/* General types and functions that are useful for processing of OpenMP, OpenACC and similar directives at various stages of compilation. Copyright (C) 2005-2025 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "target.h" #include "tree.h" #include "gimple.h" #include "ssa.h" #include "diagnostic-core.h" #include "fold-const.h" #include "langhooks.h" #include "omp-general.h" #include "stringpool.h" #include "attribs.h" #include "gimplify.h" #include "cgraph.h" #include "alloc-pool.h" #include "symbol-summary.h" #include "tree-pass.h" #include "omp-device-properties.h" #include "tree-iterator.h" #include "data-streamer.h" #include "streamer-hooks.h" #include "opts.h" #include "tree-pretty-print.h" enum omp_requires omp_requires_mask; /* Find an OMP clause of type KIND within CLAUSES. */ tree omp_find_clause (tree clauses, enum omp_clause_code kind) { for (; clauses ; clauses = OMP_CLAUSE_CHAIN (clauses)) if (OMP_CLAUSE_CODE (clauses) == kind) return clauses; return NULL_TREE; } /* True if OpenMP should regard this DECL as being a scalar which has Fortran's allocatable or pointer attribute. */ bool omp_is_allocatable_or_ptr (tree decl) { return lang_hooks.decls.omp_is_allocatable_or_ptr (decl); } /* Check whether this DECL belongs to a Fortran optional argument. With 'for_present_check' set to false, decls which are optional parameters themselve are returned as tree - or a NULL_TREE otherwise. Those decls are always pointers. With 'for_present_check' set to true, the decl for checking whether an argument is present is returned; for arguments with value attribute this is the hidden argument and of BOOLEAN_TYPE. If the decl is unrelated to optional arguments, NULL_TREE is returned. */ tree omp_check_optional_argument (tree decl, bool for_present_check) { return lang_hooks.decls.omp_check_optional_argument (decl, for_present_check); } /* Return true if TYPE is an OpenMP mappable type. */ bool omp_mappable_type (tree type) { /* Mappable type has to be complete. */ if (type == error_mark_node || !COMPLETE_TYPE_P (type)) return false; return true; } /* True if OpenMP should privatize what this DECL points to rather than the DECL itself. */ bool omp_privatize_by_reference (tree decl) { return lang_hooks.decls.omp_privatize_by_reference (decl); } /* Adjust *COND_CODE and *N2 so that the former is either LT_EXPR or GT_EXPR, given that V is the loop index variable and STEP is loop step. */ void omp_adjust_for_condition (location_t loc, enum tree_code *cond_code, tree *n2, tree v, tree step) { switch (*cond_code) { case LT_EXPR: case GT_EXPR: break; case NE_EXPR: gcc_assert (TREE_CODE (step) == INTEGER_CST); if (TREE_CODE (TREE_TYPE (v)) == INTEGER_TYPE || TREE_CODE (TREE_TYPE (v)) == BITINT_TYPE) { if (integer_onep (step)) *cond_code = LT_EXPR; else { gcc_assert (integer_minus_onep (step)); *cond_code = GT_EXPR; } } else { tree unit = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (v))); gcc_assert (TREE_CODE (unit) == INTEGER_CST); if (tree_int_cst_equal (unit, step)) *cond_code = LT_EXPR; else { gcc_assert (wi::neg (wi::to_widest (unit)) == wi::to_widest (step)); *cond_code = GT_EXPR; } } break; case LE_EXPR: if (POINTER_TYPE_P (TREE_TYPE (*n2))) { tree unit = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (v))); gcc_assert (TREE_CODE (unit) == INTEGER_CST); *n2 = fold_build_pointer_plus_loc (loc, *n2, unit); } else *n2 = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (*n2), *n2, build_int_cst (TREE_TYPE (*n2), 1)); *cond_code = LT_EXPR; break; case GE_EXPR: if (POINTER_TYPE_P (TREE_TYPE (*n2))) { tree unit = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (v))); gcc_assert (TREE_CODE (unit) == INTEGER_CST); unit = convert_to_ptrofftype_loc (loc, unit); unit = fold_build1_loc (loc, NEGATE_EXPR, TREE_TYPE (unit), unit); *n2 = fold_build_pointer_plus_loc (loc, *n2, unit); } else *n2 = fold_build2_loc (loc, MINUS_EXPR, TREE_TYPE (*n2), *n2, build_int_cst (TREE_TYPE (*n2), 1)); *cond_code = GT_EXPR; break; default: gcc_unreachable (); } } /* Return the looping step from INCR, extracted from the step of a gimple omp for statement. */ tree omp_get_for_step_from_incr (location_t loc, tree incr) { tree step; switch (TREE_CODE (incr)) { case PLUS_EXPR: step = TREE_OPERAND (incr, 1); break; case POINTER_PLUS_EXPR: step = fold_convert (ssizetype, TREE_OPERAND (incr, 1)); break; case MINUS_EXPR: step = TREE_OPERAND (incr, 1); step = fold_build1_loc (loc, NEGATE_EXPR, TREE_TYPE (step), step); break; default: gcc_unreachable (); } return step; } /* Extract the header elements of parallel loop FOR_STMT and store them into *FD. */ void omp_extract_for_data (gomp_for *for_stmt, struct omp_for_data *fd, struct omp_for_data_loop *loops) { tree t, var, *collapse_iter, *collapse_count; tree count = NULL_TREE, iter_type = long_integer_type_node; struct omp_for_data_loop *loop; int i; struct omp_for_data_loop dummy_loop; location_t loc = gimple_location (for_stmt); bool simd = gimple_omp_for_kind (for_stmt) == GF_OMP_FOR_KIND_SIMD; bool distribute = gimple_omp_for_kind (for_stmt) == GF_OMP_FOR_KIND_DISTRIBUTE; bool taskloop = gimple_omp_for_kind (for_stmt) == GF_OMP_FOR_KIND_TASKLOOP; bool order_reproducible = false; tree iterv, countv; fd->for_stmt = for_stmt; fd->pre = NULL; fd->have_nowait = distribute || simd; fd->have_ordered = false; fd->have_reductemp = false; fd->have_pointer_condtemp = false; fd->have_scantemp = false; fd->have_nonctrl_scantemp = false; fd->non_rect = false; fd->lastprivate_conditional = 0; fd->tiling = NULL_TREE; fd->collapse = 1; fd->ordered = 0; fd->first_nonrect = -1; fd->last_nonrect = -1; fd->sched_kind = OMP_CLAUSE_SCHEDULE_STATIC; fd->sched_modifiers = 0; fd->chunk_size = NULL_TREE; fd->simd_schedule = false; fd->first_inner_iterations = NULL_TREE; fd->factor = NULL_TREE; fd->adjn1 = NULL_TREE; collapse_iter = NULL; collapse_count = NULL; for (t = gimple_omp_for_clauses (for_stmt); t ; t = OMP_CLAUSE_CHAIN (t)) switch (OMP_CLAUSE_CODE (t)) { case OMP_CLAUSE_NOWAIT: fd->have_nowait = true; break; case OMP_CLAUSE_ORDERED: fd->have_ordered = true; if (OMP_CLAUSE_ORDERED_DOACROSS (t)) { if (OMP_CLAUSE_ORDERED_EXPR (t)) fd->ordered = tree_to_shwi (OMP_CLAUSE_ORDERED_EXPR (t)); else fd->ordered = -1; } break; case OMP_CLAUSE_SCHEDULE: gcc_assert (!distribute && !taskloop); fd->sched_kind = (enum omp_clause_schedule_kind) (OMP_CLAUSE_SCHEDULE_KIND (t) & OMP_CLAUSE_SCHEDULE_MASK); fd->sched_modifiers = (OMP_CLAUSE_SCHEDULE_KIND (t) & ~OMP_CLAUSE_SCHEDULE_MASK); fd->chunk_size = OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t); fd->simd_schedule = OMP_CLAUSE_SCHEDULE_SIMD (t); break; case OMP_CLAUSE_DIST_SCHEDULE: gcc_assert (distribute); fd->chunk_size = OMP_CLAUSE_DIST_SCHEDULE_CHUNK_EXPR (t); break; case OMP_CLAUSE_COLLAPSE: fd->collapse = tree_to_shwi (OMP_CLAUSE_COLLAPSE_EXPR (t)); if (fd->collapse > 1) { collapse_iter = &OMP_CLAUSE_COLLAPSE_ITERVAR (t); collapse_count = &OMP_CLAUSE_COLLAPSE_COUNT (t); } break; case OMP_CLAUSE_TILE: fd->tiling = OMP_CLAUSE_TILE_LIST (t); fd->collapse = list_length (fd->tiling); gcc_assert (fd->collapse); collapse_iter = &OMP_CLAUSE_TILE_ITERVAR (t); collapse_count = &OMP_CLAUSE_TILE_COUNT (t); break; case OMP_CLAUSE__REDUCTEMP_: fd->have_reductemp = true; break; case OMP_CLAUSE_LASTPRIVATE: if (OMP_CLAUSE_LASTPRIVATE_CONDITIONAL (t)) fd->lastprivate_conditional++; break; case OMP_CLAUSE__CONDTEMP_: if (POINTER_TYPE_P (TREE_TYPE (OMP_CLAUSE_DECL (t)))) fd->have_pointer_condtemp = true; break; case OMP_CLAUSE__SCANTEMP_: fd->have_scantemp = true; if (!OMP_CLAUSE__SCANTEMP__ALLOC (t) && !OMP_CLAUSE__SCANTEMP__CONTROL (t)) fd->have_nonctrl_scantemp = true; break; case OMP_CLAUSE_ORDER: /* FIXME: For OpenMP 5.2 this should change to if (OMP_CLAUSE_ORDER_REPRODUCIBLE (t)) (with the exception of loop construct but that lowers to no schedule/dist_schedule clauses currently). */ if (!OMP_CLAUSE_ORDER_UNCONSTRAINED (t)) order_reproducible = true; default: break; } if (fd->ordered == -1) fd->ordered = fd->collapse; /* For order(reproducible:concurrent) schedule ({dynamic,guided,runtime}) we have either the option to expensively remember at runtime how we've distributed work from first loop and reuse that in following loops with the same number of iterations and schedule, or just force static schedule. OpenMP API calls etc. aren't allowed in order(concurrent) bodies so users can't observe it easily anyway. */ if (order_reproducible) fd->sched_kind = OMP_CLAUSE_SCHEDULE_STATIC; if (fd->collapse > 1 || fd->tiling) fd->loops = loops; else fd->loops = &fd->loop; if (fd->ordered && fd->collapse == 1 && loops != NULL) { fd->loops = loops; iterv = NULL_TREE; countv = NULL_TREE; collapse_iter = &iterv; collapse_count = &countv; } /* FIXME: for now map schedule(auto) to schedule(static). There should be analysis to determine whether all iterations are approximately the same amount of work (then schedule(static) is best) or if it varies (then schedule(dynamic,N) is better). */ if (fd->sched_kind == OMP_CLAUSE_SCHEDULE_AUTO) { fd->sched_kind = OMP_CLAUSE_SCHEDULE_STATIC; gcc_assert (fd->chunk_size == NULL); } gcc_assert ((fd->collapse == 1 && !fd->tiling) || collapse_iter != NULL); if (taskloop) fd->sched_kind = OMP_CLAUSE_SCHEDULE_RUNTIME; if (fd->sched_kind == OMP_CLAUSE_SCHEDULE_RUNTIME) gcc_assert (fd->chunk_size == NULL); else if (fd->chunk_size == NULL) { /* We only need to compute a default chunk size for ordered static loops and dynamic loops. */ if (fd->sched_kind != OMP_CLAUSE_SCHEDULE_STATIC || fd->have_ordered) fd->chunk_size = (fd->sched_kind == OMP_CLAUSE_SCHEDULE_STATIC) ? integer_zero_node : integer_one_node; } int cnt = fd->ordered ? fd->ordered : fd->collapse; int single_nonrect = -1; tree single_nonrect_count = NULL_TREE; enum tree_code single_nonrect_cond_code = ERROR_MARK; for (i = 1; i < cnt; i++) { tree n1 = gimple_omp_for_initial (for_stmt, i); tree n2 = gimple_omp_for_final (for_stmt, i); if (TREE_CODE (n1) == TREE_VEC) { if (fd->non_rect) { single_nonrect = -1; break; } for (int j = i - 1; j >= 0; j--) if (TREE_VEC_ELT (n1, 0) == gimple_omp_for_index (for_stmt, j)) { single_nonrect = j; break; } fd->non_rect = true; } else if (TREE_CODE (n2) == TREE_VEC) { if (fd->non_rect) { single_nonrect = -1; break; } for (int j = i - 1; j >= 0; j--) if (TREE_VEC_ELT (n2, 0) == gimple_omp_for_index (for_stmt, j)) { single_nonrect = j; break; } fd->non_rect = true; } } for (i = 0; i < cnt; i++) { if (i == 0 && fd->collapse == 1 && !fd->tiling && (fd->ordered == 0 || loops == NULL)) loop = &fd->loop; else if (loops != NULL) loop = loops + i; else loop = &dummy_loop; loop->v = gimple_omp_for_index (for_stmt, i); gcc_assert (SSA_VAR_P (loop->v)); gcc_assert (TREE_CODE (TREE_TYPE (loop->v)) == INTEGER_TYPE || TREE_CODE (TREE_TYPE (loop->v)) == BITINT_TYPE || TREE_CODE (TREE_TYPE (loop->v)) == POINTER_TYPE); var = TREE_CODE (loop->v) == SSA_NAME ? SSA_NAME_VAR (loop->v) : loop->v; loop->n1 = gimple_omp_for_initial (for_stmt, i); loop->m1 = NULL_TREE; loop->m2 = NULL_TREE; loop->outer = 0; loop->non_rect_referenced = false; if (TREE_CODE (loop->n1) == TREE_VEC) { for (int j = i - 1; j >= 0; j--) if (TREE_VEC_ELT (loop->n1, 0) == gimple_omp_for_index (for_stmt, j)) { loop->outer = i - j; if (loops != NULL) loops[j].non_rect_referenced = true; if (fd->first_nonrect == -1 || fd->first_nonrect > j) fd->first_nonrect = j; break; } gcc_assert (loop->outer); loop->m1 = TREE_VEC_ELT (loop->n1, 1); loop->n1 = TREE_VEC_ELT (loop->n1, 2); fd->non_rect = true; fd->last_nonrect = i; } loop->cond_code = gimple_omp_for_cond (for_stmt, i); loop->n2 = gimple_omp_for_final (for_stmt, i); gcc_assert (loop->cond_code != NE_EXPR || (gimple_omp_for_kind (for_stmt) != GF_OMP_FOR_KIND_OACC_LOOP)); if (TREE_CODE (loop->n2) == TREE_VEC) { if (loop->outer) gcc_assert (TREE_VEC_ELT (loop->n2, 0) == gimple_omp_for_index (for_stmt, i - loop->outer)); else for (int j = i - 1; j >= 0; j--) if (TREE_VEC_ELT (loop->n2, 0) == gimple_omp_for_index (for_stmt, j)) { loop->outer = i - j; if (loops != NULL) loops[j].non_rect_referenced = true; if (fd->first_nonrect == -1 || fd->first_nonrect > j) fd->first_nonrect = j; break; } gcc_assert (loop->outer); loop->m2 = TREE_VEC_ELT (loop->n2, 1); loop->n2 = TREE_VEC_ELT (loop->n2, 2); fd->non_rect = true; fd->last_nonrect = i; } t = gimple_omp_for_incr (for_stmt, i); gcc_assert (TREE_OPERAND (t, 0) == var); loop->step = omp_get_for_step_from_incr (loc, t); omp_adjust_for_condition (loc, &loop->cond_code, &loop->n2, loop->v, loop->step); if (simd || (fd->sched_kind == OMP_CLAUSE_SCHEDULE_STATIC && !fd->have_ordered)) { if (fd->collapse == 1 && !fd->tiling) iter_type = TREE_TYPE (loop->v); else if (i == 0 || TYPE_PRECISION (iter_type) < TYPE_PRECISION (TREE_TYPE (loop->v))) { if (TREE_CODE (iter_type) == BITINT_TYPE || TREE_CODE (TREE_TYPE (loop->v)) == BITINT_TYPE) iter_type = build_bitint_type (TYPE_PRECISION (TREE_TYPE (loop->v)), 1); else iter_type = build_nonstandard_integer_type (TYPE_PRECISION (TREE_TYPE (loop->v)), 1); } } else if (iter_type != long_long_unsigned_type_node) { if (POINTER_TYPE_P (TREE_TYPE (loop->v))) iter_type = long_long_unsigned_type_node; else if (TYPE_UNSIGNED (TREE_TYPE (loop->v)) && TYPE_PRECISION (TREE_TYPE (loop->v)) >= TYPE_PRECISION (iter_type)) { tree n; if (loop->cond_code == LT_EXPR) n = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (loop->v), loop->n2, loop->step); else n = loop->n1; if (loop->m1 || loop->m2 || TREE_CODE (n) != INTEGER_CST || tree_int_cst_lt (TYPE_MAX_VALUE (iter_type), n)) iter_type = long_long_unsigned_type_node; } else if (TYPE_PRECISION (TREE_TYPE (loop->v)) > TYPE_PRECISION (iter_type)) { tree n1, n2; if (loop->cond_code == LT_EXPR) { n1 = loop->n1; n2 = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (loop->v), loop->n2, loop->step); } else { n1 = fold_build2_loc (loc, MINUS_EXPR, TREE_TYPE (loop->v), loop->n2, loop->step); n2 = loop->n1; } if (loop->m1 || loop->m2 || TREE_CODE (n1) != INTEGER_CST || TREE_CODE (n2) != INTEGER_CST || !tree_int_cst_lt (TYPE_MIN_VALUE (iter_type), n1) || !tree_int_cst_lt (n2, TYPE_MAX_VALUE (iter_type))) iter_type = long_long_unsigned_type_node; } } if (i >= fd->collapse) continue; if (collapse_count && *collapse_count == NULL) { if (count && integer_zerop (count)) continue; tree n1first = NULL_TREE, n2first = NULL_TREE; tree n1last = NULL_TREE, n2last = NULL_TREE; tree ostep = NULL_TREE; if (loop->m1 || loop->m2) { if (count == NULL_TREE) continue; if (single_nonrect == -1 || (loop->m1 && TREE_CODE (loop->m1) != INTEGER_CST) || (loop->m2 && TREE_CODE (loop->m2) != INTEGER_CST) || TREE_CODE (loop->n1) != INTEGER_CST || TREE_CODE (loop->n2) != INTEGER_CST || TREE_CODE (loop->step) != INTEGER_CST) { count = NULL_TREE; continue; } tree var = gimple_omp_for_initial (for_stmt, single_nonrect); tree itype = TREE_TYPE (var); tree first = gimple_omp_for_initial (for_stmt, single_nonrect); t = gimple_omp_for_incr (for_stmt, single_nonrect); ostep = omp_get_for_step_from_incr (loc, t); t = fold_binary (MINUS_EXPR, long_long_unsigned_type_node, single_nonrect_count, build_one_cst (long_long_unsigned_type_node)); t = fold_convert (itype, t); first = fold_convert (itype, first); ostep = fold_convert (itype, ostep); tree last = fold_binary (PLUS_EXPR, itype, first, fold_binary (MULT_EXPR, itype, t, ostep)); if (TREE_CODE (first) != INTEGER_CST || TREE_CODE (last) != INTEGER_CST) { count = NULL_TREE; continue; } if (loop->m1) { tree m1 = fold_convert (itype, loop->m1); tree n1 = fold_convert (itype, loop->n1); n1first = fold_binary (PLUS_EXPR, itype, fold_binary (MULT_EXPR, itype, first, m1), n1); n1last = fold_binary (PLUS_EXPR, itype, fold_binary (MULT_EXPR, itype, last, m1), n1); } else n1first = n1last = loop->n1; if (loop->m2) { tree n2 = fold_convert (itype, loop->n2); tree m2 = fold_convert (itype, loop->m2); n2first = fold_binary (PLUS_EXPR, itype, fold_binary (MULT_EXPR, itype, first, m2), n2); n2last = fold_binary (PLUS_EXPR, itype, fold_binary (MULT_EXPR, itype, last, m2), n2); } else n2first = n2last = loop->n2; n1first = fold_convert (TREE_TYPE (loop->v), n1first); n2first = fold_convert (TREE_TYPE (loop->v), n2first); n1last = fold_convert (TREE_TYPE (loop->v), n1last); n2last = fold_convert (TREE_TYPE (loop->v), n2last); t = fold_binary (loop->cond_code, boolean_type_node, n1first, n2first); tree t2 = fold_binary (loop->cond_code, boolean_type_node, n1last, n2last); if (t && t2 && integer_nonzerop (t) && integer_nonzerop (t2)) /* All outer loop iterators have at least one inner loop iteration. Try to compute the count at compile time. */ t = NULL_TREE; else if (t && t2 && integer_zerop (t) && integer_zerop (t2)) /* No iterations of the inner loop. count will be set to zero cst below. */; else if (TYPE_UNSIGNED (itype) || t == NULL_TREE || t2 == NULL_TREE || TREE_CODE (t) != INTEGER_CST || TREE_CODE (t2) != INTEGER_CST) { /* Punt (for now). */ count = NULL_TREE; continue; } else { /* Some iterations of the outer loop have zero iterations of the inner loop, while others have at least one. In this case, we need to adjust one of those outer loop bounds. If ADJ_FIRST, we need to adjust outer n1 (first), otherwise outer n2 (last). */ bool adj_first = integer_zerop (t); tree n1 = fold_convert (itype, loop->n1); tree n2 = fold_convert (itype, loop->n2); tree m1 = loop->m1 ? fold_convert (itype, loop->m1) : build_zero_cst (itype); tree m2 = loop->m2 ? fold_convert (itype, loop->m2) : build_zero_cst (itype); t = fold_binary (MINUS_EXPR, itype, n1, n2); t2 = fold_binary (MINUS_EXPR, itype, m2, m1); t = fold_binary (TRUNC_DIV_EXPR, itype, t, t2); t2 = fold_binary (MINUS_EXPR, itype, t, first); t2 = fold_binary (TRUNC_MOD_EXPR, itype, t2, ostep); t = fold_binary (MINUS_EXPR, itype, t, t2); tree n1cur = fold_binary (PLUS_EXPR, itype, n1, fold_binary (MULT_EXPR, itype, m1, t)); tree n2cur = fold_binary (PLUS_EXPR, itype, n2, fold_binary (MULT_EXPR, itype, m2, t)); t2 = fold_binary (loop->cond_code, boolean_type_node, n1cur, n2cur); tree t3 = fold_binary (MULT_EXPR, itype, m1, ostep); tree t4 = fold_binary (MULT_EXPR, itype, m2, ostep); tree diff; if (adj_first) { tree new_first; if (integer_nonzerop (t2)) { new_first = t; n1first = n1cur; n2first = n2cur; if (flag_checking) { t3 = fold_binary (MINUS_EXPR, itype, n1cur, t3); t4 = fold_binary (MINUS_EXPR, itype, n2cur, t4); t3 = fold_binary (loop->cond_code, boolean_type_node, t3, t4); gcc_assert (integer_zerop (t3)); } } else { t3 = fold_binary (PLUS_EXPR, itype, n1cur, t3); t4 = fold_binary (PLUS_EXPR, itype, n2cur, t4); new_first = fold_binary (PLUS_EXPR, itype, t, ostep); n1first = t3; n2first = t4; if (flag_checking) { t3 = fold_binary (loop->cond_code, boolean_type_node, t3, t4); gcc_assert (integer_nonzerop (t3)); } } diff = fold_binary (MINUS_EXPR, itype, new_first, first); first = new_first; fd->adjn1 = first; } else { tree new_last; if (integer_zerop (t2)) { t3 = fold_binary (MINUS_EXPR, itype, n1cur, t3); t4 = fold_binary (MINUS_EXPR, itype, n2cur, t4); new_last = fold_binary (MINUS_EXPR, itype, t, ostep); n1last = t3; n2last = t4; if (flag_checking) { t3 = fold_binary (loop->cond_code, boolean_type_node, t3, t4); gcc_assert (integer_nonzerop (t3)); } } else { new_last = t; n1last = n1cur; n2last = n2cur; if (flag_checking) { t3 = fold_binary (PLUS_EXPR, itype, n1cur, t3); t4 = fold_binary (PLUS_EXPR, itype, n2cur, t4); t3 = fold_binary (loop->cond_code, boolean_type_node, t3, t4); gcc_assert (integer_zerop (t3)); } } diff = fold_binary (MINUS_EXPR, itype, last, new_last); } if (TYPE_UNSIGNED (itype) && single_nonrect_cond_code == GT_EXPR) diff = fold_binary (TRUNC_DIV_EXPR, itype, fold_unary (NEGATE_EXPR, itype, diff), fold_unary (NEGATE_EXPR, itype, ostep)); else diff = fold_binary (TRUNC_DIV_EXPR, itype, diff, ostep); diff = fold_convert (long_long_unsigned_type_node, diff); single_nonrect_count = fold_binary (MINUS_EXPR, long_long_unsigned_type_node, single_nonrect_count, diff); t = NULL_TREE; } } else t = fold_binary (loop->cond_code, boolean_type_node, fold_convert (TREE_TYPE (loop->v), loop->n1), fold_convert (TREE_TYPE (loop->v), loop->n2)); if (t && integer_zerop (t)) count = build_zero_cst (long_long_unsigned_type_node); else if ((i == 0 || count != NULL_TREE) && (TREE_CODE (TREE_TYPE (loop->v)) == INTEGER_TYPE || TREE_CODE (TREE_TYPE (loop->v)) == BITINT_TYPE) && TREE_CONSTANT (loop->n1) && TREE_CONSTANT (loop->n2) && TREE_CODE (loop->step) == INTEGER_CST) { tree itype = TREE_TYPE (loop->v); if (POINTER_TYPE_P (itype)) itype = signed_type_for (itype); t = build_int_cst (itype, (loop->cond_code == LT_EXPR ? -1 : 1)); t = fold_build2 (PLUS_EXPR, itype, fold_convert (itype, loop->step), t); tree n1 = loop->n1; tree n2 = loop->n2; if (loop->m1 || loop->m2) { gcc_assert (single_nonrect != -1); n1 = n1first; n2 = n2first; } t = fold_build2 (PLUS_EXPR, itype, t, fold_convert (itype, n2)); t = fold_build2 (MINUS_EXPR, itype, t, fold_convert (itype, n1)); tree step = fold_convert_loc (loc, itype, loop->step); if (TYPE_UNSIGNED (itype) && loop->cond_code == GT_EXPR) t = fold_build2 (TRUNC_DIV_EXPR, itype, fold_build1 (NEGATE_EXPR, itype, t), fold_build1 (NEGATE_EXPR, itype, step)); else t = fold_build2 (TRUNC_DIV_EXPR, itype, t, step); tree llutype = long_long_unsigned_type_node; t = fold_convert (llutype, t); if (loop->m1 || loop->m2) { /* t is number of iterations of inner loop at either first or last value of the outer iterator (the one with fewer iterations). Compute t2 = ((m2 - m1) * ostep) / step and niters = outer_count * t + t2 * ((outer_count - 1) * outer_count / 2) */ tree m1 = loop->m1 ? loop->m1 : integer_zero_node; tree m2 = loop->m2 ? loop->m2 : integer_zero_node; m1 = fold_convert (itype, m1); m2 = fold_convert (itype, m2); tree t2 = fold_build2 (MINUS_EXPR, itype, m2, m1); t2 = fold_build2 (MULT_EXPR, itype, t2, ostep); if (TYPE_UNSIGNED (itype) && loop->cond_code == GT_EXPR) t2 = fold_build2 (TRUNC_DIV_EXPR, itype, fold_build1 (NEGATE_EXPR, itype, t2), fold_build1 (NEGATE_EXPR, itype, step)); else t2 = fold_build2 (TRUNC_DIV_EXPR, itype, t2, step); t2 = fold_convert (llutype, t2); fd->first_inner_iterations = t; fd->factor = t2; t = fold_build2 (MULT_EXPR, llutype, t, single_nonrect_count); tree t3 = fold_build2 (MINUS_EXPR, llutype, single_nonrect_count, build_one_cst (llutype)); t3 = fold_build2 (MULT_EXPR, llutype, t3, single_nonrect_count); t3 = fold_build2 (TRUNC_DIV_EXPR, llutype, t3, build_int_cst (llutype, 2)); t2 = fold_build2 (MULT_EXPR, llutype, t2, t3); t = fold_build2 (PLUS_EXPR, llutype, t, t2); } if (i == single_nonrect) { if (integer_zerop (t) || TREE_CODE (t) != INTEGER_CST) count = t; else { single_nonrect_count = t; single_nonrect_cond_code = loop->cond_code; if (count == NULL_TREE) count = build_one_cst (llutype); } } else if (count != NULL_TREE) count = fold_build2 (MULT_EXPR, llutype, count, t); else count = t; if (TREE_CODE (count) != INTEGER_CST) count = NULL_TREE; } else if (count && !integer_zerop (count)) count = NULL_TREE; } } if (count && !simd && (fd->sched_kind != OMP_CLAUSE_SCHEDULE_STATIC || fd->have_ordered)) { if (!tree_int_cst_lt (count, TYPE_MAX_VALUE (long_integer_type_node))) iter_type = long_long_unsigned_type_node; else iter_type = long_integer_type_node; } else if (collapse_iter && *collapse_iter != NULL) iter_type = TREE_TYPE (*collapse_iter); fd->iter_type = iter_type; if (collapse_iter && *collapse_iter == NULL) *collapse_iter = create_tmp_var (iter_type, ".iter"); if (collapse_count && *collapse_count == NULL) { if (count) { *collapse_count = fold_convert_loc (loc, iter_type, count); if (fd->first_inner_iterations && fd->factor) { t = make_tree_vec (4); TREE_VEC_ELT (t, 0) = *collapse_count; TREE_VEC_ELT (t, 1) = fd->first_inner_iterations; TREE_VEC_ELT (t, 2) = fd->factor; TREE_VEC_ELT (t, 3) = fd->adjn1; *collapse_count = t; } } else *collapse_count = create_tmp_var (iter_type, ".count"); } if (fd->collapse > 1 || fd->tiling || (fd->ordered && loops)) { fd->loop.v = *collapse_iter; fd->loop.n1 = build_int_cst (TREE_TYPE (fd->loop.v), 0); fd->loop.n2 = *collapse_count; if (TREE_CODE (fd->loop.n2) == TREE_VEC) { gcc_assert (fd->non_rect); fd->first_inner_iterations = TREE_VEC_ELT (fd->loop.n2, 1); fd->factor = TREE_VEC_ELT (fd->loop.n2, 2); fd->adjn1 = TREE_VEC_ELT (fd->loop.n2, 3); fd->loop.n2 = TREE_VEC_ELT (fd->loop.n2, 0); } fd->loop.step = build_int_cst (TREE_TYPE (fd->loop.v), 1); fd->loop.m1 = NULL_TREE; fd->loop.m2 = NULL_TREE; fd->loop.outer = 0; fd->loop.cond_code = LT_EXPR; } else if (loops) loops[0] = fd->loop; } /* Build a call to GOMP_barrier. */ gimple * omp_build_barrier (tree lhs) { tree fndecl = builtin_decl_explicit (lhs ? BUILT_IN_GOMP_BARRIER_CANCEL : BUILT_IN_GOMP_BARRIER); gcall *g = gimple_build_call (fndecl, 0); if (lhs) gimple_call_set_lhs (g, lhs); return g; } /* Find OMP_FOR resp. OMP_SIMD with non-NULL OMP_FOR_INIT. Also, fill in pdata array, pdata[0] non-NULL if there is anything non-trivial in between, pdata[1] is address of OMP_PARALLEL in between if any, pdata[2] is address of OMP_FOR in between if any and pdata[3] is address of the inner OMP_FOR/OMP_SIMD. */ tree find_combined_omp_for (tree *tp, int *walk_subtrees, void *data) { tree **pdata = (tree **) data; *walk_subtrees = 0; switch (TREE_CODE (*tp)) { case OMP_FOR: if (OMP_FOR_INIT (*tp) != NULL_TREE) { pdata[3] = tp; return *tp; } pdata[2] = tp; *walk_subtrees = 1; break; case OMP_SIMD: if (OMP_FOR_INIT (*tp) != NULL_TREE) { pdata[3] = tp; return *tp; } break; case BIND_EXPR: if (BIND_EXPR_VARS (*tp) || (BIND_EXPR_BLOCK (*tp) && BLOCK_VARS (BIND_EXPR_BLOCK (*tp)))) pdata[0] = tp; *walk_subtrees = 1; break; case STATEMENT_LIST: if (!tsi_one_before_end_p (tsi_start (*tp))) pdata[0] = tp; *walk_subtrees = 1; break; case TRY_FINALLY_EXPR: case CLEANUP_POINT_EXPR: pdata[0] = tp; *walk_subtrees = 1; break; case OMP_PARALLEL: pdata[1] = tp; *walk_subtrees = 1; break; default: break; } return NULL_TREE; } /* Return maximum possible vectorization factor for the target, or for the OpenMP offload target if one exists. */ poly_uint64 omp_max_vf (bool offload) { if (!optimize || optimize_debug || !flag_tree_loop_optimize || (!flag_tree_loop_vectorize && OPTION_SET_P (flag_tree_loop_vectorize))) return 1; if (ENABLE_OFFLOADING && offload) { for (const char *c = getenv ("OFFLOAD_TARGET_NAMES"); c;) { if (startswith (c, "amdgcn")) return ordered_max (poly_uint64 (64), omp_max_vf (false)); else if ((c = strchr (c, ':'))) c++; } /* Otherwise, fall through to host VF. */ } auto_vector_modes modes; targetm.vectorize.autovectorize_vector_modes (&modes, true); if (!modes.is_empty ()) { poly_uint64 vf = 0; for (unsigned int i = 0; i < modes.length (); ++i) /* The returned modes use the smallest element size (and thus the largest nunits) for the vectorization approach that they represent. */ vf = ordered_max (vf, GET_MODE_NUNITS (modes[i])); return vf; } machine_mode vqimode = targetm.vectorize.preferred_simd_mode (QImode); if (GET_MODE_CLASS (vqimode) == MODE_VECTOR_INT) return GET_MODE_NUNITS (vqimode); return 1; } /* Return maximum SIMT width if offloading may target SIMT hardware. */ int omp_max_simt_vf (void) { if (!optimize) return 0; if (ENABLE_OFFLOADING) for (const char *c = getenv ("OFFLOAD_TARGET_NAMES"); c;) { if (startswith (c, "nvptx")) return 32; else if ((c = strchr (c, ':'))) c++; } return 0; } /* Return true if PROP is possibly present in one of the offloading target's OpenMP contexts. The format of PROPS string is always offloading target's name terminated by '\0', followed by properties for that offloading target separated by '\0' and terminated by another '\0'. The strings are created from omp-device-properties installed files of all configured offloading targets. */ static bool omp_offload_device_kind_arch_isa (const char *props, const char *prop) { const char *names = getenv ("OFFLOAD_TARGET_NAMES"); if (names == NULL || *names == '\0') return false; while (*props != '\0') { size_t name_len = strlen (props); bool matches = false; for (const char *c = names; c; ) { if (strncmp (props, c, name_len) == 0 && (c[name_len] == '\0' || c[name_len] == ':' || c[name_len] == '=')) { matches = true; break; } else if ((c = strchr (c, ':'))) c++; } props = props + name_len + 1; while (*props != '\0') { if (matches && strcmp (props, prop) == 0) return true; props = strchr (props, '\0') + 1; } props++; } return false; } /* Return true if the current code location is or might be offloaded. Return true in declare target functions, or when nested in a target region or when unsure, return false otherwise. */ static bool omp_maybe_offloaded (tree construct_context) { /* No offload targets available? */ if (!ENABLE_OFFLOADING) return false; const char *names = getenv ("OFFLOAD_TARGET_NAMES"); if (names == NULL || *names == '\0') return false; /* Parsing is too early to tell. */ if (symtab->state == PARSING) /* Maybe. */ return true; /* Late resolution of offloaded code happens in the offload compiler, where it's treated as native code instead. So return false here. */ if (cfun && cfun->after_inlining) return false; /* Check if the function is marked for offloading (either explicitly or via omp_discover_implicit_declare_target). */ if (current_function_decl && lookup_attribute ("omp declare target", DECL_ATTRIBUTES (current_function_decl))) return true; /* Check for nesting inside a target directive. */ for (tree ts = construct_context; ts; ts = TREE_CHAIN (ts)) if (OMP_TS_CODE (ts) == OMP_TRAIT_CONSTRUCT_TARGET) return true; return false; } /* Lookup tables for context selectors. */ const char *omp_tss_map[] = { "construct", "device", "target_device", "implementation", "user", NULL }; /* Arrays of property candidates must be null-terminated. */ static const char *const kind_properties[] = { "host", "nohost", "cpu", "gpu", "fpga", "any", NULL }; static const char *const vendor_properties[] = { "amd", "arm", "bsc", "cray", "fujitsu", "gnu", "hpe", "ibm", "intel", "llvm", "nec", "nvidia", "pgi", "ti", "unknown", NULL }; static const char *const extension_properties[] = { NULL }; static const char *const atomic_default_mem_order_properties[] = { "seq_cst", "relaxed", "acq_rel", "acquire", "release", NULL }; struct omp_ts_info omp_ts_map[] = { { "kind", (1 << OMP_TRAIT_SET_DEVICE) | (1 << OMP_TRAIT_SET_TARGET_DEVICE), OMP_TRAIT_PROPERTY_NAME_LIST, false, kind_properties }, { "isa", (1 << OMP_TRAIT_SET_DEVICE) | (1 << OMP_TRAIT_SET_TARGET_DEVICE), OMP_TRAIT_PROPERTY_NAME_LIST, false, NULL }, { "arch", (1 << OMP_TRAIT_SET_DEVICE) | (1 << OMP_TRAIT_SET_TARGET_DEVICE), OMP_TRAIT_PROPERTY_NAME_LIST, false, NULL }, { "device_num", (1 << OMP_TRAIT_SET_TARGET_DEVICE), OMP_TRAIT_PROPERTY_DEV_NUM_EXPR, false, NULL }, { "vendor", (1 << OMP_TRAIT_SET_IMPLEMENTATION), OMP_TRAIT_PROPERTY_NAME_LIST, true, vendor_properties, }, { "extension", (1 << OMP_TRAIT_SET_IMPLEMENTATION), OMP_TRAIT_PROPERTY_NAME_LIST, true, extension_properties, }, { "atomic_default_mem_order", (1 << OMP_TRAIT_SET_IMPLEMENTATION), OMP_TRAIT_PROPERTY_ID, true, atomic_default_mem_order_properties, }, { "requires", (1 << OMP_TRAIT_SET_IMPLEMENTATION), OMP_TRAIT_PROPERTY_CLAUSE_LIST, true, NULL }, { "unified_address", (1 << OMP_TRAIT_SET_IMPLEMENTATION), OMP_TRAIT_PROPERTY_NONE, true, NULL }, { "unified_shared_memory", (1 << OMP_TRAIT_SET_IMPLEMENTATION), OMP_TRAIT_PROPERTY_NONE, true, NULL }, { "self_maps", (1 << OMP_TRAIT_SET_IMPLEMENTATION), OMP_TRAIT_PROPERTY_NONE, true, NULL }, { "dynamic_allocators", (1 << OMP_TRAIT_SET_IMPLEMENTATION), OMP_TRAIT_PROPERTY_NONE, true, NULL }, { "reverse_offload", (1 << OMP_TRAIT_SET_IMPLEMENTATION), OMP_TRAIT_PROPERTY_NONE, true, NULL }, { "condition", (1 << OMP_TRAIT_SET_USER), OMP_TRAIT_PROPERTY_BOOL_EXPR, true, NULL }, { "target", (1 << OMP_TRAIT_SET_CONSTRUCT), OMP_TRAIT_PROPERTY_NONE, false, NULL }, { "teams", (1 << OMP_TRAIT_SET_CONSTRUCT), OMP_TRAIT_PROPERTY_NONE, false, NULL }, { "parallel", (1 << OMP_TRAIT_SET_CONSTRUCT), OMP_TRAIT_PROPERTY_NONE, false, NULL }, { "for", (1 << OMP_TRAIT_SET_CONSTRUCT), OMP_TRAIT_PROPERTY_NONE, false, NULL }, { "simd", (1 << OMP_TRAIT_SET_CONSTRUCT), OMP_TRAIT_PROPERTY_CLAUSE_LIST, false, NULL }, { "dispatch", (1 << OMP_TRAIT_SET_CONSTRUCT), OMP_TRAIT_PROPERTY_NONE, false, NULL }, { NULL, 0, OMP_TRAIT_PROPERTY_NONE, false, NULL } /* OMP_TRAIT_LAST */ }; /* Return a name from PROP, a property in selectors accepting name lists. */ const char * omp_context_name_list_prop (tree prop) { gcc_assert (OMP_TP_NAME (prop) == OMP_TP_NAMELIST_NODE); tree val = OMP_TP_VALUE (prop); switch (TREE_CODE (val)) { case IDENTIFIER_NODE: return IDENTIFIER_POINTER (val); case STRING_CST: #ifdef ACCEL_COMPILER return TREE_STRING_POINTER (val); #else { const char *ret = TREE_STRING_POINTER (val); if ((size_t) TREE_STRING_LENGTH (val) == strlen (ret) + (lang_GNU_Fortran () ? 