clauses = OMP_CLAUSE_CHAIN (c); OMP_CLAUSE_CHAIN (c) = NULL; switch (OMP_CLAUSE_CODE (c)) { case OMP_CLAUSE_NUM_GANGS: num_gangs_clause = c; break; case OMP_CLAUSE_NUM_WORKERS: num_workers_clause = c; break; case OMP_CLAUSE_VECTOR_LENGTH: vector_length_clause = c; break; default: gcc_unreachable (); } } else prev_clause = c; if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_ASYNC) async_clause = c; } gimple *kernels_body = gimple_omp_body (kernels_region); gbind *kernels_bind = as_a (kernels_body); /* The body of the region may contain other nested binds declaring inner local variables. Collapse all these binds into one to ensure that we have a single sequence of statements to iterate over; also, collect all inner variables. */ tree inner_bind_vars = flatten_binds (kernels_bind); gimple_seq body_sequence = gimple_bind_body (kernels_bind); /* All these inner variables will get allocated on the device (below, by calling maybe_build_inner_data_region). Here we create 'present' clauses for them and add these clauses to the list of clauses to be attached to each inner compute construct. */ tree present_clauses = kernels_clauses; for (tree var = inner_bind_vars; var; var = TREE_CHAIN (var)) { if (!DECL_ARTIFICIAL (var) && TREE_CODE (var) != CONST_DECL) { tree present_clause = build_omp_clause (loc, OMP_CLAUSE_MAP); OMP_CLAUSE_SET_MAP_KIND (present_clause, GOMP_MAP_FORCE_PRESENT); OMP_CLAUSE_DECL (present_clause) = var; OMP_CLAUSE_SIZE (present_clause) = DECL_SIZE_UNIT (var); OMP_CLAUSE_CHAIN (present_clause) = present_clauses; present_clauses = present_clause; } } kernels_clauses = present_clauses; /* In addition to nested binds, the "real" body of the region may be nested inside a try-finally block. Find its cleanup block, which contains code to clobber the local variables that must be clobbered. */ gimple *inner_cleanup = NULL; if (body_sequence != NULL && gimple_code (body_sequence) == GIMPLE_TRY) { if (gimple_seq_singleton_p (body_sequence)) { /* The try statement is the only thing inside the bind. */ inner_cleanup = gimple_try_cleanup (body_sequence); body_sequence = gimple_try_eval (body_sequence); } else { /* The bind's body starts with a try statement, but it is followed by other things. */ gimple_stmt_iterator gsi = gsi_start (body_sequence); gimple *try_stmt = gsi_stmt (gsi); inner_cleanup = gimple_try_cleanup (try_stmt); gimple *try_body = gimple_try_eval (try_stmt); gsi_remove (&gsi, false); /* Now gsi indicates the sequence of statements after the try statement in the bind. Append the statement in the try body and the trailing statements from gsi. */ gsi_insert_seq_before (&gsi, try_body, GSI_CONTINUE_LINKING); body_sequence = gsi_stmt (gsi); } } /* This sequence will collect all the top-level statements in the body of the data region we are about to construct. */ gimple_seq region_body = NULL; /* This sequence will collect consecutive statements to be put into a gang-single region. */ gimple_seq gang_single_seq = NULL; /* Flag recording whether the gang_single_seq only contains copies to local variables. These may be loop setup code that should not be separated from the loop. */ bool only_simple_assignments = true; /* Precompute the control flow region information to determine whether an OpenACC loop is executed conditionally or unconditionally. */ control_flow_regions cf_regions (body_sequence); /* Iterate over the statements in the kernels region's body. */ size_t idx = 0; gimple_stmt_iterator gsi, gsi_n; for (gsi = gsi_start (body_sequence); !gsi_end_p (gsi); gsi = gsi_n, idx++) { /* Advance the iterator here because otherwise it would be invalidated by moving statements below. */ gsi_n = gsi; gsi_next (&gsi_n); gimple *stmt = gsi_stmt (gsi); if (gimple_code (stmt) == GIMPLE_DEBUG) { if (flag_compare_debug_opt || flag_compare_debug) /* Let the usual '-fcompare-debug' analysis bail out, as necessary. */ ; else sorry_at (loc, "%qs not yet supported", gimple_code_name[gimple_code (stmt)]); } gimple *omp_for = top_level_omp_for_in_stmt (stmt); bool is_unconditional_oacc_for_loop = false; if (omp_for != NULL) is_unconditional_oacc_for_loop = cf_regions.is_unconditional_oacc_for_loop (idx); if (omp_for != NULL && is_unconditional_oacc_for_loop) { /* This is an OMP for statement, put it into a separate region. But first, construct a gang-single region containing any complex sequential statements we may have seen. */ if (gang_single_seq != NULL && !only_simple_assignments) { gimple *single_region = make_region_seq (loc, gang_single_seq, num_gangs_clause, num_workers_clause, vector_length_clause, kernels_clauses); gimple_seq_add_stmt (®ion_body, single_region); } else if (gang_single_seq != NULL && only_simple_assignments) { /* There is a sequence of sequential statements preceding this loop, but they are all simple assignments. This is probably setup code for the loop; in particular, Fortran DO loops are preceded by code to copy the loop limit variable to a temporary. Group this code together with the loop itself. */ gimple_seq_add_stmt (&gang_single_seq, stmt); stmt = gimple_build_bind (NULL, gang_single_seq, make_node (BLOCK)); } gang_single_seq = NULL; only_simple_assignments = true; gimple_seq parallel_seq = NULL; gimple_seq_add_stmt (¶llel_seq, stmt); gimple *parallel_region = make_region_loop_nest (omp_for, parallel_seq, num_gangs_clause, num_workers_clause, vector_length_clause, kernels_clauses); gimple_seq_add_stmt (®ion_body, parallel_region); } else { if (omp_for != NULL) { gcc_checking_assert (!is_unconditional_oacc_for_loop); if (dump_enabled_p ()) dump_printf_loc (MSG_MISSED_OPTIMIZATION, omp_for, "unparallelized loop nest" " in OpenACC % region:" " it's executed conditionally\n"); } /* This is not an unconditional OMP for statement, so it will be put into a gang-single region. */ gimple_seq_add_stmt (&gang_single_seq, stmt); /* Is this a simple assignment? We call it simple if it is an assignment to an artificial local variable. This captures Fortran loop setup code computing loop bounds and offsets. */ bool is_simple_assignment = (gimple_code (stmt) == GIMPLE_ASSIGN && TREE_CODE (gimple_assign_lhs (stmt)) == VAR_DECL && DECL_ARTIFICIAL (gimple_assign_lhs (stmt))); if (!is_simple_assignment) only_simple_assignments = false; } } /* If we did not emit a new region, and are not going to emit one now (that is, the original region was empty), prepare to emit a dummy so as to preserve the original construct, which other processing (at least test cases) depend on. */ if (region_body == NULL && gang_single_seq == NULL) { gimple *stmt = gimple_build_nop (); gimple_set_location (stmt, loc); gimple_seq_add_stmt (&gang_single_seq, stmt); } /* Gather up any remaining gang-single statements. */ if (gang_single_seq != NULL) { gimple *single_region = make_region_seq (loc, gang_single_seq, num_gangs_clause, num_workers_clause, vector_length_clause, kernels_clauses); gimple_seq_add_stmt (®ion_body, single_region); } /* We want to launch these kernels asynchronously. If the original kernels