/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding. This file is consumed by genmatch which produces gimple-match.cc and generic-match.cc from it. Copyright (C) 2014-2023 Free Software Foundation, Inc. Contributed by Richard Biener and Prathamesh Kulkarni This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* Generic tree predicates we inherit. */ (define_predicates integer_onep integer_zerop integer_all_onesp integer_minus_onep integer_each_onep integer_truep integer_nonzerop real_zerop real_onep real_minus_onep zerop initializer_each_zero_or_onep CONSTANT_CLASS_P tree_expr_nonnegative_p tree_expr_nonzero_p integer_valued_real_p integer_pow2p uniform_integer_cst_p HONOR_NANS uniform_vector_p expand_vec_cmp_expr_p bitmask_inv_cst_vector_p) /* Operator lists. */ (define_operator_list tcc_comparison lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt) (define_operator_list inverted_tcc_comparison ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq) (define_operator_list inverted_tcc_comparison_with_nans unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq) (define_operator_list swapped_tcc_comparison gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt) (define_operator_list simple_comparison lt le eq ne ge gt) (define_operator_list swapped_simple_comparison gt ge eq ne le lt) (define_operator_list BSWAP BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64 BUILT_IN_BSWAP128) #include "cfn-operators.pd" /* Define operand lists for math rounding functions {,i,l,ll}FN, where the versions prefixed with "i" return an int, those prefixed with "l" return a long and those prefixed with "ll" return a long long. Also define operand lists: XF for all float functions, in the order i, l, ll X for all double functions, in the same order XL for all long double functions, in the same order. */ #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \ (define_operator_list X##FN##F BUILT_IN_I##FN##F \ BUILT_IN_L##FN##F \ BUILT_IN_LL##FN##F) \ (define_operator_list X##FN BUILT_IN_I##FN \ BUILT_IN_L##FN \ BUILT_IN_LL##FN) \ (define_operator_list X##FN##L BUILT_IN_I##FN##L \ BUILT_IN_L##FN##L \ BUILT_IN_LL##FN##L) DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR) DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL) DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND) DEFINE_INT_AND_FLOAT_ROUND_FN (RINT) /* Unary operations and their associated IFN_COND_* function. */ (define_operator_list UNCOND_UNARY negate bit_not) (define_operator_list COND_UNARY IFN_COND_NEG IFN_COND_NOT) /* Binary operations and their associated IFN_COND_* function. */ (define_operator_list UNCOND_BINARY plus minus mult trunc_div trunc_mod rdiv min max IFN_FMIN IFN_FMAX bit_and bit_ior bit_xor lshift rshift) (define_operator_list COND_BINARY IFN_COND_ADD IFN_COND_SUB IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV IFN_COND_MIN IFN_COND_MAX IFN_COND_FMIN IFN_COND_FMAX IFN_COND_AND IFN_COND_IOR IFN_COND_XOR IFN_COND_SHL IFN_COND_SHR) /* Same for ternary operations. */ (define_operator_list UNCOND_TERNARY IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS) (define_operator_list COND_TERNARY IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS) /* __atomic_fetch_or_*, __atomic_fetch_xor_*, __atomic_xor_fetch_* */ (define_operator_list ATOMIC_FETCH_OR_XOR_N BUILT_IN_ATOMIC_FETCH_OR_1 BUILT_IN_ATOMIC_FETCH_OR_2 BUILT_IN_ATOMIC_FETCH_OR_4 BUILT_IN_ATOMIC_FETCH_OR_8 BUILT_IN_ATOMIC_FETCH_OR_16 BUILT_IN_ATOMIC_FETCH_XOR_1 BUILT_IN_ATOMIC_FETCH_XOR_2 BUILT_IN_ATOMIC_FETCH_XOR_4 BUILT_IN_ATOMIC_FETCH_XOR_8 BUILT_IN_ATOMIC_FETCH_XOR_16 BUILT_IN_ATOMIC_XOR_FETCH_1 BUILT_IN_ATOMIC_XOR_FETCH_2 BUILT_IN_ATOMIC_XOR_FETCH_4 BUILT_IN_ATOMIC_XOR_FETCH_8 BUILT_IN_ATOMIC_XOR_FETCH_16) /* __sync_fetch_and_or_*, __sync_fetch_and_xor_*, __sync_xor_and_fetch_* */ (define_operator_list SYNC_FETCH_OR_XOR_N BUILT_IN_SYNC_FETCH_AND_OR_1 BUILT_IN_SYNC_FETCH_AND_OR_2 BUILT_IN_SYNC_FETCH_AND_OR_4 BUILT_IN_SYNC_FETCH_AND_OR_8 BUILT_IN_SYNC_FETCH_AND_OR_16 BUILT_IN_SYNC_FETCH_AND_XOR_1 BUILT_IN_SYNC_FETCH_AND_XOR_2 BUILT_IN_SYNC_FETCH_AND_XOR_4 BUILT_IN_SYNC_FETCH_AND_XOR_8 BUILT_IN_SYNC_FETCH_AND_XOR_16 BUILT_IN_SYNC_XOR_AND_FETCH_1 BUILT_IN_SYNC_XOR_AND_FETCH_2 BUILT_IN_SYNC_XOR_AND_FETCH_4 BUILT_IN_SYNC_XOR_AND_FETCH_8 BUILT_IN_SYNC_XOR_AND_FETCH_16) /* __atomic_fetch_and_*. */ (define_operator_list ATOMIC_FETCH_AND_N BUILT_IN_ATOMIC_FETCH_AND_1 BUILT_IN_ATOMIC_FETCH_AND_2 BUILT_IN_ATOMIC_FETCH_AND_4 BUILT_IN_ATOMIC_FETCH_AND_8 BUILT_IN_ATOMIC_FETCH_AND_16) /* __sync_fetch_and_and_*. */ (define_operator_list SYNC_FETCH_AND_AND_N BUILT_IN_SYNC_FETCH_AND_AND_1 BUILT_IN_SYNC_FETCH_AND_AND_2 BUILT_IN_SYNC_FETCH_AND_AND_4 BUILT_IN_SYNC_FETCH_AND_AND_8 BUILT_IN_SYNC_FETCH_AND_AND_16) /* With nop_convert? combine convert? and view_convert? in one pattern plus conditionalize on tree_nop_conversion_p conversions. */ (match (nop_convert @0) (convert @0) (if (tree_nop_conversion_p (type, TREE_TYPE (@0))))) (match (nop_convert @0) (view_convert @0) (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0)) && known_eq (TYPE_VECTOR_SUBPARTS (type), TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))) && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0)))))) #if GIMPLE /* These are used by gimple_bitwise_inverted_equal_p to simplify detection of BIT_NOT and comparisons. */ (match (bit_not_with_nop @0) (bit_not @0)) (match (bit_not_with_nop @0) (convert (bit_not @0)) (if (tree_nop_conversion_p (type, TREE_TYPE (@0))))) (for cmp (tcc_comparison) (match (maybe_cmp @0) (cmp@0 @1 @2)) (match (maybe_cmp @0) (convert (cmp@0 @1 @2)) (if (tree_nop_conversion_p (type, TREE_TYPE (@0))))) ) #endif /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR ABSU_EXPR returns unsigned absolute value of the operand and the operand of the ABSU_EXPR will have the corresponding signed type. */ (simplify (abs (convert @0)) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && !TYPE_UNSIGNED (TREE_TYPE (@0)) && element_precision (type) > element_precision (TREE_TYPE (@0))) (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); } (convert (absu:utype @0))))) #if GIMPLE /* Optimize (X + (X >> (prec - 1))) ^ (X >> (prec - 1)) into abs (X). */ (simplify (bit_xor:c (plus:c @0 (rshift@2 @0 INTEGER_CST@1)) @2) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && !TYPE_UNSIGNED (TREE_TYPE (@0)) && wi::to_widest (@1) == element_precision (TREE_TYPE (@0)) - 1) (abs @0))) #endif /* Simplifications of operations with one constant operand and simplifications to constants or single values. */ (for op (plus pointer_plus minus bit_ior bit_xor) (simplify (op @0 integer_zerop) (non_lvalue @0))) /* 0 +p index -> (type)index */ (simplify (pointer_plus integer_zerop @1) (non_lvalue (convert @1))) /* ptr - 0 -> (type)ptr */ (simplify (pointer_diff @0 integer_zerop) (convert @0)) /* See if ARG1 is zero and X + ARG1 reduces to X. Likewise if the operands are reversed. */ (simplify (plus:c @0 real_zerop@1) (if (fold_real_zero_addition_p (type, @0, @1, 0)) (non_lvalue @0))) /* See if ARG1 is zero and X - ARG1 reduces to X. */ (simplify (minus @0 real_zerop@1) (if (fold_real_zero_addition_p (type, @0, @1, 1)) (non_lvalue @0))) /* Even if the fold_real_zero_addition_p can't simplify X + 0.0 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0 if not -frounding-math. For sNaNs the first operation would raise exceptions but turn the result into qNan, so the second operation would not raise it. */ (for inner_op (plus minus) (for outer_op (plus minus) (simplify (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2) (if (real_zerop (@1) && real_zerop (@2) && !HONOR_SIGN_DEPENDENT_ROUNDING (type)) (with { bool inner_plus = ((inner_op == PLUS_EXPR) ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1))); bool outer_plus = ((outer_op == PLUS_EXPR) ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); } (if (outer_plus && !inner_plus) (outer_op @0 @2) @3)))))) /* Simplify x - x. This is unsafe for certain floats even in non-IEEE formats. In IEEE, it is unsafe because it does wrong for NaNs. PR middle-end/98420: x - x may be -0.0 with FE_DOWNWARD. Also note that operand_equal_p is always false if an operand is volatile. */ (simplify (minus @0 @0) (if (!FLOAT_TYPE_P (type) || (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_infinite_p (@0) && (!HONOR_SIGN_DEPENDENT_ROUNDING (type) || !HONOR_SIGNED_ZEROS (type)))) { build_zero_cst (type); })) (simplify (pointer_diff @@0 @0) { build_zero_cst (type); }) (simplify (mult @0 integer_zerop@1) @1) /* -x == x -> x == 0 */ (for cmp (eq ne) (simplify (cmp:c @0 (negate @0)) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && !TYPE_OVERFLOW_WRAPS (TREE_TYPE(@0))) (cmp @0 { build_zero_cst (TREE_TYPE(@0)); })))) /* Maybe fold x * 0 to 0. The expressions aren't the same when x is NaN, since x * 0 is also NaN. Nor are they the same in modes with signed zeros, since multiplying a negative value by 0 gives -0, not +0. Nor when x is +-Inf, since x * 0 is NaN. */ (simplify (mult @0 real_zerop@1) (if (!tree_expr_maybe_nan_p (@0) && (!HONOR_NANS (type) || !tree_expr_maybe_infinite_p (@0)) && (!HONOR_SIGNED_ZEROS (type) || tree_expr_nonnegative_p (@0))) @1)) /* In IEEE floating point, x*1 is not equivalent to x for snans. Likewise for complex arithmetic with signed zeros. */ (simplify (mult @0 real_onep) (if (!tree_expr_maybe_signaling_nan_p (@0) && (!HONOR_SIGNED_ZEROS (type) || !COMPLEX_FLOAT_TYPE_P (type))) (non_lvalue @0))) /* Transform x * -1.0 into -x. */ (simplify (mult @0 real_minus_onep) (if (!tree_expr_maybe_signaling_nan_p (@0) && (!HONOR_SIGNED_ZEROS (type) || !COMPLEX_FLOAT_TYPE_P (type))) (negate @0))) /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...}, unless the target has native support for the former but not the latter. */ (simplify (mult @0 VECTOR_CST@1) (if (initializer_each_zero_or_onep (@1) && !HONOR_SNANS (type) && !HONOR_SIGNED_ZEROS (type)) (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; } (if (itype && (!VECTOR_MODE_P (TYPE_MODE (type)) || (VECTOR_MODE_P (TYPE_MODE (itype)) && optab_handler (and_optab, TYPE_MODE (itype)) != CODE_FOR_nothing))) (view_convert (bit_and:itype (view_convert @0) (ne @1 { build_zero_cst (type); }))))))) /* In SWAR (SIMD within a register) code a signed comparison of packed data can be constructed with a particular combination of shift, bitwise and, and multiplication by constants. If that code is vectorized we can convert this pattern into a more efficient vector comparison. */ (simplify (mult (bit_and (rshift @0 uniform_integer_cst_p@1) uniform_integer_cst_p@2) uniform_integer_cst_p@3) (with { tree rshift_cst = uniform_integer_cst_p (@1); tree bit_and_cst = uniform_integer_cst_p (@2); tree mult_cst = uniform_integer_cst_p (@3); } /* Make sure we're working with vectors and uniform vector constants. */ (if (VECTOR_TYPE_P (type) && tree_fits_uhwi_p (rshift_cst) && tree_fits_uhwi_p (mult_cst) && tree_fits_uhwi_p (bit_and_cst)) /* Compute what constants would be needed for this to represent a packed comparison based on the shift amount denoted by RSHIFT_CST. */ (with { HOST_WIDE_INT vec_elem_bits = vector_element_bits (type); poly_int64 vec_nelts = TYPE_VECTOR_SUBPARTS (type); poly_int64 vec_bits = vec_elem_bits * vec_nelts; unsigned HOST_WIDE_INT cmp_bits_i, bit_and_i, mult_i; unsigned HOST_WIDE_INT target_mult_i, target_bit_and_i; cmp_bits_i = tree_to_uhwi (rshift_cst) + 1; mult_i = tree_to_uhwi (mult_cst); target_mult_i = (HOST_WIDE_INT_1U << cmp_bits_i) - 1; bit_and_i = tree_to_uhwi (bit_and_cst); target_bit_and_i = 0; /* The bit pattern in BIT_AND_I should be a mask for the least significant bit of each packed element that is CMP_BITS wide. */ for (unsigned i = 0; i < vec_elem_bits / cmp_bits_i; i++) target_bit_and_i = (target_bit_and_i << cmp_bits_i) | 1U; } (if ((exact_log2 (cmp_bits_i)) >= 0 && cmp_bits_i < HOST_BITS_PER_WIDE_INT && multiple_p (vec_bits, cmp_bits_i) && vec_elem_bits <= HOST_BITS_PER_WIDE_INT && target_mult_i == mult_i && target_bit_and_i == bit_and_i) /* Compute the vector shape for the comparison and check if the target is able to expand the comparison with that type. */ (with { /* We're doing a signed comparison. */ tree cmp_type = build_nonstandard_integer_type (cmp_bits_i, 0); poly_int64 vector_type_nelts = exact_div (vec_bits, cmp_bits_i); tree vec_cmp_type = build_vector_type (cmp_type, vector_type_nelts); tree vec_truth_type = truth_type_for (vec_cmp_type); tree zeros = build_zero_cst (vec_cmp_type); tree ones = build_all_ones_cst (vec_cmp_type); } (if (expand_vec_cmp_expr_p (vec_cmp_type, vec_truth_type, LT_EXPR) && expand_vec_cond_expr_p (vec_cmp_type, vec_truth_type, LT_EXPR)) (view_convert:type (vec_cond (lt:vec_truth_type (view_convert:vec_cmp_type @0) { zeros; }) { ones; } { zeros; }))))))))) (for cmp (gt ge lt le) outp (convert convert negate negate) outn (negate negate convert convert) /* Transform X * (X > 0.0 ? 1.0 : -1.0) into abs(X). */ /* Transform X * (X >= 0.0 ? 1.0 : -1.0) into abs(X). */ /* Transform X * (X < 0.0 ? 1.0 : -1.0) into -abs(X). */ /* Transform X * (X <= 0.0 ? 1.0 : -1.0) into -abs(X). */ (simplify (mult:c @0 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)) (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type)) (outp (abs @0)))) /* Transform X * (X > 0.0 ? -1.0 : 1.0) into -abs(X). */ /* Transform X * (X >= 0.0 ? -1.0 : 1.0) into -abs(X). */ /* Transform X * (X < 0.0 ? -1.0 : 1.0) into abs(X). */ /* Transform X * (X <= 0.0 ? -1.0 : 1.0) into abs(X). */ (simplify (mult:c @0 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)) (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type)) (outn (abs @0))))) /* Transform X * copysign (1.0, X) into abs(X). */ (simplify (mult:c @0 (COPYSIGN_ALL real_onep @0)) (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type)) (abs @0))) /* Transform X * copysign (1.0, -X) into -abs(X). */ (simplify (mult:c @0 (COPYSIGN_ALL real_onep (negate @0))) (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type)) (negate (abs @0)))) /* Transform copysign (CST, X) into copysign (ABS(CST), X). */ (simplify (COPYSIGN_ALL REAL_CST@0 @1) (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0))) (COPYSIGN_ALL (negate @0) @1))) /* Transform c ? x * copysign (1, y) : z to c ? x ^ signs(y) : z. tree-ssa-math-opts.cc does the corresponding optimization for unconditional multiplications (via xorsign). */ (simplify (IFN_COND_MUL:c @0 @1 (IFN_COPYSIGN real_onep @2) @3) (with { tree signs = sign_mask_for (type); } (if (signs) (with { tree inttype = TREE_TYPE (signs); } (view_convert:type (IFN_COND_XOR:inttype @0 (view_convert:inttype @1) (bit_and (view_convert:inttype @2) { signs; }) (view_convert:inttype @3))))))) /* (x >= 0 ? x : 0) + (x <= 0 ? -x : 0) -> abs x. */ (simplify (plus:c (max @0 integer_zerop) (max (negate @0) integer_zerop)) (abs @0)) /* X * 1, X / 1 -> X. */ (for op (mult trunc_div ceil_div floor_div round_div exact_div) (simplify (op @0 integer_onep) (non_lvalue @0))) /* (A / (1 << B)) -> (A >> B). Only for unsigned A. For signed A, this would not preserve rounding toward zero. For example: (-1 / ( 1 << B)) != -1 >> B. Also handle widening conversions, like: (A / (unsigned long long) (1U << B)) -> (A >> B) or (A / (unsigned long long) (1 << B)) -> (A >> B). If the left shift is signed, it can be done only if the upper bits of A starting from shift's type sign bit are zero, as (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL, so it is valid only if A >> 31 is zero. */ (simplify (trunc_div (convert?@0 @3) (convert2? (lshift integer_onep@1 @2))) (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0)) && (!VECTOR_TYPE_P (type) || target_supports_op_p (type, RSHIFT_EXPR, optab_vector) || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)) && (useless_type_conversion_p (type, TREE_TYPE (@1)) || (element_precision (type) >= element_precision (TREE_TYPE (@1)) && (TYPE_UNSIGNED (TREE_TYPE (@1)) || (element_precision (type) == element_precision (TREE_TYPE (@1))) || (INTEGRAL_TYPE_P (type) && (tree_nonzero_bits (@0) & wi::mask (element_precision (TREE_TYPE (@1)) - 1, true, element_precision (type))) == 0))))) (if (!VECTOR_TYPE_P (type) && useless_type_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)) && element_precision (TREE_TYPE (@3)) < element_precision (type)) (convert (rshift @3 @2)) (rshift @0 @2)))) /* Preserve explicit divisions by 0: the C++ front-end wants to detect undefined behavior in constexpr evaluation, and assuming that the division traps enables better optimizations than these anyway. */ (for div (trunc_div ceil_div floor_div round_div exact_div) /* 0 / X is always zero. */ (simplify (div integer_zerop@0 @1) /* But not for 0 / 0 so that we can get the proper warnings and errors. */ (if (!integer_zerop (@1)) @0)) /* X / -1 is -X. */ (simplify (div @0 integer_minus_onep@1) (if (!TYPE_UNSIGNED (type)) (negate @0))) /* X / bool_range_Y is X. */ (simplify (div @0 SSA_NAME@1) (if (INTEGRAL_TYPE_P (type) && ssa_name_has_boolean_range (@1) && !flag_non_call_exceptions) @0)) /* X / X is one. */ (simplify (div @0 @0) /* But not for 0 / 0 so that we can get the proper warnings and errors. And not for _Fract types where we can't build 1. */ (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)) && !integer_zerop (@0) && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0))) { build_one_cst (type); })) /* X / abs (X) is X < 0 ? -1 : 1. */ (simplify (div:C @0 (abs @0)) (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type) && !integer_zerop (@0) && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0))) (cond (lt @0 { build_zero_cst (type); }) { build_minus_one_cst (type); } { build_one_cst (type); }))) /* X / -X is -1. */ (simplify (div:C @0 (negate @0)) (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type)) && TYPE_OVERFLOW_UNDEFINED (type) && !integer_zerop (@0) && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0))) { build_minus_one_cst (type); }))) /* For unsigned integral types, FLOOR_DIV_EXPR is the same as TRUNC_DIV_EXPR. Rewrite into the latter in this case. Similarly for MOD instead of DIV. */ (for floor_divmod (floor_div floor_mod) trunc_divmod (trunc_div trunc_mod) (simplify (floor_divmod @0 @1) (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type)) && TYPE_UNSIGNED (type)) (trunc_divmod @0 @1)))) /* 1 / X -> X == 1 for unsigned integer X. 1 / X -> X >= -1 && X <= 1 ? X : 0 for signed integer X. But not for 1 / 0 so that we can get proper warnings and errors, and not for 1-bit integers as they are edge cases better handled elsewhere. */ (simplify (trunc_div integer_onep@0 @1) (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) > 1 && !integer_zerop (@1) && (!flag_non_call_exceptions || tree_expr_nonzero_p (@1))) (if (TYPE_UNSIGNED (type)) (convert (eq:boolean_type_node @1 { build_one_cst (type); })) (with { tree utype = unsigned_type_for (type); } (cond (le (plus (convert:utype @1) { build_one_cst (utype); }) { build_int_cst (utype, 2); }) @1 { build_zero_cst (type); }))))) /* Combine two successive divisions. Note that combining ceil_div and floor_div is trickier and combining round_div even more so. */ (for div (trunc_div exact_div) (simplify (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2) (with { wi::overflow_type overflow; wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2), TYPE_SIGN (type), &overflow); } (if (div == EXACT_DIV_EXPR || optimize_successive_divisions_p (@2, @3)) (if (!overflow) (div @0 { wide_int_to_tree (type, mul); }) (if (TYPE_UNSIGNED (type) || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)) { build_zero_cst (type); })))))) /* Combine successive multiplications. Similar to above, but handling overflow is different. */ (simplify (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2) (with { wi::overflow_type overflow; wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2), TYPE_SIGN (type), &overflow); } /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN, otherwise undefined overflow implies that @0 must be zero. */ (if (!overflow || TYPE_OVERFLOW_WRAPS (type)) (mult @0 { wide_int_to_tree (type, mul); })))) /* Similar to above, but there could be an extra add/sub between successive multuiplications. */ (simplify (mult (plus:s (mult:s@4 @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3) (with { bool overflowed = true; wi::overflow_type ovf1, ovf2; wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@3), TYPE_SIGN (type), &ovf1); wide_int add = wi::mul (wi::to_wide (@2), wi::to_wide (@3), TYPE_SIGN (type), &ovf2); if (TYPE_OVERFLOW_UNDEFINED (type)) { #if GIMPLE value_range vr0; if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE && get_global_range_query ()->range_of_expr (vr0, @4) && !vr0.varying_p () && !vr0.undefined_p ()) { wide_int wmin0 = vr0.lower_bound (); wide_int wmax0 = vr0.upper_bound (); wmin0 = wi::mul (wmin0, wi::to_wide (@3), TYPE_SIGN (type), &ovf1); wmax0 = wi::mul (wmax0, wi::to_wide (@3), TYPE_SIGN (type), &ovf2); if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE) { wi::add (wmin0, add, TYPE_SIGN (type), &ovf1); wi::add (wmax0, add, TYPE_SIGN (type), &ovf2); if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE) overflowed = false; } } #endif } else overflowed = false; } /* Skip folding on overflow. */ (if (!overflowed) (plus (mult @0 { wide_int_to_tree (type, mul); }) { wide_int_to_tree (type, add); })))) /* Similar to above, but a multiplication between successive additions. */ (simplify (plus (mult:s (plus:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3) (with { bool overflowed = true; wi::overflow_type ovf1; wi::overflow_type ovf2; wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2), TYPE_SIGN (type), &ovf1); wide_int add = wi::add (mul, wi::to_wide (@3), TYPE_SIGN (type), &ovf2); if (TYPE_OVERFLOW_UNDEFINED (type)) { #if GIMPLE value_range vr0; if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE && get_global_range_query ()->range_of_expr (vr0, @0) && !vr0.varying_p () && !vr0.undefined_p ()) { wide_int wmin0 = vr0.lower_bound (); wide_int wmax0 = vr0.upper_bound (); wmin0 = wi::mul (wmin0, wi::to_wide (@2), TYPE_SIGN (type), &ovf1); wmax0 = wi::mul (wmax0, wi::to_wide (@2), TYPE_SIGN (type), &ovf2); if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE) { wi::add (wmin0, mul, TYPE_SIGN (type), &ovf1); wi::add (wmax0, mul, TYPE_SIGN (type), &ovf2); if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE) overflowed = false; } } #endif } else overflowed = false; } /* Skip folding on overflow. */ (if (!overflowed) (plus (mult @0 @2) { wide_int_to_tree (type, add); })))) /* Optimize A / A to 1.0 if we don't care about NaNs or Infinities. */ (simplify (rdiv @0 @0) (if (FLOAT_TYPE_P (type) && ! HONOR_NANS (type) && ! HONOR_INFINITIES (type)) { build_one_cst (type); })) /* Optimize -A / A to -1.0 if we don't care about NaNs or Infinities. */ (simplify (rdiv:C @0 (negate @0)) (if (FLOAT_TYPE_P (type) && ! HONOR_NANS (type) && ! HONOR_INFINITIES (type)) { build_minus_one_cst (type); })) /* PR71078: x / abs(x) -> copysign (1.0, x) */ (simplify (rdiv:C (convert? @0) (convert? (abs @0))) (if (SCALAR_FLOAT_TYPE_P (type) && ! HONOR_NANS (type) && ! HONOR_INFINITIES (type)) (switch (if (types_match (type, float_type_node)) (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0))) (if (types_match (type, double_type_node)) (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0))) (if (types_match (type, long_double_type_node)) (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0)))))) /* In IEEE floating point, x/1 is not equivalent to x for snans. */ (simplify (rdiv @0 real_onep) (if (!tree_expr_maybe_signaling_nan_p (@0)) (non_lvalue @0))) /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */ (simplify (rdiv @0 real_minus_onep) (if (!tree_expr_maybe_signaling_nan_p (@0)) (negate @0))) (if (flag_reciprocal_math) /* Convert (A/B)/C to A/(B*C). */ (simplify (rdiv (rdiv:s @0 @1) @2) (rdiv @0 (mult @1 @2))) /* Canonicalize x / (C1 * y) to (x * C2) / y. */ (simplify (rdiv @0 (mult:s @1 REAL_CST@2)) (with { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); } (if (tem) (rdiv (mult @0 { tem; } ) @1)))) /* Convert A/(B/C) to (A/B)*C */ (simplify (rdiv @0 (rdiv:s @1 @2)) (mult (rdiv @0 @1) @2))) /* Simplify x / (- y) to -x / y. */ (simplify (rdiv @0 (negate @1)) (rdiv (negate @0) @1)) (if (flag_unsafe_math_optimizations) /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan. Since C / x may underflow to zero, do this only for unsafe math. */ (for op (lt le gt ge) neg_op (gt ge lt le) (simplify (op (rdiv REAL_CST@0 @1) real_zerop@2) (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1)) (switch (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0))) (op @1 @2)) /* For C < 0, use the inverted operator. */ (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0)) (neg_op @1 @2))))))) /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */ (for div (trunc_div ceil_div floor_div round_div exact_div) (simplify (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2) (if (integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0 && tree_nop_conversion_p (type, TREE_TYPE (@0)) && wi::to_wide (@2) + wi::to_wide (@1) == 0) (rshift (convert @0) { build_int_cst (integer_type_node, wi::exact_log2 (wi::to_wide (@2))); })))) /* If ARG1 is a constant, we can convert this to a multiply by the reciprocal. This does not have the same rounding properties, so only do this if -freciprocal-math. We can actually always safely do it if ARG1 is a power of two, but it's hard to tell if it is or not in a portable manner. */ (for cst (REAL_CST COMPLEX_CST VECTOR_CST) (simplify (rdiv @0 cst@1) (if (optimize) (if (flag_reciprocal_math && !real_zerop (@1)) (with { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); } (if (tem) (mult @0 { tem; } ))) (if (cst != COMPLEX_CST) (with { tree inverse = exact_inverse (type, @1); } (if (inverse) (mult @0 { inverse; } )))))))) (for mod (ceil_mod floor_mod round_mod trunc_mod) /* 0 % X is always zero. */ (simplify (mod integer_zerop@0 @1) /* But not for 0 % 0 so that we can get the proper warnings and errors. */ (if (!integer_zerop (@1)) @0)) /* X % 1 is always zero. */ (simplify (mod @0 integer_onep) { build_zero_cst (type); }) /* X % -1 is zero. */ (simplify (mod @0 integer_minus_onep@1) (if (!TYPE_UNSIGNED (type)) { build_zero_cst (type); })) /* X % X is zero. */ (simplify (mod @0 @0) /* But not for 0 % 0 so that we can get the proper warnings and errors. */ (if (!integer_zerop (@0)) { build_zero_cst (type); })) /* (X % Y) % Y is just X % Y. */ (simplify (mod (mod@2 @0 @1) @1) @2) /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */ (simplify (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2) (if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type) && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2), TYPE_SIGN (type))) { build_zero_cst (type); })) /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned modulo and comparison, since it is simpler and equivalent. */ (for cmp (eq ne) (simplify (cmp (mod @0 integer_pow2p@2) integer_zerop@1) (if (!TYPE_UNSIGNED (TREE_TYPE (@0))) (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); } (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1))))))) /* X % -C is the same as X % C. */ (simplify (trunc_mod @0 INTEGER_CST@1) (if (TYPE_SIGN (type) == SIGNED && !TREE_OVERFLOW (@1) && wi::neg_p (wi::to_wide (@1)) && !TYPE_OVERFLOW_TRAPS (type) /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */ && !sign_bit_p (@1, @1)) (trunc_mod @0 (negate @1)))) /* X % -Y is the same as X % Y. */ (simplify (trunc_mod @0 (convert? (negate @1))) (if (INTEGRAL_TYPE_P (type) && !TYPE_UNSIGNED (type) && !TYPE_OVERFLOW_TRAPS (type) && tree_nop_conversion_p (type, TREE_TYPE (@1)) /* Avoid this transformation if X might be INT_MIN or Y might be -1, because we would then change valid INT_MIN % -(-1) into invalid INT_MIN % -1. */ && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type))) || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION (TREE_TYPE (@1)))))) (trunc_mod @0 (convert @1)))) /* X - (X / Y) * Y is the same as X % Y. */ (simplify (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1))) (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type)) (convert (trunc_mod @0 @1)))) /* x * (1 + y / x) - y -> x - y % x */ (simplify (minus (mult:cs @0 (plus:s (trunc_div:s @1 @0) integer_onep)) @1) (if (INTEGRAL_TYPE_P (type)) (minus @0 (trunc_mod @1 @0)))) /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR, i.e. "X % C" into "X & (C - 1)", if X and C are positive. Also optimize A % (C << N) where C is a power of 2, to A & ((C << N) - 1). Also optimize "A shift (B % C)", if C is a power of 2, to "A shift (B & (C - 1))". SHIFT operation include "<<" and ">>" and assume (B % C) is nonnegative as shifts negative values would be UB. */ (match (power_of_two_cand @1) INTEGER_CST@1) (match (power_of_two_cand @1) (lshift INTEGER_CST@1 @2)) (for mod (trunc_mod floor_mod) (for shift (lshift rshift) (simplify (shift @0 (mod @1 (power_of_two_cand@2 @3))) (if (integer_pow2p (@3) && tree_int_cst_sgn (@3) > 0) (shift @0 (bit_and @1 (minus @2 { build_int_cst (TREE_TYPE (@2), 1); })))))) (simplify (mod @0 (convert? (power_of_two_cand@1 @2))) (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0)) /* Allow any integral conversions of the divisor, except conversion from narrower signed to wider unsigned type where if @1 would be negative power of two, the divisor would not be a power of two. */ && INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (@1)) && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1)) || TYPE_UNSIGNED (TREE_TYPE (@1)) || !TYPE_UNSIGNED (type)) && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0) (with { tree utype = TREE_TYPE (@1); if (!TYPE_OVERFLOW_WRAPS (utype)) utype = unsigned_type_for (utype); } (bit_and @0 (convert (minus (convert:utype @1) { build_one_cst (utype); }))))))) /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */ (simplify (trunc_div (mult @0 integer_pow2p@1) @1) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0))) (bit_and @0 { wide_int_to_tree (type, wi::mask (TYPE_PRECISION (type) - wi::exact_log2 (wi::to_wide (@1)), false, TYPE_PRECISION (type))); }))) /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */ (simplify (mult (trunc_div @0 integer_pow2p@1) @1) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0))) (bit_and @0 (negate @1)))) /* Simplify (t * 2) / 2) -> t. */ (for div (trunc_div ceil_div floor_div round_div exact_div) (simplify (div (mult:c @0 @1) @1) (if (ANY_INTEGRAL_TYPE_P (type)) (if (TYPE_OVERFLOW_UNDEFINED (type)) @0 #if GIMPLE (with { bool overflowed = true; value_range vr0, vr1; if (INTEGRAL_TYPE_P (type) && get_global_range_query ()->range_of_expr (vr0, @0) && get_global_range_query ()->range_of_expr (vr1, @1) && !vr0.varying_p () && !vr0.undefined_p () && !vr1.varying_p () && !vr1.undefined_p ()) { wide_int wmin0 = vr0.lower_bound (); wide_int wmax0 = vr0.upper_bound (); wide_int wmin1 = vr1.lower_bound (); wide_int wmax1 = vr1.upper_bound (); /* If the multiplication can't overflow/wrap around, then it can be optimized too. */ wi::overflow_type min_ovf, max_ovf; wi::mul (wmin0, wmin1, TYPE_SIGN (type), &min_ovf); wi::mul (wmax0, wmax1, TYPE_SIGN (type), &max_ovf); if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE) { wi::mul (wmin0, wmax1, TYPE_SIGN (type), &min_ovf); wi::mul (wmax0, wmin1, TYPE_SIGN (type), &max_ovf); if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE) overflowed = false; } } } (if (!overflowed) @0)) #endif )))) #if GIMPLE (for div (trunc_div exact_div) /* Simplify (X + M*N) / N -> X / N + M. */ (simplify (div (plus:c@4 @0 (mult:c@3 @1 @2)) @2) (with {value_range vr0, vr1, vr2, vr3, vr4;} (if (INTEGRAL_TYPE_P (type) && get_range_query (cfun)->range_of_expr (vr1, @1) && get_range_query (cfun)->range_of_expr (vr2, @2) /* "N*M" doesn't overflow. */ && range_op_handler (MULT_EXPR).overflow_free_p (vr1, vr2) && get_range_query (cfun)->range_of_expr (vr0, @0) && get_range_query (cfun)->range_of_expr (vr3, @3) /* "X+(N*M)" doesn't overflow. */ && range_op_handler (PLUS_EXPR).overflow_free_p (vr0, vr3) && get_range_query (cfun)->range_of_expr (vr4, @4) /* "X+N*M" is not with opposite sign as "X". */ && (TYPE_UNSIGNED (type) || (vr0.nonnegative_p () && vr4.nonnegative_p ()) || (vr0.nonpositive_p () && vr4.nonpositive_p ()))) (plus (div @0 @2) @1)))) /* Simplify (X - M*N) / N -> X / N - M. */ (simplify (div (minus@4 @0 (mult:c@3 @1 @2)) @2) (with {value_range vr0, vr1, vr2, vr3, vr4;} (if (INTEGRAL_TYPE_P (type) && get_range_query (cfun)->range_of_expr (vr1, @1) && get_range_query (cfun)->range_of_expr (vr2, @2) /* "N * M" doesn't overflow. */ && range_op_handler (MULT_EXPR).overflow_free_p (vr1, vr2) && get_range_query (cfun)->range_of_expr (vr0, @0) && get_range_query (cfun)->range_of_expr (vr3, @3) /* "X - (N*M)" doesn't overflow. */ && range_op_handler (MINUS_EXPR).overflow_free_p (vr0, vr3) && get_range_query (cfun)->range_of_expr (vr4, @4) /* "X-N*M" is not with opposite sign as "X". */ && (TYPE_UNSIGNED (type) || (vr0.nonnegative_p () && vr4.nonnegative_p ()) || (vr0.nonpositive_p () && vr4.nonpositive_p ()))) (minus (div @0 @2) @1))))) /* Simplify (X + C) / N -> X / N + C / N where C is multiple of N. (X + C) >> N -> X >> N + C>>N if low N bits of C is 0. */ (for op (trunc_div exact_div rshift) (simplify (op (plus@3 @0 INTEGER_CST@1) INTEGER_CST@2) (with { wide_int c = wi::to_wide (@1); wide_int n = wi::to_wide (@2); bool shift = op == RSHIFT_EXPR; #define plus_op1(v) (shift ? wi::rshift (v, n, TYPE_SIGN (type)) \ : wi::div_trunc (v, n, TYPE_SIGN (type))) #define exact_mod(v) (shift ? wi::ctz (v) >= n.to_shwi () \ : wi::multiple_of_p (v, n, TYPE_SIGN (type))) value_range vr0, vr1, vr3; } (if (INTEGRAL_TYPE_P (type) && get_range_query (cfun)->range_of_expr (vr0, @0)) (if (exact_mod (c) && get_range_query (cfun)->range_of_expr (vr1, @1) /* "X+C" doesn't overflow. */ && range_op_handler (PLUS_EXPR).overflow_free_p (vr0, vr1) && get_range_query (cfun)->range_of_expr (vr3, @3) /* "X+C" and "X" are not of opposite sign. */ && (TYPE_UNSIGNED (type) || (vr0.nonnegative_p () && vr3.nonnegative_p ()) || (vr0.nonpositive_p () && vr3.nonpositive_p ()))) (plus (op @0 @2) { wide_int_to_tree (type, plus_op1 (c)); }) (if (TYPE_UNSIGNED (type) && c.sign_mask () < 0 && exact_mod (-c) /* unsigned "X-(-C)" doesn't underflow. */ && wi::geu_p (vr0.lower_bound (), -c)) (plus (op @0 @2) { wide_int_to_tree (type, -plus_op1 (-c)); }))))))) #undef plus_op1 #undef exact_mod #endif /* (nop_outer_cast)-(inner_cast)var -> -(outer_cast)(var) if var is smaller in precision. This is always safe for both doing the negative in signed or unsigned as the value for undefined will not show up. */ (simplify (convert (negate:s@1 (convert:s @0))) (if (INTEGRAL_TYPE_P (type) && tree_nop_conversion_p (type, TREE_TYPE (@1)) && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))) (negate (convert @0)))) (for op (negate abs) /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */ (for coss (COS COSH) (simplify (coss (op @0)) (coss @0))) /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */ (for pows (POW) (simplify (pows (op @0) REAL_CST@1) (with { HOST_WIDE_INT n; } (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0) (pows @0 @1))))) /* Likewise for powi. */ (for pows (POWI) (simplify (pows (op @0) INTEGER_CST@1) (if ((wi::to_wide (@1) & 1) == 0) (pows @0 @1)))) /* Strip negate and abs from both operands of hypot. */ (for hypots (HYPOT) (simplify (hypots (op @0) @1) (hypots @0 @1)) (simplify (hypots @0 (op @1)) (hypots @0 @1))) /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */ (for copysigns (COPYSIGN_ALL) (simplify (copysigns (op @0) @1) (copysigns @0 @1)))) /* abs(x)*abs(x) -> x*x. Should be valid for all types. */ (simplify (mult (abs@1 @0) @1) (mult @0 @0)) /* Convert absu(x)*absu(x) -> x*x. */ (simplify (mult (absu@1 @0) @1) (mult (convert@2 @0) @2)) /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */ (for coss (COS COSH) copysigns (COPYSIGN) (simplify (coss (copysigns @0 @1)) (coss @0))) /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */ (for pows (POW) copysigns (COPYSIGN) (simplify (pows (copysigns @0 @2) REAL_CST@1) (with { HOST_WIDE_INT n; } (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0) (pows @0 @1))))) /* Likewise for powi. */ (for pows (POWI) copysigns (COPYSIGN) (simplify (pows (copysigns @0 @2) INTEGER_CST@1) (if ((wi::to_wide (@1) & 1) == 0) (pows @0 @1)))) (for hypots (HYPOT) copysigns (COPYSIGN) /* hypot(copysign(x, y), z) -> hypot(x, z). */ (simplify (hypots (copysigns @0 @1) @2) (hypots @0 @2)) /* hypot(x, copysign(y, z)) -> hypot(x, y). */ (simplify (hypots @0 (copysigns @1 @2)) (hypots @0 @1))) /* copysign(x, CST) -> [-]abs (x). */ (for copysigns (COPYSIGN_ALL) (simplify (copysigns @0 REAL_CST@1) (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1))) (negate (abs @0)) (abs @0)))) /* copysign(copysign(x, y), z) -> copysign(x, z). */ (for copysigns (COPYSIGN_ALL) (simplify (copysigns (copysigns @0 @1) @2) (copysigns @0 @2))) /* copysign(x,y)*copysign(x,y) -> x*x. */ (for copysigns (COPYSIGN_ALL) (simplify (mult (copysigns@2 @0 @1) @2) (mult @0 @0))) /* ccos(-x) -> ccos(x). Similarly for ccosh. */ (for ccoss (CCOS CCOSH) (simplify (ccoss (negate @0)) (ccoss @0))) /* cabs(-x) and cos(conj(x)) -> cabs(x). */ (for ops (conj negate) (for cabss (CABS) (simplify (cabss (ops @0)) (cabss @0)))) /* Fold (a * (1 << b)) into (a << b) */ (simplify (mult:c @0 (convert? (lshift integer_onep@1 @2))) (if (! FLOAT_TYPE_P (type) && tree_nop_conversion_p (type, TREE_TYPE (@1))) (lshift @0 @2))) /* Shifts by precision or greater result in zero. */ (for shift (lshift rshift) (simplify (shift @0 uniform_integer_cst_p@1) (if ((GIMPLE || !sanitize_flags_p (SANITIZE_SHIFT_EXPONENT)) /* Leave arithmetic right shifts of possibly negative values alone. */ && (TYPE_UNSIGNED (type) || shift == LSHIFT_EXPR || tree_expr_nonnegative_p (@0)) /* Use a signed compare to leave negative shift counts alone. */ && wi::ges_p (wi::to_wide (uniform_integer_cst_p (@1)), element_precision (type))) { build_zero_cst (type); }))) /* Shifts by constants distribute over several binary operations, hence (X << C) + (Y << C) can be simplified to (X + Y) << C. */ (for op (plus minus) (simplify (op (lshift:s @0 @1) (lshift:s @2 @1)) (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type) && !TYPE_SATURATING (type)) (lshift (op @0 @2) @1)))) (for op (bit_and bit_ior bit_xor) (simplify (op (lshift:s @0 @1) (lshift:s @2 @1)) (if (INTEGRAL_TYPE_P (type)) (lshift (op @0 @2) @1))) (simplify (op (rshift:s @0 @1) (rshift:s @2 @1)) (if (INTEGRAL_TYPE_P (type)) (rshift (op @0 @2) @1)))) /* Fold (1 << (C - x)) where C = precision(type) - 1 into ((1 << C) >> x). */ (simplify (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3)) (if (INTEGRAL_TYPE_P (type) && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1) && single_use (@1)) (if (TYPE_UNSIGNED (type)) (rshift (lshift @0 @2) @3) (with { tree utype = unsigned_type_for (type); } (convert (rshift (lshift (convert:utype @0) @2) @3)))))) /* Fold ((type)(a<0)) << SIGNBITOFA into ((type)a) & signbit. */ (simplify (lshift (convert (lt @0 integer_zerop@1)) INTEGER_CST@2) (if (TYPE_SIGN (TREE_TYPE (@0)) == SIGNED && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (TREE_TYPE (@0)) - 1)) (with { wide_int wone = wi::one (TYPE_PRECISION (type)); } (bit_and (convert @0) { wide_int_to_tree (type, wi::lshift (wone, wi::to_wide (@2))); })))) /* Fold (-x >> C) into -(x > 0) where C = precision(type) - 1. */ (for cst (INTEGER_CST VECTOR_CST) (simplify (rshift (negate:s @0) cst@1) (if (!TYPE_UNSIGNED (type) && TYPE_OVERFLOW_UNDEFINED (type)) (with { tree stype = TREE_TYPE (@1); tree bt = truth_type_for (type); tree zeros = build_zero_cst (type); tree cst = NULL_TREE; } (switch /* Handle scalar case. */ (if (INTEGRAL_TYPE_P (type) /* If we apply the rule to the scalar type before vectorization we will enforce the result of the comparison being a bool which will require an extra AND on the result that will be indistinguishable from when the user did actually want 0 or 1 as the result so it can't be removed. */ && canonicalize_math_after_vectorization_p () && wi::eq_p (wi::to_wide (@1), TYPE_PRECISION (type) - 1)) (negate (convert (gt @0 { zeros; })))) /* Handle vector case. */ (if (VECTOR_INTEGER_TYPE_P (type) /* First check whether the target has the same mode for vector comparison results as it's operands do. */ && TYPE_MODE (bt) == TYPE_MODE (type) /* Then check to see if the target is able to expand the comparison with the given type later on, otherwise we may ICE. */ && expand_vec_cmp_expr_p (type, bt, GT_EXPR) && (cst = uniform_integer_cst_p (@1)) != NULL && wi::eq_p (wi::to_wide (cst), element_precision (type) - 1)) (view_convert (gt:bt @0 { zeros; })))))))) /* Fold (C1/X)*C2 into (C1*C2)/X. */ (simplify (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2) (if (flag_associative_math && single_use (@3)) (with { tree tem = const_binop (MULT_EXPR, type, @0, @2); } (if (tem) (rdiv { tem; } @1))))) /* Simplify ~X & X as zero. */ (simplify (bit_and (convert? @0) (convert? @1)) (with { bool wascmp; } (if (types_match (TREE_TYPE (@0), TREE_TYPE (@1)) && bitwise_inverted_equal_p (@0, @1, wascmp)) { wascmp ? constant_boolean_node (false, type) : build_zero_cst (type); }))) /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */ (simplify (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep)) (if (TYPE_UNSIGNED (type)) (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1))))) (for bitop (bit_and bit_ior) cmp (eq ne) /* PR35691: Transform (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0. (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */ (simplify (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop)) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && INTEGRAL_TYPE_P (TREE_TYPE (@1)) && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))) (cmp (bit_ior @0 (convert @1)) @2))) /* Transform: (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1. (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */ (simplify (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp)) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && INTEGRAL_TYPE_P (TREE_TYPE (@1)) && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))) (cmp (bit_and @0 (convert @1)) @2)))) /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */ (simplify (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1)) (minus (bit_xor @0 @1) @1)) (simplify (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1)) (if (~wi::to_wide (@2) == wi::to_wide (@1)) (minus (bit_xor @0 @1) @1))) /* Fold (A & B) - (A & ~B) into B - (A ^ B). */ (simplify (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1))) (minus @1 (bit_xor @0 @1))) /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */ (for op (bit_ior bit_xor plus) (simplify (op (bit_and:c @0 @2) (bit_and:c @3 @1)) (with { bool wascmp0, wascmp1; } (if (bitwise_inverted_equal_p (@2, @1, wascmp0) && bitwise_inverted_equal_p (@0, @3, wascmp1) && ((!wascmp0 && !wascmp1) || element_precision (type) == 1)) (bit_xor @0 @1))))) /* PR53979: Transform ((a ^ b) | a) -> (a | b) */ (simplify (bit_ior:c (bit_xor:c @0 @1) @0) (bit_ior @0 @1)) /* (a & ~b) | (a ^ b) --> a ^ b */ (simplify (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1)) @2) /* (a & ~b) ^ ~a --> ~(a & b) */ (simplify (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0)) (bit_not (bit_and @0 @1))) /* (~a & b) ^ a --> (a | b) */ (simplify (bit_xor:c (bit_and:cs (bit_not @0) @1) @0) (bit_ior @0 @1)) /* (a | b) & ~(a ^ b) --> a & b */ (simplify (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1))) (bit_and @0 @1)) /* (a | b) & (a == b) --> a & b (boolean version of the above). */ (simplify (bit_and:c (bit_ior @0 @1) (nop_convert? (eq:c @0 @1))) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_PRECISION (TREE_TYPE (@0)) == 1) (bit_and @0 @1))) /* a | ~(a ^ b) --> a | ~b */ (simplify (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1))) (bit_ior @0 (bit_not @1))) /* a | (a == b) --> a | (b^1) (boolean version of the above). */ (simplify (bit_ior:c @0 (nop_convert? (eq:c @0 @1))) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_PRECISION (TREE_TYPE (@0)) == 1) (bit_ior @0 (bit_xor @1 { build_one_cst (type); })))) /* (a | b) | (a &^ b) --> a | b */ (for op (bit_and bit_xor) (simplify (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1)) @2)) /* (a & b) | ~(a ^ b) --> ~(a ^ b) */ (simplify (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1))) @2) /* (a & b) | (a == b) --> a == b */ (simplify (bit_ior:c (bit_and:c @0 @1) (nop_convert?