0 : 1)) return ret; return NULL; } #endif default: return NULL; } } /* Helper function called via walk_tree, to determine if *TP is a PARM_DECL. */ static tree expr_uses_parm_decl (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED) { if (TREE_CODE (*tp) == PARM_DECL) return *tp; return NULL_TREE; } /* Diagnose errors in an OpenMP context selector, return CTX if it is correct or error_mark_node otherwise. */ tree omp_check_context_selector (location_t loc, tree ctx, enum omp_ctx_directive directive) { bool tss_seen[OMP_TRAIT_SET_LAST], ts_seen[OMP_TRAIT_LAST]; memset (tss_seen, 0, sizeof (tss_seen)); for (tree tss = ctx; tss; tss = TREE_CHAIN (tss)) { enum omp_tss_code tss_code = OMP_TSS_CODE (tss); bool saw_any_prop = false; bool saw_other_prop = false; /* Each trait-set-selector-name can only be specified once. */ if (tss_seen[tss_code]) { error_at (loc, "selector set %qs specified more than once", OMP_TSS_NAME (tss)); return error_mark_node; } else tss_seen[tss_code] = true; memset (ts_seen, 0, sizeof (ts_seen)); for (tree ts = OMP_TSS_TRAIT_SELECTORS (tss); ts; ts = TREE_CHAIN (ts)) { enum omp_ts_code ts_code = OMP_TS_CODE (ts); /* Ignore unknown traits. */ if (ts_code == OMP_TRAIT_INVALID) continue; /* Each trait-selector-name can only be specified once. */ if (ts_seen[ts_code]) { error_at (loc, "selector %qs specified more than once in set %qs", OMP_TS_NAME (ts), OMP_TSS_NAME (tss)); return error_mark_node; } else ts_seen[ts_code] = true; /* If trait-property "any" is specified in the "kind" trait-selector of the "device" selector set or the "target_device" selector sets, no other trait-property may be specified in the same selector set. */ if (ts_code == OMP_TRAIT_DEVICE_KIND) for (tree p = OMP_TS_PROPERTIES (ts); p; p = TREE_CHAIN (p)) { const char *prop = omp_context_name_list_prop (p); if (!prop) continue; else if (strcmp (prop, "any") == 0) saw_any_prop = true; else saw_other_prop = true; } /* It seems slightly suspicious that the spec's language covers the device_num selector too, but target_device={device_num(whatever),kind(any)} is probably not terribly useful anyway. */ else if (ts_code == OMP_TRAIT_DEVICE_ARCH || ts_code == OMP_TRAIT_DEVICE_ISA || ts_code == OMP_TRAIT_DEVICE_NUM) saw_other_prop = true; /* Each trait-property can only be specified once in a trait-selector other than the construct selector set. FIXME: only handles name-list properties, not clause-list properties, since the "requires" selector is not implemented yet (PR 113067). */ if (tss_code != OMP_TRAIT_SET_CONSTRUCT) for (tree p1 = OMP_TS_PROPERTIES (ts); p1; p1 = TREE_CHAIN (p1)) { if (OMP_TP_NAME (p1) != OMP_TP_NAMELIST_NODE) break; const char *n1 = omp_context_name_list_prop (p1); if (!n1) continue; for (tree p2 = TREE_CHAIN (p1); p2; p2 = TREE_CHAIN (p2)) { const char *n2 = omp_context_name_list_prop (p2); if (!n2) continue; if (!strcmp (n1, n2)) { error_at (loc, "trait-property %qs specified more " "than once in %qs selector", n1, OMP_TS_NAME (ts)); return error_mark_node; } } } /* This restriction is documented in the spec in the section for the metadirective "when" clause (7.4.1 in the 5.2 spec). */ if (directive == OMP_CTX_METADIRECTIVE && ts_code == OMP_TRAIT_CONSTRUCT_SIMD && OMP_TS_PROPERTIES (ts)) { error_at (loc, "properties must not be specified for the % " "selector in a % context-selector"); return error_mark_node; } /* "simd" is not allowed at all in "begin declare variant" selectors. */ if (directive == OMP_CTX_BEGIN_DECLARE_VARIANT && ts_code == OMP_TRAIT_CONSTRUCT_SIMD) { error_at (loc, "the % selector is not permitted in a " "% context selector"); return error_mark_node; } /* Reject expressions that reference parameter variables in "declare variant", as this is not yet implemented. FIXME; see PR middle-end/113904. */ if (directive != OMP_CTX_METADIRECTIVE && (ts_code == OMP_TRAIT_DEVICE_NUM || ts_code == OMP_TRAIT_USER_CONDITION)) { tree exp = OMP_TS_PROPERTIES (ts); if (walk_tree (&exp, expr_uses_parm_decl, NULL, NULL)) { sorry_at (loc, "reference to function parameter in " "% dynamic selector expression"); return error_mark_node; } } /* Check for unknown properties. */ if (omp_ts_map[ts_code].valid_properties == NULL) continue; for (tree p = OMP_TS_PROPERTIES (ts); p; p = TREE_CHAIN (p)) for (unsigned j = 0; ; j++) { const char *candidate = omp_ts_map[ts_code].valid_properties[j]; if (candidate == NULL) { /* We've reached the end of the candidate array. */ if (ts_code == OMP_TRAIT_IMPLEMENTATION_ADMO) /* FIXME: not sure why this is an error vs warnings for the others, + incorrect/unknown wording? */ { error_at (loc, "incorrect property %qs of %qs selector", IDENTIFIER_POINTER (OMP_TP_NAME (p)), "atomic_default_mem_order"); return error_mark_node; } if (OMP_TP_NAME (p) == OMP_TP_NAMELIST_NODE && (TREE_CODE (OMP_TP_VALUE (p)) == STRING_CST)) warning_at (loc, OPT_Wopenmp, "unknown property %qE of %qs selector", OMP_TP_VALUE (p), OMP_TS_NAME (ts)); else if (OMP_TP_NAME (p) == OMP_TP_NAMELIST_NODE) warning_at (loc, OPT_Wopenmp, "unknown property %qs of %qs selector", omp_context_name_list_prop (p), OMP_TS_NAME (ts)); else if (OMP_TP_NAME (p)) warning_at (loc, OPT_Wopenmp, "unknown property %qs of %qs selector", IDENTIFIER_POINTER (OMP_TP_NAME (p)), OMP_TS_NAME (ts)); break; } else if (OMP_TP_NAME (p) == OMP_TP_NAMELIST_NODE) /* Property-list traits. */ { const char *str = omp_context_name_list_prop (p); if (str && !strcmp (str, candidate)) break; } else if (!strcmp (IDENTIFIER_POINTER (OMP_TP_NAME (p)), candidate)) /* Identifier traits. */ break; } } if (saw_any_prop && saw_other_prop) { error_at (loc, "no other trait-property may be specified " "in the same selector set with %"); return error_mark_node; } } return ctx; } /* Forward declarations. */ static int omp_context_selector_set_compare (enum omp_tss_code, tree, tree); static int omp_construct_simd_compare (tree, tree, bool); /* Register VARIANT as variant of some base function marked with #pragma omp declare variant. CONSTRUCT is corresponding list of trait-selectors for the construct selector set. This is stashed as the value of the "omp declare variant variant" attribute on VARIANT. */ void omp_mark_declare_variant (location_t loc, tree variant, tree construct) { /* Ignore this variant if it contains unknown construct selectors. It will never match, and the front ends have already issued a warning about it. */ for (tree c = construct; c; c = TREE_CHAIN (c)) if (OMP_TS_CODE (c) == OMP_TRAIT_INVALID) return; tree attr = lookup_attribute ("omp declare variant variant", DECL_ATTRIBUTES (variant)); if (attr == NULL_TREE) { attr = tree_cons (get_identifier ("omp declare variant variant"), unshare_expr (construct), DECL_ATTRIBUTES (variant)); DECL_ATTRIBUTES (variant) = attr; return; } if ((TREE_VALUE (attr) != NULL_TREE) != (construct != NULL_TREE) || (construct != NULL_TREE && omp_context_selector_set_compare (OMP_TRAIT_SET_CONSTRUCT, TREE_VALUE (attr), construct))) error_at (loc, "%qD used as a variant with incompatible % " "selector sets", variant); } /* Constructors for context selectors. */ tree make_trait_set_selector (enum omp_tss_code code, tree selectors, tree chain) { return tree_cons (build_int_cst (integer_type_node, code), selectors, chain); } tree make_trait_selector (enum omp_ts_code code, tree score, tree properties, tree chain) { if (score == NULL_TREE) return tree_cons (build_int_cst (integer_type_node, code), properties, chain); else return tree_cons (build_int_cst (integer_type_node, code), tree_cons (OMP_TS_SCORE_NODE, score, properties), chain); } tree make_trait_property (tree name, tree value, tree chain) { return tree_cons (name, value, chain); } /* Constructor for metadirective variants. */ tree make_omp_metadirective_variant (tree selector, tree directive, tree body) { return build_tree_list (selector, build_tree_list (directive, body)); } /* If the construct selector traits SELECTOR_TRAITS match the corresponding OpenMP context traits CONTEXT_TRAITS, return true and set *SCORE to the corresponding score if it is non-null. */ static bool omp_construct_traits_match (tree selector_traits, tree context_traits, score_wide_int *score) { int slength = list_length (selector_traits); int clength = list_length (context_traits); /* Trivial failure: the selector has more traits than the OpenMP context. */ if (slength > clength) return false; /* There's only one trait in the selector and it doesn't have any properties to match. */ if (slength == 1 && !OMP_TS_PROPERTIES (selector_traits)) { int p = 0, i = 1; enum omp_ts_code code = OMP_TS_CODE (selector_traits); for (tree t = context_traits; t; t = TREE_CHAIN (t), i++) if (OMP_TS_CODE (t) == code) p = i; if (p != 0) { if (score) *score = wi::shifted_mask (p - 1, 1, false); return true; } else return false; } /* Now handle the more general cases. Both lists of traits are ordered from outside in, corresponding to the c1, ..., cN numbering for the OpenMP context specified in in section 7.1 of the OpenMP 5.2 spec. Section 7.3 of the spec says "if the traits that correspond to the construct selector set appear multiple times in the OpenMP context, the highest valued subset of context traits that contains all trait selectors in the same order are used". This means that we want to start the search for a match from the end of the list, rather than the beginning. To facilitate that, transfer the lists to temporary arrays to allow random access to the elements (their order remains outside in). */ int i, j; tree s, c; tree *sarray = (tree *) alloca (slength * sizeof (tree)); for (s = selector_traits, i = 0; s; s = TREE_CHAIN (s), i++) sarray[i] = s; tree *carray = (tree *) alloca (clength * sizeof (tree)); for (c = context_traits, j = 0; c; c = TREE_CHAIN (c), j++) carray[j] = c; /* The variable "i" indexes the selector, "j" indexes the OpenMP context. Find the "j" corresponding to each sarray[i]. Note that the spec uses "p" as the 1-based position, but "j" is zero-based, e.g. equal to p - 1. */ score_wide_int result = 0; j = clength - 1; for (i = slength - 1; i >= 0; i--) { enum omp_ts_code code = OMP_TS_CODE (sarray[i]); tree props = OMP_TS_PROPERTIES (sarray[i]); for (; j >= 0; j--) { if (OMP_TS_CODE (carray[j]) != code) continue; if (code == OMP_TRAIT_CONSTRUCT_SIMD && props && omp_construct_simd_compare (props, OMP_TS_PROPERTIES (carray[j]), true) > 0) continue; break; } /* If j >= 0, we have a match for this trait at position j. */ if (j < 0) return false; result += wi::shifted_mask (j, 1, false); j--; } if (score) *score = result; return true; } /* Return 1 if context selector CTX matches the current OpenMP context, 0 if it does not and -1 if it is unknown and need to be determined later. Some properties can be checked right away during parsing, others need to wait until the whole TU is parsed, others need to wait until IPA, others until vectorization. CONSTRUCT_CONTEXT is a list of construct traits from the OpenMP context, which must be collected by omp_get_construct_context during gimplification. It is ignored (and may be null) if this function is called during parsing. Otherwise COMPLETE_P should indicate whether CONSTRUCT_CONTEXT is known to be complete and not missing constructs filled in later during compilation. Dynamic properties (which are evaluated at run-time) should always return 1. */ int omp_context_selector_matches (tree ctx, tree construct_context, bool complete_p) { int ret = 1; bool maybe_offloaded = omp_maybe_offloaded (construct_context); for (tree tss = ctx; tss; tss = TREE_CHAIN (tss)) { enum omp_tss_code set = OMP_TSS_CODE (tss); tree selectors = OMP_TSS_TRAIT_SELECTORS (tss); /* Immediately reject the match if there are any ignored selectors present. */ for (tree ts = selectors; ts; ts = TREE_CHAIN (ts)) if (OMP_TS_CODE (ts) == OMP_TRAIT_INVALID) return 0; if (set == OMP_TRAIT_SET_CONSTRUCT) { /* We cannot resolve the construct selector during parsing because the OpenMP context (and CONSTRUCT_CONTEXT) isn't available until gimplification. */ if (symtab->state == PARSING) { ret = -1; continue; } gcc_assert (selectors); /* During gimplification, CONSTRUCT_CONTEXT is partial, and doesn't include a construct for "declare simd" that may be added when there is not an enclosing "target" construct. We might be able to find a positive match against the partial context (although we cannot yet score it accurately), but if we can't, treat it as unknown instead of no match. */ if (!omp_construct_traits_match (selectors, construct_context, NULL)) { /* If we've got a complete context, it's definitely a failed match. */ if (complete_p) return 0; /* If the selector doesn't include simd, then we don't have to worry about whether "declare simd" would cause it to match; so this is also a definite failure. */ bool have_simd = false; for (tree ts = selectors; ts; ts = TREE_CHAIN (ts)) if (OMP_TS_CODE (ts) == OMP_TRAIT_CONSTRUCT_SIMD) { have_simd = true; break; } if (!have_simd) return 0; else ret = -1; } continue; } else if (set == OMP_TRAIT_SET_TARGET_DEVICE) /* The target_device set is dynamic, so treat it as always resolvable. However, the current implementation doesn't support it in a target region, so diagnose that as an error. FIXME: maybe make this a warning and return 0 instead? */ { for (tree ts = construct_context; ts; ts = TREE_CHAIN (ts)) if (OMP_TS_CODE (ts) == OMP_TRAIT_CONSTRUCT_TARGET) sorry ("% selector set inside of % " "directive"); continue; } for (tree ts = selectors; ts; ts = TREE_CHAIN (ts)) { enum omp_ts_code sel = OMP_TS_CODE (ts); switch (sel) { case OMP_TRAIT_IMPLEMENTATION_VENDOR: gcc_assert (set == OMP_TRAIT_SET_IMPLEMENTATION); for (tree p = OMP_TS_PROPERTIES (ts); p; p = TREE_CHAIN (p)) { const char *prop = omp_context_name_list_prop (p); if (prop == NULL) return 0; if (!strcmp (prop, "gnu")) continue; return 0; } break; case OMP_TRAIT_IMPLEMENTATION_EXTENSION: gcc_assert (set == OMP_TRAIT_SET_IMPLEMENTATION); /* We don't support any extensions right now. */ return 0; break; case OMP_TRAIT_IMPLEMENTATION_ADMO: gcc_assert (set == OMP_TRAIT_SET_IMPLEMENTATION); if (cfun && (cfun->curr_properties & PROP_gimple_any) != 0) break; { enum omp_memory_order omo = ((enum omp_memory_order) (omp_requires_mask & OMP_REQUIRES_ATOMIC_DEFAULT_MEM_ORDER)); if (omo == OMP_MEMORY_ORDER_UNSPECIFIED) { /* We don't know yet, until end of TU. */ if (symtab->state == PARSING) { ret = -1; break; } else omo = OMP_MEMORY_ORDER_RELAXED; } tree p = OMP_TS_PROPERTIES (ts); const char *prop = IDENTIFIER_POINTER (OMP_TP_NAME (p)); if (!strcmp (prop, "relaxed") && omo != OMP_MEMORY_ORDER_RELAXED) return 0; else if (!strcmp (prop, "seq_cst") && omo != OMP_MEMORY_ORDER_SEQ_CST) return 0; else if (!strcmp (prop, "acq_rel") && omo != OMP_MEMORY_ORDER_ACQ_REL) return 0; else if (!strcmp (prop, "acquire") && omo != OMP_MEMORY_ORDER_ACQUIRE) return 0; else if (!strcmp (prop, "release") && omo != OMP_MEMORY_ORDER_RELEASE) return 0; } break; case OMP_TRAIT_DEVICE_ARCH: gcc_assert (set == OMP_TRAIT_SET_DEVICE); for (tree p = OMP_TS_PROPERTIES (ts); p; p = TREE_CHAIN (p)) { const char *arch = omp_context_name_list_prop (p); if (arch == NULL) return 0; int r = 0; if (targetm.omp.device_kind_arch_isa != NULL) r = targetm.omp.device_kind_arch_isa (omp_device_arch, arch); if (r == 0 || (r == -1 && symtab->state != PARSING)) { /* If we are or might be in a target region or declare target function, need to take into account also offloading values. Note that maybe_offloaded is always false in late resolution; that's handled as native code (the above case) in the offload compiler instead. */ if (!maybe_offloaded) return 0; if (ENABLE_OFFLOADING) { const char *arches = omp_offload_device_arch; if (omp_offload_device_kind_arch_isa (arches, arch)) { ret = -1; continue; } } return 0; } else if (r == -1) ret = -1; /* If arch matches on the host, it still might not match in the offloading region. */ else if (maybe_offloaded) ret = -1; } break; case OMP_TRAIT_IMPLEMENTATION_UNIFIED_ADDRESS: gcc_assert (set == OMP_TRAIT_SET_IMPLEMENTATION); if (cfun && (cfun->curr_properties & PROP_gimple_any) != 0) break; if ((omp_requires_mask & OMP_REQUIRES_UNIFIED_ADDRESS) == 0) { if (symtab->state == PARSING) ret = -1; else return 0; } break; case OMP_TRAIT_IMPLEMENTATION_UNIFIED_SHARED_MEMORY: gcc_assert (set == OMP_TRAIT_SET_IMPLEMENTATION); if (cfun && (cfun->curr_properties & PROP_gimple_any) != 0) break; if ((omp_requires_mask & OMP_REQUIRES_UNIFIED_SHARED_MEMORY) == 0) { if (symtab->state == PARSING) ret = -1; else return 0; } break; case OMP_TRAIT_IMPLEMENTATION_SELF_MAPS: gcc_assert (set == OMP_TRAIT_SET_IMPLEMENTATION); if (cfun && (cfun->curr_properties & PROP_gimple_any) != 0) break; if ((omp_requires_mask & OMP_REQUIRES_SELF_MAPS) == 0) { if (symtab->state == PARSING) ret = -1; else return 0; } break; case OMP_TRAIT_IMPLEMENTATION_DYNAMIC_ALLOCATORS: gcc_assert (set == OMP_TRAIT_SET_IMPLEMENTATION); if (cfun && (cfun->curr_properties & PROP_gimple_any) != 0) break; if ((omp_requires_mask & OMP_REQUIRES_DYNAMIC_ALLOCATORS) == 0) { if (symtab->state == PARSING) ret = -1; else return 0; } break; case OMP_TRAIT_IMPLEMENTATION_REVERSE_OFFLOAD: gcc_assert (set == OMP_TRAIT_SET_IMPLEMENTATION); if (cfun && (cfun->curr_properties & PROP_gimple_any) != 0) break; if ((omp_requires_mask & OMP_REQUIRES_REVERSE_OFFLOAD) == 0) { if (symtab->state == PARSING) ret = -1; else return 0; } break; case OMP_TRAIT_DEVICE_KIND: gcc_assert (set == OMP_TRAIT_SET_DEVICE); for (tree p = OMP_TS_PROPERTIES (ts); p; p = TREE_CHAIN (p)) { const char *prop = omp_context_name_list_prop (p); if (prop == NULL) return 0; if (!strcmp (prop, "any")) continue; if (!strcmp (prop, "host")) { #ifdef ACCEL_COMPILER return 0; #else if (maybe_offloaded) ret = -1; continue; #endif } if (!strcmp (prop, "nohost")) { #ifndef ACCEL_COMPILER if (maybe_offloaded) ret = -1; else return 0; #endif continue; } int r = 0; if (targetm.omp.device_kind_arch_isa != NULL) r = targetm.omp.device_kind_arch_isa (omp_device_kind, prop); else #ifndef ACCEL_COMPILER r = strcmp (prop, "cpu") == 0; #else gcc_unreachable (); #endif if (r == 0 || (r == -1 && symtab->state != PARSING)) { /* If we are or might be in a target region or declare target function, need to take into account also offloading values. Note that maybe_offloaded is always false in late resolution; that's handled as native code (the above case) in the offload compiler instead. */ if (!maybe_offloaded) return 0; if (ENABLE_OFFLOADING) { const char *kinds = omp_offload_device_kind; if (omp_offload_device_kind_arch_isa (kinds, prop)) { ret = -1; continue; } } return 0; } else if (r == -1) ret = -1; /* If kind matches on the host, it still might not match in the offloading region. */ else if (maybe_offloaded) ret = -1; } break; case OMP_TRAIT_DEVICE_ISA: gcc_assert (set == OMP_TRAIT_SET_DEVICE); for (tree p = OMP_TS_PROPERTIES (ts); p; p = TREE_CHAIN (p)) { const char *isa = omp_context_name_list_prop (p); if (isa == NULL) return 0; int r = 0; if (targetm.omp.device_kind_arch_isa != NULL) r = targetm.omp.device_kind_arch_isa (omp_device_isa, isa); if (r == 0 || (r == -1 && symtab->state != PARSING)) { /* If isa is valid on the target, but not in the current function and current function has #pragma omp declare simd on it, some simd clones might have the isa added later on. */ if (r == -1 && targetm.simd_clone.compute_vecsize_and_simdlen && (cfun == NULL || !cfun->after_inlining)) { tree attrs = DECL_ATTRIBUTES (current_function_decl); if (lookup_attribute ("omp declare simd", attrs)) { ret = -1; continue; } } /* If we are or might be in a target region or declare target function, need to take into account also offloading values. Note that maybe_offloaded is always false in late resolution; that's handled as native code (the above case) in the offload compiler instead. */ if (!maybe_offloaded) return 0; if (ENABLE_OFFLOADING) { const char *isas = omp_offload_device_isa; if (omp_offload_device_kind_arch_isa (isas, isa)) { ret = -1; continue; } } return 0; } else if (r == -1) ret = -1; /* If isa matches on the host, it still might not match in the offloading region. */ else if (maybe_offloaded) ret = -1; } break; case OMP_TRAIT_USER_CONDITION: gcc_assert (set == OMP_TRAIT_SET_USER); for (tree p = OMP_TS_PROPERTIES (ts); p; p = TREE_CHAIN (p)) if (OMP_TP_NAME (p) == NULL_TREE) { /* If the expression is not a constant, the selector is dynamic. */ if (!tree_fits_shwi_p (OMP_TP_VALUE (p))) break; if (integer_zerop (OMP_TP_VALUE (p))) return 0; if (integer_nonzerop (OMP_TP_VALUE (p))) break; ret = -1; } break; default: break; } } } return ret; } /* Helper function for resolve_omp_target_device_matches, also used directly when we know in advance that the device is the host to avoid the overhead of late resolution. SEL is the selector code and PROPERTIES are the properties to match. The return value is a boolean. */ static bool omp_target_device_matches_on_host (enum omp_ts_code selector, tree properties) { bool result = 1; if (dump_file) fprintf (dump_file, "omp_target_device_matches_on_host:\n"); switch (selector) { case OMP_TRAIT_DEVICE_KIND: for (tree p = properties; p && result; p = TREE_CHAIN (p)) { const char *prop = omp_context_name_list_prop (p); if (prop == NULL) result = 0; else if (!strcmp (prop, "any")) ; else if (!strcmp (prop, "host")) { #ifdef ACCEL_COMPILER result = 0; #else ; #endif } else if (!strcmp (prop, "nohost")) { #ifdef ACCEL_COMPILER ; #else result = 0; #endif } else if (targetm.omp.device_kind_arch_isa != NULL) result = targetm.omp.device_kind_arch_isa (omp_device_kind, prop); else #ifndef ACCEL_COMPILER result = strcmp (prop, "cpu") == 0; #else gcc_unreachable (); #endif if (dump_file) fprintf (dump_file, "Matching device kind %s = %s\n", prop, (result ? "true" : "false")); } break; case OMP_TRAIT_DEVICE_ARCH: if (targetm.omp.device_kind_arch_isa != NULL) for (tree p = properties; p && result; p = TREE_CHAIN (p)) { const char *prop = omp_context_name_list_prop (p); if (prop == NULL) result = 0; else result = targetm.omp.device_kind_arch_isa (omp_device_arch, prop); if (dump_file) fprintf (dump_file, "Matching device arch %s = %s\n", prop, (result ? "true" : "false")); } else { result = 0; if (dump_file) fprintf (dump_file, "Cannot match device arch on target\n"); } break; case OMP_TRAIT_DEVICE_ISA: if (targetm.omp.device_kind_arch_isa != NULL) for (tree p = properties; p && result; p = TREE_CHAIN (p)) { const char *prop = omp_context_name_list_prop (p); if (prop == NULL) result = 0; else result = targetm.omp.device_kind_arch_isa (omp_device_isa, prop); if (dump_file) fprintf (dump_file, "Matching device isa %s = %s\n", prop, (result ? "true" : "false")); } else { result = 0; if (dump_file) fprintf (dump_file, "Cannot match device isa on target\n"); } break; default: gcc_unreachable (); } return result; } /* Called for late resolution of the OMP_TARGET_DEVICE_MATCHES tree node to a constant in omp-offload.cc. This is used in code that is wrapped in a #pragma omp target construct to execute on the specified device, and can be reduced to a compile-time constant in the offload compiler. NODE is an OMP_TARGET_DEVICE_MATCHES tree node and the result is an INTEGER_CST. */ tree resolve_omp_target_device_matches (tree node) { tree sel = OMP_TARGET_DEVICE_MATCHES_SELECTOR (node); enum omp_ts_code selector = (enum omp_ts_code) tree_to_shwi (sel); tree properties = OMP_TARGET_DEVICE_MATCHES_PROPERTIES (node); if (omp_target_device_matches_on_host (selector, properties)) return integer_one_node; else return integer_zero_node; } /* Compare construct={simd} CLAUSES1 with CLAUSES2, return 0/-1/1/2 as in omp_context_selector_set_compare. If MATCH_P is true, additionally apply the special matching rules for the "simdlen" and "aligned" clauses used to determine whether the selector CLAUSES1 is part of matches the OpenMP context containing CLAUSES2. */ static int omp_construct_simd_compare (tree clauses1, tree clauses2, bool match_p) { if (clauses1 == NULL_TREE) return clauses2 == NULL_TREE ? 0 : -1; if (clauses2 == NULL_TREE) return 1; int r = 0; struct declare_variant_simd_data { bool inbranch, notinbranch; tree simdlen; auto_vec data_sharing; auto_vec aligned; declare_variant_simd_data () : inbranch(false), notinbranch(false), simdlen(NULL_TREE) {} } data[2]; unsigned int i; tree e0, e1; for (i = 0; i < 2; i++) for (tree c = i ? clauses2 : clauses1; c; c = OMP_CLAUSE_CHAIN (c)) { vec *v; switch (OMP_CLAUSE_CODE (c)) { case OMP_CLAUSE_INBRANCH: data[i].inbranch = true; continue; case OMP_CLAUSE_NOTINBRANCH: data[i].notinbranch = true; continue; case OMP_CLAUSE_SIMDLEN: data[i].simdlen = OMP_CLAUSE_SIMDLEN_EXPR (c); continue; case OMP_CLAUSE_UNIFORM: case OMP_CLAUSE_LINEAR: v = &data[i].data_sharing; break; case OMP_CLAUSE_ALIGNED: v = &data[i].aligned; break; default: gcc_unreachable (); } unsigned HOST_WIDE_INT argno = tree_to_uhwi (OMP_CLAUSE_DECL (c)); if (argno >= v->length ()) v->safe_grow_cleared (argno + 1, true); (*v)[argno] = c; } /* Here, r is used as a bitmask, 2 is set if CLAUSES1 has something CLAUSES2 doesn't, 1 is set if CLAUSES2 has something CLAUSES1 doesn't. Thus, r == 3 implies return value 2, r == 1 implies -1, r == 2 implies 1 and r == 0 implies 0. */ if (data[0].inbranch != data[1].inbranch) r |= data[0].inbranch ? 2 : 1; if (data[0].notinbranch != data[1].notinbranch) r |= data[0].notinbranch ? 2 : 1; e0 = data[0].simdlen; e1 = data[1].simdlen; if (!simple_cst_equal (e0, e1)) { if (e0 && e1) { if (match_p && tree_fits_uhwi_p (e0) && tree_fits_uhwi_p (e1)) { /* The two simdlen clauses match if m is a multiple of n. */ unsigned HOST_WIDE_INT n = tree_to_uhwi (e0); unsigned HOST_WIDE_INT m = tree_to_uhwi (e1); if (m % n != 0) return 2; } else return 2; } r |= data[0].simdlen ? 2 : 1; } if (data[0].data_sharing.length () < data[1].data_sharing.length () || data[0].aligned.length () < data[1].aligned.length ()) r |= 1; tree c1, c2; FOR_EACH_VEC_ELT (data[0].data_sharing, i, c1) { c2 = (i < data[1].data_sharing.length () ? data[1].data_sharing[i] : NULL_TREE); if ((c1 == NULL_TREE) != (c2 == NULL_TREE)) { r |= c1 != NULL_TREE ? 2 : 1; continue; } if (c1 == NULL_TREE) continue; if (OMP_CLAUSE_CODE (c1) != OMP_CLAUSE_CODE (c2)) return 2; if (OMP_CLAUSE_CODE (c1) != OMP_CLAUSE_LINEAR) continue; if (OMP_CLAUSE_LINEAR_VARIABLE_STRIDE (c1) != OMP_CLAUSE_LINEAR_VARIABLE_STRIDE (c2)) return 2; if (OMP_CLAUSE_LINEAR_KIND (c1) != OMP_CLAUSE_LINEAR_KIND (c2)) return 2; if (!simple_cst_equal (OMP_CLAUSE_LINEAR_STEP (c1), OMP_CLAUSE_LINEAR_STEP (c2))) return 2; } FOR_EACH_VEC_ELT (data[0].aligned, i, c1) { c2 = i < data[1].aligned.length () ? data[1].aligned[i] : NULL_TREE; if ((c1 == NULL_TREE) != (c2 == NULL_TREE)) { r |= c1 != NULL_TREE ? 2 : 1; continue; } if (c1 == NULL_TREE) continue; e0 = OMP_CLAUSE_ALIGNED_ALIGNMENT (c1); e1 = OMP_CLAUSE_ALIGNED_ALIGNMENT (c2); if (!simple_cst_equal (e0, e1)) { if (e0 && e1 && match_p && tree_fits_uhwi_p (e0) && tree_fits_uhwi_p (e1)) { /* The two aligned clauses match if n is a multiple of m. */ unsigned HOST_WIDE_INT n = tree_to_uhwi (e0); unsigned HOST_WIDE_INT m = tree_to_uhwi (e1); if (n % m != 0) return 2; } else return 2; } } switch (r) { case 0: return 0; case 1: return -1; case 2: return 1; case 3: return 2; default: gcc_unreachable (); } } /* Compare properties of selectors SEL from SET other than construct. CTX1 and CTX2 are the lists of properties to compare. Return 0/-1/1/2 as in omp_context_selector_set_compare. Unlike set names or selector names, properties can have duplicates. */ static int omp_context_selector_props_compare (enum omp_tss_code set, enum omp_ts_code sel, tree ctx1, tree ctx2) { int ret = 0; for (int pass = 0; pass < 2; pass++) for (tree p1 = pass ? ctx2 : ctx1; p1; p1 = TREE_CHAIN (p1)) { tree p2; for (p2 = pass ? ctx1 : ctx2; p2; p2 = TREE_CHAIN (p2)) if (OMP_TP_NAME (p1) == OMP_TP_NAME (p2)) { if (OMP_TP_NAME (p1) == NULL_TREE) { if (set == OMP_TRAIT_SET_USER && sel == OMP_TRAIT_USER_CONDITION) { /* Recognize constants that have equal truth values, otherwise assume all expressions are unique. */ tree v1 = OMP_TP_VALUE (p1); tree v2 = OMP_TP_VALUE (p2); if (TREE_CODE (v1) != INTEGER_CST || TREE_CODE (v2) != INTEGER_CST || integer_zerop (v1) != integer_zerop (v2)) return 2; break; } if (set == OMP_TRAIT_SET_TARGET_DEVICE && sel == OMP_TRAIT_DEVICE_NUM) { /* Recognize constants that have equal values, otherwise assume all expressions are unique. */ tree v1 = OMP_TP_VALUE (p1); tree v2 = OMP_TP_VALUE (p2); if (TREE_CODE (v1) != INTEGER_CST || TREE_CODE (v2) != INTEGER_CST || tree_int_cst_compare (v1, v2) != 0) return 2; break; } if (simple_cst_equal (OMP_TP_VALUE (p1), OMP_TP_VALUE (p2))) break; } else if (OMP_TP_NAME (p1) == OMP_TP_NAMELIST_NODE) { /* Handle string constant vs identifier comparison for name-list properties. */ const char *n1 = omp_context_name_list_prop (p1); const char *n2 = omp_context_name_list_prop (p2); if (n1 && n2 && !strcmp (n1, n2)) break; } else break; } if (p2 == NULL_TREE) { int r = pass ? -1 : 1; if (ret && ret != r) return 2; else if (pass) return r; else { ret = r; break; } } } return ret; } /* Compare single context selector sets CTX1 and CTX2 with SET name. CTX1 and CTX2 are lists of trait-selectors. Return 0 if CTX1 is equal to CTX2, -1 if CTX1 is a strict subset of CTX2, 1 if CTX2 is a strict subset of CTX1, or 2 if neither context is a subset of another one. */ static int omp_context_selector_set_compare (enum omp_tss_code set, tree ctx1, tree ctx2) { /* If either list includes an ignored selector trait, neither can be a subset of the other. */ for (tree ts = ctx1; ts; ts = TREE_CHAIN (ts)) if (OMP_TS_CODE (ts) == OMP_TRAIT_INVALID) return 2; for (tree ts = ctx2; ts; ts = TREE_CHAIN (ts)) if (OMP_TS_CODE (ts) == OMP_TRAIT_INVALID) return 2; bool swapped = false; int ret = 0; int len1 = list_length (ctx1); int len2 = list_length (ctx2); int cnt = 0; if (len1 < len2) { swapped = true; std::swap (ctx1, ctx2); std::swap (len1, len2); } if (set == OMP_TRAIT_SET_CONSTRUCT) { tree ts1; tree ts2 = ctx2; /* Handle construct set specially. In this case the order of the selector matters too. */ for (ts1 = ctx1; ts1; ts1 = TREE_CHAIN (ts1)) if (OMP_TS_CODE (ts1) == OMP_TS_CODE (ts2)) { int r = 0; if (OMP_TS_CODE (ts1) == OMP_TRAIT_CONSTRUCT_SIMD) r = omp_construct_simd_compare (OMP_TS_PROPERTIES (ts1), OMP_TS_PROPERTIES (ts2), false); if (r == 2 || (ret && r && (ret < 0) != (r < 0))) return 2; if (ret == 0) ret = r; ts2 = TREE_CHAIN (ts2); if (ts2 == NULL_TREE) { ts1 = TREE_CHAIN (ts1); break; } } else if (ret < 0) return 