region had an async clause, this is done automatically because that async clause was copied to the individual regions we created. Otherwise, add an async clause to each newly created region, as well as a wait directive at the end. */ if (async_clause == NULL) add_async_clauses_and_wait (loc, ®ion_body); else /* !!! If we have asynchronous parallel blocks inside a (synchronous) data region, then target memory will get unmapped at the point the data region ends, even if the inner asynchronous parallels have not yet completed. For kernels marked "async", we might want to use "enter data async(...)" and "exit data async(...)" instead, or asynchronous data regions (see also "[OpenACC] 'async' clause on 'data' construct", which is to share the same implementation). For now, insert a (synchronous) wait at the end of the block. */ add_wait (loc, ®ion_body); tree kernels_locals = gimple_bind_vars (as_a (kernels_body)); gimple *body = gimple_build_bind (kernels_locals, region_body, make_node (BLOCK)); /* If we found variables declared in nested scopes, build a data region to map them to the device. */ body = maybe_build_inner_data_region (loc, body, inner_bind_vars, inner_cleanup); return body; } /* Decompose one OpenACC 'kernels' construct into an OpenACC 'data' construct containing the original OpenACC 'kernels' construct's region cut up into a sequence of compute constructs. */ static gimple * omp_oacc_kernels_decompose_1 (gimple *kernels_stmt) { gcc_checking_assert (gimple_omp_target_kind (kernels_stmt) == GF_OMP_TARGET_KIND_OACC_KERNELS); location_t loc = gimple_location (kernels_stmt); /* Collect the data clauses of the OpenACC 'kernels' directive and create a new OpenACC 'data' construct with those clauses. */ tree kernels_clauses = gimple_omp_target_clauses (kernels_stmt); tree data_clauses = NULL; for (tree c = kernels_clauses; c; c = OMP_CLAUSE_CHAIN (c)) { /* Certain clauses are copied to the enclosing OpenACC 'data'. Other clauses remain on the OpenACC 'kernels'. */ if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_MAP) { tree decl = OMP_CLAUSE_DECL (c); HOST_WIDE_INT map_kind = OMP_CLAUSE_MAP_KIND (c); switch (map_kind) { default: if (map_kind == GOMP_MAP_ALLOC && integer_zerop (OMP_CLAUSE_SIZE (c))) /* ??? This is an alloc clause for mapping a pointer whose target is already mapped. We leave these on the inner compute constructs because moving them to the outer data region causes runtime errors. */ break; /* For non-artificial variables, and for non-declaration expressions like A[0:n], copy the clause to the data region. */ if ((DECL_P (decl) && !DECL_ARTIFICIAL (decl)) || !DECL_P (decl)) { tree new_clause = build_omp_clause (OMP_CLAUSE_LOCATION (c), OMP_CLAUSE_MAP); OMP_CLAUSE_SET_MAP_KIND (new_clause, map_kind); /* This must be unshared here to avoid "incorrect sharing of tree nodes" errors from verify_gimple. */ OMP_CLAUSE_DECL (new_clause) = unshare_expr (decl); OMP_CLAUSE_SIZE (new_clause) = OMP_CLAUSE_SIZE (c); OMP_CLAUSE_CHAIN (new_clause) = data_clauses; data_clauses = new_clause; /* Now that this data is mapped, turn the data clause on the inner OpenACC 'kernels' into a 'present' clause. */ OMP_CLAUSE_SET_MAP_KIND (c, GOMP_MAP_FORCE_PRESENT); /* See , . */ if (DECL_P (decl) && !TREE_ADDRESSABLE (decl)) { /* Request that OMP lowering make 'decl' addressable. */ OMP_CLAUSE_MAP_DECL_MAKE_ADDRESSABLE (new_clause) = 1; if (dump_enabled_p ()) { location_t loc = OMP_CLAUSE_LOCATION (new_clause); const dump_user_location_t d_u_loc = dump_user_location_t::from_location_t (loc); /* PR100695 "Format decoder, quoting in 'dump_printf' etc." */ #if __GNUC__ >= 10 # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wformat" #endif dump_printf_loc (MSG_NOTE, d_u_loc, "OpenACC % decomposition:" " variable %<%T%> in %qs clause" " requested to be made addressable\n", decl, user_omp_clause_code_name (new_clause, true)); #if __GNUC__ >= 10 # pragma GCC diagnostic pop #endif } } } break; case GOMP_MAP_POINTER: case GOMP_MAP_TO_PSET: case GOMP_MAP_FIRSTPRIVATE_POINTER: case GOMP_MAP_FIRSTPRIVATE_REFERENCE: /* ??? Copying these map kinds leads to internal compiler errors in later passes. */ break; } } else if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_IF || OMP_CLAUSE_CODE (c) == OMP_CLAUSE_SELF) { /* If there is an 'if' or 'self' clause, it must be duplicated to the enclosing data region. Temporarily remove its chain to avoid copying it. */ tree saved_chain = OMP_CLAUSE_CHAIN (c); OMP_CLAUSE_CHAIN (c) = NULL; tree new_clause = unshare_expr (c); OMP_CLAUSE_CHAIN (c) = saved_chain; OMP_CLAUSE_CHAIN (new_clause) = data_clauses; data_clauses = new_clause; } } /* Restore the original order of the clauses. */ data_clauses = nreverse (data_clauses); gimple *data_region = gimple_build_omp_target (NULL, GF_OMP_TARGET_KIND_OACC_DATA_KERNELS, data_clauses); gimple_set_location (data_region, loc); /* Transform the body of the kernels region into a sequence of compute constructs. */ gimple *body = decompose_kernels_region_body (kernels_stmt, kernels_clauses); /* Put the transformed pieces together. The entire body of the region is wrapped in a try-finally statement that calls __builtin_GOACC_data_end for cleanup. */ gimple *try_stmt = make_data_region_try_statement (loc, body); gimple_omp_set_body (data_region, try_stmt); return data_region; } /* Decompose OpenACC 'kernels' constructs in the current function. */ static tree omp_oacc_kernels_decompose_callback_stmt (gimple_stmt_iterator *gsi_p, bool *handled_ops_p, struct walk_stmt_info *) { gimple *stmt = gsi_stmt (*gsi_p); if ((gimple_code (stmt) == GIMPLE_OMP_TARGET) && gimple_omp_target_kind (stmt) == GF_OMP_TARGET_KIND_OACC_KERNELS) { gimple *stmt_new = omp_oacc_kernels_decompose_1 (stmt); gsi_replace (gsi_p, stmt_new, false); *handled_ops_p = true; } else *handled_ops_p = false; return NULL; } static unsigned int omp_oacc_kernels_decompose (void) { gimple_seq body = gimple_body (current_function_decl); struct walk_stmt_info wi; memset (&wi, 0, sizeof (wi)); walk_gimple_seq_mod (&body, omp_oacc_kernels_decompose_callback_stmt, NULL, &wi); gimple_set_body (current_function_decl, body); return 0; } namespace { const pass_data pass_data_omp_oacc_kernels_decompose = { GIMPLE_PASS, /* type */ "omp_oacc_kernels_decompose", /* name */ OPTGROUP_OMP, /* optinfo_flags */ TV_NONE, /* tv_id */ PROP_gimple_any, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_omp_oacc_kernels_decompose : public gimple_opt_pass { public: pass_omp_oacc_kernels_decompose (gcc::context *ctxt) : gimple_opt_pass (pass_data_omp_oacc_kernels_decompose, ctxt) {} /* opt_pass methods: */ bool gate (function *) final override { return (flag_openacc && param_openacc_kernels == OPENACC_KERNELS_DECOMPOSE); } unsigned int execute (function *) final override { return omp_oacc_kernels_decompose (); } }; // class pass_omp_oacc_kernels_decompose } // anon namespace gimple_opt_pass * make_pass_omp_oacc_kernels_decompose (gcc::context *ctxt) { return new pass_omp_oacc_kernels_decompose (ctxt); }