@2 (eq @0 @1))) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_PRECISION (TREE_TYPE (@0)) == 1) @2)) /* ~(~a & b) --> a | ~b */ (simplify (bit_not (bit_and:cs (bit_not @0) @1)) (bit_ior @0 (bit_not @1))) /* ~(~a | b) --> a & ~b */ (simplify (bit_not (bit_ior:cs (bit_not @0) @1)) (bit_and @0 (bit_not @1))) /* (a ^ b) & ((b ^ c) ^ a) --> (a ^ b) & ~c */ (simplify (bit_and:c (bit_xor:c@3 @0 @1) (bit_xor:cs (bit_xor:cs @1 @2) @0)) (bit_and @3 (bit_not @2))) /* (a ^ b) | ((b ^ c) ^ a) --> (a ^ b) | c */ (simplify (bit_ior:c (bit_xor:c@3 @0 @1) (bit_xor:c (bit_xor:c @1 @2) @0)) (bit_ior @3 @2)) /* (~X | C) ^ D -> (X | C) ^ (~D ^ C) if (~D ^ C) can be simplified. */ (simplify (bit_xor:c (bit_ior:cs (bit_not:s @0) @1) @2) (bit_xor (bit_ior @0 @1) (bit_xor! (bit_not! @2) @1))) /* (~X & C) ^ D -> (X & C) ^ (D ^ C) if (D ^ C) can be simplified. */ (simplify (bit_xor:c (bit_and:cs (bit_not:s @0) @1) @2) (bit_xor (bit_and @0 @1) (bit_xor! @2 @1))) /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */ (simplify (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0) (bit_xor @0 @1))) /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M, ((A & N) + B) & M -> (A + B) & M Similarly if (N & M) == 0, ((A | N) + B) & M -> (A + B) & M and for - instead of + (or unary - instead of +) and/or ^ instead of |. If B is constant and (B & M) == 0, fold into A & M. */ (for op (plus minus) (for bitop (bit_and bit_ior bit_xor) (simplify (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2) (with { tree pmop[2]; tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop, @3, @4, @1, ERROR_MARK, NULL_TREE, NULL_TREE, pmop); } (if (utype) (convert (bit_and (op (convert:utype { pmop[0]; }) (convert:utype { pmop[1]; })) (convert:utype @2)))))) (simplify (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2) (with { tree pmop[2]; tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK, NULL_TREE, NULL_TREE, @1, bitop, @3, @4, pmop); } (if (utype) (convert (bit_and (op (convert:utype { pmop[0]; }) (convert:utype { pmop[1]; })) (convert:utype @2))))))) (simplify (bit_and (op:s @0 @1) INTEGER_CST@2) (with { tree pmop[2]; tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK, NULL_TREE, NULL_TREE, @1, ERROR_MARK, NULL_TREE, NULL_TREE, pmop); } (if (utype) (convert (bit_and (op (convert:utype { pmop[0]; }) (convert:utype { pmop[1]; })) (convert:utype @2))))))) (for bitop (bit_and bit_ior bit_xor) (simplify (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1) (with { tree pmop[2]; tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0, bitop, @2, @3, NULL_TREE, ERROR_MARK, NULL_TREE, NULL_TREE, pmop); } (if (utype) (convert (bit_and (negate (convert:utype { pmop[0]; })) (convert:utype @1))))))) /* X % Y is smaller than Y. */ (for cmp (lt ge) (simplify (cmp (trunc_mod @0 @1) @1) (if (TYPE_UNSIGNED (TREE_TYPE (@0))) { constant_boolean_node (cmp == LT_EXPR, type); }))) (for cmp (gt le) (simplify (cmp @1 (trunc_mod @0 @1)) (if (TYPE_UNSIGNED (TREE_TYPE (@0))) { constant_boolean_node (cmp == GT_EXPR, type); }))) /* x | ~0 -> ~0 */ (simplify (bit_ior @0 integer_all_onesp@1) @1) /* x | 0 -> x */ (simplify (bit_ior @0 integer_zerop) @0) /* x & 0 -> 0 */ (simplify (bit_and @0 integer_zerop@1) @1) /* ~x | x -> -1 */ /* ~x ^ x -> -1 */ (for op (bit_ior bit_xor) (simplify (op (convert? @0) (convert? @1)) (with { bool wascmp; } (if (types_match (TREE_TYPE (@0), TREE_TYPE (@1)) && bitwise_inverted_equal_p (@0, @1, wascmp)) (convert { wascmp ? constant_boolean_node (true, type) : build_all_ones_cst (TREE_TYPE (@0)); }))))) /* x ^ x -> 0 */ (simplify (bit_xor @0 @0) { build_zero_cst (type); }) /* Canonicalize X ^ ~0 to ~X. */ (simplify (bit_xor @0 integer_all_onesp@1) (bit_not @0)) /* x & ~0 -> x */ (simplify (bit_and @0 integer_all_onesp) (non_lvalue @0)) /* x & x -> x, x | x -> x */ (for bitop (bit_and bit_ior) (simplify (bitop @0 @0) (non_lvalue @0))) /* x & C -> x if we know that x & ~C == 0. */ #if GIMPLE (simplify (bit_and SSA_NAME@0 INTEGER_CST@1) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0) @0)) /* x | C -> C if we know that x & ~C == 0. */ (simplify (bit_ior SSA_NAME@0 INTEGER_CST@1) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0) @1)) #endif /* ~(~X - Y) -> X + Y and ~(~X + Y) -> X - Y. */ (simplify (bit_not (minus (bit_not @0) @1)) (plus @0 @1)) (simplify (bit_not (plus:c (bit_not @0) @1)) (minus @0 @1)) /* (~X - ~Y) -> Y - X. */ (simplify (minus (bit_not @0) (bit_not @1)) (if (!TYPE_OVERFLOW_SANITIZED (type)) (with { tree utype = unsigned_type_for (type); } (convert (minus (convert:utype @1) (convert:utype @0)))))) /* ~(X - Y) -> ~X + Y. */ (simplify (bit_not (minus:s @0 @1)) (plus (bit_not @0) @1)) (simplify (bit_not (plus:s @0 INTEGER_CST@1)) (if ((INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type)) || (!TYPE_OVERFLOW_SANITIZED (type) && may_negate_without_overflow_p (@1))) (plus (bit_not @0) { const_unop (NEGATE_EXPR, type, @1); }))) #if GIMPLE /* ~X + Y -> (Y - X) - 1. */ (simplify (plus:c (bit_not @0) @1) (if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type) /* -1 - X is folded to ~X, so we'd recurse endlessly. */ && !integer_all_onesp (@1)) (plus (minus @1 @0) { build_minus_one_cst (type); }) (if (INTEGRAL_TYPE_P (type) && TREE_CODE (@1) == INTEGER_CST && wi::to_wide (@1) != wi::min_value (TYPE_PRECISION (type), SIGNED)) (minus (plus @1 { build_minus_one_cst (type); }) @0)))) #endif /* ~(X >> Y) -> ~X >> Y if ~X can be simplified. */ (simplify (bit_not (rshift:s @0 @1)) (if (!TYPE_UNSIGNED (TREE_TYPE (@0))) (rshift (bit_not! @0) @1) /* For logical right shifts, this is possible only if @0 doesn't have MSB set and the logical right shift is changed into arithmetic shift. */ (if (INTEGRAL_TYPE_P (type) && !wi::neg_p (tree_nonzero_bits (@0))) (with { tree stype = signed_type_for (TREE_TYPE (@0)); } (convert (rshift (bit_not! (convert:stype @0)) @1)))))) /* x + (x & 1) -> (x + 1) & ~1 */ (simplify (plus:c @0 (bit_and:s @0 integer_onep@1)) (bit_and (plus @0 @1) (bit_not @1))) /* x & ~(x & y) -> x & ~y */ /* x | ~(x | y) -> x | ~y */ (for bitop (bit_and bit_ior) (simplify (bitop:c @0 (bit_not (bitop:cs @0 @1))) (bitop @0 (bit_not @1)))) /* (~x & y) | ~(x | y) -> ~x */ (simplify (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1))) @2) /* (x | y) ^ (x | ~y) -> ~x */ (simplify (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1))) (bit_not @0)) /* (x & y) | ~(x | y) -> ~(x ^ y) */ (simplify (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1))) (bit_not (bit_xor @0 @1))) /* (~x | y) ^ (x ^ y) -> x | ~y */ (simplify (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1)) (bit_ior @0 (bit_not @1))) /* (x ^ y) | ~(x | y) -> ~(x & y) */ (simplify (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1))) (bit_not (bit_and @0 @1))) /* (x & y) ^ (x | y) -> x ^ y */ (simplify (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1)) (bit_xor @0 @1)) /* (x ^ y) ^ (x | y) -> x & y */ (simplify (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1)) (bit_and @0 @1)) /* (x & y) + (x ^ y) -> x | y */ /* (x & y) | (x ^ y) -> x | y */ /* (x & y) ^ (x ^ y) -> x | y */ (for op (plus bit_ior bit_xor) (simplify (op:c (bit_and @0 @1) (bit_xor @0 @1)) (bit_ior @0 @1))) /* (x & y) + (x | y) -> x + y */ (simplify (plus:c (bit_and @0 @1) (bit_ior @0 @1)) (plus @0 @1)) /* (x + y) - (x | y) -> x & y */ (simplify (minus (plus @0 @1) (bit_ior @0 @1)) (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type) && !TYPE_SATURATING (type)) (bit_and @0 @1))) /* (x + y) - (x & y) -> x | y */ (simplify (minus (plus @0 @1) (bit_and @0 @1)) (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type) && !TYPE_SATURATING (type)) (bit_ior @0 @1))) /* (x | y) - y -> (x & ~y) */ (simplify (minus (bit_ior:cs @0 @1) @1) (bit_and @0 (bit_not @1))) /* (x | y) - (x ^ y) -> x & y */ (simplify (minus (bit_ior @0 @1) (bit_xor @0 @1)) (bit_and @0 @1)) /* (x | y) - (x & y) -> x ^ y */ (simplify (minus (bit_ior @0 @1) (bit_and @0 @1)) (bit_xor @0 @1)) /* (x | y) & ~(x & y) -> x ^ y */ (simplify (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1))) (bit_xor @0 @1)) /* (x | y) & (~x ^ y) -> x & y */ (simplify (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 @2)) (with { bool wascmp; } (if (bitwise_inverted_equal_p (@0, @2, wascmp) && (!wascmp || element_precision (type) == 1)) (bit_and @0 @1)))) /* (~x | y) & (x | ~y) -> ~(x ^ y) */ (simplify (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1))) (bit_not (bit_xor @0 @1))) /* (~x | y) ^ (x | ~y) -> x ^ y */ (simplify (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1))) (bit_xor @0 @1)) /* ((x & y) - (x | y)) - 1 -> ~(x ^ y) */ (simplify (plus (nop_convert1? (minus@2 (nop_convert2? (bit_and:c @0 @1)) (nop_convert2? (bit_ior @0 @1)))) integer_all_onesp) (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type) && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)) && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2)) && !TYPE_SATURATING (TREE_TYPE (@2))) (bit_not (convert (bit_xor @0 @1))))) (simplify (minus (nop_convert1? (plus@2 (nop_convert2? (bit_and:c @0 @1)) integer_all_onesp)) (nop_convert3? (bit_ior @0 @1))) (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type) && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)) && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2)) && !TYPE_SATURATING (TREE_TYPE (@2))) (bit_not (convert (bit_xor @0 @1))))) (simplify (minus (nop_convert1? (bit_and @0 @1)) (nop_convert2? (plus@2 (nop_convert3? (bit_ior:c @0 @1)) integer_onep))) (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type) && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)) && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2)) && !TYPE_SATURATING (TREE_TYPE (@2))) (bit_not (convert (bit_xor @0 @1))))) /* ~x & ~y -> ~(x | y) ~x | ~y -> ~(x & y) */ (for op (bit_and bit_ior) rop (bit_ior bit_and) (simplify (op (convert1? (bit_not @0)) (convert2? (bit_not @1))) (if (element_precision (type) <= element_precision (TREE_TYPE (@0)) && element_precision (type) <= element_precision (TREE_TYPE (@1))) (bit_not (rop (convert @0) (convert @1)))))) /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing with a constant, and the two constants have no bits in common, we should treat this as a BIT_IOR_EXPR since this may produce more simplifications. */ (for op (bit_xor plus) (simplify (op (convert1? (bit_and@4 @0 INTEGER_CST@1)) (convert2? (bit_and@5 @2 INTEGER_CST@3))) (if (tree_nop_conversion_p (type, TREE_TYPE (@0)) && tree_nop_conversion_p (type, TREE_TYPE (@2)) && (wi::to_wide (@1) & wi::to_wide (@3)) == 0) (bit_ior (convert @4) (convert @5))))) /* (X | Y) ^ X -> Y & ~ X*/ (simplify (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0)) (if (tree_nop_conversion_p (type, TREE_TYPE (@0))) (convert (bit_and @1 (bit_not @0))))) /* (~X | Y) ^ X -> ~(X & Y). */ (simplify (bit_xor:c (nop_convert1? (bit_ior:c (nop_convert2? (bit_not @0)) @1)) @2) (if (bitwise_equal_p (@0, @2)) (convert (bit_not (bit_and @0 (convert @1)))))) /* Convert ~X ^ ~Y to X ^ Y. */ (simplify (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1))) (if (element_precision (type) <= element_precision (TREE_TYPE (@0)) && element_precision (type) <= element_precision (TREE_TYPE (@1))) (bit_xor (convert @0) (convert @1)))) /* Convert ~X ^ C to X ^ ~C. */ (simplify (bit_xor (convert? (bit_not @0)) INTEGER_CST@1) (if (tree_nop_conversion_p (type, TREE_TYPE (@0))) (bit_xor (convert @0) (bit_not @1)))) /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */ (for opo (bit_and bit_xor) opi (bit_xor bit_and) (simplify (opo:c (opi:cs @0 @1) @1) (bit_and (bit_not @0) @1))) /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both operands are another bit-wise operation with a common input. If so, distribute the bit operations to save an operation and possibly two if constants are involved. For example, convert (A | B) & (A | C) into A | (B & C) Further simplification will occur if B and C are constants. */ (for op (bit_and bit_ior bit_xor) rop (bit_ior bit_and bit_and) (simplify (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2))) (if (tree_nop_conversion_p (type, TREE_TYPE (@1)) && tree_nop_conversion_p (type, TREE_TYPE (@2))) (rop (convert @0) (op (convert @1) (convert @2)))))) /* Some simple reassociation for bit operations, also handled in reassoc. */ /* (X & Y) & Y -> X & Y (X | Y) | Y -> X | Y */ (for op (bit_and bit_ior) (simplify (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1)) @2)) /* (X ^ Y) ^ Y -> X */ (simplify (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1)) (convert @0)) /* (X & Y) & (X & Z) -> (X & Y) & Z (X | Y) | (X | Z) -> (X | Y) | Z */ (for op (bit_and bit_ior) (simplify (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2))) (if (tree_nop_conversion_p (type, TREE_TYPE (@1)) && tree_nop_conversion_p (type, TREE_TYPE (@2))) (if (single_use (@5) && single_use (@6)) (op @3 (convert @2)) (if (single_use (@3) && single_use (@4)) (op (convert @1) @5)))))) /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */ (simplify (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2))) (if (tree_nop_conversion_p (type, TREE_TYPE (@1)) && tree_nop_conversion_p (type, TREE_TYPE (@2))) (bit_xor (convert @1) (convert @2)))) /* Convert abs (abs (X)) into abs (X). also absu (absu (X)) into absu (X). */ (simplify (abs (abs@1 @0)) @1) (simplify (absu (convert@2 (absu@1 @0))) (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1))) @1)) /* Convert abs[u] (-X) -> abs[u] (X). */ (simplify (abs (negate @0)) (abs @0)) (simplify (absu (negate @0)) (absu @0)) /* Convert abs[u] (X) where X is nonnegative -> (X). */ (simplify (abs tree_expr_nonnegative_p@0) @0) (simplify (absu tree_expr_nonnegative_p@0) (convert @0)) /* Simplify (-(X < 0) | 1) * X into abs (X) or absu(X). */ (simplify (mult:c (nop_convert1? (bit_ior (nop_convert2? (negate (convert? (lt @0 integer_zerop)))) integer_onep)) (nop_convert3? @0)) (if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (@0)) && !TYPE_UNSIGNED (TREE_TYPE (@0))) (if (TYPE_UNSIGNED (type)) (absu @0) (abs @0) ) ) ) /* A few cases of fold-const.cc negate_expr_p predicate. */ (match negate_expr_p INTEGER_CST (if ((INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type)) || (!TYPE_OVERFLOW_SANITIZED (type) && may_negate_without_overflow_p (t))))) (match negate_expr_p FIXED_CST) (match negate_expr_p (negate @0) (if (!TYPE_OVERFLOW_SANITIZED (type)))) (match negate_expr_p REAL_CST (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t))))) /* VECTOR_CST handling of non-wrapping types would recurse in unsupported ways. */ (match negate_expr_p VECTOR_CST (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type)))) (match negate_expr_p (minus @0 @1) (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)) || (FLOAT_TYPE_P (type) && !HONOR_SIGN_DEPENDENT_ROUNDING (type) && !HONOR_SIGNED_ZEROS (type))))) /* (-A) * (-B) -> A * B */ (simplify (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1)) (if (tree_nop_conversion_p (type, TREE_TYPE (@0)) && tree_nop_conversion_p (type, TREE_TYPE (@1))) (mult (convert @0) (convert (negate @1))))) /* -(A + B) -> (-B) - A. */ (simplify (negate (plus:c @0 negate_expr_p@1)) (if (!HONOR_SIGN_DEPENDENT_ROUNDING (type) && !HONOR_SIGNED_ZEROS (type)) (minus (negate @1) @0))) /* -(A - B) -> B - A. */ (simplify (negate (minus @0 @1)) (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type)) || (FLOAT_TYPE_P (type) && !HONOR_SIGN_DEPENDENT_ROUNDING (type) && !HONOR_SIGNED_ZEROS (type))) (minus @1 @0))) (simplify (negate (pointer_diff @0 @1)) (if (TYPE_OVERFLOW_UNDEFINED (type)) (pointer_diff @1 @0))) /* A - B -> A + (-B) if B is easily negatable. */ (simplify (minus @0 negate_expr_p@1) (if (!FIXED_POINT_TYPE_P (type)) (plus @0 (negate @1)))) /* 1 - a is a ^ 1 if a had a bool range. */ /* This is only enabled for gimple as sometimes cfun is not set for the function which contains the SSA_NAME (e.g. while IPA passes are happening, fold might be called). */ (simplify (minus integer_onep@0 SSA_NAME@1) (if (INTEGRAL_TYPE_P (type) && ssa_name_has_boolean_range (@1)) (bit_xor @1 @0))) /* Other simplifications of negation (c.f. fold_negate_expr_1). */ (simplify (negate (mult:c@0 @1 negate_expr_p@2)) (if (! TYPE_UNSIGNED (type) && ! HONOR_SIGN_DEPENDENT_ROUNDING (type) && single_use (@0)) (mult @1 (negate @2)))) (simplify (negate (rdiv@0 @1 negate_expr_p@2)) (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type) && single_use (@0)) (rdiv @1 (negate @2)))) (simplify (negate (rdiv@0 negate_expr_p@1 @2)) (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type) && single_use (@0)) (rdiv (negate @1) @2))) /* Fold -((int)x >> (prec - 1)) into (unsigned)x >> (prec - 1). */ (simplify (negate (convert? (rshift @0 INTEGER_CST@1))) (if (tree_nop_conversion_p (type, TREE_TYPE (@0)) && wi::to_wide (@1) == element_precision (type) - 1) (with { tree stype = TREE_TYPE (@0); tree ntype = TYPE_UNSIGNED (stype) ? signed_type_for (stype) : unsigned_type_for (stype); } (if (VECTOR_TYPE_P (type)) (view_convert (rshift (view_convert:ntype @0) @1)) (convert (rshift (convert:ntype @0) @1)))))) /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST)) when profitable. For bitwise binary operations apply operand conversions to the binary operation result instead of to the operands. This allows to combine successive conversions and bitwise binary operations. We combine the above two cases by using a conditional convert. */ (for bitop (bit_and bit_ior bit_xor) (simplify (bitop (convert@2 @0) (convert?@3 @1)) (if (((TREE_CODE (@1) == INTEGER_CST && INTEGRAL_TYPE_P (TREE_TYPE (@0)) && (int_fits_type_p (@1, TREE_TYPE (@0)) || tree_nop_conversion_p (TREE_TYPE (@0), type))) || types_match (@0, @1)) && !POINTER_TYPE_P (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)) && TREE_CODE (TREE_TYPE (@0)) != OFFSET_TYPE /* ??? This transform conflicts with fold-const.cc doing Convert (T)(x & c) into (T)x & (T)c, if c is an integer constants (if x has signed type, the sign bit cannot be set in c). This folds extension into the BIT_AND_EXPR. Restrict it to GIMPLE to avoid endless recursions. */ && (bitop != BIT_AND_EXPR || GIMPLE) && (/* That's a good idea if the conversion widens the operand, thus after hoisting the conversion the operation will be narrower. It is also a good if the conversion is a nop as moves the conversion to one side; allowing for combining of the conversions. */ TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type) /* The conversion check for being a nop can only be done at the gimple level as fold_binary has some re-association code which can conflict with this if there is a "constant" which is not a full INTEGER_CST. */ || (GIMPLE && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type)) /* It's also a good idea if the conversion is to a non-integer mode. */ || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT /* Or if the precision of TO is not the same as the precision of its mode. */ || !type_has_mode_precision_p (type) /* In GIMPLE, getting rid of 2 conversions for one new results in smaller IL. */ || (GIMPLE && TREE_CODE (@1) != INTEGER_CST && tree_nop_conversion_p (type, TREE_TYPE (@0)) && single_use (@2) && single_use (@3)))) (convert (bitop @0 (convert @1))))) /* In GIMPLE, getting rid of 2 conversions for one new results in smaller IL. */ (simplify (convert (bitop:cs@2 (nop_convert:s @0) @1)) (if (GIMPLE && TREE_CODE (@1) != INTEGER_CST && tree_nop_conversion_p (type, TREE_TYPE (@2)) && types_match (type, @0) && !POINTER_TYPE_P (TREE_TYPE (@0)) && TREE_CODE (TREE_TYPE (@0)) != OFFSET_TYPE) (bitop @0 (convert @1))))) (for bitop (bit_and bit_ior) rbitop (bit_ior bit_and) /* (x | y) & x -> x */ /* (x & y) | x -> x */ (simplify (bitop:c (rbitop:c @0 @1) @0) @0) /* (~x | y) & x -> x & y */ /* (~x & y) | x -> x | y */ (simplify (bitop:c (rbitop:c @2 @1) @0) (with { bool wascmp; } (if (bitwise_inverted_equal_p (@0, @2, wascmp) && (!wascmp || element_precision (type) == 1)) (bitop @0 @1)))) /* (x | y) & (x & z) -> (x & z) */ /* (x & y) | (x | z) -> (x | z) */ (simplify (bitop:c (rbitop:c @0 @1) (bitop:c@3 @0 @2)) @3) /* (x | c) & ~(y | c) -> x & ~(y | c) */ /* (x & c) | ~(y & c) -> x | ~(y & c) */ (simplify (bitop:c (rbitop:c @0 @1) (bit_not@3 (rbitop:c @1 @2))) (bitop @0 @3)) /* x & ~(y | x) -> 0 */ /* x | ~(y & x) -> -1 */ (simplify (bitop:c @0 (bit_not (rbitop:c @0 @1))) (if (bitop == BIT_AND_EXPR) { build_zero_cst (type); } { build_minus_one_cst (type); }))) /* ((x | y) & z) | x -> (z & y) | x ((x ^ y) & z) | x -> (z & y) | x */ (for op (bit_ior bit_xor) (simplify (bit_ior:c (nop_convert1?:s (bit_and:cs (nop_convert2?:s (op:cs @0 @1)) @2)) @3) (if (bitwise_equal_p (@0, @3)) (convert (bit_ior (bit_and @1 (convert @2)) (convert @0)))))) /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */ (simplify (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2) (bit_ior (bit_and @0 @2) (bit_and! @1 @2))) /* Combine successive equal operations with constants. */ (for bitop (bit_and bit_ior bit_xor) (simplify (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2) (if (!CONSTANT_CLASS_P (@0)) /* This is the canonical form regardless of whether (bitop @1 @2) can be folded to a constant. */ (bitop @0 (bitop! @1 @2)) /* In this case we have three constants and (bitop @0 @1) doesn't fold to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if the values involved are such that the operation can't be decided at compile time. Try folding one of @0 or @1 with @2 to see whether that combination can be decided at compile time. Keep the existing form if both folds fail, to avoid endless oscillation. */ (with { tree cst1 = const_binop (bitop, type, @0, @2); } (if (cst1) (bitop @1 { cst1; }) (with { tree cst2 = const_binop (bitop, type, @1, @2); } (if (cst2) (bitop @0 { cst2; })))))))) /* Try simple folding for X op !X, and X op X with the help of the truth_valued_p and logical_inverted_value predicates. */ (match truth_valued_p @0 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))) (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor) (match truth_valued_p (op @0 @1))) (match truth_valued_p (truth_not @0)) (match (logical_inverted_value @0) (truth_not @0)) (match (logical_inverted_value @0) (bit_not truth_valued_p@0)) (match (logical_inverted_value @0) (eq @0 integer_zerop)) (match (logical_inverted_value @0) (ne truth_valued_p@0 integer_truep)) (match (logical_inverted_value @0) (bit_xor truth_valued_p@0 integer_truep)) /* X & !X -> 0. */ (simplify (bit_and:c @0 (logical_inverted_value @0)) { build_zero_cst (type); }) /* X | !X and X ^ !X -> 1, , if X is truth-valued. */ (for op (bit_ior bit_xor) (simplify (op:c truth_valued_p@0 (logical_inverted_value @0)) { constant_boolean_node (true, type); })) /* X ==/!= !X is false/true. */ (for op (eq ne) (simplify (op:c truth_valued_p@0 (logical_inverted_value @0)) { constant_boolean_node (op == NE_EXPR ? true : false, type); })) /* ~~x -> x */ (simplify (bit_not (bit_not @0)) @0) /* zero_one_valued_p will match when a value is known to be either 0 or 1 including constants 0 or 1. Signed 1-bits includes -1 so they cannot match here. */ (match zero_one_valued_p @0 (if (INTEGRAL_TYPE_P (type) && (TYPE_UNSIGNED (type) || TYPE_PRECISION (type) > 1) && wi::leu_p (tree_nonzero_bits (@0), 1)))) (match zero_one_valued_p truth_valued_p@0 (if (INTEGRAL_TYPE_P (type) && (TYPE_UNSIGNED (type) || TYPE_PRECISION (type) > 1)))) /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 }. */ (simplify (mult zero_one_valued_p@0 zero_one_valued_p@1) (if (INTEGRAL_TYPE_P (type)) (bit_and @0 @1))) (for cmp (tcc_comparison) icmp (inverted_tcc_comparison) /* Fold (((a < b) & c) | ((a >= b) & d)) into (a < b ? c : d) & 1. */ (simplify (bit_ior (bit_and:c (convert? (cmp@0 @01 @02)) @3) (bit_and:c (convert? (icmp@4 @01 @02)) @5)) (if (INTEGRAL_TYPE_P (type) && invert_tree_comparison (cmp, HONOR_NANS (@01)) == icmp /* The scalar version has to be canonicalized after vectorization because it makes unconditional loads conditional ones, which means we lose vectorization because the loads may trap. */ && canonicalize_math_after_vectorization_p ()) (bit_and (cond @0 @3 @5) { build_one_cst (type); }))) /* Fold ((-(a < b) & c) | (-(a >= b) & d)) into a < b ? c : d. This is canonicalized further and we recognize the conditional form: (a < b ? c : 0) | (a >= b ? d : 0) into a < b ? c : d. */ (simplify (bit_ior (cond (cmp@0 @01 @02) @3 zerop) (cond (icmp@4 @01 @02) @5 zerop)) (if (INTEGRAL_TYPE_P (type) && invert_tree_comparison (cmp, HONOR_NANS (@01)) == icmp /* The scalar version has to be canonicalized after vectorization because it makes unconditional loads conditional ones, which means we lose vectorization because the loads may trap. */ && canonicalize_math_after_vectorization_p ()) (cond @0 @3 @5))) /* Vector Fold (((a < b) & c) | ((a >= b) & d)) into a < b ? c : d. and ((~(a < b) & c) | (~(a >= b) & d)) into a < b ? c : d. */ (simplify (bit_ior (bit_and:c (vec_cond:s (cmp@0 @6 @7) @4 @5) @2) (bit_and:c (vec_cond:s (icmp@1 @6 @7) @4 @5) @3)) (if (integer_zerop (@5) && invert_tree_comparison (cmp, HONOR_NANS (@6)) == icmp) (switch (if (integer_onep (@4)) (bit_and (vec_cond @0 @2 @3) @4)) (if (integer_minus_onep (@4)) (vec_cond @0 @2 @3))) (if (integer_zerop (@4) && invert_tree_comparison (cmp, HONOR_NANS (@6)) == icmp) (switch (if (integer_onep (@5)) (bit_and (vec_cond @0 @3 @2) @5)) (if (integer_minus_onep (@5)) (vec_cond @0 @3 @2)))))) /* Scalar Vectorized Fold ((-(a < b) & c) | (-(a >= b) & d)) into a < b ? d : c. */ (simplify (bit_ior (vec_cond:s (cmp@0 @4 @5) @2 integer_zerop) (vec_cond:s (icmp@1 @4 @5) @3 integer_zerop)) (if (invert_tree_comparison (cmp, HONOR_NANS (@4)) == icmp) (vec_cond @0 @2 @3)))) /* Transform X & -Y into X * Y when Y is { 0 or 1 }. */ (simplify (bit_and:c (convert? (negate zero_one_valued_p@0)) @1) (if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TREE_CODE (TREE_TYPE (@0)) != BOOLEAN_TYPE /* Sign extending of the neg or a truncation of the neg is needed. */ && (!TYPE_UNSIGNED (TREE_TYPE (@0)) || TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))) (mult (convert @0) @1))) /* Narrow integer multiplication by a zero_one_valued_p operand. Multiplication by [0,1] is guaranteed not to overflow. */ (simplify (convert (mult@0 zero_one_valued_p@1 INTEGER_CST@2)) (if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@0))) (mult (convert @1) (convert @2)))) /* (X << C) != 0 can be simplified to X, when C is zero_one_valued_p. Check that the shift is well-defined (C is less than TYPE_PRECISION) as some targets (such as x86's SSE) may return zero for larger C. */ (simplify (ne (lshift zero_one_valued_p@0 INTEGER_CST@1) integer_zerop@2) (if (tree_fits_shwi_p (@1) && tree_to_shwi (@1) > 0 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0))) (convert @0))) /* (X << C) == 0 can be simplified to X == 0, when C is zero_one_valued_p. Check that the shift is well-defined (C is less than TYPE_PRECISION) as some targets (such as x86's SSE) may return zero for larger C. */ (simplify (eq (lshift zero_one_valued_p@0 INTEGER_CST@1) integer_zerop@2) (if (tree_fits_shwi_p (@1) && tree_to_shwi (@1) > 0 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0))) (eq @0 @2))) /* Convert ~ (-A) to A - 1. */ (simplify (bit_not (convert? (negate @0))) (if (element_precision (type) <= element_precision (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@0))) (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); })))) /* Convert - (~A) to A + 1. */ (simplify (negate (nop_convert? (bit_not @0))) (plus (view_convert @0) { build_each_one_cst (type); })) /* (a & b) ^ (a == b) -> !