2; else ret = 1; if (ts2 != NULL_TREE) return 2; if (ts1 != NULL_TREE) { if (ret < 0) return 2; ret = 1; } if (ret == 0) return 0; return swapped ? -ret : ret; } for (tree ts1 = ctx1; ts1; ts1 = TREE_CHAIN (ts1)) { enum omp_ts_code sel = OMP_TS_CODE (ts1); tree ts2; for (ts2 = ctx2; ts2; ts2 = TREE_CHAIN (ts2)) if (sel == OMP_TS_CODE (ts2)) { tree score1 = OMP_TS_SCORE (ts1); tree score2 = OMP_TS_SCORE (ts2); if ((score1 && score2 && !simple_cst_equal (score1, score2)) || (score1 && !score2) || (!score1 && score2)) return 2; int r = omp_context_selector_props_compare (set, OMP_TS_CODE (ts1), OMP_TS_PROPERTIES (ts1), OMP_TS_PROPERTIES (ts2)); if (r == 2 || (ret && r && (ret < 0) != (r < 0))) return 2; if (ret == 0) ret = r; cnt++; break; } if (ts2 == NULL_TREE) { if (ret == -1) return 2; ret = 1; } } if (cnt < len2) return 2; if (ret == 0) return 0; return swapped ? -ret : ret; } /* Compare whole context selector specification CTX1 and CTX2. Return 0 if CTX1 is equal to CTX2, -1 if CTX1 is a strict subset of CTX2, 1 if CTX2 is a strict subset of CTX1, or 2 if neither context is a subset of another one. */ static int omp_context_selector_compare (tree ctx1, tree ctx2) { bool swapped = false; int ret = 0; int len1 = list_length (ctx1); int len2 = list_length (ctx2); int cnt = 0; if (len1 < len2) { swapped = true; std::swap (ctx1, ctx2); std::swap (len1, len2); } for (tree tss1 = ctx1; tss1; tss1 = TREE_CHAIN (tss1)) { enum omp_tss_code set = OMP_TSS_CODE (tss1); tree tss2; for (tss2 = ctx2; tss2; tss2 = TREE_CHAIN (tss2)) if (set == OMP_TSS_CODE (tss2)) { int r = omp_context_selector_set_compare (set, OMP_TSS_TRAIT_SELECTORS (tss1), OMP_TSS_TRAIT_SELECTORS (tss2)); if (r == 2 || (ret && r && (ret < 0) != (r < 0))) return 2; if (ret == 0) ret = r; cnt++; break; } if (tss2 == NULL_TREE) { if (ret == -1) return 2; ret = 1; } } if (cnt < len2) return 2; if (ret == 0) return 0; return swapped ? -ret : ret; } /* From context selector CTX, return trait-selector with name SEL in trait-selector-set with name SET if any, or NULL_TREE if not found. */ tree omp_get_context_selector (tree ctx, enum omp_tss_code set, enum omp_ts_code sel) { for (tree tss = ctx; tss; tss = TREE_CHAIN (tss)) if (OMP_TSS_CODE (tss) == set) for (tree ts = OMP_TSS_TRAIT_SELECTORS (tss); ts; ts = TREE_CHAIN (ts)) if (OMP_TS_CODE (ts) == sel) return ts; return NULL_TREE; } /* Similar, but returns the whole trait-selector list for SET in CTX. */ tree omp_get_context_selector_list (tree ctx, enum omp_tss_code set) { for (tree tss = ctx; tss; tss = TREE_CHAIN (tss)) if (OMP_TSS_CODE (tss) == set) return OMP_TSS_TRAIT_SELECTORS (tss); return NULL_TREE; } /* Map string S onto a trait selector set code. */ enum omp_tss_code omp_lookup_tss_code (const char * s) { for (int i = 0; i < OMP_TRAIT_SET_LAST; i++) if (strcmp (s, omp_tss_map[i]) == 0) return (enum omp_tss_code) i; return OMP_TRAIT_SET_INVALID; } /* Map string S onto a trait selector code for set SET. */ enum omp_ts_code omp_lookup_ts_code (enum omp_tss_code set, const char *s) { unsigned int mask = 1 << set; for (int i = 0; i < OMP_TRAIT_LAST; i++) if ((mask & omp_ts_map[i].tss_mask) != 0 && strcmp (s, omp_ts_map[i].name) == 0) return (enum omp_ts_code) i; return OMP_TRAIT_INVALID; } /* Return true if the selector CTX is dynamic. */ static bool omp_selector_is_dynamic (tree ctx) { tree user_sel = omp_get_context_selector (ctx, OMP_TRAIT_SET_USER, OMP_TRAIT_USER_CONDITION); if (user_sel) { tree expr = OMP_TP_VALUE (OMP_TS_PROPERTIES (user_sel)); /* The user condition is not dynamic if it is constant. */ if (!tree_fits_shwi_p (expr)) return true; } tree target_device_ss = omp_get_context_selector_list (ctx, OMP_TRAIT_SET_TARGET_DEVICE); if (target_device_ss) return true; return false; } /* Helper function for omp_dynamic_cond: return a boolean tree expression that tests whether *DEVICE_NUM is a "conforming device number other than omp_invalid_device". This may modify *DEVICE_NUM (i.e, to be a save_expr). *IS_HOST is set to true if the device can be statically determined to be the host. */ static tree omp_device_num_check (tree *device_num, bool *is_host) { /* First check for some constant values we can treat specially. */ if (tree_fits_shwi_p (*device_num)) { HOST_WIDE_INT num = tree_to_shwi (*device_num); if (num < -1) return integer_zero_node; /* Initial device? */ if (num == -1) { *is_host = true; return integer_one_node; } /* There is always at least one device (the host + offload devices). */ if (num == 0) return integer_one_node; /* If there is no offloading, there is exactly one device. */ if (!ENABLE_OFFLOADING && num > 0) return integer_zero_node; } /* Also test for direct calls to OpenMP routines that return valid device numbers. */ if (TREE_CODE (*device_num) == CALL_EXPR) { tree fndecl = get_callee_fndecl (*device_num); if (fndecl && omp_runtime_api_call (fndecl)) { const char *fnname = IDENTIFIER_POINTER (DECL_NAME (fndecl)); if (strcmp (fnname, "omp_get_default_device") == 0 || strcmp (fnname, "omp_get_device_num") == 0) return integer_one_node; if (strcmp (fnname, "omp_get_num_devices") == 0 || strcmp (fnname, "omp_get_initial_device") == 0) { *is_host = true; return integer_one_node; } } } /* Otherwise, test that -1 <= *device_num <= omp_get_num_devices (). */ *device_num = save_expr (*device_num); tree lotest = build2 (GE_EXPR, integer_type_node, *device_num, integer_minus_one_node); tree fndecl = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_DEVICES); tree hitest = build2 (LE_EXPR, integer_type_node, *device_num, build_call_expr (fndecl, 0)); return build2 (TRUTH_ANDIF_EXPR, integer_type_node, lotest, hitest); } /* Return a tree expression representing the dynamic part of the context selector CTX. SUPERCONTEXT is the surrounding BLOCK, in case we need to introduce a new BLOCK in the result. */ tree omp_dynamic_cond (tree ctx, tree supercontext) { tree user_cond = NULL_TREE, target_device_cond = NULL_TREE; /* Build the "user" part of the dynamic selector. This is a test predicate taken directly for the "condition" trait in this set. */ tree user_sel = omp_get_context_selector (ctx, OMP_TRAIT_SET_USER, OMP_TRAIT_USER_CONDITION); if (user_sel) { tree expr = OMP_TP_VALUE (OMP_TS_PROPERTIES (user_sel)); /* The user condition is not dynamic if it is constant. */ if (!tree_fits_shwi_p (expr)) user_cond = expr; } /* Build the "target_device" part of the dynamic selector. In the most general case this requires building a bit of code that runs on the specified device_num using the same mechanism as "#pragma omp target" that uses the OMP_TARGET_DEVICE_MATCHES magic cookie to represent the kind/arch/isa tests which are and'ed together. These cookies can be resolved into a constant truth value by the offload compiler; see resolve_omp_target_device_matches, above. In some cases, we can (in)validate the device number in advance. If it is not valid, the whole selector fails to match. If it is valid and refers to the host (e.g., constant -1), then we can resolve the match to a constant truth value now instead of having to create a OMP_TARGET_DEVICE_MATCHES. */ tree target_device_ss = omp_get_context_selector_list (ctx, OMP_TRAIT_SET_TARGET_DEVICE); if (target_device_ss) { tree device_num = NULL_TREE; tree kind = NULL_TREE; tree arch = NULL_TREE; tree isa = NULL_TREE; tree device_ok = NULL_TREE; bool is_host = !ENABLE_OFFLOADING; tree device_num_sel = omp_get_context_selector (ctx, OMP_TRAIT_SET_TARGET_DEVICE, OMP_TRAIT_DEVICE_NUM); if (device_num_sel) { device_num = OMP_TP_VALUE (OMP_TS_PROPERTIES (device_num_sel)); device_ok = omp_device_num_check (&device_num, &is_host); /* If an invalid constant device number was specified, the whole selector fails to match, and there's no point in continuing to generate code that would never be executed. */ if (device_ok == integer_zero_node) { target_device_cond = integer_zero_node; goto wrapup; } } tree kind_sel = omp_get_context_selector (ctx, OMP_TRAIT_SET_TARGET_DEVICE, OMP_TRAIT_DEVICE_KIND); /* "any" is equivalent to omitting this trait selector. */ if (kind_sel && strcmp (omp_context_name_list_prop (OMP_TS_PROPERTIES (kind_sel)), "any")) { tree props = OMP_TS_PROPERTIES (kind_sel); if (!is_host) kind = build2 (OMP_TARGET_DEVICE_MATCHES, integer_type_node, build_int_cst (integer_type_node, (int) OMP_TRAIT_DEVICE_KIND), props); else if (!omp_target_device_matches_on_host (OMP_TRAIT_DEVICE_KIND, props)) { /* The whole selector fails to match. */ target_device_cond = integer_zero_node; goto wrapup; } /* else it is statically resolved to true and is a no-op. */ } tree arch_sel = omp_get_context_selector (ctx, OMP_TRAIT_SET_TARGET_DEVICE, OMP_TRAIT_DEVICE_ARCH); if (arch_sel) { tree props = OMP_TS_PROPERTIES (arch_sel); if (!is_host) arch = build2 (OMP_TARGET_DEVICE_MATCHES, integer_type_node, build_int_cst (integer_type_node, (int) OMP_TRAIT_DEVICE_ARCH), props); else if (!omp_target_device_matches_on_host (OMP_TRAIT_DEVICE_ARCH, props)) { /* The whole selector fails to match. */ target_device_cond = integer_zero_node; goto wrapup; } /* else it is statically resolved to true and is a no-op. */ } tree isa_sel = omp_get_context_selector (ctx, OMP_TRAIT_SET_TARGET_DEVICE, OMP_TRAIT_DEVICE_ISA); if (isa_sel) { tree props = OMP_TS_PROPERTIES (isa_sel); if (!is_host) isa = build2 (OMP_TARGET_DEVICE_MATCHES, integer_type_node, build_int_cst (integer_type_node, (int) OMP_TRAIT_DEVICE_ISA), props); else if (!omp_target_device_matches_on_host (OMP_TRAIT_DEVICE_ISA, props)) { /* The whole selector fails to match. */ target_device_cond = integer_zero_node; goto wrapup; } /* else it is statically resolved to true and is a no-op. */ } /* AND the three possible tests together. */ tree test_expr = kind ? kind : NULL_TREE; if (arch && test_expr) test_expr = build2 (TRUTH_ANDIF_EXPR, integer_type_node, arch, test_expr); else if (arch) test_expr = arch; if (isa && test_expr) test_expr = build2 (TRUTH_ANDIF_EXPR, integer_type_node, isa, test_expr); else if (isa) test_expr = isa; if (!test_expr) /* This could happen if the selector includes only kind="any", or is_host is true and it could be statically determined to be true. The selector always matches, but we still have to evaluate the device_num expression. */ { if (device_num) target_device_cond = build2 (COMPOUND_EXPR, integer_type_node, device_num, integer_one_node); else target_device_cond = integer_one_node; } else { /* Arrange to evaluate test_expr in the offload compiler for device device_num. */ tree stmt = make_node (OMP_TARGET); TREE_TYPE (stmt) = void_type_node; tree result_var = create_tmp_var (integer_type_node, "td_match"); tree map = build_omp_clause (UNKNOWN_LOCATION, OMP_CLAUSE_MAP); OMP_CLAUSE_DECL (map) = result_var; OMP_CLAUSE_SET_MAP_KIND (map, GOMP_MAP_FROM); OMP_TARGET_CLAUSES (stmt) = map; if (device_num) { tree clause = build_omp_clause (UNKNOWN_LOCATION, OMP_CLAUSE_DEVICE); OMP_CLAUSE_CHAIN (clause) = NULL_TREE; OMP_CLAUSE_DEVICE_ID (clause) = device_num; OMP_CLAUSE_DEVICE_ANCESTOR (clause) = false; OMP_CLAUSE_CHAIN (map) = clause; } tree block = make_node (BLOCK); BLOCK_SUPERCONTEXT (block) = supercontext; tree bind = build3 (BIND_EXPR, void_type_node, NULL_TREE, build2 (MODIFY_EXPR, integer_type_node, result_var, test_expr), block); TREE_SIDE_EFFECTS (bind) = 1; OMP_TARGET_BODY (stmt) = bind; target_device_cond = build2 (COMPOUND_EXPR, integer_type_node, stmt, result_var); /* If necessary, "and" target_device_cond with the test to make sure the device number is valid. */ if (device_ok && device_ok != integer_one_node) target_device_cond = build2 (TRUTH_ANDIF_EXPR, integer_type_node, device_ok, target_device_cond); /* Set the bit to trigger resolution of OMP_TARGET_DEVICE_MATCHES in the ompdevlow pass. */ if (cfun && (cfun->curr_properties & PROP_gimple_any) != 0) cgraph_node::get (cfun->decl)->has_omp_variant_constructs = 1; } } wrapup: if (user_cond && target_device_cond) return build2 (TRUTH_ANDIF_EXPR, integer_type_node, user_cond, target_device_cond); else if (user_cond) return user_cond; else if (target_device_cond) return target_device_cond; else return NULL_TREE; } /* Given an omp_variant VARIANT, compute VARIANT->score and VARIANT->scorable. CONSTRUCT_CONTEXT is the OpenMP construct context; if this is null or COMPLETE_P is false (e.g., during parsing or gimplification) then it may not be possible to compute the score accurately and the scorable flag is set to false. Cited text in the comments is from section 7.2 of the OpenMP 5.2 specification. */ static void omp_context_compute_score (struct omp_variant *variant, tree construct_context, bool complete_p) { int l = list_length (construct_context); tree ctx = variant->selector; variant->scorable = true; /* "the final score is the sum of the values of all specified selectors plus 1". */ variant->score = 1; for (tree tss = ctx; tss; tss = TREE_CHAIN (tss)) { if (OMP_TSS_CODE (tss) == OMP_TRAIT_SET_CONSTRUCT) { /* "Each trait selector for which the corresponding trait appears in the context trait set in the OpenMP context..." */ score_wide_int tss_score = 0; omp_construct_traits_match (OMP_TSS_TRAIT_SELECTORS (tss), construct_context, &tss_score); variant->score += tss_score; if (!complete_p) variant->scorable = false; } else if (OMP_TSS_CODE (tss) == OMP_TRAIT_SET_DEVICE || OMP_TSS_CODE (tss) == OMP_TRAIT_SET_TARGET_DEVICE) { /* "The kind, arch, and isa selectors, if specified, are given the values 2**l, 2**(l+1), and 2**(l+2), respectively..." FIXME: the spec isn't clear what should happen if there are both "device" and "target_device" selector sets specified. This implementation adds up the bits rather than ORs them. */ for (tree ts = OMP_TSS_TRAIT_SELECTORS (tss); ts; ts = TREE_CHAIN (ts)) { enum omp_ts_code code = OMP_TS_CODE (ts); if (code == OMP_TRAIT_DEVICE_KIND) variant->score += wi::shifted_mask (l, 1, false); else if (code == OMP_TRAIT_DEVICE_ARCH) variant->score += wi::shifted_mask (l + 1, 1, false); else if (code == OMP_TRAIT_DEVICE_ISA) variant->score += wi::shifted_mask (l + 2, 1, false); } if (!complete_p) variant->scorable = false; } else { /* "Trait selectors for which a trait-score is specified..." Note that there are no implementation-defined selectors, and "other selectors are given a value of zero". */ for (tree ts = OMP_TSS_TRAIT_SELECTORS (tss); ts; ts = TREE_CHAIN (ts)) { tree s = OMP_TS_SCORE (ts); if (s && TREE_CODE (s) == INTEGER_CST) variant->score += score_wide_int::from (wi::to_wide (s), TYPE_SIGN (TREE_TYPE (s))); } } } } /* CONSTRUCT_CONTEXT contains "the directive names, each being a trait, of all enclosing constructs at that point in the program up to a target construct", per section 7.1 of the 5.2 specification. The traits are collected during gimplification and are listed outermost first. This function attempts to apply the "if the point in the program is not enclosed by a target construct, the following rules are applied in order" requirements that follow in the same paragraph. This may not be possible, depending on the compilation phase; in particular, "declare simd" clones are not known until late resolution. The augmented context is returned, and *COMPLETEP is set to true if the context is known to be complete, false otherwise. */ static tree omp_complete_construct_context (tree construct_context, bool *completep) { /* The point in the program is enclosed by a target construct. */ if (construct_context && OMP_TS_CODE (construct_context) == OMP_TRAIT_CONSTRUCT_TARGET) *completep = true; /* At parse time we have none of the information we need to collect the missing pieces. */ else if (symtab->state == PARSING) *completep = false; else { tree attributes = DECL_ATTRIBUTES (current_function_decl); /* Add simd trait when in a simd clone. This information is only available during late resolution in the omp_device_lower pass, however we can also rule out cases where we know earlier that cfun is not a candidate for cloning. */ if (cfun && (cfun->curr_properties & PROP_gimple_any) != 0) { cgraph_node *node = cgraph_node::get (cfun->decl); if (node->simdclone) construct_context = make_trait_selector (OMP_TRAIT_CONSTRUCT_SIMD, NULL_TREE, NULL_TREE, construct_context); *completep = true; } else if (lookup_attribute ("omp declare simd", attributes)) *completep = false; else *completep = true; /* Add construct selector set within a "declare variant" function. */ tree variant_attr = lookup_attribute ("omp declare variant variant", attributes); if (variant_attr) { tree temp = NULL_TREE; for (tree t = TREE_VALUE (variant_attr); t; t = TREE_CHAIN (t)) temp = chainon (temp, copy_node (t)); construct_context = chainon (temp, construct_context); } /* Add target trait when in a target variant. */ if (lookup_attribute ("omp declare target", attributes)) construct_context = make_trait_selector (OMP_TRAIT_CONSTRUCT_TARGET, NULL_TREE, NULL_TREE, construct_context); } return construct_context; } /* Comparison function for sorting routines, to sort OpenMP metadirective variants by decreasing score. */ static int sort_variant (const void * a, const void *b, void *) { score_wide_int score1 = ((const struct omp_variant *) a)->score; score_wide_int score2 = ((const struct omp_variant *) b)->score; if (score1 > score2) return -1; else if (score1 < score2) return 1; else return 0; } /* Return a vector of dynamic replacement candidates for the directive candidates in ALL_VARIANTS. Return an empty vector if the candidates cannot be resolved. */ vec omp_get_dynamic_candidates (vec &all_variants, tree construct_context) { auto_vec variants; struct omp_variant default_variant; bool default_found = false; bool complete_p; construct_context = omp_complete_construct_context (construct_context, &complete_p); if (dump_file) { fprintf (dump_file, "\nIn omp_get_dynamic_candidates:\n"); if (symtab->state == PARSING) fprintf (dump_file, "invoked during parsing\n"); else if (cfun && (cfun->curr_properties & PROP_gimple_any) == 0) fprintf (dump_file, "invoked during gimplification\n"); else if (cfun && (cfun->curr_properties & PROP_gimple_any) != 0) fprintf (dump_file, "invoked during late resolution\n"); else fprintf (dump_file, "confused about invocation context?!?