(a | b) */ /* (a & b) == (a ^ b) -> !(a | b) */ (for first_op (bit_xor eq) second_op (eq bit_xor) (simplify (first_op:c (bit_and:c truth_valued_p@0 truth_valued_p@1) (second_op:c @0 @1)) (bit_not (bit_ior @0 @1)))) /* Convert ~ (A - 1) or ~ (A + -1) to -A. */ (simplify (bit_not (convert? (minus @0 integer_each_onep))) (if (element_precision (type) <= element_precision (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@0))) (convert (negate @0)))) (simplify (bit_not (convert? (plus @0 integer_all_onesp))) (if (element_precision (type) <= element_precision (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@0))) (convert (negate @0)))) /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */ (simplify (bit_not (convert? (bit_xor @0 INTEGER_CST@1))) (if (tree_nop_conversion_p (type, TREE_TYPE (@0))) (convert (bit_xor @0 (bit_not @1))))) (simplify (bit_not (convert? (bit_xor:c (bit_not @0) @1))) (if (tree_nop_conversion_p (type, TREE_TYPE (@0))) (convert (bit_xor @0 @1)))) /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */ (simplify (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1) (if (tree_nop_conversion_p (type, TREE_TYPE (@0))) (bit_not (bit_xor (view_convert @0) @1)))) /* ~(a ^ b) is a == b for truth valued a and b. */ (simplify (bit_not (bit_xor:s truth_valued_p@0 truth_valued_p@1)) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_PRECISION (TREE_TYPE (@0)) == 1) (convert (eq @0 @1)))) /* (~a) == b is a ^ b for truth valued a and b. */ (simplify (eq:c (bit_not:s truth_valued_p@0) truth_valued_p@1) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_PRECISION (TREE_TYPE (@0)) == 1) (convert (bit_xor @0 @1)))) /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */ (simplify (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2)) (bit_xor (bit_and (bit_xor @0 @1) @2) @0)) /* Fold A - (A & B) into ~B & A. */ (simplify (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1))) (if (tree_nop_conversion_p (type, TREE_TYPE (@0)) && tree_nop_conversion_p (type, TREE_TYPE (@1))) (convert (bit_and (bit_not @1) @0)))) /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */ (if (!canonicalize_math_p ()) (for cmp (tcc_comparison) (simplify (mult:c (convert (cmp@0 @1 @2)) @3) (if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (@0))) (cond @0 @3 { build_zero_cst (type); }))) /* (-(m1 CMP m2)) & d -> (m1 CMP m2) ? d : 0 */ (simplify (bit_and:c (negate (convert (cmp@0 @1 @2))) @3) (if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (@0))) (cond @0 @3 { build_zero_cst (type); }))) ) ) /* For integral types with undefined overflow and C != 0 fold x * C EQ/NE y * C into x EQ/NE y. */ (for cmp (eq ne) (simplify (cmp (mult:c @0 @1) (mult:c @2 @1)) (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)) && tree_expr_nonzero_p (@1)) (cmp @0 @2)))) /* For integral types with wrapping overflow and C odd fold x * C EQ/NE y * C into x EQ/NE y. */ (for cmp (eq ne) (simplify (cmp (mult @0 INTEGER_CST@1) (mult @2 @1)) (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)) && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)) && (TREE_INT_CST_LOW (@1) & 1) != 0) (cmp @0 @2)))) /* For integral types with undefined overflow and C != 0 fold x * C RELOP y * C into: x RELOP y for nonnegative C y RELOP x for negative C */ (for cmp (lt gt le ge) (simplify (cmp (mult:c @0 @1) (mult:c @2 @1)) (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))) (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1)) (cmp @0 @2) (if (TREE_CODE (@1) == INTEGER_CST && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1)))) (cmp @2 @0)))))) /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */ (for cmp (le gt) icmp (gt le) (simplify (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0)) && TYPE_PRECISION (TREE_TYPE (@0)) > 1 && (wi::to_wide (@2) == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1)) (with { tree stype = signed_type_for (TREE_TYPE (@0)); } (icmp (convert:stype @0) { build_int_cst (stype, 0); }))))) /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */ (for cmp (simple_comparison) (simplify (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2))) (if (element_precision (@3) >= element_precision (@0) && types_match (@0, @1)) (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))) (if (!TYPE_UNSIGNED (TREE_TYPE (@3))) (cmp @1 @0) (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1)) (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); } (cmp (convert:utype @1) (convert:utype @0))))) (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2)))) (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3))) (cmp @0 @1) (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); } (cmp (convert:utype @0) (convert:utype @1))))))))) /* X / C1 op C2 into a simple range test. */ (for cmp (simple_comparison) (simplify (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && integer_nonzerop (@1) && !TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)) (with { tree lo, hi; bool neg_overflow; enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi, &neg_overflow); } (switch (if (code == LT_EXPR || code == GE_EXPR) (if (TREE_OVERFLOW (lo)) { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); } (if (code == LT_EXPR) (lt @0 { lo; }) (ge @0 { lo; })))) (if (code == LE_EXPR || code == GT_EXPR) (if (TREE_OVERFLOW (hi)) { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); } (if (code == LE_EXPR) (le @0 { hi; }) (gt @0 { hi; })))) (if (!lo && !hi) { build_int_cst (type, code == NE_EXPR); }) (if (code == EQ_EXPR && !hi) (ge @0 { lo; })) (if (code == EQ_EXPR && !lo) (le @0 { hi; })) (if (code == NE_EXPR && !hi) (lt @0 { lo; })) (if (code == NE_EXPR && !lo) (gt @0 { hi; })) (if (GENERIC) { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR, lo, hi); }) (with { tree etype = range_check_type (TREE_TYPE (@0)); if (etype) { hi = fold_convert (etype, hi); lo = fold_convert (etype, lo); hi = const_binop (MINUS_EXPR, etype, hi, lo); } } (if (etype && hi && !TREE_OVERFLOW (hi)) (if (code == EQ_EXPR) (le (minus (convert:etype @0) { lo; }) { hi; }) (gt (minus (convert:etype @0) { lo; }) { hi; }))))))))) /* X + Z < Y + Z is the same as X < Y when there is no overflow. */ (for op (lt le ge gt) (simplify (op (plus:c @0 @2) (plus:c @1 @2)) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))) (op @0 @1)))) /* As a special case, X + C < Y + C is the same as (signed) X < (signed) Y when C is an unsigned integer constant with only the MSB set, and X and Y have types of equal or lower integer conversion rank than C's. */ (for op (lt le ge gt) (simplify (op (plus @1 INTEGER_CST@0) (plus @2 @0)) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0)) && wi::only_sign_bit_p (wi::to_wide (@0))) (with { tree stype = signed_type_for (TREE_TYPE (@0)); } (op (convert:stype @1) (convert:stype @2)))))) /* For equality and subtraction, this is also true with wrapping overflow. */ (for op (eq ne minus) (simplify (op (plus:c @0 @2) (plus:c @1 @2)) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)) || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))) (op @0 @1)))) /* X - Z < Y - Z is the same as X < Y when there is no overflow. */ (for op (lt le ge gt) (simplify (op (minus @0 @2) (minus @1 @2)) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))) (op @0 @1)))) /* For equality and subtraction, this is also true with wrapping overflow. */ (for op (eq ne minus) (simplify (op (minus @0 @2) (minus @1 @2)) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)) || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))) (op @0 @1)))) /* And for pointers... */ (for op (simple_comparison) (simplify (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2)) (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))) (op @0 @1)))) (simplify (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2)) (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3)) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))) (pointer_diff @0 @1))) /* Z - X < Z - Y is the same as Y < X when there is no overflow. */ (for op (lt le ge gt) (simplify (op (minus @2 @0) (minus @2 @1)) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))) (op @1 @0)))) /* For equality and subtraction, this is also true with wrapping overflow. */ (for op (eq ne minus) (simplify (op (minus @2 @0) (minus @2 @1)) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)) || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))) (op @1 @0)))) /* And for pointers... */ (for op (simple_comparison) (simplify (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1)) (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))) (op @1 @0)))) (simplify (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1)) (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3)) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))) (pointer_diff @1 @0))) /* X + Y < Y is the same as X < 0 when there is no overflow. */ (for op (lt le gt ge) (simplify (op:c (plus:c@2 @0 @1) @1) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)) && (CONSTANT_CLASS_P (@0) || single_use (@2))) (op @0 { build_zero_cst (TREE_TYPE (@0)); })))) /* For equality, this is also true with wrapping overflow. */ (for op (eq ne) (simplify (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1)) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)) || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))) && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3))) && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2)) && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1))) (op @0 { build_zero_cst (TREE_TYPE (@0)); }))) (simplify (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0)) (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)) && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)) && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3)))) (op @1 { build_zero_cst (TREE_TYPE (@1)); })))) /* (&a + b) !=/== (&a[1] + c) -> (&a[0] - &a[1]) + b !=/== c */ (for neeq (ne eq) (simplify (neeq:c ADDR_EXPR@0 (pointer_plus @2 @3)) (with { poly_int64 diff; tree inner_type = TREE_TYPE (@3);} (if (ptr_difference_const (@0, @2, &diff)) (neeq { build_int_cst_type (inner_type, diff); } @3)))) (simplify (neeq (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3)) (with { poly_int64 diff; tree inner_type = TREE_TYPE (@1);} (if (ptr_difference_const (@0, @2, &diff)) (neeq (plus { build_int_cst_type (inner_type, diff); } @1) @3))))) /* X - Y < X is the same as Y > 0 when there is no overflow. For equality, this is also true with wrapping overflow. */ (for op (simple_comparison) (simplify (op:c @0 (minus@2 @0 @1)) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)) || ((op == EQ_EXPR || op == NE_EXPR) && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))) && (CONSTANT_CLASS_P (@1) || single_use (@2))) (op @1 { build_zero_cst (TREE_TYPE (@1)); })))) /* Transform: (X / Y) == 0 -> X < Y if X, Y are unsigned. (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */ (for cmp (eq ne) ocmp (lt ge) (simplify (cmp (trunc_div @0 @1) integer_zerop) (if (TYPE_UNSIGNED (TREE_TYPE (@0)) /* Complex ==/!= is allowed, but not =. */ && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0)))) (ocmp @0 @1)))) /* X == C - X can never be true if C is odd. */ (for cmp (eq ne) (simplify (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0)))) (if (TREE_INT_CST_LOW (@1) & 1) { constant_boolean_node (cmp == NE_EXPR, type); }))) /* Arguments on which one can call get_nonzero_bits to get the bits possibly set. */ (match with_possible_nonzero_bits INTEGER_CST@0) (match with_possible_nonzero_bits SSA_NAME@0 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0))))) /* Slightly extended version, do not make it recursive to keep it cheap. */ (match (with_possible_nonzero_bits2 @0) with_possible_nonzero_bits@0) (match (with_possible_nonzero_bits2 @0) (bit_and:c with_possible_nonzero_bits@0 @2)) /* Same for bits that are known to be set, but we do not have an equivalent to get_nonzero_bits yet. */ (match (with_certain_nonzero_bits2 @0) INTEGER_CST@0) (match (with_certain_nonzero_bits2 @0) (bit_ior @1 INTEGER_CST@0)) /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */ (for cmp (eq ne) (simplify (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1)) (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0) { constant_boolean_node (cmp == NE_EXPR, type); }))) /* ((X inner_op C0) outer_op C1) With X being a tree where value_range has reasoned certain bits to always be zero throughout its computed value range, inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op where zero_mask has 1's for all bits that are sure to be 0 in and 0's otherwise. if (inner_op == '^') C0 &= ~C1; if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1) if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1) */ (for inner_op (bit_ior bit_xor) outer_op (bit_xor bit_ior) (simplify (outer_op (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1) (with { bool fail = false; wide_int zero_mask_not; wide_int C0; wide_int cst_emit; if (TREE_CODE (@2) == SSA_NAME) zero_mask_not = get_nonzero_bits (@2); else fail = true; if (inner_op == BIT_XOR_EXPR) { C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1)); cst_emit = C0 | wi::to_wide (@1); } else { C0 = wi::to_wide (@0); cst_emit = C0 ^ wi::to_wide (@1); } } (if (!fail && (C0 & zero_mask_not) == 0) (outer_op @2 { wide_int_to_tree (type, cst_emit); }) (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0) (inner_op @2 { wide_int_to_tree (type, cst_emit); })))))) /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */ (simplify (pointer_plus (pointer_plus:s @0 @1) @3) (pointer_plus @0 (plus @1 @3))) #if GENERIC (simplify (pointer_plus (convert:s (pointer_plus:s @0 @1)) @3) (convert:type (pointer_plus @0 (plus @1 @3)))) #endif /* Pattern match tem1 = (long) ptr1; tem2 = (long) ptr2; tem3 = tem2 - tem1; tem4 = (unsigned long) tem3; tem5 = ptr1 + tem4; and produce tem5 = ptr2; */ (simplify (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0)))) /* Conditionally look through a sign-changing conversion. */ (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3)) && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1))) || (GENERIC && type == TREE_TYPE (@1)))) @1)) (simplify (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0))) (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3))) (convert @1))) /* Pattern match tem = (sizetype) ptr; tem = tem & algn; tem = -tem; ... = ptr p+ tem; and produce the simpler and easier to analyze with respect to alignment ... = ptr & ~algn; */ (simplify (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1))) (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); } (bit_and @0 { algn; }))) /* Try folding difference of addresses. */ (simplify (minus (convert ADDR_EXPR@0) (convert (pointer_plus @1 @2))) (if (tree_nop_conversion_p (type, TREE_TYPE (@0))) (with { poly_int64 diff; } (if (ptr_difference_const (@0, @1, &diff)) (minus { build_int_cst_type (type, diff); } (convert @2)))))) (simplify (minus (convert (pointer_plus @0 @2)) (convert ADDR_EXPR@1)) (if (tree_nop_conversion_p (type, TREE_TYPE (@0))) (with { poly_int64 diff; } (if (ptr_difference_const (@0, @1, &diff)) (plus (convert @2) { build_int_cst_type (type, diff); }))))) (simplify (minus (convert ADDR_EXPR@0) (convert @1)) (if (tree_nop_conversion_p (type, TREE_TYPE (@0))) (with { poly_int64 diff; } (if (ptr_difference_const (@0, @1, &diff)) { build_int_cst_type (type, diff); })))) (simplify (minus (convert @0) (convert ADDR_EXPR@1)) (if (tree_nop_conversion_p (type, TREE_TYPE (@0))) (with { poly_int64 diff; } (if (ptr_difference_const (@0, @1, &diff)) { build_int_cst_type (type, diff); })))) (simplify (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1)) (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0)) && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1))) (with { poly_int64 diff; } (if (ptr_difference_const (@0, @1, &diff)) { build_int_cst_type (type, diff); })))) (simplify (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1)) (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0)) && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1))) (with { poly_int64 diff; } (if (ptr_difference_const (@0, @1, &diff)) { build_int_cst_type (type, diff); })))) /* (&a+b) - (&a[1] + c) -> sizeof(a[0]) + (b - c) */ (simplify (pointer_diff (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3)) (with { poly_int64 diff; } (if (ptr_difference_const (@0, @2, &diff)) (plus { build_int_cst_type (type, diff); } (convert (minus @1 @3)))))) /* (p + b) - &p->d -> offsetof (*p, d) + b */ (simplify (pointer_diff (pointer_plus @0 @1) ADDR_EXPR@2) (with { poly_int64 diff; } (if (ptr_difference_const (@0, @2, &diff)) (plus { build_int_cst_type (type, diff); } (convert @1))))) (simplify (pointer_diff ADDR_EXPR@0 (pointer_plus @1 @2)) (with { poly_int64 diff; } (if (ptr_difference_const (@0, @1, &diff)) (minus { build_int_cst_type (type, diff); } (convert @2))))) /* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst]. */ (simplify (convert (pointer_diff @0 INTEGER_CST@1)) (if (POINTER_TYPE_P (type)) { build_fold_addr_expr_with_type (build2 (MEM_REF, char_type_node, @0, wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))), type); })) /* If arg0 is derived from the address of an object or function, we may be able to fold this expression using the object or function's alignment. */ (simplify (bit_and (convert? @0) INTEGER_CST@1) (if (POINTER_TYPE_P (TREE_TYPE (@0)) && tree_nop_conversion_p (type, TREE_TYPE (@0))) (with { unsigned int align; unsigned HOST_WIDE_INT bitpos; get_pointer_alignment_1 (@0, &align, &bitpos); } (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT)) { wide_int_to_tree (type, (wi::to_wide (@1) & (bitpos / BITS_PER_UNIT))); })))) (match min_value uniform_integer_cst_p (with { tree int_cst = uniform_integer_cst_p (t); tree inner_type = TREE_TYPE (int_cst); } (if ((INTEGRAL_TYPE_P (inner_type) || POINTER_TYPE_P (inner_type)) && wi::eq_p (wi::to_wide (int_cst), wi::min_value (inner_type)))))) (match max_value uniform_integer_cst_p (with { tree int_cst = uniform_integer_cst_p (t); tree itype = TREE_TYPE (int_cst); } (if ((INTEGRAL_TYPE_P (itype) || POINTER_TYPE_P (itype)) && wi::eq_p (wi::to_wide (int_cst), wi::max_value (itype)))))) /* x > y && x != XXX_MIN --> x > y x > y && x == XXX_MIN --> false . */ (for eqne (eq ne) (simplify (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value)) (switch (if (eqne == EQ_EXPR) { constant_boolean_node (false, type); }) (if (eqne == NE_EXPR) @2) ))) /* x < y && x != XXX_MAX --> x < y x < y && x == XXX_MAX --> false. */ (for eqne (eq ne) (simplify (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value)) (switch (if (eqne == EQ_EXPR) { constant_boolean_node (false, type); }) (if (eqne == NE_EXPR) @2) ))) /* x <= y && x == XXX_MIN --> x == XXX_MIN. */ (simplify (bit_and:c (le:c @0 @1) (eq@2 @0 min_value)) @2) /* x >= y && x == XXX_MAX --> x == XXX_MAX. */ (simplify (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value)) @2) /* x > y || x != XXX_MIN --> x != XXX_MIN. */ (simplify (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value)) @2) /* x <= y || x != XXX_MIN --> true. */ (simplify (bit_ior:c (le:c @0 @1) (ne @0 min_value)) { constant_boolean_node (true, type); }) /* x <= y || x == XXX_MIN --> x <= y. */ (simplify (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value)) @2) /* x < y || x != XXX_MAX --> x != XXX_MAX. */ (simplify (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value)) @2) /* x >= y || x != XXX_MAX --> true x >= y || x == XXX_MAX --> x >= y. */ (for eqne (eq ne) (simplify (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value)) (switch (if (eqne == EQ_EXPR) @2) (if (eqne == NE_EXPR) { constant_boolean_node (true, type); })))) /* y == XXX_MIN || x < y --> x <= y - 1 */ (simplify (bit_ior:c (eq:s @1 min_value) (lt:cs @0 @1)) (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)) && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1))) (le @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); })))) /* y != XXX_MIN && x >= y --> x > y - 1 */ (simplify (bit_and:c (ne:s @1 min_value) (ge:cs @0 @1)) (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)) && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1))) (gt @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); })))) /* Convert (X == CST1) && (X OP2 CST2) to a known value based on CST1 OP2 CST2. Similarly for (X != CST1). */ /* Convert (X == Y) && (X OP2 Y) to a known value if X is an integral type. Similarly for (X != Y). */ (for code1 (eq ne) (for code2 (eq ne lt gt le ge) (simplify (bit_and:c (code1@3 @0 @1) (code2@4 @0 @2)) (if ((TREE_CODE (@1) == INTEGER_CST && TREE_CODE (@2) == INTEGER_CST) || ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1))) && operand_equal_p (@1, @2))) (with { int cmp = 0; if (TREE_CODE (@1) == INTEGER_CST && TREE_CODE (@2) == INTEGER_CST) cmp = tree_int_cst_compare (@1, @2); bool val; switch (code2) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp < 0); break; case GT_EXPR: val = (cmp > 0); break; case LE_EXPR: val = (cmp <= 0); break; case GE_EXPR: val = (cmp >= 0); break; default: gcc_unreachable (); } } (switch (if (code1 == EQ_EXPR && val) @3) (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); }) (if (code1 == NE_EXPR && !val) @4) (if (code1 == NE_EXPR && code2 == GE_EXPR && cmp == 0) (gt @0 @1)) (if (code1 == NE_EXPR && code2 == LE_EXPR && cmp == 0) (lt @0 @1)) ) ) ) ) ) ) /* Convert (X OP1 CST1) && (X OP2 CST2). Convert (X OP1 Y) && (X OP2 Y). */ (for code1 (lt le gt ge) (for code2 (lt le gt ge) (simplify (bit_and (code1:c@3 @0 @1) (code2:c@4 @0 @2)) (if ((TREE_CODE (@1) == INTEGER_CST && TREE_CODE (@2) == INTEGER_CST) || ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1))) && operand_equal_p (@1, @2))) (with { int cmp = 0; if (TREE_CODE (@1) == INTEGER_CST && TREE_CODE (@2) == INTEGER_CST) cmp = tree_int_cst_compare (@1, @2); } (switch /* Choose the more restrictive of two < or <= comparisons. */ (if ((code1 == LT_EXPR || code1 == LE_EXPR) && (code2 == LT_EXPR || code2 == LE_EXPR)) (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR)) @3 @4)) /* Likewise chose the more restrictive of two > or >= comparisons. */ (if ((code1 == GT_EXPR || code1 == GE_EXPR) && (code2 == GT_EXPR || code2 == GE_EXPR)) (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR)) @3 @4)) /* Check for singleton ranges. */ (if (cmp == 0 && ((code1 == LE_EXPR && code2 == GE_EXPR) || (code1 == GE_EXPR && code2 == LE_EXPR))) (eq @0 @1)) /* Check for disjoint ranges. */ (if (cmp <= 0 && (code1 == LT_EXPR || code1 == LE_EXPR) && (code2 == GT_EXPR || code2 == GE_EXPR)) { constant_boolean_node (false, type); }) (if (cmp >= 0 && (code1 == GT_EXPR || code1 == GE_EXPR) && (code2 == LT_EXPR || code2 == LE_EXPR)) { constant_boolean_node (false, type); }) )))))) /* Convert (X == CST1) || (X OP2 CST2) to a known value based on CST1 OP2 CST2. Similarly for (X != CST1). */ /* Convert (X == Y) || (X OP2 Y) to a known value if X is an integral type. Similarly for (X != Y). */ (for code1 (eq ne) (for code2 (eq ne lt gt le ge) (simplify (bit_ior:c (code1@3 @0 @1) (code2@4 @0 @2)) (if ((TREE_CODE (@1) == INTEGER_CST && TREE_CODE (@2) == INTEGER_CST) || ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1))) && operand_equal_p (@1, @2))) (with { int cmp = 0; if (TREE_CODE (@1) == INTEGER_CST && TREE_CODE (@2) == INTEGER_CST) cmp = tree_int_cst_compare (@1, @2); bool val; switch (code2) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp < 0); break; case GT_EXPR: val = (cmp > 0); break; case LE_EXPR: val = (cmp <= 0); break; case GE_EXPR: val = (cmp >= 0); break; default: gcc_unreachable (); } } (switch (if (code1 == EQ_EXPR && val) @4) (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); }) (if (code1 == NE_EXPR && !val) @3) (if (code1 == EQ_EXPR && code2 == GT_EXPR && cmp == 0) (ge @0 @1)) (if (code1 == EQ_EXPR && code2 == LT_EXPR && cmp == 0) (le @0 @1)) ) ) ) ) ) ) /* Convert (X OP1 CST1) || (X OP2 CST2). Convert (X OP1 Y) || (X OP2 Y). */ (for code1 (lt le gt ge) (for code2 (lt le gt ge) (simplify (bit_ior (code1@3 @0 @1) (code2@4 @0 @2)) (if ((TREE_CODE (@1) == INTEGER_CST && TREE_CODE (@2) == INTEGER_CST) || ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1))) && operand_equal_p (@1, @2))) (with { int cmp = 0; if (TREE_CODE (@1) == INTEGER_CST && TREE_CODE (@2) == INTEGER_CST) cmp = tree_int_cst_compare (@1, @2); } (switch /* Choose the more restrictive of two < or <= comparisons. */ (if ((code1 == LT_EXPR || code1 == LE_EXPR) && (code2 == LT_EXPR || code2 == LE_EXPR)) (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR)) @4 @3)) /* Likewise chose the more restrictive of two > or >= comparisons. */ (if ((code1 == GT_EXPR || code1 == GE_EXPR) && (code2 == GT_EXPR || code2 == GE_EXPR)) (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR)) @4 @3)) /* Check for singleton ranges. */ (if (cmp == 0 && ((code1 == LT_EXPR && code2 == GT_EXPR) || (code1 == GT_EXPR && code2 == LT_EXPR))) (ne @0 @2)) /* Check for disjoint ranges. */ (if (cmp >= 0 && (code1 == LT_EXPR || code1 == LE_EXPR) && (code2 == GT_EXPR || code2 == GE_EXPR)) { constant_boolean_node (true, type); }) (if (cmp <= 0 && (code1 == GT_EXPR || code1 == GE_EXPR) && (code2 == LT_EXPR || code2 == LE_EXPR)) { constant_boolean_node (true, type); }) )))))) /* We can't reassociate at all for saturating types. */ (if (!TYPE_SATURATING (type)) /* Contract negates. */ /* A + (-B) -> A - B */ (simplify (plus:c @0 (convert? (negate @1))) /* Apply STRIP_NOPS on the negate. */ (if (tree_nop_conversion_p (type, TREE_TYPE (@1)) && !TYPE_OVERFLOW_SANITIZED (type)) (with { tree t1 = type; if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1))) t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1); } (convert (minus (convert:t1 @0) (convert:t1 @1)))))) /* A - (-B) -> A + B */ (simplify (minus @0 (convert? (negate @1))) (if (tree_nop_conversion_p (type, TREE_TYPE (@1)) && !TYPE_OVERFLOW_SANITIZED (type)) (with { tree t1 = type; if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1))) t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1); } (convert (plus (convert:t1 @0) (convert:t1 @1)))))) /* -(T)(-A) -> (T)A Sign-extension is ok except for INT_MIN, which thankfully cannot happen without overflow. */ (simplify (negate (convert (negate @1))) (if (INTEGRAL_TYPE_P (type) && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1)) || (!TYPE_UNSIGNED (TREE_TYPE (@1)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1)))) && !TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1))) (convert @1))) (simplify (negate (convert negate_expr_p@1)) (if (SCALAR_FLOAT_TYPE_P (type) && ((DECIMAL_FLOAT_TYPE_P (type) == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)) && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1))) || !HONOR_SIGN_DEPENDENT_ROUNDING (type))) (convert (negate @1)))) (simplify (negate (nop_convert? (negate @1))) (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1))) (view_convert @1))) /* We can't reassociate floating-point unless -fassociative-math or fixed-point plus or minus because of saturation to +-Inf. */ (if ((!FLOAT_TYPE_P (type) || flag_associative_math) && !FIXED_POINT_TYPE_P (type)) /* Match patterns that allow contracting a plus-minus pair irrespective of overflow issues. */ /* (A +- B) - A -> +- B */ /* (A +- B) -+ B -> A */ /* A - (A +- B) -> -+ B */ /* A +- (B -+ A) -> +- B */ (simplify (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0) (view_convert @1)) (simplify (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0) (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type)) (negate (view_convert @1)) (view_convert (negate @1)))) (simplify (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1) (view_convert @0)) (simplify (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1))) (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type)) (negate (view_convert @1)) (view_convert (negate @1)))) (simplify (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1))) (view_convert @1)) /* (A +- B) + (C - A) -> C +- B */ /* (A + B) - (A - C) -> B + C */ /* More cases are handled with comparisons. */ (simplify (plus:c (plus:c @0 @1) (minus @2 @0)) (plus @2 @1)) (simplify (plus:c (minus @0 @1) (minus @2 @0)) (minus @2 @1)) (simplify (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0)) (if (TYPE_OVERFLOW_UNDEFINED (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))) (pointer_diff @2 @1))) (simplify (minus (plus:c @0 @1) (minus @0 @2)) (plus @1 @2)) /* (A +- CST1) +- CST2 -> A + CST3 Use view_convert because it is safe for vectors and equivalent for scalars. */ (for outer_op (plus minus) (for inner_op (plus minus) neg_inner_op (minus plus) (simplify (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1)) CONSTANT_CLASS_P@2) /* If one of the types wraps, use that one. */ (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type)) /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse forever if something doesn't simplify into a constant. */ (if (!CONSTANT_CLASS_P (@0)) (if (outer_op == PLUS_EXPR) (plus (view_convert @0) (inner_op! @2 (view_convert @1))) (minus (view_convert @0) (neg_inner_op! @2 (view_convert @1))))) (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))) (if (outer_op == PLUS_EXPR) (view_convert (plus @0 (inner_op! (view_convert @2) @1))) (view_convert (minus @0 (neg_inner_op! (view_convert @2) @1)))) /* If the constant operation overflows we cannot do the transform directly as we would introduce undefined overflow, for example with (a - 1) + INT_MIN. */ (if (types_match (type, @0) && !TYPE_OVERFLOW_SANITIZED (type)) (with { tree cst = const_binop (outer_op == inner_op ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); } (if (cst) (if (INTEGRAL_TYPE_P (type) && !TREE_OVERFLOW (cst)) (inner_op @0 { cst; } ) /* X+INT_MAX+1 is X-INT_MIN. */ (if (INTEGRAL_TYPE_P (type) && wi::to_wide (cst) == wi::min_value (type)) (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); }) /* Last resort, use some unsigned type. */ (with { tree utype = unsigned_type_for (type); } (if (utype) (view_convert (inner_op (view_convert:utype @0) (view_convert:utype { TREE_OVERFLOW (cst) ? drop_tree_overflow (cst) : cst; }))))))))))))))) /* (CST1 - A) +- CST2 -> CST3 - A */ (for outer_op (plus minus) (simplify (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2) /* If one of the types wraps, use that one. */ (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type)) /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse forever if something doesn't simplify into a constant. */ (if (!CONSTANT_CLASS_P (@0)) (minus (outer_op! (view_convert @1) @2) (view_convert @0))) (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))) (view_convert (minus (outer_op! @1 (view_convert @2)) @0)) (if (types_match (type, @0) && !TYPE_OVERFLOW_SANITIZED (type)) (with { tree cst = const_binop (outer_op, type, @1, @2); } (if (cst && !TREE_OVERFLOW (cst)) (minus { cst; } @0)))))))) /* CST1 - (CST2 - A) -> CST3 + A Use view_convert because it is safe for vectors and equivalent for scalars. */ (simplify (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0))) /* If one of the types wraps, use that one. */ (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type)) /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse forever if something doesn't simplify into a constant. */ (if (!CONSTANT_CLASS_P (@0)) (plus (view_convert @0) (minus! @1 (view_convert @2)))) (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))) (view_convert (plus @0 (minus! (view_convert @1) @2))) (if (types_match (type, @0) && !TYPE_OVERFLOW_SANITIZED (type)) (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); } (if (cst && !TREE_OVERFLOW (cst)) (plus { cst; } @0))))))) /* ((T)(A)) + CST -> (T)(A + CST) */ #if GIMPLE (simplify (plus (convert:s SSA_NAME@0) INTEGER_CST@1) (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE && TREE_CODE (type) == INTEGER_TYPE && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0)) && int_fits_type_p (@1, TREE_TYPE (@0))) /* Perform binary operation inside the cast if the constant fits and (A + CST)'s range does not overflow. */ (with { wi::overflow_type min_ovf = wi::OVF_OVERFLOW, max_ovf = wi::OVF_OVERFLOW; tree inner_type = TREE_TYPE (@0); wide_int w1 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type), TYPE_SIGN (inner_type)); value_range vr; if (get_global_range_query ()->range_of_expr (vr, @0) && !vr.varying_p () && !vr.undefined_p ()) { wide_int wmin0 = vr.lower_bound (); wide_int wmax0 = vr.upper_bound (); wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf); wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf); } } (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE) (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } ))) ))) #endif /* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */ #if GIMPLE (for op (plus minus) (simplify (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2) (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE && TREE_CODE (type) == INTEGER_TYPE && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)) && TYPE_OVERFLOW_WRAPS (type)) (plus (convert @0) (op @2 (convert @1)))))) #endif /* (T)(A) +- (T)(B) -> (T)(A +- B) only when (A +- B) could be simplified to a simple value. */ (for op (plus minus) (simplify (op (convert @0) (convert @1)) (if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)) && types_match (TREE_TYPE (@0), TREE_TYPE (@1)) && !TYPE_OVERFLOW_TRAPS (type) && !TYPE_OVERFLOW_SANITIZED (type)) (convert (op! @0 @1))))) /* ~A + A -> -1 */ (simplify (plus:c (convert? (bit_not @0)) (convert? @0)) (if (!TYPE_OVERFLOW_TRAPS (type)) (convert { build_all_ones_cst (TREE_TYPE (@0)); }))) /* ~A + 1 -> -A */ (simplify (plus (convert? (bit_not @0)) integer_each_onep) (if (tree_nop_conversion_p (type, TREE_TYPE (@0))) (negate (convert @0)))) /* -A - 1 -> ~A */ (simplify (minus (convert? (negate @0)) integer_each_onep) (if (!TYPE_OVERFLOW_TRAPS (type) && TREE_CODE (type) != COMPLEX_TYPE && tree_nop_conversion_p (type, TREE_TYPE (@0))) (bit_not (convert @0)))) /* -1 - A -> ~A */ (simplify (minus integer_all_onesp @0) (if (TREE_CODE (type) != COMPLEX_TYPE) (bit_not @0))) /* (T)(P + A) - (T)P -> (T) A */ (simplify (minus (convert (plus:c @@0 @1)) (convert? @0)) (if (element_precision (type) <= element_precision (TREE_TYPE (@1)) /* For integer types, if A has a smaller type than T the result depends on the possible overflow in P + A. E.g. T=size_t, A=(unsigned)429497295, P>0. However, if an overflow in P + A would cause undefined behavior, we can assume that there is no overflow. */ || (INTEGRAL_TYPE_P (TREE_TYPE (@1)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1)))) (convert @1))) (simplify (minus (convert (pointer_plus @@0 @1)) (convert @0)) (if (element_precision (type) <= element_precision (TREE_TYPE (@1)) /* For pointer types, if the conversion of A to the final type requires a sign- or zero-extension, then we have to punt - it is not defined which one is correct. */ || (POINTER_TYPE_P (TREE_TYPE (@0)) && TREE_CODE (@1) == INTEGER_CST && tree_int_cst_sign_bit (@1) == 0)) (convert @1))) (simplify (pointer_diff (pointer_plus @@0 @1) @0) /* The second argument of pointer_plus must be interpreted as signed, and thus sign-extended if necessary. */ (with { tree stype = signed_type_for (TREE_TYPE (@1)); } /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR second arg is unsigned even when we need to consider it as signed, we don't want to diagnose overflow here. */ (convert (view_convert:stype @1)))) /* (T)P - (T)(P + A) -> -(T) A */ (simplify (minus (convert? @0) (convert (plus:c @@0 @1))) (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type) /* For integer literals, using an intermediate unsigned type to avoid an overflow at run time is counter-productive because it introduces spurious overflows at compile time, in the form of TREE_OVERFLOW on the result, which may be problematic in GENERIC for some front-ends: (T)P - (T)(P + 4) -> (T)(-(U)4) -> (T)(4294967292) -> -4(OVF) so we use the direct path for them. */ && TREE_CODE (@1) != INTEGER_CST && element_precision (type) <= element_precision (TREE_TYPE (@1))) (with { tree utype = unsigned_type_for (type); } (convert (negate (convert:utype @1)))) (if (element_precision (type) <= element_precision (TREE_TYPE (@1)) /* For integer types, if A has a smaller type than T the result depends on the possible overflow in P + A. E.g. T=size_t, A=(unsigned)429497295, P>0. However, if an overflow in P + A would cause undefined behavior, we can assume that there is no overflow. */ || (INTEGRAL_TYPE_P (TREE_TYPE (@1)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1)))) (negate (convert @1))))) (simplify (minus (convert @0) (convert (pointer_plus @@0 @1))) (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type) /* See above the rationale for this condition. */ && TREE_CODE (@1) != INTEGER_CST && element_precision (type) <= element_precision (TREE_TYPE (@1))) (with { tree utype = unsigned_type_for (type); } (convert (negate (convert:utype @1)))) (if (element_precision (type) <= element_precision (TREE_TYPE (@1)) /* For pointer types, if the conversion of A to the final type requires a sign- or zero-extension, then we have to punt - it is not defined which one is correct. */ || (POINTER_TYPE_P (TREE_TYPE (@0)) && TREE_CODE (@1) == INTEGER_CST && tree_int_cst_sign_bit (@1) == 0)) (negate (convert @1))))) (simplify (pointer_diff @0 (pointer_plus @@0 @1)) /* The second argument of pointer_plus must be interpreted as signed, and thus sign-extended if necessary. */ (with { tree stype = signed_type_for (TREE_TYPE (@1)); } /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR second arg is unsigned even when we need to consider it as signed, we don't want to diagnose overflow here. */ (negate (convert (view_convert:stype @1))))) /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */ (simplify (minus (convert (plus:c @@0 @1)) (convert (plus:c @0 @2))) (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type) && element_precision (type) <= element_precision (TREE_TYPE (@1)) && element_precision (type) <= element_precision (TREE_TYPE (@2))) (with { tree utype = unsigned_type_for (type); } (convert (minus (convert:utype @1) (convert:utype @2)))) (if (((element_precision (type) <= element_precision (TREE_TYPE (@1))) == (element_precision (type) <= element_precision (TREE_TYPE (@2)))) && (element_precision (type) <= element_precision (TREE_TYPE (@1)) /* For integer types, if A has a smaller type than T the result depends on the possible overflow in P + A. E.g. T=size_t, A=(unsigned)429497295, P>0. However, if an overflow in P + A would cause undefined behavior, we can assume that there is no overflow. */ || (INTEGRAL_TYPE_P (TREE_TYPE (@1)) && INTEGRAL_TYPE_P (TREE_TYPE (@2)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2))))) (minus (convert @1) (convert @2))))) (simplify (minus (convert (pointer_plus @@0 @1)) (convert (pointer_plus @0 @2))) (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type) && element_precision (type) <= element_precision (TREE_TYPE (@1))) (with { tree utype = unsigned_type_for (type); } (convert (minus (convert:utype @1) (convert:utype @2)))) (if (element_precision (type) <= element_precision (TREE_TYPE (@1)) /* For pointer types, if the conversion of A to the final type requires a sign- or zero-extension, then we have to punt - it is not defined which one is correct. */ || (POINTER_TYPE_P (TREE_TYPE (@0)) && TREE_CODE (@1) == INTEGER_CST && tree_int_cst_sign_bit (@1) == 0 && TREE_CODE (@2) == INTEGER_CST && tree_int_cst_sign_bit (@2) == 0)) (minus (convert @1) (convert @2))))) (simplify (pointer_diff (pointer_plus @0 @2) (pointer_plus @1 @2)) (pointer_diff @0 @1)) (simplify (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2)) /* The second argument of pointer_plus must be interpreted as signed, and thus sign-extended if necessary. */ (with { tree stype = signed_type_for (TREE_TYPE (@1)); } /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR second arg is unsigned even when we need to consider it as signed, we don't want to diagnose overflow here. */ (minus (convert (view_convert:stype @1)) (convert (view_convert:stype @2))))))) /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1). Modeled after fold_plusminus_mult_expr. */ (if (!TYPE_SATURATING (type) && (!FLOAT_TYPE_P (type) || flag_associative_math)) (for plusminus (plus minus) (simplify (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2)) (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type) || (INTEGRAL_TYPE_P (type) && tree_expr_nonzero_p (@0) && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type))))) (if (single_use (@3) || single_use (@4)) /* If @1 +- @2 is constant require a hard single-use on either original operand (but not on both). */ (mult (plusminus @1 @2) @0) (mult! (plusminus @1 @2) @0) ))) /* We cannot generate constant 1 for fract. */ (if (!ALL_FRACT_MODE_P (TYPE_MODE (type))) (simplify (plusminus @0 (mult:c@3 @0 @2)) (if ((!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type) /* For @0 + @0*@2 this transformation would introduce UB (where there was none before) for @0 in [-1,0] and @2 max. For @0 - @0*@2 this transformation would introduce UB for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1. */ || (INTEGRAL_TYPE_P (type) && ((tree_expr_nonzero_p (@0) && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))) || (plusminus == PLUS_EXPR ? expr_not_equal_to (@2, wi::max_value (TYPE_PRECISION (type), SIGNED)) /* Let's ignore the @0 -1 and @2 min case. */ : (expr_not_equal_to (@2, wi::min_value (TYPE_PRECISION (type), SIGNED)) && expr_not_equal_to (@2, wi::min_value (TYPE_PRECISION (type), SIGNED) + 1)))))) && single_use (@3)) (mult (plusminus { build_one_cst (type); } @2) @0))) (simplify (plusminus (mult:c@3 @0 @2) @0) (if ((!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type) /* For @0*@2 + @0 this transformation would introduce UB (where there was none before) for @0 in [-1,0] and @2 max. For @0*@2 - @0 this transformation would introduce UB for @0 0 and @2 min. */ || (INTEGRAL_TYPE_P (type) && ((tree_expr_nonzero_p (@0) && (plusminus == MINUS_EXPR || expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type))))) || expr_not_equal_to (@2, (plusminus == PLUS_EXPR ? wi::max_value (TYPE_PRECISION (type), SIGNED) : wi::min_value (TYPE_PRECISION (type), SIGNED)))))) && single_use (@3)) (mult (plusminus @2 { build_one_cst (type); }) @0)))))) #if GIMPLE /* Canonicalize X + (X << C) into X * (1 + (1 << C)) and (X << C1) + (X << C2) into X * ((1 << C1) + (1 << C2)). */ (simplify (plus:c @0 (lshift:s @0 INTEGER_CST@1)) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && tree_fits_uhwi_p (@1) && tree_to_uhwi (@1) < element_precision (type) && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || optab_handler (smul_optab, TYPE_MODE (type)) != CODE_FOR_nothing)) (with { tree t = type; if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t); wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1), element_precision (type)); w += 1; tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t) : t, w); cst = build_uniform_cst (t, cst); } (convert (mult (convert:t @0) { cst; }))))) (simplify (plus (lshift:s @0 INTEGER_CST@1) (lshift:s @0 INTEGER_CST@2)) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && tree_fits_uhwi_p (@1) && tree_to_uhwi (@1) < element_precision (type) && tree_fits_uhwi_p (@2) && tree_to_uhwi (@2) < element_precision (type) && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || optab_handler (smul_optab, TYPE_MODE (type)) != CODE_FOR_nothing)) (with { tree t = type; if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t); unsigned int prec = element_precision (type); wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1), prec); w += wi::set_bit_in_zero (tree_to_uhwi (@2), prec); tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t) : t, w); cst = build_uniform_cst (t, cst); } (convert (mult (convert:t @0) { cst; }))))) #endif /* Canonicalize (X*C1)|(X*C2) and (X*C1)^(X*C2) to (C1+C2)*X when tree_nonzero_bits allows IOR and XOR to be treated like PLUS. Likewise, handle (X< 0 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0) (with { wide_int wone = wi::one (TYPE_PRECISION (type)); wide_int c = wi::add (wi::to_wide (@2), wi::lshift (wone, wi::to_wide (@4))); } (mult @1 { wide_int_to_tree (type, c); })))) (simplify (op:c (mult:s@0 @1 INTEGER_CST@2) @1) (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type) && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0) (mult @1 { wide_int_to_tree (type, wi::add (wi::to_wide (@2), 1)); }))) (simplify (op (lshift:s@0 @1 INTEGER_CST@2) (lshift:s@3 @1 INTEGER_CST@4)) (if (INTEGRAL_TYPE_P (type) && tree_int_cst_sgn (@2) > 0 && tree_int_cst_sgn (@4) > 0 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0) (with { tree t = type; if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t); wide_int wone = wi::one (TYPE_PRECISION (t)); wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)), wi::lshift (wone, wi::to_wide (@4))); } (convert (mult:t (convert:t @1) { wide_int_to_tree (t,c); }))))) (simplify (op:c (lshift:s@0 @1 INTEGER_CST@2) @1) (if (INTEGRAL_TYPE_P (type) && tree_int_cst_sgn (@2) > 0 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0) (with { tree t = type; if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t); wide_int wone = wi::one (TYPE_PRECISION (t)); wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)), wone); } (convert (mult:t (convert:t @1) { wide_int_to_tree (t, c); })))))) /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */ (for minmax (min max) (simplify (minmax @0 @0) @0) /* max(max(x,y),x) -> max(x,y) */ (simplify (minmax:c (minmax:c@2 @0 @1) @0) @2)) /* For fmin() and fmax(), skip folding when both are sNaN. */ (for minmax (FMIN_ALL FMAX_ALL) (simplify (minmax @0 @0) (if (!tree_expr_maybe_signaling_nan_p (@0)) @0))) /* min(max(x,y),y) -> y. */ (simplify (min:c (max:c @0 @1) @1) @1) /* max(min(x,y),y) -> y. */ (simplify (max:c (min:c @0 @1) @1) @1) /* max(a,-a) -> abs(a). */ (simplify (max:c @0 (negate @0)) (if (TREE_CODE (type) != COMPLEX_TYPE && (! ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))) (abs @0))) /* min(a,-a) -> -abs(a). */ (simplify (min:c @0 (negate @0)) (if (TREE_CODE (type) != COMPLEX_TYPE && (! ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))) (negate (abs @0)))) (simplify (min @0 @1) (switch (if (INTEGRAL_TYPE_P (type) && TYPE_MIN_VALUE (type) && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST)) @1) (if (INTEGRAL_TYPE_P (type) && TYPE_MAX_VALUE (type) && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST)) @0))) (simplify (max @0 @1) (switch (if (INTEGRAL_TYPE_P (type) && TYPE_MAX_VALUE (type) && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST)) @1) (if (INTEGRAL_TYPE_P (type) && TYPE_MIN_VALUE (type) && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST)) @0))) /* max (a, a + CST) -> a + CST where CST is positive. */ /* max (a, a + CST) -> a where CST is negative. */ (simplify (max:c @0 (plus@2 @0 INTEGER_CST@1)) (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))) (if (tree_int_cst_sgn (@1) > 0) @2 @0))) /* min (a, a + CST) -> a where CST is positive. */ /* min (a, a + CST) -> a + CST where CST is negative. */ (simplify (min:c @0 (plus@2 @0 INTEGER_CST@1)) (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))) (if (tree_int_cst_sgn (@1) > 0) @0 @2))) /* Simplify min (&var[off0], &var[off1]) etc. depending on whether the addresses are known to be less, equal or greater. */ (for minmax (min max) cmp (lt gt) (simplify (minmax (convert1?