\n"); fprintf (dump_file, "construct_context has %d traits (%s)\n", (construct_context ? list_length (construct_context) : 0), (complete_p ? "complete" : "incomplete")); } for (unsigned int i = 0; i < all_variants.length (); i++) { struct omp_variant variant = all_variants[i]; if (variant.selector == NULL_TREE) { gcc_assert (!default_found); default_found = true; default_variant = variant; default_variant.score = 0; default_variant.scorable = true; default_variant.matchable = true; default_variant.dynamic_selector = false; if (dump_file) fprintf (dump_file, "Considering default selector as candidate\n"); continue; } variant.matchable = true; variant.scorable = true; if (dump_file) { fprintf (dump_file, "Considering selector "); print_omp_context_selector (dump_file, variant.selector, TDF_NONE); fprintf (dump_file, " as candidate - "); } switch (omp_context_selector_matches (variant.selector, construct_context, complete_p)) { case -1: if (dump_file) fprintf (dump_file, "unmatchable\n"); /* At parse time, just give up if we can't determine whether things match. */ if (symtab->state == PARSING) { variants.truncate (0); return variants.copy (); } /* Otherwise we must be invoked from the gimplifier. */ gcc_assert (cfun && (cfun->curr_properties & PROP_gimple_any) == 0); variant.matchable = false; /* FALLTHRU */ case 1: omp_context_compute_score (&variant, construct_context, complete_p); variant.dynamic_selector = omp_selector_is_dynamic (variant.selector); variants.safe_push (variant); if (dump_file && variant.matchable) { if (variant.dynamic_selector) fprintf (dump_file, "matched, dynamic"); else fprintf (dump_file, "matched, non-dynamic"); } break; case 0: if (dump_file) fprintf (dump_file, "no match"); break; } if (dump_file) fprintf (dump_file, "\n"); } /* There must be one default variant. */ gcc_assert (default_found); /* If there are no matching selectors, return the default. */ if (variants.length () == 0) { variants.safe_push (default_variant); return variants.copy (); } /* If there is only one matching selector, use it. */ if (variants.length () == 1) { if (variants[0].matchable) { if (variants[0].dynamic_selector) variants.safe_push (default_variant); return variants.copy (); } else { /* We don't know whether the one non-default selector will actually match. */ variants.truncate (0); return variants.copy (); } } /* A context selector that is a strict subset of another context selector has a score of zero. This only applies if the selector that is a superset definitely matches, though. */ for (unsigned int i = 0; i < variants.length (); i++) for (unsigned int j = i + 1; j < variants.length (); j++) { int r = omp_context_selector_compare (variants[i].selector, variants[j].selector); if (r == -1 && variants[j].matchable) { /* variant i is a strict subset of variant j. */ variants[i].score = 0; variants[i].scorable = true; break; } else if (r == 1 && variants[i].matchable) /* variant j is a strict subset of variant i. */ { variants[j].score = 0; variants[j].scorable = true; } } /* Sort the variants by decreasing score, preserving the original order in case of a tie. */ variants.stablesort (sort_variant, NULL); /* Add the default as a final choice. */ variants.safe_push (default_variant); if (dump_file) { fprintf (dump_file, "Sorted variants are:\n"); for (unsigned i = 0; i < variants.length (); i++) { HOST_WIDE_INT score = variants[i].score.to_shwi (); fprintf (dump_file, "score %d matchable %d scorable %d ", (int)score, (int)(variants[i].matchable), (int)(variants[i].scorable)); if (variants[i].selector) { fprintf (dump_file, "selector "); print_omp_context_selector (dump_file, variants[i].selector, TDF_NONE); fprintf (dump_file, "\n"); } else fprintf (dump_file, "default selector\n"); } } /* Build the dynamic candidate list. */ for (unsigned i = 0; i < variants.length (); i++) { /* If we encounter a candidate that wasn't definitely matched, give up now. */ if (!variants[i].matchable) { variants.truncate (0); break; } /* In general, we can't proceed if we can't accurately score any of the selectors, since the sorting may be incorrect. But, since the actual score will never be lower than the guessed value, we can use the first variant if it is not scorable but either the next one is a subset of the first, is scorable, or we can make a direct comparison of the high-order isa/arch/kind bits. */ if (!variants[i].scorable) { bool ok = true; if (i != 0) ok = false; else if (variants[i+1].scorable) /* ok */ ; else if (variants[i+1].score > 0) { /* To keep comparisons simple, reject selectors that contain sets other than device, target_device, or construct. */ for (tree tss = variants[i].selector; tss && ok; tss = TREE_CHAIN (tss)) { enum omp_tss_code code = OMP_TSS_CODE (tss); if (code != OMP_TRAIT_SET_DEVICE && code != OMP_TRAIT_SET_TARGET_DEVICE && code != OMP_TRAIT_SET_CONSTRUCT) ok = false; } for (tree tss = variants[i+1].selector; tss && ok; tss = TREE_CHAIN (tss)) { enum omp_tss_code code = OMP_TSS_CODE (tss); if (code != OMP_TRAIT_SET_DEVICE && code != OMP_TRAIT_SET_TARGET_DEVICE && code != OMP_TRAIT_SET_CONSTRUCT) ok = false; } /* Ignore the construct bits of the score. If the isa/arch/kind bits are strictly ordered, we're good to go. Since "the final score is the sum of the values of all specified selectors plus 1", subtract that 1 from both scores before getting rid of the low bits. */ if (ok) { size_t l = list_length (construct_context); gcc_assert (variants[i].score > 0 && variants[i+1].score > 0); if ((variants[i].score - 1) >> l <= (variants[i+1].score - 1) >> l) ok = false; } } if (!ok) { variants.truncate (0); break; } } if (dump_file) { fprintf (dump_file, "Adding directive variant with "); if (variants[i].selector) { fprintf (dump_file, "selector "); print_omp_context_selector (dump_file, variants[i].selector, TDF_NONE); } else fprintf (dump_file, "default selector"); fprintf (dump_file, " as candidate.\n"); } /* The last of the candidates is ended by a static selector. */ if (!variants[i].dynamic_selector) { variants.truncate (i + 1); break; } } return variants.copy (); } /* Two attempts are made to resolve calls to "declare variant" functions: early resolution in the gimplifier, and late resolution in the omp_device_lower pass. If early resolution is not possible, the original function call is gimplified into the same form as metadirective and goes through the same late resolution code as metadirective. */ /* Collect "declare variant" candidates for BASE. CONSTRUCT_CONTEXT is the un-augmented context, or NULL_TREE if that information is not available yet. */ vec omp_declare_variant_candidates (tree base, tree construct_context) { auto_vec candidates; bool complete_p; tree augmented_context = omp_complete_construct_context (construct_context, &complete_p); /* The variants are stored on (possible multiple) "omp declare variant base" attributes on the base function. */ for (tree attr = DECL_ATTRIBUTES (base); attr; attr = TREE_CHAIN (attr)) { attr = lookup_attribute ("omp declare variant base", attr); if (attr == NULL_TREE) break; tree fndecl = TREE_PURPOSE (TREE_VALUE (attr)); tree selector = TREE_VALUE (TREE_VALUE (attr)); if (TREE_CODE (fndecl) != FUNCTION_DECL) continue; /* Ignore this variant if its selector is known not to match. */ if (!omp_context_selector_matches (selector, augmented_context, complete_p)) continue; struct omp_variant candidate; candidate.selector = selector; candidate.dynamic_selector = false; candidate.alternative = fndecl; candidate.body = NULL_TREE; candidates.safe_push (candidate); } /* Add a default that is the base function. */ struct omp_variant v; v.selector = NULL_TREE; v.dynamic_selector = false; v.alternative = base; v.body = NULL_TREE; candidates.safe_push (v); return candidates.copy (); } /* Collect metadirective candidates for METADIRECTIVE. CONSTRUCT_CONTEXT is the un-augmented context, or NULL_TREE if that information is not available yet. */ vec omp_metadirective_candidates (tree metadirective, tree construct_context) { auto_vec candidates; tree variant = OMP_METADIRECTIVE_VARIANTS (metadirective); bool complete_p; tree augmented_context = omp_complete_construct_context (construct_context, &complete_p); gcc_assert (variant); for (; variant; variant = TREE_CHAIN (variant)) { tree selector = OMP_METADIRECTIVE_VARIANT_SELECTOR (variant); /* Ignore this variant if its selector is known not to match. */ if (!omp_context_selector_matches (selector, augmented_context, complete_p)) continue; struct omp_variant candidate; candidate.selector = selector; candidate.dynamic_selector = false; candidate.alternative = OMP_METADIRECTIVE_VARIANT_DIRECTIVE (variant); candidate.body = OMP_METADIRECTIVE_VARIANT_BODY (variant); candidates.safe_push (candidate); } return candidates.copy (); } /* Return a vector of dynamic replacement candidates for the metadirective statement in METADIRECTIVE. Return an empty vector if the metadirective cannot be resolved. This function is intended to be called from the front ends, prior to gimplification. */ vec omp_early_resolve_metadirective (tree metadirective) { vec candidates = omp_metadirective_candidates (metadirective, NULL_TREE); return omp_get_dynamic_candidates (candidates, NULL_TREE); } /* Return a vector of dynamic replacement candidates for the variant construct with SELECTORS and CONSTRUCT_CONTEXT. This version is called during late resolution in the ompdevlow pass. */ vec omp_resolve_variant_construct (tree construct_context, tree selectors) { auto_vec variants; for (int i = 0; i < TREE_VEC_LENGTH (selectors); i++) { struct omp_variant variant; variant.selector = TREE_VEC_ELT (selectors, i); variant.dynamic_selector = false; variant.alternative = build_int_cst (integer_type_node, i + 1); variant.body = NULL_TREE; variants.safe_push (variant); } return omp_get_dynamic_candidates (variants, construct_context); } /* Encode an oacc launch argument. This matches the GOMP_LAUNCH_PACK macro on gomp-constants.h. We do not check for overflow. */ tree oacc_launch_pack (unsigned code, tree device, unsigned op) { tree res; res = build_int_cst (unsigned_type_node, GOMP_LAUNCH_PACK (code, 0, op)); if (device) { device = fold_build2 (LSHIFT_EXPR, unsigned_type_node, device, build_int_cst (unsigned_type_node, GOMP_LAUNCH_DEVICE_SHIFT)); res = fold_build2 (BIT_IOR_EXPR, unsigned_type_node, res, device); } return res; } /* Openacc compute grid dimension clauses are converted to an attribute attached to the function. This permits the target-side code to (a) massage the dimensions, (b) emit that data and (c) optimize. Non-constant dimensions are pushed onto ARGS. The attribute value is a TREE_LIST. A set of dimensions is represented as a list of INTEGER_CST. Those that are runtime exprs are represented as an INTEGER_CST of zero. TODO: Normally the attribute will just contain a single such list. If however it contains a list of lists, this will represent the use of device_type. Each member of the outer list is an assoc list of dimensions, keyed by the device type. The first entry will be the default. Well, that's the plan. */ /* Replace any existing oacc fn attribute in ATTRIBS with updated dimensions. */ tree oacc_replace_fn_attrib_attr (tree attribs, tree dims) { tree ident = get_identifier (OACC_FN_ATTRIB); /* If we happen to be present as the first attrib, drop it. */ if (attribs && TREE_PURPOSE (attribs) == ident) attribs = TREE_CHAIN (attribs); return tree_cons (ident, dims, attribs); } /* Replace any existing oacc fn attribute on FN with updated dimensions. */ void oacc_replace_fn_attrib (tree fn, tree dims) { DECL_ATTRIBUTES (fn) = oacc_replace_fn_attrib_attr (DECL_ATTRIBUTES (fn), dims); } /* Scan CLAUSES for launch dimensions and attach them to the oacc function attribute. Push any that are non-constant onto the ARGS list, along with an appropriate GOMP_LAUNCH_DIM tag. */ void oacc_set_fn_attrib (tree fn, tree clauses, vec *args) { /* Must match GOMP_DIM ordering. */ static const omp_clause_code ids[] = { OMP_CLAUSE_NUM_GANGS, OMP_CLAUSE_NUM_WORKERS, OMP_CLAUSE_VECTOR_LENGTH }; unsigned ix; tree dims[GOMP_DIM_MAX]; tree attr = NULL_TREE; unsigned non_const = 0; for (ix = GOMP_DIM_MAX; ix--;) { tree clause = omp_find_clause (clauses, ids[ix]); tree dim = NULL_TREE; if (clause) dim = OMP_CLAUSE_EXPR (clause, ids[ix]); dims[ix] = dim; if (dim && TREE_CODE (dim) != INTEGER_CST) { dim = integer_zero_node; non_const |= GOMP_DIM_MASK (ix); } attr = tree_cons (NULL_TREE, dim, attr); } oacc_replace_fn_attrib (fn, attr); if (non_const) { /* Push a dynamic argument set. */ args->safe_push (oacc_launch_pack (GOMP_LAUNCH_DIM, NULL_TREE, non_const)); for (unsigned ix = 0; ix != GOMP_DIM_MAX; ix++) if (non_const & GOMP_DIM_MASK (ix)) args->safe_push (dims[ix]); } } /* Verify OpenACC routine clauses. Returns 0 if FNDECL should be marked with an OpenACC 'routine' directive, 1 if it has already been marked in compatible way, and -1 if incompatible. Upon returning, the chain of clauses will contain exactly one clause specifying the level of parallelism. */ int oacc_verify_routine_clauses (tree fndecl, tree *clauses, location_t loc, const char *routine_str) { tree c_level = NULL_TREE; tree c_nohost = NULL_TREE; tree c_p = NULL_TREE; for (tree c = *clauses; c; c_p = c, c = OMP_CLAUSE_CHAIN (c)) switch (OMP_CLAUSE_CODE (c)) { case OMP_CLAUSE_GANG: case OMP_CLAUSE_WORKER: case OMP_CLAUSE_VECTOR: case OMP_CLAUSE_SEQ: if (c_level == NULL_TREE) c_level = c; else if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_CODE (c_level)) { /* This