@2 addr@0) (convert2?@3 addr@1)) (with { poly_int64 off0, off1; tree base0, base1; int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1, off0, off1, GENERIC); } (if (equal == 1) (if (minmax == MIN_EXPR) (if (known_le (off0, off1)) @2 (if (known_gt (off0, off1)) @3)) (if (known_ge (off0, off1)) @2 (if (known_lt (off0, off1)) @3))))))) /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted and the outer convert demotes the expression back to x's type. */ (for minmax (min max) (simplify (convert (minmax@0 (convert @1) INTEGER_CST@2)) (if (INTEGRAL_TYPE_P (type) && types_match (@1, type) && int_fits_type_p (@2, type) && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type) && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type)) (minmax @1 (convert @2))))) (for minmax (FMIN_ALL FMAX_ALL) /* If either argument is NaN and other one is not sNaN, return the other one. Avoid the transformation if we get (and honor) a signalling NaN. */ (simplify (minmax:c @0 REAL_CST@1) (if (real_isnan (TREE_REAL_CST_PTR (@1)) && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling) && !tree_expr_maybe_signaling_nan_p (@0)) @0))) /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these functions to return the numeric arg if the other one is NaN. MIN and MAX don't honor that, so only transform if -ffinite-math-only is set. C99 doesn't require -0.0 to be handled, so we don't have to worry about it either. */ (if (flag_finite_math_only) (simplify (FMIN_ALL @0 @1) (min @0 @1)) (simplify (FMAX_ALL @0 @1) (max @0 @1))) /* min (-A, -B) -> -max (A, B) */ (for minmax (min max FMIN_ALL FMAX_ALL) maxmin (max min FMAX_ALL FMIN_ALL) (simplify (minmax (negate:s@2 @0) (negate:s@3 @1)) (if (FLOAT_TYPE_P (TREE_TYPE (@0)) || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))) (negate (maxmin @0 @1))))) /* MIN (~X, ~Y) -> ~MAX (X, Y) MAX (~X, ~Y) -> ~MIN (X, Y) */ (for minmax (min max) maxmin (max min) (simplify (minmax (bit_not:s@2 @0) (bit_not:s@3 @1)) (bit_not (maxmin @0 @1))) /* ~MAX(~X, Y) --> MIN(X, ~Y) */ /* ~MIN(~X, Y) --> MAX(X, ~Y) */ (simplify (bit_not (minmax:cs (bit_not @0) @1)) (maxmin @0 (bit_not @1)))) /* MIN (X, Y) == X -> X <= Y */ (for minmax (min min max max) cmp (eq ne eq ne ) out (le gt ge lt ) (simplify (cmp:c (minmax:c @0 @1) @0) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))) (out @0 @1)))) /* MIN (X, 5) == 0 -> X == 0 MIN (X, 5) == 7 -> false */ (for cmp (eq ne) (simplify (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2) (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2), TYPE_SIGN (TREE_TYPE (@0)))) { constant_boolean_node (cmp == NE_EXPR, type); } (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2), TYPE_SIGN (TREE_TYPE (@0)))) (cmp @0 @2))))) (for cmp (eq ne) (simplify (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2) (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2), TYPE_SIGN (TREE_TYPE (@0)))) { constant_boolean_node (cmp == NE_EXPR, type); } (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2), TYPE_SIGN (TREE_TYPE (@0)))) (cmp @0 @2))))) /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */ (for minmax (min min max max min min max max ) cmp (lt le gt ge gt ge lt le ) comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and) (simplify (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2) (comb (cmp @0 @2) (cmp @1 @2)))) /* X <= MAX(X, Y) -> true X > MAX(X, Y) -> false X >= MIN(X, Y) -> true X < MIN(X, Y) -> false */ (for minmax (min min max max ) cmp (ge lt le gt ) (simplify (cmp:c @0 (minmax:c @0 @1)) { constant_boolean_node (cmp == GE_EXPR || cmp == LE_EXPR, type); } )) /* Undo fancy ways of writing max/min or other ?: expressions, like a - ((a - b) & -(a < b)) and a - (a - b) * (a < b) into (a < b) ? b : a. People normally use ?: and that is what we actually try to optimize. */ /* Transform A + (B-A)*cmp into cmp ? B : A. */ (simplify (plus:c @0 (mult:c (minus @1 @0) zero_one_valued_p@2)) (if (INTEGRAL_TYPE_P (type) && (GIMPLE || !TREE_SIDE_EFFECTS (@1))) (cond (convert:boolean_type_node @2) @1 @0))) /* Transform A - (A-B)*cmp into cmp ? B : A. */ (simplify (minus @0 (mult:c (minus @0 @1) zero_one_valued_p@2)) (if (INTEGRAL_TYPE_P (type) && (GIMPLE || !TREE_SIDE_EFFECTS (@1))) (cond (convert:boolean_type_node @2) @1 @0))) /* Transform A ^ (A^B)*cmp into cmp ? B : A. */ (simplify (bit_xor:c @0 (mult:c (bit_xor:c @0 @1) zero_one_valued_p@2)) (if (INTEGRAL_TYPE_P (type) && (GIMPLE || !TREE_SIDE_EFFECTS (@1))) (cond (convert:boolean_type_node @2) @1 @0))) /* (x <= 0 ? -x : 0) -> max(-x, 0). */ (simplify (cond (le @0 integer_zerop@1) (negate@2 @0) integer_zerop@1) (max @2 @1)) /* (zero_one == 0) ? y : z y -> ((typeof(y))zero_one * z) y */ (for op (bit_xor bit_ior plus) (simplify (cond (eq zero_one_valued_p@0 integer_zerop) @1 (op:c @2 @1)) (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) > 1 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)))) (op (mult (convert:type @0) @2) @1)))) /* (zero_one != 0) ? z y : y -> ((typeof(y))zero_one * z) y */ (for op (bit_xor bit_ior plus) (simplify (cond (ne zero_one_valued_p@0 integer_zerop) (op:c @2 @1) @1) (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) > 1 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)))) (op (mult (convert:type @0) @2) @1)))) /* Simplifications of shift and rotates. */ (for rotate (lrotate rrotate) (simplify (rotate integer_all_onesp@0 @1) @0)) /* Optimize -1 >> x for arithmetic right shifts. */ (simplify (rshift integer_all_onesp@0 @1) (if (!TYPE_UNSIGNED (type)) @0)) /* Optimize (x >> c) << c into x & (-1<= TYPE_PRECISION (type) || wi::geu_p (wi::to_wide (@1), TYPE_PRECISION (type) - TYPE_PRECISION (TREE_TYPE (@2))))) (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1)))) /* For (x << c) >> c, optimize into x & ((unsigned)-1 >> c) for unsigned x OR truncate into the precision(type) - c lowest bits of signed x (if they have mode precision or a precision of 1). */ (simplify (rshift (nop_convert? (lshift @0 INTEGER_CST@1)) @@1) (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))) (if (TYPE_UNSIGNED (type)) (bit_and (convert @0) (rshift { build_minus_one_cst (type); } @1)) (if (INTEGRAL_TYPE_P (type)) (with { int width = element_precision (type) - tree_to_uhwi (@1); tree stype = build_nonstandard_integer_type (width, 0); } (if (width == 1 || type_has_mode_precision_p (stype)) (convert (convert:stype @0)))))))) /* Optimize x >> x into 0 */ (simplify (rshift @0 @0) { build_zero_cst (type); }) (for shiftrotate (lrotate rrotate lshift rshift) (simplify (shiftrotate @0 integer_zerop) (non_lvalue @0)) (simplify (shiftrotate integer_zerop@0 @1) @0) /* Prefer vector1 << scalar to vector1 << vector2 if vector2 is uniform. */ (for vec (VECTOR_CST CONSTRUCTOR) (simplify (shiftrotate @0 vec@1) (with { tree tem = uniform_vector_p (@1); } (if (tem) (shiftrotate @0 { tem; })))))) /* Simplify X << Y where Y's low width bits are 0 to X, as only valid Y is 0. Similarly for X >> Y. */ #if GIMPLE (for shift (lshift rshift) (simplify (shift @0 SSA_NAME@1) (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))) (with { int width = ceil_log2 (element_precision (TREE_TYPE (@0))); int prec = TYPE_PRECISION (TREE_TYPE (@1)); } (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0) @0))))) #endif /* Rewrite an LROTATE_EXPR by a constant into an RROTATE_EXPR by a new constant. */ (simplify (lrotate @0 INTEGER_CST@1) (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1), build_int_cst (TREE_TYPE (@1), element_precision (type)), @1); })) /* Turn (a OP c1) OP c2 into a OP (c1+c2). */ (for op (lrotate rrotate rshift lshift) (simplify (op (op @0 INTEGER_CST@1) INTEGER_CST@2) (with { unsigned int prec = element_precision (type); } (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))) && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1))) && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))) && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2)))) (with { unsigned int low = (tree_to_uhwi (@1) + tree_to_uhwi (@2)); } /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2 being well defined. */ (if (low >= prec) (if (op == LROTATE_EXPR || op == RROTATE_EXPR) (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); }) (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR) { build_zero_cst (type); } (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); }))) (op @0 { build_int_cst (TREE_TYPE (@1), low); }))))))) /* Simplify (CST << x) & 1 to 0 if CST is even or to x == 0 if it is odd. */ (simplify (bit_and (lshift INTEGER_CST@1 @0) integer_onep) (if ((wi::to_wide (@1) & 1) != 0) (convert (eq:boolean_type_node @0 { build_zero_cst (TREE_TYPE (@0)); })) { build_zero_cst (type); })) /* Simplify ((C << x) & D) != 0 where C and D are power of two constants, either to false if D is smaller (unsigned comparison) than C, or to x == log2 (D) - log2 (C). Similarly for right shifts. Note for `(1 >> x)`, the & 1 has been removed so matching that seperately. */ (for cmp (ne eq) icmp (eq ne) (simplify (cmp (bit_and (lshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop) (with { int c1 = wi::clz (wi::to_wide (@1)); int c2 = wi::clz (wi::to_wide (@2)); } (if (c1 < c2) { constant_boolean_node (cmp == NE_EXPR ? false : true, type); } (icmp @0 { build_int_cst (TREE_TYPE (@0), c1 - c2); })))) (simplify (cmp (bit_and (rshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop) (if (tree_int_cst_sgn (@1) > 0) (with { int c1 = wi::clz (wi::to_wide (@1)); int c2 = wi::clz (wi::to_wide (@2)); } (if (c1 > c2) { constant_boolean_node (cmp == NE_EXPR ? false : true, type); } (icmp @0 { build_int_cst (TREE_TYPE (@0), c2 - c1); }))))) /* `(1 >> X) != 0` -> `X == 0` */ /* `(1 >> X) == 0` -> `X != 0` */ (simplify (cmp (rshift integer_onep @0) integer_zerop) (icmp @0 { build_zero_cst (TREE_TYPE (@0)); }))) /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1) (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1) if CST2 != 0. */ (for cmp (ne eq) (simplify (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2) (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); } (if (cand < 0 || (!integer_zerop (@2) && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2))) { constant_boolean_node (cmp == NE_EXPR, type); } (if (!integer_zerop (@2) && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2)) (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); })))))) /* Fold ((X << C1) & C2) cmp C3 into (X & (C2 >> C1)) cmp (C3 >> C1) ((X >> C1) & C2) cmp C3 into (X & (C2 << C1)) cmp (C3 << C1). */ (for cmp (ne eq) (simplify (cmp (bit_and:s (lshift:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3) (if (tree_fits_shwi_p (@1) && tree_to_shwi (@1) > 0 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0))) (if (tree_to_shwi (@1) > wi::ctz (wi::to_wide (@3))) { constant_boolean_node (cmp == NE_EXPR, type); } (with { wide_int c1 = wi::to_wide (@1); wide_int c2 = wi::lrshift (wi::to_wide (@2), c1); wide_int c3 = wi::lrshift (wi::to_wide (@3), c1); } (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0), c2); }) { wide_int_to_tree (TREE_TYPE (@0), c3); }))))) (simplify (cmp (bit_and:s (rshift:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3) (if (tree_fits_shwi_p (@1) && tree_to_shwi (@1) > 0 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0))) (with { tree t0 = TREE_TYPE (@0); unsigned int prec = TYPE_PRECISION (t0); wide_int c1 = wi::to_wide (@1); wide_int c2 = wi::to_wide (@2); wide_int c3 = wi::to_wide (@3); wide_int sb = wi::set_bit_in_zero (prec - 1, prec); } (if ((c2 & c3) != c3) { constant_boolean_node (cmp == NE_EXPR, type); } (if (TYPE_UNSIGNED (t0)) (if ((c3 & wi::arshift (sb, c1 - 1)) != 0) { constant_boolean_node (cmp == NE_EXPR, type); } (cmp (bit_and @0 { wide_int_to_tree (t0, c2 << c1); }) { wide_int_to_tree (t0, c3 << c1); })) (with { wide_int smask = wi::arshift (sb, c1); } (switch (if ((c2 & smask) == 0) (cmp (bit_and @0 { wide_int_to_tree (t0, c2 << c1); }) { wide_int_to_tree (t0, c3 << c1); })) (if ((c3 & smask) == 0) (cmp (bit_and @0 { wide_int_to_tree (t0, (c2 << c1) | sb); }) { wide_int_to_tree (t0, c3 << c1); })) (if ((c2 & smask) != (c3 & smask)) { constant_boolean_node (cmp == NE_EXPR, type); }) (cmp (bit_and @0 { wide_int_to_tree (t0, (c2 << c1) | sb); }) { wide_int_to_tree (t0, (c3 << c1) | sb); }))))))))) /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1)) (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1)) if the new mask might be further optimized. */ (for shift (lshift rshift) (simplify (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1)) INTEGER_CST@2) (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5)) && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT && tree_fits_uhwi_p (@1) && tree_to_uhwi (@1) > 0 && tree_to_uhwi (@1) < TYPE_PRECISION (type)) (with { unsigned int shiftc = tree_to_uhwi (@1); unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2); unsigned HOST_WIDE_INT newmask, zerobits = 0; tree shift_type = TREE_TYPE (@3); unsigned int prec; if (shift == LSHIFT_EXPR) zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1); else if (shift == RSHIFT_EXPR && type_has_mode_precision_p (shift_type)) { prec = TYPE_PRECISION (TREE_TYPE (@3)); tree arg00 = @0; /* See if more bits can be proven as zero because of zero extension. */ if (@3 != @0 && TYPE_UNSIGNED (TREE_TYPE (@0))) { tree inner_type = TREE_TYPE (@0); if (type_has_mode_precision_p (inner_type) && TYPE_PRECISION (inner_type) < prec) { prec = TYPE_PRECISION (inner_type); /* See if we can shorten the right shift. */ if (shiftc < prec) shift_type = inner_type; /* Otherwise X >> C1 is all zeros, so we'll optimize it into (X, 0) later on by making sure zerobits is all ones. */ } } zerobits = HOST_WIDE_INT_M1U; if (shiftc < prec) { zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc; zerobits <<= prec - shiftc; } /* For arithmetic shift if sign bit could be set, zerobits can contain actually sign bits, so no transformation is possible, unless MASK masks them all away. In that case the shift needs to be converted into logical shift. */ if (!TYPE_UNSIGNED (TREE_TYPE (@3)) && prec == TYPE_PRECISION (TREE_TYPE (@3))) { if ((mask & zerobits) == 0) shift_type = unsigned_type_for (TREE_TYPE (@3)); else zerobits = 0; } } } /* ((X << 16) & 0xff00) is (X, 0). */ (if ((mask & zerobits) == mask) { build_int_cst (type, 0); } (with { newmask = mask | zerobits; } (if (newmask != mask && (newmask & (newmask + 1)) == 0) (with { /* Only do the transformation if NEWMASK is some integer mode's mask. */ for (prec = BITS_PER_UNIT; prec < HOST_BITS_PER_WIDE_INT; prec <<= 1) if (newmask == (HOST_WIDE_INT_1U << prec) - 1) break; } (if (prec < HOST_BITS_PER_WIDE_INT || newmask == HOST_WIDE_INT_M1U) (with { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); } (if (!tree_int_cst_equal (newmaskt, @2)) (if (shift_type != TREE_TYPE (@3)) (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; }) (bit_and @4 { newmaskt; }))))))))))))) /* ((1 << n) & M) != 0 -> n == log2 (M) */ (for cmp (ne eq) icmp (eq ne) (simplify (cmp (bit_and (nop_convert? (lshift integer_onep @0)) integer_pow2p@1) integer_zerop) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))) (icmp @0 { wide_int_to_tree (TREE_TYPE (@0), wi::exact_log2 (wi::to_wide (@1))); })))) /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1) (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */ (for shift (lshift rshift) (for bit_op (bit_and bit_xor bit_ior) (simplify (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1) (if (tree_nop_conversion_p (type, TREE_TYPE (@0))) (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); } (if (mask) (bit_op (shift (convert @0) @1) { mask; }))))))) /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */ (simplify (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2))) (if (!TYPE_UNSIGNED (TREE_TYPE (@0)) && (element_precision (TREE_TYPE (@0)) <= element_precision (TREE_TYPE (@1)) || !TYPE_UNSIGNED (TREE_TYPE (@1)))) (with { tree shift_type = TREE_TYPE (@0); } (convert (rshift (convert:shift_type @1) @2))))) /* ~(~X >>r Y) -> X >>r Y ~(~X < X <>r Y) cmp (Z >>r Y) may simplify to X cmp Y. */ (simplify (cmp (rotate @1 @0) (rotate @2 @0)) (cmp @1 @2)) /* (X >>r C1) cmp C2 may simplify to X cmp C3. */ (simplify (cmp (rotate @0 INTEGER_CST@1) INTEGER_CST@2) (cmp @0 { const_binop (invrot, TREE_TYPE (@0), @2, @1); })) /* (X >>r Y) cmp C where C is 0 or ~0, may simplify to X cmp C. */ (simplify (cmp (rotate @0 @1) INTEGER_CST@2) (if (integer_zerop (@2) || integer_all_onesp (@2)) (cmp @0 @2))))) /* Narrow a lshift by constant. */ (simplify (convert (lshift:s@0 @1 INTEGER_CST@2)) (if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (@0)) && !integer_zerop (@2) && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))) (if (TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)) || wi::ltu_p (wi::to_wide (@2), TYPE_PRECISION (type))) (lshift (convert @1) @2) (if (wi::ltu_p (wi::to_wide (@2), TYPE_PRECISION (TREE_TYPE (@0)))) { build_zero_cst (type); })))) /* Simplifications of conversions. */ /* Basic strip-useless-type-conversions / strip_nops. */ (for cvt (convert view_convert float fix_trunc) (simplify (cvt @0) (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0))) || (GENERIC && type == TREE_TYPE (@0))) @0))) /* Contract view-conversions. */ (simplify (view_convert (view_convert @0)) (view_convert @0)) /* For integral conversions with the same precision or pointer conversions use a NOP_EXPR instead. */ (simplify (view_convert @0) (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type)) && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0))) && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))) (convert @0))) /* Strip inner integral conversions that do not change precision or size, or zero-extend while keeping the same size (for bool-to-char). */ (simplify (view_convert (convert@0 @1)) (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0))) && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1))) && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1)) && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)) || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1)) && TYPE_UNSIGNED (TREE_TYPE (@1))))) (view_convert @1))) /* Simplify a view-converted empty or single-element constructor. */ (simplify (view_convert CONSTRUCTOR@0) (with { tree ctor = (TREE_CODE (@0) == SSA_NAME ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0); } (switch (if (CONSTRUCTOR_NELTS (ctor) == 0) { build_zero_cst (type); }) (if (CONSTRUCTOR_NELTS (ctor) == 1 && VECTOR_TYPE_P (TREE_TYPE (ctor)) && operand_equal_p (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value)))) (view_convert { CONSTRUCTOR_ELT (ctor, 0)->value; }))))) /* Re-association barriers around constants and other re-association barriers can be removed. */ (simplify (paren CONSTANT_CLASS_P@0) @0) (simplify (paren (paren@1 @0)) @1) /* Handle cases of two conversions in a row. */ (for ocvt (convert float fix_trunc) (for icvt (convert float) (simplify (ocvt (icvt@1 @0)) (with { tree inside_type = TREE_TYPE (@0); tree inter_type = TREE_TYPE (@1); int inside_int = INTEGRAL_TYPE_P (inside_type); int inside_ptr = POINTER_TYPE_P (inside_type); int inside_float = FLOAT_TYPE_P (inside_type); int inside_vec = VECTOR_TYPE_P (inside_type); unsigned int inside_prec = element_precision (inside_type); int inside_unsignedp = TYPE_UNSIGNED (inside_type); int inter_int = INTEGRAL_TYPE_P (inter_type); int inter_ptr = POINTER_TYPE_P (inter_type); int inter_float = FLOAT_TYPE_P (inter_type); int inter_vec = VECTOR_TYPE_P (inter_type); unsigned int inter_prec = element_precision (inter_type); int inter_unsignedp = TYPE_UNSIGNED (inter_type); int final_int = INTEGRAL_TYPE_P (type); int final_ptr = POINTER_TYPE_P (type); int final_float = FLOAT_TYPE_P (type); int final_vec = VECTOR_TYPE_P (type); unsigned int final_prec = element_precision (type); int final_unsignedp = TYPE_UNSIGNED (type); } (switch /* In addition to the cases of two conversions in a row handled below, if we are converting something to its own type via an object of identical or wider precision, neither conversion is needed. */ (if (((GIMPLE && useless_type_conversion_p (type, inside_type)) || (GENERIC && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type))) && (((inter_int || inter_ptr) && final_int) || (inter_float && final_float)) && inter_prec >= final_prec) (ocvt @0)) /* Likewise, if the intermediate and initial types are either both float or both integer, we don't need the middle conversion if the former is wider than the latter and doesn't change the signedness (for integers). Avoid this if the final type is a pointer since then we sometimes need the middle conversion. */ (if (((inter_int && inside_int) || (inter_float && inside_float)) && (final_int || final_float) && inter_prec >= inside_prec && (inter_float || inter_unsignedp == inside_unsignedp)) (ocvt @0)) /* If we have a sign-extension of a zero-extended value, we can replace that by a single zero-extension. Likewise if the final conversion does not change precision we can drop the intermediate conversion. */ (if (inside_int && inter_int && final_int && ((inside_prec < inter_prec && inter_prec < final_prec && inside_unsignedp && !inter_unsignedp) || final_prec == inter_prec)) (ocvt @0)) /* Two conversions in a row are not needed unless: - some conversion is floating-point (overstrict for now), or - some conversion is a vector (overstrict for now), or - the intermediate type is narrower than both initial and final, or - the intermediate type and innermost type differ in signedness, and the outermost type is wider than the intermediate, or - the initial type is a pointer type and the precisions of the intermediate and final types differ, or - the final type is a pointer type and the precisions of the initial and intermediate types differ. */ (if (! inside_float && ! inter_float && ! final_float && ! inside_vec && ! inter_vec && ! final_vec && (inter_prec >= inside_prec || inter_prec >= final_prec) && ! (inside_int && inter_int && inter_unsignedp != inside_unsignedp && inter_prec < final_prec) && ((inter_unsignedp && inter_prec > inside_prec) == (final_unsignedp && final_prec > inter_prec)) && ! (inside_ptr && inter_prec != final_prec) && ! (final_ptr && inside_prec != inter_prec)) (ocvt @0)) /* `(outer:M)(inter:N) a:O` can be converted to `(outer:M) a` if M <= O && N >= O. No matter what signedness of the casts, as the final is either a truncation from the original or just a sign change of the type. */ (if (inside_int && inter_int && final_int && final_prec <= inside_prec && inter_prec >= inside_prec) (convert @0)) /* A truncation to an unsigned type (a zero-extension) should be canonicalized as bitwise and of a mask. */ (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */ && final_int && inter_int && inside_int && final_prec == inside_prec && final_prec > inter_prec && inter_unsignedp) (convert (bit_and @0 { wide_int_to_tree (inside_type, wi::mask (inter_prec, false, TYPE_PRECISION (inside_type))); }))) /* If we are converting an integer to a floating-point that can represent it exactly and back to an integer, we can skip the floating-point conversion. */ (if (GIMPLE /* PR66211 */ && inside_int && inter_float && final_int && (unsigned) significand_size (TYPE_MODE (inter_type)) >= inside_prec - !inside_unsignedp) (convert @0))))))) /* (float_type)(integer_type) x -> trunc (x) if the type of x matches float_type. Only do the transformation if we do not need to preserve trapping behaviour, so require !flag_trapping_math. */ #if GIMPLE (simplify (float (fix_trunc @0)) (if (!flag_trapping_math && types_match (type, TREE_TYPE (@0)) && direct_internal_fn_supported_p (IFN_TRUNC, type, OPTIMIZE_FOR_BOTH)) (IFN_TRUNC @0))) #endif /* If we have a narrowing conversion to an integral type that is fed by a BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely masks off bits outside the final type (and nothing else). */ (simplify (convert (bit_and @0 INTEGER_CST@1)) (if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)) && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1), TYPE_PRECISION (type)), 0)) (convert @0))) /* (X /[ex] A) * A -> X. */ (simplify (mult (convert1? (exact_div @0 @@1)) (convert2? @1)) (convert @0)) /* Simplify (A / B) * B + (A % B) -> A. */ (for div (trunc_div ceil_div floor_div round_div) mod (trunc_mod ceil_mod floor_mod round_mod) (simplify (plus:c (mult:c (div @0 @1) @1) (mod @0 @1)) @0)) /* x / y * y == x -> x % y == 0. */ (simplify (eq:c (mult:c (trunc_div:s @0 @1) @1) @0) (if (TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE) (eq (trunc_mod @0 @1) { build_zero_cst (TREE_TYPE (@0)); }))) /* ((X /[ex] A) +- B) * A --> X +- A * B. */ (for op (plus minus) (simplify (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1) (if (tree_nop_conversion_p (type, TREE_TYPE (@2)) && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))) (with { wi::overflow_type overflow; wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2), TYPE_SIGN (type), &overflow); } (if (types_match (type, TREE_TYPE (@2)) && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow) (op @0 { wide_int_to_tree (type, mul); }) (with { tree utype = unsigned_type_for (type); } (convert (op (convert:utype @0) (mult (convert:utype @1) (convert:utype @2)))))))))) /* Canonicalization of binary operations. */ /* Convert X + -C into X - C. */ (simplify (plus @0 REAL_CST@1) (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1))) (with { tree tem = const_unop (NEGATE_EXPR, type, @1); } (if (!TREE_OVERFLOW (tem) || !flag_trapping_math) (minus @0 { tem; }))))) /* Convert x+x into x*2. */ (simplify (plus @0 @0) (if (SCALAR_FLOAT_TYPE_P (type)) (mult @0 { build_real (type, dconst2); }) (if (INTEGRAL_TYPE_P (type)) (mult @0 { build_int_cst (type, 2); })))) /* 0 - X -> -X. */ (simplify (minus integer_zerop @1) (negate @1)) (simplify (pointer_diff integer_zerop @1) (negate (convert @1))) /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether ARG0 is zero and X + ARG0 reduces to X, since that would mean (-ARG1 + ARG0) reduces to -ARG1. */ (simplify (minus real_zerop@0 @1) (if (fold_real_zero_addition_p (type, @1, @0, 0)) (negate @1))) /* Transform x * -1 into -x. */ (simplify (mult @0 integer_minus_onep) (negate @0)) /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce signed overflow for CST != 0 && CST != -1. */ (simplify (mult:c (mult:s@3 @0 INTEGER_CST@1) @2) (if (TREE_CODE (@2) != INTEGER_CST && single_use (@3) && !integer_zerop (@1) && !integer_minus_onep (@1)) (mult (mult @0 @2) @1))) /* True if we can easily extract the real and imaginary parts of a complex number. */ (match compositional_complex (convert? (complex @0 @1))) /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */ (simplify (complex (realpart @0) (imagpart @0)) @0) (simplify (realpart (complex @0 @1)) @0) (simplify (imagpart (complex @0 @1)) @1) /* Sometimes we only care about half of a complex expression. */ (simplify (realpart (convert?:s (conj:s @0))) (convert (realpart @0))) (simplify (imagpart (convert?:s (conj:s @0))) (convert (negate (imagpart @0)))) (for part (realpart imagpart) (for op (plus minus) (simplify (part (convert?:s@2 (op:s @0 @1))) (convert (op (part @0) (part @1)))))) (simplify (realpart (convert?:s (CEXPI:s @0))) (convert (COS @0))) (simplify (imagpart (convert?:s (CEXPI:s @0))) (convert (SIN @0))) /* conj(conj(x)) -> x */ (simplify (conj (convert? (conj @0))) (if (tree_nop_conversion_p (TREE_TYPE (@0), type)) (convert @0))) /* conj({x,y}) -> {x,-y} */ (simplify (conj (convert?:s (complex:s @0 @1))) (with { tree itype = TREE_TYPE (type); } (complex (convert:itype @0) (negate (convert:itype @1))))) /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */ (for bswap (BSWAP) (simplify (bswap (bswap @0)) @0) (simplify (bswap (bit_not (bswap @0))) (bit_not @0)) (for bitop (bit_xor bit_ior bit_and) (simplify (bswap (bitop:c (bswap @0) @1)) (bitop @0 (bswap @1)))) (for cmp (eq ne) (simplify (cmp (bswap@2 @0) (bswap @1)) (with { tree ctype = TREE_TYPE (@2); } (cmp (convert:ctype @0) (convert:ctype @1)))) (simplify (cmp (bswap @0) INTEGER_CST@1) (with { tree ctype = TREE_TYPE (@1); } (cmp (convert:ctype @0) (bswap! @1))))) /* (bswap(x) >> C1) & C2 can sometimes be simplified to (x >> C3) & C2. */ (simplify (bit_and (convert1? (rshift@0 (convert2? (bswap@4 @1)) INTEGER_CST@2)) INTEGER_CST@3) (if (BITS_PER_UNIT == 8 && tree_fits_uhwi_p (@2) && tree_fits_uhwi_p (@3)) (with { unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@4)); unsigned HOST_WIDE_INT bits = tree_to_uhwi (@2); unsigned HOST_WIDE_INT mask = tree_to_uhwi (@3); unsigned HOST_WIDE_INT lo = bits & 7; unsigned HOST_WIDE_INT hi = bits - lo; } (if (bits < prec && mask < (256u>>lo) && bits < TYPE_PRECISION (TREE_TYPE(@0))) (with { unsigned HOST_WIDE_INT ns = (prec - (hi + 8)) + lo; } (if (ns == 0) (bit_and (convert @1) @3) (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); tree nst = build_int_cst (integer_type_node, ns); } (bit_and (convert (rshift:utype (convert:utype @1) {nst;})) @3)))))))) /* bswap(x) >> C1 can sometimes be simplified to (T)x >> C2. */ (simplify (rshift (convert? (bswap@2 @0)) INTEGER_CST@1) (if (BITS_PER_UNIT == 8 && CHAR_TYPE_SIZE == 8 && tree_fits_uhwi_p (@1)) (with { unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2)); unsigned HOST_WIDE_INT bits = tree_to_uhwi (@1); /* If the bswap was extended before the original shift, this byte (shift) has the sign of the extension, not the sign of the original shift. */ tree st = TYPE_PRECISION (type) > prec ? TREE_TYPE (@2) : type; } /* Special case: logical right shift of sign-extended bswap. (unsigned)(short)bswap16(x)>>12 is (unsigned)((short)x<<8)>>12. */ (if (TYPE_PRECISION (type) > prec && !TYPE_UNSIGNED (TREE_TYPE (@2)) && TYPE_UNSIGNED (type) && bits < prec && bits + 8 >= prec) (with { tree nst = build_int_cst (integer_type_node, prec - 8); } (rshift (convert (lshift:st (convert:st @0) {nst;})) @1)) (if (bits + 8 == prec) (if (TYPE_UNSIGNED (st)) (convert (convert:unsigned_char_type_node @0)) (convert (convert:signed_char_type_node @0))) (if (bits < prec && bits + 8 > prec) (with { tree nst = build_int_cst (integer_type_node, bits & 7); tree bt = TYPE_UNSIGNED (st) ? unsigned_char_type_node : signed_char_type_node; } (convert (rshift:bt (convert:bt @0) {nst;}))))))))) /* bswap(x) & C1 can sometimes be simplified to (x >> C2) & C1. */ (simplify (bit_and (convert? (bswap@2 @0)) INTEGER_CST@1) (if (BITS_PER_UNIT == 8 && tree_fits_uhwi_p (@1) && tree_to_uhwi (@1) < 256) (with { unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2)); tree utype = unsigned_type_for (TREE_TYPE (@0)); tree nst = build_int_cst (integer_type_node, prec - 8); } (bit_and (convert (rshift:utype (convert:utype @0) {nst;})) @1))))) /* Combine COND_EXPRs and VEC_COND_EXPRs. */ /* Simplify constant conditions. Only optimize constant conditions when the selected branch has the same type as the COND_EXPR. This avoids optimizing away "c ? x : throw", where the throw has a void type. Note that we cannot throw away the fold-const.cc variant nor this one as we depend on doing this transform before possibly A ? B : B -> B triggers and the fold-const.cc one can optimize 0 ? A : B to B even if A has side-effects. Something genmatch cannot handle. */ (simplify (cond INTEGER_CST@0 @1 @2) (if (integer_zerop (@0)) (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type)) @2) (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type)) @1))) (simplify (vec_cond VECTOR_CST@0 @1 @2) (if (integer_all_onesp (@0)) @1 (if (integer_zerop (@0)) @2))) /* Sink unary operations to branches, but only if we do fold both. */ (for op (negate bit_not abs absu) (simplify (op (vec_cond:s @0 @1 @2)) (vec_cond @0 (op! @1) (op! @2)))) /* Sink unary conversions to branches, but only if we do fold both and the target's truth type is the same as we already have. */ (simplify (convert (vec_cond:s @0 @1 @2)) (if (VECTOR_TYPE_P (type) && types_match (TREE_TYPE (@0), truth_type_for (type))) (vec_cond @0 (convert! @1) (convert! @2)))) /* Likewise for view_convert of nop_conversions. */ (simplify (view_convert (vec_cond:s @0 @1 @2)) (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@1)) && known_eq (TYPE_VECTOR_SUBPARTS (type), TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))) && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@1)))) (vec_cond @0 (view_convert! @1) (view_convert! @2)))) /* Sink binary operation to branches, but only if we can fold it. */ (for op (tcc_comparison plus minus mult bit_and bit_ior bit_xor lshift rshift rdiv trunc_div ceil_div floor_div round_div trunc_mod ceil_mod floor_mod round_mod min max) /* (c ? a : b) op (c ? d : e) --> c ? (a op d) : (b op e) */ (simplify (op (vec_cond:s @0 @1 @2) (vec_cond:s @0 @3 @4)) (vec_cond @0 (op! @1 @3) (op! @2 @4))) /* (c ? a : b) op d --> c ? (a op d) : (b op d) */ (simplify (op (vec_cond:s @0 @1 @2) @3) (vec_cond @0 (op! @1 @3) (op! @2 @3))) (simplify (op @3 (vec_cond:s @0 @1 @2)) (vec_cond @0 (op! @3 @1) (op! @3 @2)))) #if GIMPLE (match (nop_atomic_bit_test_and_p @0 @1 @4) (bit_and (convert?@4 (ATOMIC_FETCH_OR_XOR_N @2 INTEGER_CST@0 @3)) INTEGER_CST@1) (with { int ibit = tree_log2 (@0); int ibit2 = tree_log2 (@1); } (if (ibit == ibit2 && ibit >= 0 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))) (match (nop_atomic_bit_test_and_p @0 @1 @3) (bit_and (convert?@3 (SYNC_FETCH_OR_XOR_N @2 INTEGER_CST@0)) INTEGER_CST@1) (with { int ibit = tree_log2 (@0); int ibit2 = tree_log2 (@1); } (if (ibit == ibit2 && ibit >= 0 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))) (match (nop_atomic_bit_test_and_p @0 @0 @4) (bit_and:c (convert1?@4 (ATOMIC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@5 @6)) @3)) (convert2? @0)) (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))) (match (nop_atomic_bit_test_and_p @0 @0 @4) (bit_and:c (convert1?@4 (SYNC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@3 @5)))) (convert2? @0)) (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))) (match (nop_atomic_bit_test_and_p @0 @1 @3) (bit_and@4 (convert?@3 (ATOMIC_FETCH_AND_N @2 INTEGER_CST@0 @5)) INTEGER_CST@1) (with { int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)), TYPE_PRECISION(type))); int ibit2 = tree_log2 (@1); } (if (ibit == ibit2 && ibit >= 0 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))) (match (nop_atomic_bit_test_and_p @0 @1 @3) (bit_and@4 (convert?@3 (SYNC_FETCH_AND_AND_N @2 INTEGER_CST@0)) INTEGER_CST@1) (with { int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)), TYPE_PRECISION(type))); int ibit2 = tree_log2 (@1); } (if (ibit == ibit2 && ibit >= 0 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))) (match (nop_atomic_bit_test_and_p @4 @0 @3) (bit_and:c (convert1?@3 (ATOMIC_FETCH_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7))) @5)) (convert2? @0)) (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4))))) (match (nop_atomic_bit_test_and_p @4 @0 @3) (bit_and:c (convert1?@3 (SYNC_FETCH_AND_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7))))) (convert2? @0)) (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4))))) #endif /* (v ? w : 0) ? a : b is just (v & w) ? a : b Currently disabled after pass lvec because ARM understands VEC_COND_EXPR but not a plain v==w fed to BIT_IOR_EXPR. */ (simplify (vec_cond (vec_cond:s @0 @3 integer_zerop) @1 @2) (if (optimize_vectors_before_lowering_p () && types_match (@0, @3)) (vec_cond (bit_and @0 @3) @1 @2))) (simplify (vec_cond (vec_cond:s @0 integer_all_onesp @3) @1 @2) (if (optimize_vectors_before_lowering_p () && types_match (@0, @3)) (vec_cond (bit_ior @0 @3) @1 @2))) (simplify (vec_cond (vec_cond:s @0 integer_zerop @3) @1 @2) (if (optimize_vectors_before_lowering_p () && types_match (@0, @3)) (vec_cond (bit_ior @0 (bit_not @3)) @2 @1))) (simplify (vec_cond (vec_cond:s @0 @3 integer_all_onesp) @1 @2) (if (optimize_vectors_before_lowering_p () && types_match (@0, @3)) (vec_cond (bit_and @0 (bit_not @3)) @2 @1))) /* c1 ? c2 ? a : b : b --> (c1 & c2) ? a : b */ (simplify (vec_cond @0 (vec_cond:s @1 @2 @3) @3) (if (optimize_vectors_before_lowering_p () && types_match (@0, @1)) (vec_cond (bit_and @0 @1) @2 @3))) (simplify (vec_cond @0 @2 (vec_cond:s @1 @2 @3)) (if (optimize_vectors_before_lowering_p () && types_match (@0, @1)) (vec_cond (bit_ior @0 @1) @2 @3))) (simplify (vec_cond @0 (vec_cond:s @1 @2 @3) @2) (if (optimize_vectors_before_lowering_p () && types_match (@0, @1)) (vec_cond (bit_ior (bit_not @0) @1) @2 @3))) (simplify (vec_cond @0 @3 (vec_cond:s @1 @2 @3)) (if (optimize_vectors_before_lowering_p () && types_match (@0, @1)) (vec_cond (bit_and (bit_not @0) @1) @2 @3))) /* Canonicalize mask ? { 0, ... } : { -1, ...} to ~mask if the mask types are compatible. */ (simplify (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2) (if (VECTOR_BOOLEAN_TYPE_P (type) && types_match (type, TREE_TYPE (@0))) (if (integer_zerop (@1) && integer_all_onesp (@2)) (bit_not @0) (if (integer_all_onesp (@1) && integer_zerop (@2)) @0)))) /* A few simplifications of "a ? CST1 : CST2". */ /* NOTE: Only do this on gimple as the if-chain-to-switch optimization depends on the gimple to have if statements in it. */ #if GIMPLE (simplify (cond @0 INTEGER_CST@1 INTEGER_CST@2) (switch (if (integer_zerop (@2)) (switch /* a ? 1 : 0 -> a if 0 and 1 are integral types. */ (if (integer_onep (@1)) (convert (convert:boolean_type_node @0))) /* a ? powerof2cst : 0 -> a << (log2(powerof2cst)) */ (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@1)) (with { tree shift = build_int_cst (integer_type_node, tree_log2 (@1)); } (lshift (convert (convert:boolean_type_node @0)) { shift; }))) /* a ? -1 : 0 -> -a. No need to check the TYPE_PRECISION not being 1 here as the powerof2cst case above will handle that case correctly. */ (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@1)) (with { auto prec = TYPE_PRECISION (type); auto unsign = TYPE_UNSIGNED (type); tree inttype = build_nonstandard_integer_type (prec, unsign); } (convert (negate (convert:inttype (convert:boolean_type_node @0)))))))) (if (integer_zerop (@1)) (with { tree booltrue = constant_boolean_node (true, boolean_type_node); } (switch /* a ? 0 : 1 -> !a. */ (if (integer_onep (@2)) (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))) /* a ? powerof2cst : 0 -> (!a) << (log2(powerof2cst)) */ (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@2)) (with { tree shift = build_int_cst (integer_type_node, tree_log2 (@2)); } (lshift (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } )) { shift; }))) /* a ? -1 : 0 -> -(!a). No need to check the TYPE_PRECISION not being 1 here as the powerof2cst case above will handle that case correctly. */ (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@2)) (with { auto prec = TYPE_PRECISION (type); auto unsign = TYPE_UNSIGNED (type); tree inttype = build_nonstandard_integer_type (prec, unsign); } (convert (negate (convert:inttype (bit_xor (convert:boolean_type_node @0) { booltrue; } ) ) ) ) ) ) ) ) ) ) ) /* (a > 1) ? 0 : (cast)a is the same as (cast)(a == 1) for unsigned types. */ (simplify (cond (gt @0 integer_onep@1) integer_zerop (convert? @2)) (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && bitwise_equal_p (@0, @2)) (convert (eq @0 @1)) ) ) /* (a <= 1) & (cast)a is the same as (cast)(a == 1) for unsigned types. */ (simplify (bit_and:c (convert1? (le @0 integer_onep@1)) (convert2? @2)) (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && bitwise_equal_p (@0, @2)) (convert (eq @0 @1)) ) ) /* Optimize # x_5 in range [cst1, cst2] where cst2 = cst1 + 1 x_5 ? cstN ? cst4 : cst3 # op is == or != and N is 1 or 2 to r_6 = x_5 + (min (cst3, cst4) - cst1) or r_6 = (min (cst3, cst4) + cst1) - x_5 depending on op, N and which of cst3 and cst4 is smaller. This was originally done by two_value_replacement in phiopt (PR 88676). */ (for eqne (ne eq) (simplify (cond (eqne SSA_NAME@0 INTEGER_CST@1) INTEGER_CST@2 INTEGER_CST@3) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && INTEGRAL_TYPE_P (type) && (wi::to_widest (@2) + 1 == wi::to_widest (@3) || wi::to_widest (@2) == wi::to_widest (@3) + 1)) (with { value_range r; get_range_query (cfun)->range_of_expr (r, @0); if (r.undefined_p ()) r.set_varying (TREE_TYPE (@0)); wide_int min = r.lower_bound (); wide_int max = r.upper_bound (); } (if (min + 1 == max && (wi::to_wide (@1) == min || wi::to_wide (@1) == max)) (with { tree arg0 = @2, arg1 = @3; tree type1; if ((eqne == EQ_EXPR) ^ (wi::to_wide (@1) == min)) std::swap (arg0, arg1); if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type)) type1 = TREE_TYPE (@0); else type1 = type; auto prec = TYPE_PRECISION (type1); auto unsign = TYPE_UNSIGNED (type1); type1 = build_nonstandard_integer_type (prec, unsign); min = wide_int::from (min, prec, TYPE_SIGN (TREE_TYPE (@0))); wide_int a = wide_int::from (wi::to_wide (arg0), prec, TYPE_SIGN (type)); enum tree_code code; wi::overflow_type ovf; if (tree_int_cst_lt (arg0, arg1)) { code = PLUS_EXPR; a -= min; if (!unsign) { /* lhs is known to be in range [min, min+1] and we want to add a to it. Check if that operation can overflow for those 2 values and if yes, force unsigned type. */ wi::add (min + (wi::neg_p (a) ? 0 : 1), a, SIGNED, &ovf); if (ovf) type1 = unsigned_type_for (type1); } } else { code = MINUS_EXPR; a += min; if (!unsign) { /* lhs is known to be in range [min, min+1] and we want to subtract it from a. Check if that operation can overflow for those 2 values and if yes, force unsigned type. */ wi::sub (a, min + (wi::neg_p (min) ? 0 : 1), SIGNED, &ovf); if (ovf) type1 = unsigned_type_for (type1); } } tree arg = wide_int_to_tree (type1, a); } (if (code == PLUS_EXPR) (convert (plus (convert:type1 @0) { arg; })) (convert (minus { arg; } (convert:type1 @0))) ) ) ) ) ) ) ) #endif (simplify (convert (cond@0 @1 INTEGER_CST@2 INTEGER_CST@3)) (if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (@0))) (cond @1 (convert @2) (convert @3)))) /* Simplification moved from fold_cond_expr_with_comparison. It may also be extended. */ /* This pattern implements two kinds simplification: Case 1) (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if: 1) Conversions are type widening from smaller type. 2) Const c1 equals to c2 after canonicalizing comparison. 3) Comparison has tree code LT, LE, GT or GE. This specific pattern is needed when (cmp (convert x) c) may not be simplified by comparison patterns because of multiple uses of x. It also makes sense here because simplifying across multiple referred var is always benefitial for complicated cases. Case 2) (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */ (for cmp (lt le gt ge eq ne) (simplify (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2) (with { tree from_type = TREE_TYPE (@1); tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2); enum tree_code code = ERROR_MARK; if (INTEGRAL_TYPE_P (from_type) && int_fits_type_p (@2, from_type) && (types_match (c1_type, from_type) || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type) && (TYPE_UNSIGNED (from_type) || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type)))) && (types_match (c2_type, from_type) || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type) && (TYPE_UNSIGNED (from_type) || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type))))) { if (cmp != EQ_EXPR) code = minmax_from_comparison (cmp, @1, @3, @1, @2); /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */ else if (int_fits_type_p (@3, from_type)) code = EQ_EXPR; } } (if (code == MAX_EXPR) (convert (max @1 (convert @2))) (if (code == MIN_EXPR) (convert (min @1 (convert @2))) (if (code == EQ_EXPR) (convert (cond (eq @1 (convert @3)) (convert:from_type @3) (convert:from_type @2))))))))) /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if: 1) OP is PLUS or MINUS. 2) CMP is LT, LE, GT or GE. 3) C3 == (C1 op C2), and computation doesn't have undefined behavior. This pattern also handles special cases like: A) Operand x is a unsigned to signed type conversion and c1 is integer zero. In this case, (signed type)x < 0 <=> x > MAX_VAL(signed type) (signed type)x >= 0 <=> x <= MAX_VAL(signed type) B) Const c1 may not equal to (C3 op' C2). In this case we also check equality for (c1+1) and (c1-1) by adjusting comparison code. TODO: Though signed type is handled by this pattern, it cannot be simplified at the moment because C standard requires additional type promotion. In order to match&simplify it here, the IR needs to be cleaned up by other optimizers, i.e, VRP. */ (for op (plus minus) (for cmp (lt le gt ge) (simplify (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3) (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); } (if (types_match (from_type, to_type) /* Check if it is special case A). */ || (TYPE_UNSIGNED (from_type) && !TYPE_UNSIGNED (to_type) && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type) && integer_zerop (@1) && (cmp == LT_EXPR || cmp == GE_EXPR))) (with { wi::overflow_type overflow = wi::OVF_NONE; enum tree_code code, cmp_code = cmp; wide_int real_c1; wide_int c1 = wi::to_wide (@1); wide_int c2 = wi::to_wide (@2); wide_int c3 = wi::to_wide (@3); signop sgn = TYPE_SIGN (from_type); /* Handle special case A), given x of unsigned type: ((signed type)x < 0) <=> (x > MAX_VAL(signed type)) ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */ if (!types_match (from_type, to_type)) { if (cmp_code == LT_EXPR) cmp_code = GT_EXPR; if (cmp_code == GE_EXPR) cmp_code = LE_EXPR; c1 = wi::max_value (to_type); } /* To simplify this pattern, we require c3 = (c1 op c2). Here we compute (c3 op' c2) and check if it equals to c1 with op' being the inverted operator of op. Make sure overflow doesn't happen if it is undefined. */ if (op == PLUS_EXPR) real_c1 = wi::sub (c3, c2, sgn, &overflow); else real_c1 = wi::add (c3, c2, sgn, &overflow); code = cmp_code; if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type)) { /* Check if c1 equals to real_c1. Boundary condition is handled by adjusting comparison operation if necessary. */ if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn) && !overflow) { /* X <= Y - 1 equals to X < Y. */ if (cmp_code == LE_EXPR) code = LT_EXPR; /* X > Y - 1 equals to X >= Y. */ if (cmp_code == GT_EXPR) code = GE_EXPR; } if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn) && !overflow) { /* X < Y + 1 equals to X <= Y. */ if (cmp_code == LT_EXPR) code = LE_EXPR; /* X >= Y + 1 equals to X > Y. */ if (cmp_code == GE_EXPR) code = GT_EXPR; } if (code != cmp_code || !wi::cmp (real_c1, c1, sgn)) { if (cmp_code == LT_EXPR || cmp_code == LE_EXPR) code = MIN_EXPR; if (cmp_code == GT_EXPR || cmp_code == GE_EXPR) code = MAX_EXPR; } } } (if (code == MAX_EXPR) (op (max @X { wide_int_to_tree (from_type, real_c1); }) { wide_int_to_tree (from_type, c2); }) (if (code == MIN_EXPR) (op (min @X { wide_int_to_tree (from_type, real_c1); }) { wide_int_to_tree (from_type, c2); }))))))))) #if GIMPLE /* A >= B ? A : B -> max (A, B) and friends. The code is still in fold_cond_expr_with_comparison for GENERIC folding with some extra constraints. */ (for cmp (eq ne le lt unle unlt ge gt unge ungt uneq ltgt) (simplify (cond (cmp:c (nop_convert1?@c0 @0) (nop_convert2?