has already been diagnosed in the front ends. */ /* Drop the duplicate clause. */ gcc_checking_assert (c_p != NULL_TREE); OMP_CLAUSE_CHAIN (c_p) = OMP_CLAUSE_CHAIN (c); c = c_p; } else { error_at (OMP_CLAUSE_LOCATION (c), "%qs specifies a conflicting level of parallelism", omp_clause_code_name[OMP_CLAUSE_CODE (c)]); inform (OMP_CLAUSE_LOCATION (c_level), "... to the previous %qs clause here", omp_clause_code_name[OMP_CLAUSE_CODE (c_level)]); /* Drop the conflicting clause. */ gcc_checking_assert (c_p != NULL_TREE); OMP_CLAUSE_CHAIN (c_p) = OMP_CLAUSE_CHAIN (c); c = c_p; } break; case OMP_CLAUSE_NOHOST: /* Don't worry about duplicate clauses here. */ c_nohost = c; break; default: gcc_unreachable (); } if (c_level == NULL_TREE) { /* Default to an implicit 'seq' clause. */ c_level = build_omp_clause (loc, OMP_CLAUSE_SEQ); OMP_CLAUSE_CHAIN (c_level) = *clauses; *clauses = c_level; } /* In *clauses, we now have exactly one clause specifying the level of parallelism. */ tree attr = lookup_attribute ("omp declare target", DECL_ATTRIBUTES (fndecl)); if (attr != NULL_TREE) { /* Diagnose if "#pragma omp declare target" has also been applied. */ if (TREE_VALUE (attr) == NULL_TREE) { /* See ; the semantics of combining OpenACC and OpenMP 'target' are not clear. */ error_at (loc, "cannot apply %qs to %qD, which has also been" " marked with an OpenMP 'declare target' directive", routine_str, fndecl); /* Incompatible. */ return -1; } /* If a "#pragma acc routine" has already been applied, just verify this one for compatibility. */ /* Collect previous directive's clauses. */ tree c_level_p = NULL_TREE; tree c_nohost_p = NULL_TREE; for (tree c = TREE_VALUE (attr); c; c = OMP_CLAUSE_CHAIN (c)) switch (OMP_CLAUSE_CODE (c)) { case OMP_CLAUSE_GANG: case OMP_CLAUSE_WORKER: case OMP_CLAUSE_VECTOR: case OMP_CLAUSE_SEQ: gcc_checking_assert (c_level_p == NULL_TREE); c_level_p = c; break; case OMP_CLAUSE_NOHOST: gcc_checking_assert (c_nohost_p == NULL_TREE); c_nohost_p = c; break; default: gcc_unreachable (); } gcc_checking_assert (c_level_p != NULL_TREE); /* ..., and compare to current directive's, which we've already collected above. */ tree c_diag; tree c_diag_p; /* Matching level of parallelism? */ if (OMP_CLAUSE_CODE (c_level) != OMP_CLAUSE_CODE (c_level_p)) { c_diag = c_level; c_diag_p = c_level_p; goto incompatible; } /* Matching 'nohost' clauses? */ if ((c_nohost == NULL_TREE) != (c_nohost_p == NULL_TREE)) { c_diag = c_nohost; c_diag_p = c_nohost_p; goto incompatible; } /* Compatible. */ return 1; incompatible: if (c_diag != NULL_TREE) error_at (OMP_CLAUSE_LOCATION (c_diag), "incompatible %qs clause when applying" " %qs to %qD, which has already been" " marked with an OpenACC 'routine' directive", omp_clause_code_name[OMP_CLAUSE_CODE (c_diag)], routine_str, fndecl); else if (c_diag_p != NULL_TREE) error_at (loc, "missing %qs clause when applying" " %qs to %qD, which has already been" " marked with an OpenACC 'routine' directive", omp_clause_code_name[OMP_CLAUSE_CODE (c_diag_p)], routine_str, fndecl); else gcc_unreachable (); if (c_diag_p != NULL_TREE) inform (OMP_CLAUSE_LOCATION (c_diag_p), "... with %qs clause here", omp_clause_code_name[OMP_CLAUSE_CODE (c_diag_p)]); else { /* In the front ends, we don't preserve location information for the OpenACC routine directive itself. However, that of c_level_p should be close. */ location_t loc_routine = OMP_CLAUSE_LOCATION (c_level_p); inform (loc_routine, "... without %qs clause near to here", omp_clause_code_name[OMP_CLAUSE_CODE (c_diag)]); } /* Incompatible. */ return -1; } return 0; } /* Process the OpenACC 'routine' directive clauses to generate an attribute for the level of parallelism. All dimensions have a size of zero (dynamic). TREE_PURPOSE is set to indicate whether that dimension can have a loop partitioned on it. non-zero indicates yes, zero indicates no. By construction once a non-zero has been reached, further inner dimensions must also be non-zero. We set TREE_VALUE to zero for the dimensions that may be partitioned and 1 for the other ones -- if a loop is (erroneously) spawned at an outer level, we don't want to try and partition it. */ tree oacc_build_routine_dims (tree clauses) { /* Must match GOMP_DIM ordering. */ static const omp_clause_code ids[] = {OMP_CLAUSE_GANG, OMP_CLAUSE_WORKER, OMP_CLAUSE_VECTOR, OMP_CLAUSE_SEQ}; int ix; int level = -1; for (; clauses; clauses = OMP_CLAUSE_CHAIN (clauses)) for (ix = GOMP_DIM_MAX + 1; ix--;) if (OMP_CLAUSE_CODE (clauses) == ids[ix]) { level = ix; break; } gcc_checking_assert (level >= 0); tree dims = NULL_TREE; for (ix = GOMP_DIM_MAX; ix--;) dims = tree_cons (build_int_cst (boolean_type_node, ix >= level), build_int_cst (integer_type_node, ix < level), dims); return dims; } /* Retrieve the oacc function attrib and return it. Non-oacc functions will return NULL. */ tree oacc_get_fn_attrib (tree fn) { return lookup_attribute (OACC_FN_ATTRIB, DECL_ATTRIBUTES (fn)); } /* Return true if FN is an OpenMP or OpenACC offloading function. */ bool offloading_function_p (tree fn) { tree attrs = DECL_ATTRIBUTES (fn); return (lookup_attribute ("omp declare target", attrs) || lookup_attribute ("omp target entrypoint", attrs)); } /* Extract an oacc execution dimension from FN. FN must be an offloaded function or routine that has already had its execution dimensions lowered to the target-specific values. */ int oacc_get_fn_dim_size (tree fn, int axis) { tree attrs = oacc_get_fn_attrib (fn); gcc_assert (axis < GOMP_DIM_MAX); tree dims = TREE_VALUE (attrs); while (axis--) dims = TREE_CHAIN (dims); int size = TREE_INT_CST_LOW (TREE_VALUE (dims)); return size; } /* Extract the dimension axis from an IFN_GOACC_DIM_POS or IFN_GOACC_DIM_SIZE call. */ int oacc_get_ifn_dim_arg (const gimple *stmt) { gcc_checking_assert (gimple_call_internal_fn (stmt) == IFN_GOACC_DIM_SIZE || gimple_call_internal_fn (stmt) == IFN_GOACC_DIM_POS); tree arg = gimple_call_arg (stmt, 0); HOST_WIDE_INT axis = TREE_INT_CST_LOW (arg); gcc_checking_assert (axis >= 0 && axis < GOMP_DIM_MAX); return (int) axis; } /* Build COMPONENT_REF and set TREE_THIS_VOLATILE and TREE_READONLY on it as appropriate. */ tree omp_build_component_ref (tree obj, tree field) { tree ret = build3 (COMPONENT_REF, TREE_TYPE (field), obj, field, NULL); if (TREE_THIS_VOLATILE (field)) TREE_THIS_VOLATILE (ret) |= 1; if (TREE_READONLY (field)) TREE_READONLY (ret) |= 1; return ret; } /* Return true if NAME is the name of an omp_* runtime API call. */ bool omp_runtime_api_procname (const char *name) { if (!startswith (name, "omp_")) return false; static const char *omp_runtime_apis[] = { /* This array has 3 sections. First omp_* calls that don't have any suffixes. */ "aligned_alloc", "aligned_calloc", "alloc", "calloc", "free", "get_interop_int", "get_interop_ptr", "get_mapped_ptr", "get_num_interop_properties", "realloc", "target_alloc", "target_associate_ptr", "target_disassociate_ptr", "target_free", "target_is_accessible", "target_is_present", "target_memcpy", "target_memcpy_async", "target_memcpy_rect", "target_memcpy_rect_async", NULL, /* Now omp_* calls that are available as omp_* and omp_*_; however, the DECL_NAME is always omp_* without tailing underscore. */ "capture_affinity", "destroy_allocator", "destroy_lock", "destroy_nest_lock", "display_affinity", "fulfill_event", "get_active_level", "get_affinity_format", "get_cancellation", "get_default_allocator", "get_default_device", "get_device_from_uid", "get_device_num", "get_dynamic", "get_initial_device", "get_interop_name", "get_interop_rc_desc", "get_interop_str", "get_interop_type_desc", "get_level", "get_max_active_levels", "get_max_task_priority", "get_max_teams", "get_max_threads", "get_nested", "get_num_devices", "get_num_places", "get_num_procs", "get_num_teams", "get_num_threads", "get_partition_num_places", "get_place_num", "get_proc_bind", "get_supported_active_levels", "get_team_num", "get_teams_thread_limit", "get_thread_limit", "get_thread_num", "get_wtick", "get_wtime", "in_explicit_task", "in_final", "in_parallel", "init_lock", "init_nest_lock", "is_initial_device", "pause_resource", "pause_resource_all", "set_affinity_format", "set_default_allocator", "set_lock", "set_nest_lock", "test_lock", "test_nest_lock", "unset_lock", "unset_nest_lock", NULL, /* And finally calls available as omp_*, omp_*_ and omp_*_8_; however, as DECL_NAME only omp_* and omp_*_8 appear. */ "display_env", "get_ancestor_thread_num", "get_uid_from_device", "get_partition_place_nums", "get_place_num_procs", "get_place_proc_ids", "get_schedule", "get_team_size", "init_allocator", "set_default_device", "set_dynamic", "set_max_active_levels", "set_nested", "set_num_teams", "set_num_threads", "set_schedule", "set_teams_thread_limit" }; int mode = 0; for (unsigned i = 0; i < ARRAY_SIZE (omp_runtime_apis); i++) { if (omp_runtime_apis[i] == NULL) { mode++; continue; } size_t len = strlen (omp_runtime_apis[i]); if (strncmp (name + 4, omp_runtime_apis[i], len) == 0 && (name[4 + len] == '\0' || (mode > 1 && strcmp (name + 4 + len, "_8") == 0))) return true; } return false; } /* Return true if FNDECL is an omp_* runtime API call. */ bool omp_runtime_api_call (const_tree fndecl) { tree declname = DECL_NAME (fndecl); if (!declname || (DECL_CONTEXT (fndecl) != NULL_TREE && TREE_CODE (DECL_CONTEXT (fndecl)) != TRANSLATION_UNIT_DECL) || !TREE_PUBLIC (fndecl)) return false; return omp_runtime_api_procname (IDENTIFIER_POINTER (declname)); } /* See "Additional Definitions for the OpenMP API Specification" document; associated IDs are 1, 2, ... */ static const char* omp_interop_fr_str[] = {"cuda", "cuda_driver", "opencl", "sycl", "hip", "level_zero", "hsa"}; /* Returns the foreign-runtime ID if found or 0 otherwise. */ char omp_get_fr_id_from_name (const char *str) { static_assert (GOMP_INTEROP_IFR_LAST == ARRAY_SIZE (omp_interop_fr_str), ""); for (unsigned i = 0; i < ARRAY_SIZE (omp_interop_fr_str); ++i) if (!strcmp (str, omp_interop_fr_str[i])) return i + 1; return GOMP_INTEROP_IFR_UNKNOWN; } /* Returns the string value to a foreign-runtime integer value or NULL if value is not known. */ const char * omp_get_name_from_fr_id (int fr_id) { if (fr_id < 1 || fr_id > (int) ARRAY_SIZE (omp_interop_fr_str)) return ""; return omp_interop_fr_str[fr_id-1]; } namespace omp_addr_tokenizer { /* We scan an expression by recursive descent, and build a vector of "omp_addr_token *" pointers representing a "parsed" version of the expression. The grammar we use is something like this: expr0:: expr [section-access] expr:: structured-expr access-method | array-base access-method structured-expr:: structure-base component-selector arbitrary-expr:: (anything else) structure-base:: DECL access-method | structured-expr access-method | arbitrary-expr access-method array-base:: DECL | arbitrary-expr access-method:: DIRECT | REF | POINTER | REF_TO_POINTER | POINTER_OFFSET | REF_TO_POINTER_OFFSET | INDEXED_ARRAY | INDEXED_REF_TO_ARRAY | index-expr index-expr:: INDEX_EXPR access-method component-selector:: component-selector COMPONENT_REF | component-selector ARRAY_REF | COMPONENT_REF This tokenized form is then used both in parsing, for OpenMP clause expansion (for C and C++) and in gimplify.cc for sibling-list handling (for C, C++ and Fortran). */ omp_addr_token::omp_addr_token (token_type t, tree e) : type(t), expr(e) { } omp_addr_token::omp_addr_token (access_method_kinds k, tree e) : type(ACCESS_METHOD), expr(e) { u.access_kind = k; } omp_addr_token::omp_addr_token (token_type t, structure_base_kinds k, tree e) : type(t), expr(e) { u.structure_base_kind = k; } static bool omp_parse_component_selector (tree *expr0) { tree expr = *expr0; tree last_component = NULL_TREE; while (TREE_CODE (expr) == COMPONENT_REF || TREE_CODE (expr) == ARRAY_REF) { if (TREE_CODE (expr) == COMPONENT_REF) last_component = expr; expr = TREE_OPERAND (expr, 0); if (TREE_CODE (TREE_TYPE (expr)) == REFERENCE_TYPE) break; } if (!last_component) return false; *expr0 = last_component; return true; } /* This handles references that have had convert_from_reference called on them, and also those that haven't. */ static bool omp_parse_ref (tree *expr0) { tree expr = *expr0; if (TREE_CODE (TREE_TYPE (expr)) == REFERENCE_TYPE) return true; else if ((TREE_CODE (expr) == INDIRECT_REF || (TREE_CODE (expr) == MEM_REF && integer_zerop (TREE_OPERAND (expr, 1)))) && TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == REFERENCE_TYPE) { *expr0 = TREE_OPERAND (expr, 0); return true; } return false; } static bool omp_parse_pointer (tree *expr0, bool *has_offset) { tree expr = *expr0; *has_offset = false; if ((TREE_CODE (expr) == INDIRECT_REF || (TREE_CODE (expr) == MEM_REF && integer_zerop (TREE_OPERAND (expr, 1)))) && TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == POINTER_TYPE) { expr = TREE_OPERAND (expr, 0); /* The Fortran FE sometimes emits a no-op cast here. */ STRIP_NOPS (expr); while (1) { if (TREE_CODE (expr) == COMPOUND_EXPR) { expr = TREE_OPERAND (expr, 1); STRIP_NOPS (expr); } else if (TREE_CODE (expr) == SAVE_EXPR) expr = TREE_OPERAND (expr, 0); else if (TREE_CODE (expr) == POINTER_PLUS_EXPR) { *has_offset = true; expr = TREE_OPERAND (expr, 0); } else break; } STRIP_NOPS (expr); *expr0 = expr; return true; } return false; } static bool omp_parse_access_method (tree *expr0, enum access_method_kinds *kind) { tree expr = *expr0; bool has_offset; if (omp_parse_ref (&expr)) *kind = ACCESS_REF; else if (omp_parse_pointer (&expr, &has_offset)) { if (omp_parse_ref (&expr)) *kind = has_offset ? ACCESS_REF_TO_POINTER_OFFSET : ACCESS_REF_TO_POINTER; else *kind = has_offset ? ACCESS_POINTER_OFFSET : ACCESS_POINTER; } else if (TREE_CODE (expr) == ARRAY_REF) { while (TREE_CODE (expr) == ARRAY_REF) expr = TREE_OPERAND (expr, 0); if (omp_parse_ref (&expr)) *kind = ACCESS_INDEXED_REF_TO_ARRAY; else *kind = ACCESS_INDEXED_ARRAY; } else *kind = ACCESS_DIRECT; STRIP_NOPS (expr); *expr0 = expr; return true; } static bool omp_parse_access_methods (vec &addr_tokens, tree *expr0) { tree expr = *expr0; enum access_method_kinds kind; tree am_expr; if (omp_parse_access_method (&expr, &kind)) am_expr = expr; if (TREE_CODE (expr) == INDIRECT_REF || TREE_CODE (expr) == MEM_REF || TREE_CODE (expr) == ARRAY_REF) omp_parse_access_methods (addr_tokens, &expr); addr_tokens.safe_push (new omp_addr_token (kind, am_expr)); *expr0 = expr; return true; } static bool omp_parse_structured_expr (vec &, tree *); static bool omp_parse_structure_base (vec &addr_tokens, tree *expr0, structure_base_kinds *kind, vec &base_access_tokens, bool allow_structured = true) { tree expr = *expr0; if (allow_structured) omp_parse_access_methods (base_access_tokens, &expr); if (DECL_P (expr)) { *kind = BASE_DECL; return true; } if (allow_structured && omp_parse_structured_expr (addr_tokens, &expr)) { *kind = BASE_COMPONENT_EXPR; *expr0 = expr; return true; } *kind = BASE_ARBITRARY_EXPR; *expr0 = expr; return true; } static bool omp_parse_structured_expr (vec &addr_tokens, tree *expr0) { tree expr = *expr0; tree base_component = NULL_TREE; structure_base_kinds struct_base_kind; auto_vec base_access_tokens; if (omp_parse_component_selector (&expr)) base_component = expr; else return false; gcc_assert (TREE_CODE (expr) == COMPONENT_REF); expr = TREE_OPERAND (expr, 0); tree structure_base = expr; if (!omp_parse_structure_base (addr_tokens, &expr, &struct_base_kind, base_access_tokens)) return false; addr_tokens.safe_push (new omp_addr_token (STRUCTURE_BASE, struct_base_kind, structure_base)); addr_tokens.safe_splice (base_access_tokens); addr_tokens.safe_push (new omp_addr_token (COMPONENT_SELECTOR, base_component)); *expr0 = expr; return true; } static bool omp_parse_array_expr (vec &addr_tokens, tree *expr0) { tree expr = *expr0; structure_base_kinds s_kind; auto_vec base_access_tokens; if (!omp_parse_structure_base (addr_tokens, &expr, &s_kind, base_access_tokens, false)) return false; addr_tokens.safe_push (new omp_addr_token (ARRAY_BASE, s_kind, expr)); addr_tokens.safe_splice (base_access_tokens); *expr0 = expr; return true; } /* Return TRUE if the ACCESS_METHOD token at index 'i' has a further ACCESS_METHOD chained after it (e.g., if we're processing an expression containing multiple pointer indirections). */ bool omp_access_chain_p (vec &addr_tokens, unsigned i) { gcc_assert (addr_tokens[i]->type == ACCESS_METHOD); return (i + 1 < addr_tokens.length () && addr_tokens[i + 1]->type == ACCESS_METHOD); } /* Return the address of the object accessed by the ACCESS_METHOD token at 'i': either of the next access method's expr, or of EXPR if we're at the end of the list of tokens. */ tree omp_accessed_addr (vec &addr_tokens, unsigned i, tree expr) { if (i + 1 < addr_tokens.length ()) return build_fold_addr_expr (addr_tokens[i + 1]->expr); else return build_fold_addr_expr (expr); } } /* namespace omp_addr_tokenizer. */ bool omp_parse_expr (vec &addr_tokens, tree expr) { using namespace omp_addr_tokenizer; auto_vec expr_access_tokens; if (!omp_parse_access_methods (expr_access_tokens, &expr)) return false; if (omp_parse_structured_expr (addr_tokens, &expr)) ; else if (omp_parse_array_expr (addr_tokens, &expr)) ; else return false; addr_tokens.safe_splice (expr_access_tokens); return true; } DEBUG_FUNCTION void debug_omp_tokenized_addr (vec &addr_tokens, bool with_exprs) { using namespace omp_addr_tokenizer; const char *sep = with_exprs ? " " : ""; for (auto e : addr_tokens) { const char *pfx = ""; fputs (sep, stderr); switch (e->type) { case COMPONENT_SELECTOR: fputs ("component_selector", stderr); break; case ACCESS_METHOD: switch (e->u.access_kind) { case ACCESS_DIRECT: fputs ("access_direct", stderr); break; case ACCESS_REF: fputs ("access_ref", stderr); break; case ACCESS_POINTER: fputs ("access_pointer", stderr); break; case ACCESS_POINTER_OFFSET: fputs ("access_pointer_offset", stderr); break; case ACCESS_REF_TO_POINTER: fputs ("access_ref_to_pointer", stderr); break; case ACCESS_REF_TO_POINTER_OFFSET: fputs ("access_ref_to_pointer_offset", stderr); break; case ACCESS_INDEXED_ARRAY: fputs ("access_indexed_array", stderr); break; case ACCESS_INDEXED_REF_TO_ARRAY: fputs ("access_indexed_ref_to_array", stderr); break; } break; case ARRAY_BASE: case STRUCTURE_BASE: pfx = e->type == ARRAY_BASE ? "array_" : "struct_"; switch (e->u.structure_base_kind) { case BASE_DECL: fprintf (stderr, "%sbase_decl", pfx); break; case BASE_COMPONENT_EXPR: fputs ("base_component_expr", stderr); break; case BASE_ARBITRARY_EXPR: fprintf (stderr, "%sbase_arbitrary_expr", pfx); break; } break; } if (with_exprs) { fputs (" [", stderr); print_generic_expr (stderr, e->expr); fputc (']', stderr); sep = ",\n "; } else sep = " "; } fputs ("\n", stderr); } /* Return number of iterations of loop I in FOR_STMT. If PSTEP is non-NULL, *PSTEP will be the loop step. */ tree omp_loop_number_of_iterations (tree for_stmt, int i, tree *pstep) { tree t = TREE_VEC_ELT (OMP_FOR_INIT (for_stmt), i); gcc_assert (TREE_CODE (t) == MODIFY_EXPR); tree decl = TREE_OPERAND (t, 0); tree n1 = TREE_OPERAND (t, 1); tree type = TREE_TYPE (decl); tree cond = TREE_VEC_ELT (OMP_FOR_COND (for_stmt), i); gcc_assert (COMPARISON_CLASS_P (cond)); gcc_assert (TREE_OPERAND (cond, 0) == decl); tree_code cond_code = TREE_CODE (cond); tree n2 = TREE_OPERAND (cond, 1); t = TREE_VEC_ELT (OMP_FOR_INCR (for_stmt), i); tree step = NULL_TREE; switch (TREE_CODE (t)) { case PREINCREMENT_EXPR: case POSTINCREMENT_EXPR: gcc_assert (!POINTER_TYPE_P (type)); gcc_assert (TREE_OPERAND (t, 0) == decl); step = build_int_cst (type, 1); break; case PREDECREMENT_EXPR: case POSTDECREMENT_EXPR: gcc_assert (!POINTER_TYPE_P (type)); gcc_assert (TREE_OPERAND (t, 0) == decl); step = build_int_cst (type, -1); break; case MODIFY_EXPR: gcc_assert (TREE_OPERAND (t, 0) == decl); t = TREE_OPERAND (t, 1); switch (TREE_CODE (t)) { case PLUS_EXPR: if (TREE_OPERAND (t, 1) == decl) { TREE_OPERAND (t, 1) = TREE_OPERAND (t, 0); TREE_OPERAND (t, 0) = decl; } /* FALLTHRU */ case POINTER_PLUS_EXPR: case MINUS_EXPR: step = omp_get_for_step_from_incr (EXPR_LOCATION (t), t); break; default: gcc_unreachable (); } break; default: gcc_unreachable (); } omp_adjust_for_condition (EXPR_LOCATION (for_stmt), &cond_code, &n2, decl, step); if (pstep) *pstep = step; if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) < TYPE_PRECISION (long_long_integer_type_node)) { n1 = fold_convert (long_long_integer_type_node, n1); n2 = fold_convert (long_long_integer_type_node, n2); step = fold_convert (long_long_integer_type_node, step); } if (cond_code == LT_EXPR || POINTER_TYPE_P (type) || !TYPE_UNSIGNED (TREE_TYPE (n1))) { if (POINTER_TYPE_P (type)) t = fold_build2 (POINTER_DIFF_EXPR, ssizetype, n2, n1); else t = fold_build2 (MINUS_EXPR, TREE_TYPE (n1), n2, n1); t = fold_build2 (CEIL_DIV_EXPR, TREE_TYPE (t), t, step); } else { t = fold_build2 (MINUS_EXPR, type, n1, n2); t = fold_build2 (CEIL_DIV_EXPR, type, t, fold_build1 (NEGATE_EXPR, type, step)); } return t; } /* Tile transformation: Original loop: #pragma omp tile sizes(16, 32) for (i = 0; i < k; ++i) for (j = 0; j < 128; j += 2) { baz (i, j); } Transformed loop: #pragma omp tile sizes(16, 32) for (i.0 = 0; i.0 < k; i.0 += 16) for (j.0 = 0; j.0 < 128; j.0 += 64) { i = i.0; i.1 = MIN_EXPR ; goto ; :; j = j.0; j.1 = j.0 + 32; goto ; :; { baz (i, j); } j += 2; :; if (j < j.1) goto ; else goto ; :; ++i; :; if (i < i.1) goto ; else goto ; :; } where the grid loops have canonical form, but the inner loops don't and so are immediately lowered. */ static void omp_apply_tile (tree for_stmt, tree sizes, int size) { tree pre_body = NULL_TREE, post_body = NULL_TREE; tree orig_sizes = sizes; if (OMP_FOR_NON_RECTANGULAR (for_stmt)) { error_at (EXPR_LOCATION (for_stmt), "non-rectangular %"); return; } for (int i = 0; i < TREE_VEC_LENGTH (OMP_FOR_INIT (for_stmt)); i++) { if (orig_sizes) { size = tree_to_uhwi (TREE_VALUE (sizes)); sizes = TREE_CHAIN (sizes); } if (size == 1) continue; if (OMP_FOR_ORIG_DECLS (for_stmt) == NULL_TREE) { OMP_FOR_ORIG_DECLS (for_stmt) = make_tree_vec (TREE_VEC_LENGTH (OMP_FOR_INIT (for_stmt))); for (int j = 0; j < TREE_VEC_LENGTH (OMP_FOR_INIT (for_stmt)); j++) { gcc_assert (TREE_CODE (TREE_VEC_ELT (OMP_FOR_INIT (for_stmt), j)) == MODIFY_EXPR); TREE_VEC_ELT (OMP_FOR_ORIG_DECLS (for_stmt), j) = TREE_OPERAND (TREE_VEC_ELT (OMP_FOR_INIT (for_stmt), j), 0); } } tree step; tree iters = omp_loop_number_of_iterations (for_stmt, i, &step); tree t = TREE_VEC_ELT (OMP_FOR_INIT (for_stmt), i); tree decl = TREE_OPERAND (t, 0); tree type = TREE_TYPE (decl); tree griddecl = create_tmp_var_raw (type); DECL_CONTEXT (griddecl) = current_function_decl; t = build1 (DECL_EXPR, void_type_node, griddecl); append_to_statement_list (t, &OMP_FOR_PRE_BODY (for_stmt)); TREE_OPERAND (TREE_VEC_ELT (OMP_FOR_INIT (for_stmt), i), 0) = griddecl; TREE_PRIVATE (TREE_VEC_ELT (OMP_FOR_INIT (for_stmt), i)) = 1; tree cond = TREE_VEC_ELT (OMP_FOR_COND (for_stmt), i); TREE_OPERAND (cond, 0) = griddecl; tree ub = save_expr (TREE_OPERAND (cond, 1)); TREE_OPERAND (cond, 1) = ub; t = TREE_VEC_ELT (OMP_FOR_INCR (for_stmt), i); if (TREE_CODE (cond) == NE_EXPR) { tree_code cond_code = TREE_CODE (cond); omp_adjust_for_condition (EXPR_LOCATION (for_stmt), &cond_code, &ub, griddecl, step); TREE_SET_CODE (cond, cond_code); } step = save_expr (step); tree gridstep = fold_build2 (MULT_EXPR, TREE_TYPE (step), step, build_int_cst (TREE_TYPE (step), size)); if (POINTER_TYPE_P (type)) t = build2 (POINTER_PLUS_EXPR, type, griddecl, fold_convert (sizetype, gridstep)); else t = build2 (PLUS_EXPR, type, griddecl, gridstep); t = build2 (MODIFY_EXPR, type, griddecl, t); TREE_VEC_ELT (OMP_FOR_INCR (for_stmt), i) = t; t = build2 (MODIFY_EXPR, type, decl, griddecl); append_to_statement_list (t, &pre_body); if (POINTER_TYPE_P (type)) t = build2 (POINTER_PLUS_EXPR, type, griddecl, fold_convert (sizetype, gridstep)); else t = build2 (PLUS_EXPR, type, griddecl, gridstep); bool minmax_needed = true; if (TREE_CODE (iters) == INTEGER_CST) { wide_int witers = wi::to_wide (iters); wide_int wsize = wide_int::from (size, witers.get_precision (), TYPE_SIGN (TREE_TYPE (iters))); if (wi::multiple_of_p (witers, wsize, TYPE_SIGN (TREE_TYPE (iters)))) minmax_needed = false; } if (minmax_needed) switch (TREE_CODE (cond)) { case LE_EXPR: if (POINTER_TYPE_P (type)) t = build2 (MIN_EXPR, type, t, build2 (POINTER_PLUS_EXPR, type, ub, size_int (1))); else t = build2 (MIN_EXPR, type, t, build2 (PLUS_EXPR, type, ub, build_one_cst (type))); break; case LT_EXPR: t = build2 (MIN_EXPR, type, t, ub); break; case GE_EXPR: if (POINTER_TYPE_P (type)) t = build2 (MAX_EXPR, type, t, build2 (POINTER_PLUS_EXPR, type, ub, size_int (-1))); else t = build2 (MAX_EXPR, type, t, build2 (PLUS_EXPR, type, ub, build_minus_one_cst (type))); break; case GT_EXPR: t = build2 (MAX_EXPR, type, t, ub); break; default: gcc_unreachable (); } tree end = create_tmp_var_raw (type); DECL_CONTEXT (end) = current_function_decl; end = build4 (TARGET_EXPR, type, end, t, NULL_TREE, NULL_TREE); TREE_SIDE_EFFECTS (end) = 1; append_to_statement_list (end, &pre_body); tree lab1 = create_artificial_label (UNKNOWN_LOCATION); tree lab2 = create_artificial_label (UNKNOWN_LOCATION); t = build1 (GOTO_EXPR, void_type_node, lab2); append_to_statement_list (t, &pre_body); t = build1 (LABEL_EXPR, void_type_node, lab1); append_to_statement_list (t, &pre_body); tree this_post_body = NULL_TREE; if (POINTER_TYPE_P (type)) t = build2 (POINTER_PLUS_EXPR, type, decl, fold_convert (sizetype, step)); else t = build2 (PLUS_EXPR, type, decl, step); t = build2 (MODIFY_EXPR, type, decl, t); append_to_statement_list (t, &this_post_body); t = build1 (LABEL_EXPR, void_type_node, lab2); append_to_statement_list (t, &this_post_body); t = build2 ((TREE_CODE (cond) == LT_EXPR || TREE_CODE (cond) == LE_EXPR) ? LT_EXPR : GT_EXPR, boolean_type_node, decl, end); if (orig_sizes == NULL_TREE) { gcc_assert (i == 0); t = build3 (ANNOTATE_EXPR, TREE_TYPE (t), t, build_int_cst (integer_type_node, annot_expr_unroll_kind), build_int_cst (integer_type_node, size)); } t = build3 (COND_EXPR, void_type_node, t, build1 (GOTO_EXPR, void_type_node, lab1), NULL_TREE); append_to_statement_list (t, &this_post_body); append_to_statement_list (post_body, &this_post_body); post_body = this_post_body; } if (pre_body || post_body) { append_to_statement_list (OMP_FOR_BODY (for_stmt), &pre_body); append_to_statement_list (post_body, &pre_body); OMP_FOR_BODY (for_stmt) = pre_body; } } /* Callback for walk_tree to find nested loop transforming construct. */ static tree find_nested_loop_xform (tree *tp, int *walk_subtrees, void *data) { tree **pdata = (tree **) data; *walk_subtrees = 0; switch (TREE_CODE (*tp)) { case OMP_TILE: case OMP_UNROLL: pdata[1] = tp; return *tp; case BIND_EXPR: if (BIND_EXPR_VARS (*tp) || (BIND_EXPR_BLOCK (*tp) && BLOCK_VARS (BIND_EXPR_BLOCK (*tp)))) pdata[0] = tp; *walk_subtrees = 1; break; case STATEMENT_LIST: if (!tsi_one_before_end_p (tsi_start (*tp))) pdata[0] = tp; *walk_subtrees = 1; break; case TRY_FINALLY_EXPR: case CLEANUP_POINT_EXPR: pdata[0] = tp; *walk_subtrees = 1; break; default: break; } return NULL; } /* Main entry point for performing OpenMP loop transformations. */ void omp_maybe_apply_loop_xforms (tree *expr_p, tree for_clauses) { tree for_stmt = *expr_p; switch (TREE_CODE (for_stmt)) { case OMP_TILE: case OMP_UNROLL: if (OMP_LOOPXFORM_LOWERED (for_stmt)) return; break; default: break; } tree *inner_expr_p = expr_p; tree inner_for_stmt = for_stmt; for (int i = 0; i < TREE_VEC_LENGTH (OMP_FOR_INIT (for_stmt)); i++) { /* If some loop nest needs one or more loops in canonical form from nested loop transforming constructs, first perform the loop transformation on the nested construct and then move over the corresponding loops in canonical form from the inner construct to the outer one. */ if (TREE_VEC_ELT (OMP_FOR_INIT (for_stmt), i) == NULL_TREE) { if (inner_for_stmt == for_stmt && omp_find_clause (for_clauses ? for_clauses : OMP_FOR_CLAUSES (for_stmt), OMP_CLAUSE_ORDERED)) { error_at (EXPR_LOCATION (for_stmt), "% clause used with generated loops"); *expr_p = void_node; return; } tree *data[2] = { NULL, NULL }; walk_tree (&OMP_FOR_BODY (inner_for_stmt), find_nested_loop_xform, &data, NULL); gcc_assert (data[1]); if (data[0]) { /* If there is a BIND_EXPR declaring some vars, or statement list with more than one stmt etc., move the intervening code around the outermost loop. */ tree t = *inner_expr_p; *inner_expr_p = OMP_FOR_BODY (inner_for_stmt); OMP_FOR_BODY (inner_for_stmt) = *data[1]; *data[1] = t; inner_expr_p = data[1]; data[1] = &OMP_FOR_BODY (inner_for_stmt); } inner_for_stmt = *data[1]; omp_maybe_apply_loop_xforms (data[1], NULL_TREE); if (*data[1] != inner_for_stmt) { tree *data2[2] = { NULL, NULL }; walk_tree (data[1], find_nested_loop_xform, &data2, NULL); gcc_assert (data2[1] && *data2[1] == inner_for_stmt && data2[0]); tree t = *inner_expr_p; *inner_expr_p = *data[1]; *data[1] = *data2[1]; *data2[1] = t; inner_expr_p = data2[1]; } tree clauses = OMP_FOR_CLAUSES (inner_for_stmt); gcc_checking_assert (TREE_CODE (inner_for_stmt) != OMP_UNROLL || omp_find_clause (clauses, OMP_CLAUSE_PARTIAL)); append_to_statement_list (OMP_FOR_PRE_BODY (inner_for_stmt), &OMP_FOR_PRE_BODY (for_stmt)); OMP_FOR_PRE_BODY (inner_for_stmt) = NULL_TREE; if (OMP_FOR_ORIG_DECLS (for_stmt) == NULL_TREE && OMP_FOR_ORIG_DECLS (inner_for_stmt) != NULL_TREE) { OMP_FOR_ORIG_DECLS (for_stmt) = make_tree_vec (TREE_VEC_LENGTH (OMP_FOR_INIT (for_stmt))); for (int j = 0; j < TREE_VEC_LENGTH (OMP_FOR_INIT (for_stmt)); j++) { if (TREE_VEC_ELT (OMP_FOR_INIT (for_stmt), j) == NULL_TREE) continue; gcc_assert (TREE_CODE (TREE_VEC_ELT (OMP_FOR_INIT (for_stmt), j)) == MODIFY_EXPR); TREE_VEC_ELT (OMP_FOR_ORIG_DECLS (for_stmt), j) = TREE_OPERAND (TREE_VEC_ELT (OMP_FOR_INIT (for_stmt), j), 0); } } for (int j = 0; j < TREE_VEC_LENGTH (OMP_FOR_INIT (inner_for_stmt)); ++j) { if (i + j == TREE_VEC_LENGTH (OMP_FOR_INIT (for_stmt))) break; if (OMP_FOR_ORIG_DECLS (for_stmt)) { if (OMP_FOR_ORIG_DECLS (inner_for_stmt)) { TREE_VEC_ELT (OMP_FOR_ORIG_DECLS (for_stmt), i + j) = TREE_VEC_ELT (OMP_FOR_ORIG_DECLS (inner_for_stmt), j); TREE_VEC_ELT (OMP_FOR_ORIG_DECLS (inner_for_stmt), j) = NULL_TREE; } else { tree t = TREE_VEC_ELT (OMP_FOR_INIT (inner_for_stmt), j); gcc_assert (TREE_CODE (t) == MODIFY_EXPR); TREE_VEC_ELT (OMP_FOR_ORIG_DECLS (for_stmt), i + j) = TREE_OPERAND (t, 0); } } TREE_VEC_ELT (OMP_FOR_INIT (for_stmt), i + j) = TREE_VEC_ELT (OMP_FOR_INIT (inner_for_stmt), j); TREE_VEC_ELT (OMP_FOR_COND (for_stmt), i + j) = TREE_VEC_ELT (OMP_FOR_COND (inner_for_stmt), j); TREE_VEC_ELT (OMP_FOR_INCR (for_stmt), i + j) = TREE_VEC_ELT (OMP_FOR_INCR (inner_for_stmt), j); TREE_VEC_ELT (OMP_FOR_INIT (inner_for_stmt), j) = NULL_TREE; TREE_VEC_ELT (OMP_FOR_COND (inner_for_stmt), j) = NULL_TREE; TREE_VEC_ELT (OMP_FOR_INCR (inner_for_stmt), j) = NULL_TREE; } } } switch (TREE_CODE (for_stmt)) { case OMP_TILE: tree sizes; sizes = omp_find_clause (OMP_FOR_CLAUSES (for_stmt), OMP_CLAUSE_SIZES); omp_apply_tile (for_stmt, OMP_CLAUSE_SIZES_LIST (sizes), 0); OMP_LOOPXFORM_LOWERED (for_stmt) = 1; break; case OMP_UNROLL: tree partial; partial = omp_find_clause (OMP_FOR_CLAUSES (for_stmt), OMP_CLAUSE_PARTIAL); if (partial) omp_apply_tile (for_stmt, NULL_TREE, OMP_CLAUSE_PARTIAL_EXPR (partial) ? tree_to_shwi (OMP_CLAUSE_PARTIAL_EXPR (partial)) : 8); else if (omp_find_clause (OMP_FOR_CLAUSES (for_stmt), OMP_CLAUSE_FULL)) { tree iters = omp_loop_number_of_iterations (for_stmt, 0, NULL); if (TREE_CODE (iters) != INTEGER_CST) error_at (EXPR_LOCATION (for_stmt), "non-constant iteration count of % loop"); } OMP_LOOPXFORM_LOWERED (for_stmt) = 1; break; default: break; } }