@c1 @1)) (convert3? @0) (convert4? @1)) (if (!HONOR_SIGNED_ZEROS (type) && (/* Allow widening conversions of the compare operands as data. */ (INTEGRAL_TYPE_P (type) && types_match (TREE_TYPE (@c0), TREE_TYPE (@0)) && types_match (TREE_TYPE (@c1), TREE_TYPE (@1)) && TYPE_PRECISION (TREE_TYPE (@0)) <= TYPE_PRECISION (type) && TYPE_PRECISION (TREE_TYPE (@1)) <= TYPE_PRECISION (type)) /* Or sign conversions for the comparison. */ || (types_match (type, TREE_TYPE (@0)) && types_match (type, TREE_TYPE (@1))))) (switch (if (cmp == EQ_EXPR) (if (VECTOR_TYPE_P (type)) (view_convert @c1) (convert @c1))) (if (cmp == NE_EXPR) (if (VECTOR_TYPE_P (type)) (view_convert @c0) (convert @c0))) (if (cmp == LE_EXPR || cmp == UNLE_EXPR || cmp == LT_EXPR || cmp == UNLT_EXPR) (if (!HONOR_NANS (type)) (if (VECTOR_TYPE_P (type)) (view_convert (min @c0 @c1)) (convert (min @c0 @c1))))) (if (cmp == GE_EXPR || cmp == UNGE_EXPR || cmp == GT_EXPR || cmp == UNGT_EXPR) (if (!HONOR_NANS (type)) (if (VECTOR_TYPE_P (type)) (view_convert (max @c0 @c1)) (convert (max @c0 @c1))))) (if (cmp == UNEQ_EXPR) (if (!HONOR_NANS (type)) (if (VECTOR_TYPE_P (type)) (view_convert @c1) (convert @c1)))) (if (cmp == LTGT_EXPR) (if (!HONOR_NANS (type)) (if (VECTOR_TYPE_P (type)) (view_convert @c0) (convert @c0)))))))) #endif (for cnd (cond vec_cond) /* (a != b) ? (a - b) : 0 -> (a - b) */ (simplify (cnd (ne:c @0 @1) (minus@2 @0 @1) integer_zerop) @2) /* (a != b) ? (a ^ b) : 0 -> (a ^ b) */ (simplify (cnd (ne:c @0 @1) (bit_xor:c@2 @0 @1) integer_zerop) @2) /* (a != b) ? (a & b) : a -> (a & b) */ /* (a != b) ? (a | b) : a -> (a | b) */ /* (a != b) ? min(a,b) : a -> min(a,b) */ /* (a != b) ? max(a,b) : a -> max(a,b) */ (for op (bit_and bit_ior min max) (simplify (cnd (ne:c @0 @1) (op:c@2 @0 @1) @0) @2)) /* (a != b) ? (a * b) : (a * a) -> (a * b) */ /* (a != b) ? (a + b) : (a + a) -> (a + b) */ (for op (mult plus) (simplify (cnd (ne:c @0 @1) (op@2 @0 @1) (op @0 @0)) (if (ANY_INTEGRAL_TYPE_P (type)) @2))) /* (a != b) ? (a + b) : (2 * a) -> (a + b) */ (simplify (cnd (ne:c @0 @1) (plus@2 @0 @1) (mult @0 uniform_integer_cst_p@3)) (if (wi::to_wide (uniform_integer_cst_p (@3)) == 2) @2)) ) /* These was part of minmax phiopt. */ /* Optimize (a CMP b) ? minmax : minmax to minmax, c> */ (for minmax (min max) (for cmp (lt le gt ge ne) (simplify (cond (cmp @1 @3) (minmax:c @1 @4) (minmax:c @2 @4)) (with { tree_code code = minmax_from_comparison (cmp, @1, @2, @1, @3); } (if (code == MIN_EXPR) (minmax (min @1 @2) @4) (if (code == MAX_EXPR) (minmax (max @1 @2) @4))))))) /* Optimize (a CMP CST1) ? max : a */ (for cmp (gt ge lt le) minmax (min min max max) (simplify (cond (cmp @0 @1) (minmax:c@2 @0 @3) @4) (with { tree_code code = minmax_from_comparison (cmp, @0, @1, @0, @4); } (if ((cmp == LT_EXPR || cmp == LE_EXPR) && code == MIN_EXPR && integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node, @3, @4))) (min @2 @4) (if ((cmp == GT_EXPR || cmp == GE_EXPR) && code == MAX_EXPR && integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node, @3, @4))) (max @2 @4)))))) #if GIMPLE /* These patterns should be after min/max detection as simplifications of `(type)(zero_one ==/!= 0)` to `(type)(zero_one)` and `(type)(zero_one^1)` are not done yet. See PR 110637. Even without those, reaching min/max/and/ior faster is better. */ (simplify (cond @0 zero_one_valued_p@1 zero_one_valued_p@2) (switch /* bool0 ? bool1 : 0 -> bool0 & bool1 */ (if (integer_zerop (@2)) (bit_and (convert @0) @1)) /* bool0 ? 0 : bool2 -> (bool0^1) & bool2 */ (if (integer_zerop (@1)) (bit_and (bit_xor (convert @0) { build_one_cst (type); } ) @2)) /* bool0 ? 1 : bool2 -> bool0 | bool2 */ (if (integer_onep (@1)) (bit_ior (convert @0) @2)) /* bool0 ? bool1 : 1 -> (bool0^1) | bool1 */ (if (integer_onep (@2)) (bit_ior (bit_xor (convert @0) @2) @1)) ) ) #endif /* X != C1 ? -X : C2 simplifies to -X when -C1 == C2. */ (simplify (cond (ne @0 INTEGER_CST@1) (negate@3 @0) INTEGER_CST@2) (if (!TYPE_SATURATING (type) && (TYPE_OVERFLOW_WRAPS (type) || !wi::only_sign_bit_p (wi::to_wide (@1))) && wi::eq_p (wi::neg (wi::to_wide (@1)), wi::to_wide (@2))) @3)) /* X != C1 ? ~X : C2 simplifies to ~X when ~C1 == C2. */ (simplify (cond (ne @0 INTEGER_CST@1) (bit_not@3 @0) INTEGER_CST@2) (if (wi::eq_p (wi::bit_not (wi::to_wide (@1)), wi::to_wide (@2))) @3)) /* (X + 1) > Y ? -X : 1 simplifies to X >= Y ? -X : 1 when X is unsigned, as when X + 1 overflows, X is -1, so -X == 1. */ (simplify (cond (gt (plus @0 integer_onep) @1) (negate @0) integer_onep@2) (if (TYPE_UNSIGNED (type)) (cond (ge @0 @1) (negate @0) @2))) (for cnd (cond vec_cond) /* A ? B : (A ? X : C) -> A ? B : C. */ (simplify (cnd @0 (cnd @0 @1 @2) @3) (cnd @0 @1 @3)) (simplify (cnd @0 @1 (cnd @0 @2 @3)) (cnd @0 @1 @3)) /* A ? B : (!A ? C : X) -> A ? B : C. */ /* ??? This matches embedded conditions open-coded because genmatch would generate matching code for conditions in separate stmts only. The following is still important to merge then and else arm cases from if-conversion. */ (simplify (cnd @0 @1 (cnd @2 @3 @4)) (if (inverse_conditions_p (@0, @2)) (cnd @0 @1 @3))) (simplify (cnd @0 (cnd @1 @2 @3) @4) (if (inverse_conditions_p (@0, @1)) (cnd @0 @3 @4))) /* A ? B : B -> B. */ (simplify (cnd @0 @1 @1) @1) /* !A ? B : C -> A ? C : B. */ (simplify (cnd (logical_inverted_value truth_valued_p@0) @1 @2) (cnd @0 @2 @1))) /* abs/negative simplifications moved from fold_cond_expr_with_comparison, Need to handle (A - B) case as fold_cond_expr_with_comparison does. Need to handle UN* comparisons. None of these transformations work for modes with signed zeros. If A is +/-0, the first two transformations will change the sign of the result (from +0 to -0, or vice versa). The last four will fix the sign of the result, even though the original expressions could be positive or negative, depending on the sign of A. Note that all these transformations are correct if A is NaN, since the two alternatives (A and -A) are also NaNs. */ (for cnd (cond vec_cond) /* A == 0 ? A : -A same as -A */ (for cmp (eq uneq) (simplify (cnd (cmp @0 zerop) @0 (negate@1 @0)) (if (!HONOR_SIGNED_ZEROS (type)) @1)) (simplify (cnd (cmp @0 zerop) zerop (negate@1 @0)) (if (!HONOR_SIGNED_ZEROS (type)) @1)) ) /* A != 0 ? A : -A same as A */ (for cmp (ne ltgt) (simplify (cnd (cmp @0 zerop) @0 (negate @0)) (if (!HONOR_SIGNED_ZEROS (type)) @0)) (simplify (cnd (cmp @0 zerop) @0 integer_zerop) (if (!HONOR_SIGNED_ZEROS (type)) @0)) ) /* A >=/> 0 ? A : -A same as abs (A) */ (for cmp (ge gt) (simplify (cnd (cmp @0 zerop) @0 (negate @0)) (if (!HONOR_SIGNED_ZEROS (type) && !TYPE_UNSIGNED (type)) (abs @0)))) /* A <=/< 0 ? A : -A same as -abs (A) */ (for cmp (le lt) (simplify (cnd (cmp @0 zerop) @0 (negate @0)) (if (!HONOR_SIGNED_ZEROS (type) && !TYPE_UNSIGNED (type)) (if (ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)) (with { tree utype = unsigned_type_for (type); } (convert (negate (absu:utype @0)))) (negate (abs @0))))) ) ) /* -(type)!A -> (type)A - 1. */ (simplify (negate (convert?:s (logical_inverted_value:s @0))) (if (INTEGRAL_TYPE_P (type) && TREE_CODE (type) != BOOLEAN_TYPE && TYPE_PRECISION (type) > 1 && TREE_CODE (@0) == SSA_NAME && ssa_name_has_boolean_range (@0)) (plus (convert:type @0) { build_all_ones_cst (type); }))) /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons return all -1 or all 0 results. */ /* ??? We could instead convert all instances of the vec_cond to negate, but that isn't necessarily a win on its own. */ (simplify (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2))) (if (VECTOR_TYPE_P (type) && known_eq (TYPE_VECTOR_SUBPARTS (type), TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))) && (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1))))) (minus @3 (view_convert (vec_cond @0 (negate @1) @2))))) /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */ (simplify (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2))) (if (VECTOR_TYPE_P (type) && known_eq (TYPE_VECTOR_SUBPARTS (type), TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))) && (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1))))) (plus @3 (view_convert (vec_cond @0 (negate @1) @2))))) /* Simplifications of comparisons. */ /* See if we can reduce the magnitude of a constant involved in a comparison by changing the comparison code. This is a canonicalization formerly done by maybe_canonicalize_comparison_1. */ (for cmp (le gt) acmp (lt ge) (simplify (cmp @0 uniform_integer_cst_p@1) (with { tree cst = uniform_integer_cst_p (@1); } (if (tree_int_cst_sgn (cst) == -1) (acmp @0 { build_uniform_cst (TREE_TYPE (@1), wide_int_to_tree (TREE_TYPE (cst), wi::to_wide (cst) + 1)); }))))) (for cmp (ge lt) acmp (gt le) (simplify (cmp @0 uniform_integer_cst_p@1) (with { tree cst = uniform_integer_cst_p (@1); } (if (tree_int_cst_sgn (cst) == 1) (acmp @0 { build_uniform_cst (TREE_TYPE (@1), wide_int_to_tree (TREE_TYPE (cst), wi::to_wide (cst) - 1)); }))))) /* We can simplify a logical negation of a comparison to the inverted comparison. As we cannot compute an expression operator using invert_tree_comparison we have to simulate that with expression code iteration. */ (for cmp (tcc_comparison) icmp (inverted_tcc_comparison) ncmp (inverted_tcc_comparison_with_nans) /* Ideally we'd like to combine the following two patterns and handle some more cases by using (logical_inverted_value (cmp @0 @1)) here but for that genmatch would need to "inline" that. For now implement what forward_propagate_comparison did. */ (simplify (bit_not (cmp @0 @1)) (if (VECTOR_TYPE_P (type) || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)) /* Comparison inversion may be impossible for trapping math, invert_tree_comparison will tell us. But we can't use a computed operator in the replacement tree thus we have to play the trick below. */ (with { enum tree_code ic = invert_tree_comparison (cmp, HONOR_NANS (@0)); } (if (ic == icmp) (icmp @0 @1) (if (ic == ncmp) (ncmp @0 @1)))))) (simplify (bit_xor (cmp @0 @1) integer_truep) (with { enum tree_code ic = invert_tree_comparison (cmp, HONOR_NANS (@0)); } (if (ic == icmp) (icmp @0 @1) (if (ic == ncmp) (ncmp @0 @1))))) /* The following bits are handled by fold_binary_op_with_conditional_arg. */ (simplify (ne (cmp@2 @0 @1) integer_zerop) (if (types_match (type, TREE_TYPE (@2))) (cmp @0 @1))) (simplify (eq (cmp@2 @0 @1) integer_truep) (if (types_match (type, TREE_TYPE (@2))) (cmp @0 @1))) (simplify (ne (cmp@2 @0 @1) integer_truep) (if (types_match (type, TREE_TYPE (@2))) (with { enum tree_code ic = invert_tree_comparison (cmp, HONOR_NANS (@0)); } (if (ic == icmp) (icmp @0 @1) (if (ic == ncmp) (ncmp @0 @1)))))) (simplify (eq (cmp@2 @0 @1) integer_zerop) (if (types_match (type, TREE_TYPE (@2))) (with { enum tree_code ic = invert_tree_comparison (cmp, HONOR_NANS (@0)); } (if (ic == icmp) (icmp @0 @1) (if (ic == ncmp) (ncmp @0 @1))))))) /* Transform comparisons of the form X - Y CMP 0 to X CMP Y. ??? The transformation is valid for the other operators if overflow is undefined for the type, but performing it here badly interacts with the transformation in fold_cond_expr_with_comparison which attempts to synthetize ABS_EXPR. */ (for cmp (eq ne) (for sub (minus pointer_diff) (simplify (cmp (sub@2 @0 @1) integer_zerop) (if (single_use (@2)) (cmp @0 @1))))) /* Simplify (x < 0) ^ (y < 0) to (x ^ y) < 0 and (x >= 0) ^ (y >= 0) to (x ^ y) < 0. */ (for cmp (lt ge) (simplify (bit_xor (cmp:s @0 integer_zerop) (cmp:s @1 integer_zerop)) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && !TYPE_UNSIGNED (TREE_TYPE (@0)) && types_match (TREE_TYPE (@0), TREE_TYPE (@1))) (lt (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); })))) /* Simplify (x < 0) ^ (y >= 0) to (x ^ y) >= 0 and (x >= 0) ^ (y < 0) to (x ^ y) >= 0. */ (simplify (bit_xor:c (lt:s @0 integer_zerop) (ge:s @1 integer_zerop)) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && !TYPE_UNSIGNED (TREE_TYPE (@0)) && types_match (TREE_TYPE (@0), TREE_TYPE (@1))) (ge (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); }))) /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the signed arithmetic case. That form is created by the compiler often enough for folding it to be of value. One example is in computing loop trip counts after Operator Strength Reduction. */ (for cmp (simple_comparison) scmp (swapped_simple_comparison) (simplify (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2) /* Handle unfolded multiplication by zero. */ (if (integer_zerop (@1)) (cmp @1 @2) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)) && single_use (@3)) /* If @1 is negative we swap the sense of the comparison. */ (if (tree_int_cst_sgn (@1) < 0) (scmp @0 @2) (cmp @0 @2)))))) /* For integral types with undefined overflow fold x * C1 == C2 into x == C2 / C1 or false. If overflow wraps and C1 is odd, simplify to x == C2 / C1 in the ring Z / 2^n Z. */ (for cmp (eq ne) (simplify (cmp (mult @0 INTEGER_CST@1) INTEGER_CST@2) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)) && wi::to_wide (@1) != 0) (with { widest_int quot; } (if (wi::multiple_of_p (wi::to_widest (@2), wi::to_widest (@1), TYPE_SIGN (TREE_TYPE (@0)), ")) (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), quot); }) { constant_boolean_node (cmp == NE_EXPR, type); })) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)) && (wi::bit_and (wi::to_wide (@1), 1) == 1)) (cmp @0 { tree itype = TREE_TYPE (@0); int p = TYPE_PRECISION (itype); wide_int m = wi::one (p + 1) << p; wide_int a = wide_int::from (wi::to_wide (@1), p + 1, UNSIGNED); wide_int i = wide_int::from (wi::mod_inv (a, m), p, TYPE_SIGN (itype)); wide_int_to_tree (itype, wi::mul (i, wi::to_wide (@2))); }))))) /* Simplify comparison of something with itself. For IEEE floating-point, we can only do some of these simplifications. */ (for cmp (eq ge le) (simplify (cmp @0 @0) (if (! FLOAT_TYPE_P (TREE_TYPE (@0)) || ! tree_expr_maybe_nan_p (@0)) { constant_boolean_node (true, type); } (if (cmp != EQ_EXPR /* With -ftrapping-math conversion to EQ loses an exception. */ && (! FLOAT_TYPE_P (TREE_TYPE (@0)) || ! flag_trapping_math)) (eq @0 @0))))) (for cmp (ne gt lt) (simplify (cmp @0 @0) (if (cmp != NE_EXPR || ! FLOAT_TYPE_P (TREE_TYPE (@0)) || ! tree_expr_maybe_nan_p (@0)) { constant_boolean_node (false, type); }))) (for cmp (unle unge uneq) (simplify (cmp @0 @0) { constant_boolean_node (true, type); })) (for cmp (unlt ungt) (simplify (cmp @0 @0) (unordered @0 @0))) (simplify (ltgt @0 @0) (if (!flag_trapping_math || !tree_expr_maybe_nan_p (@0)) { constant_boolean_node (false, type); })) /* x == ~x -> false */ /* x != ~x -> true */ (for cmp (eq ne) (simplify (cmp:c @0 (bit_not @0)) { constant_boolean_node (cmp == NE_EXPR, type); })) /* Fold ~X op ~Y as Y op X. */ (for cmp (simple_comparison) (simplify (cmp (bit_not@2 @0) (bit_not@3 @1)) (if (single_use (@2) && single_use (@3)) (cmp @1 @0)))) /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */ (for cmp (simple_comparison) scmp (swapped_simple_comparison) (simplify (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1) (if (single_use (@2) && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST)) (scmp @0 (bit_not @1))))) (for cmp (simple_comparison) (simplify (cmp @0 REAL_CST@1) /* IEEE doesn't distinguish +0 and -0 in comparisons. */ (switch /* a CMP (-0) -> a CMP 0 */ (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1))) (cmp @0 { build_real (TREE_TYPE (@1), dconst0); })) /* (-0) CMP b -> 0 CMP b. */ (if (TREE_CODE (@0) == REAL_CST && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@0))) (cmp { build_real (TREE_TYPE (@0), dconst0); } @1)) /* x != NaN is always true, other ops are always false. */ (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1)) && (cmp == EQ_EXPR || cmp == NE_EXPR || !flag_trapping_math) && !tree_expr_signaling_nan_p (@1) && !tree_expr_maybe_signaling_nan_p (@0)) { constant_boolean_node (cmp == NE_EXPR, type); }) /* NaN != y is always true, other ops are always false. */ (if (TREE_CODE (@0) == REAL_CST && REAL_VALUE_ISNAN (TREE_REAL_CST (@0)) && (cmp == EQ_EXPR || cmp == NE_EXPR || !flag_trapping_math) && !tree_expr_signaling_nan_p (@0) && !tree_expr_signaling_nan_p (@1)) { constant_boolean_node (cmp == NE_EXPR, type); }) /* Fold comparisons against infinity. */ (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1)) && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1)))) (with { REAL_VALUE_TYPE max; enum tree_code code = cmp; bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)); if (neg) code = swap_tree_comparison (code); } (switch /* x > +Inf is always false, if we ignore NaNs or exceptions. */ (if (code == GT_EXPR && !(HONOR_NANS (@0) && flag_trapping_math)) { constant_boolean_node (false, type); }) (if (code == LE_EXPR) /* x <= +Inf is always true, if we don't care about NaNs. */ (if (! HONOR_NANS (@0)) { constant_boolean_node (true, type); } /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses an "invalid" exception. */ (if (!flag_trapping_math) (eq @0 @0)))) /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but for == this introduces an exception for x a NaN. */ (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math)) || code == GE_EXPR) (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); } (if (neg) (lt @0 { build_real (TREE_TYPE (@0), max); }) (gt @0 { build_real (TREE_TYPE (@0), max); })))) /* x < +Inf is always equal to x <= DBL_MAX. */ (if (code == LT_EXPR) (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); } (if (neg) (ge @0 { build_real (TREE_TYPE (@0), max); }) (le @0 { build_real (TREE_TYPE (@0), max); })))) /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces an exception for x a NaN so use an unordered comparison. */ (if (code == NE_EXPR) (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); } (if (! HONOR_NANS (@0)) (if (neg) (ge @0 { build_real (TREE_TYPE (@0), max); }) (le @0 { build_real (TREE_TYPE (@0), max); })) (if (neg) (unge @0 { build_real (TREE_TYPE (@0), max); }) (unle @0 { build_real (TREE_TYPE (@0), max); })))))))))) /* If this is a comparison of a real constant with a PLUS_EXPR or a MINUS_EXPR of a real constant, we can convert it into a comparison with a revised real constant as long as no overflow occurs when unsafe_math_optimizations are enabled. */ (if (flag_unsafe_math_optimizations) (for op (plus minus) (simplify (cmp (op @0 REAL_CST@1) REAL_CST@2) (with { tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR, TREE_TYPE (@1), @2, @1); } (if (tem && !TREE_OVERFLOW (tem)) (cmp @0 { tem; })))))) /* Likewise, we can simplify a comparison of a real constant with a MINUS_EXPR whose first operand is also a real constant, i.e. (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on floating-point types only if -fassociative-math is set. */ (if (flag_associative_math) (simplify (cmp (minus REAL_CST@0 @1) REAL_CST@2) (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); } (if (tem && !TREE_OVERFLOW (tem)) (cmp { tem; } @1))))) /* Fold comparisons against built-in math functions. */ (if (flag_unsafe_math_optimizations && ! flag_errno_math) (for sq (SQRT) (simplify (cmp (sq @0) REAL_CST@1) (switch (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1))) (switch /* sqrt(x) < y is always false, if y is negative. */ (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR) { constant_boolean_node (false, type); }) /* sqrt(x) > y is always true, if y is negative and we don't care about NaNs, i.e. negative values of x. */ (if (cmp == NE_EXPR || !HONOR_NANS (@0)) { constant_boolean_node (true, type); }) /* sqrt(x) > y is the same as x >= 0, if y is negative. */ (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))) (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0)) (switch /* sqrt(x) < 0 is always false. */ (if (cmp == LT_EXPR) { constant_boolean_node (false, type); }) /* sqrt(x) >= 0 is always true if we don't care about NaNs. */ (if (cmp == GE_EXPR && !HONOR_NANS (@0)) { constant_boolean_node (true, type); }) /* sqrt(x) <= 0 -> x == 0. */ (if (cmp == LE_EXPR) (eq @0 @1)) /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >, == or !=. In the last case: (sqrt(x) != 0) == (NaN != 0) == true == (x != 0) if x is negative or NaN. Due to -funsafe-math-optimizations, the results for other x follow from natural arithmetic. */ (cmp @0 @1))) (if ((cmp == LT_EXPR || cmp == LE_EXPR || cmp == GT_EXPR || cmp == GE_EXPR) && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1)) /* Give up for -frounding-math. */ && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0))) (with { REAL_VALUE_TYPE c2; enum tree_code ncmp = cmp; const real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))); real_arithmetic (&c2, MULT_EXPR, &TREE_REAL_CST (@1), &TREE_REAL_CST (@1)); real_convert (&c2, fmt, &c2); /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c), then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */ if (!REAL_VALUE_ISINF (c2)) { tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0), build_real (TREE_TYPE (@0), c2)); if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST) ncmp = ERROR_MARK; else if ((cmp == LT_EXPR || cmp == GE_EXPR) && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1))) ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR; else if ((cmp == LE_EXPR || cmp == GT_EXPR) && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3))) ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR; else { /* With rounding to even, sqrt of up to 3 different values gives the same normal result, so in some cases c2 needs to be adjusted. */ REAL_VALUE_TYPE c2alt, tow; if (cmp == LT_EXPR || cmp == GE_EXPR) tow = dconst0; else tow = dconstinf; real_nextafter (&c2alt, fmt, &c2, &tow); real_convert (&c2alt, fmt, &c2alt); if (REAL_VALUE_ISINF (c2alt)) ncmp = ERROR_MARK; else { c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0), build_real (TREE_TYPE (@0), c2alt)); if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST) ncmp = ERROR_MARK; else if (real_equal (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1))) c2 = c2alt; } } } } (if (cmp == GT_EXPR || cmp == GE_EXPR) (if (REAL_VALUE_ISINF (c2)) /* sqrt(x) > y is x == +Inf, when y is very large. */ (if (HONOR_INFINITIES (@0)) (eq @0 { build_real (TREE_TYPE (@0), c2); }) { constant_boolean_node (false, type); }) /* sqrt(x) > c is the same as x > c*c. */ (if (ncmp != ERROR_MARK) (if (ncmp == GE_EXPR) (ge @0 { build_real (TREE_TYPE (@0), c2); }) (gt @0 { build_real (TREE_TYPE (@0), c2); })))) /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */ (if (REAL_VALUE_ISINF (c2)) (switch /* sqrt(x) < y is always true, when y is a very large value and we don't care about NaNs or Infinities. */ (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0)) { constant_boolean_node (true, type); }) /* sqrt(x) < y is x != +Inf when y is very large and we don't care about NaNs. */ (if (! HONOR_NANS (@0)) (ne @0 { build_real (TREE_TYPE (@0), c2); })) /* sqrt(x) < y is x >= 0 when y is very large and we don't care about Infinities. */ (if (! HONOR_INFINITIES (@0)) (ge @0 { build_real (TREE_TYPE (@0), dconst0); })) /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */ (if (GENERIC) (truth_andif (ge @0 { build_real (TREE_TYPE (@0), dconst0); }) (ne @0 { build_real (TREE_TYPE (@0), c2); })))) /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */ (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0)) (if (ncmp == LT_EXPR) (lt @0 { build_real (TREE_TYPE (@0), c2); }) (le @0 { build_real (TREE_TYPE (@0), c2); })) /* sqrt(x) < c is the same as x >= 0 && x < c*c. */ (if (ncmp != ERROR_MARK && GENERIC) (if (ncmp == LT_EXPR) (truth_andif (ge @0 { build_real (TREE_TYPE (@0), dconst0); }) (lt @0 { build_real (TREE_TYPE (@0), c2); })) (truth_andif (ge @0 { build_real (TREE_TYPE (@0), dconst0); }) (le @0 { build_real (TREE_TYPE (@0), c2); }))))))))))) /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */ (simplify (cmp (sq @0) (sq @1)) (if (! HONOR_NANS (@0)) (cmp @0 @1)))))) /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */ (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt) icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne) (simplify (cmp (float@0 @1) (float @2)) (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0)) && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))) (with { format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)))); tree type1 = TREE_TYPE (@1); bool type1_signed_p = TYPE_SIGN (type1) == SIGNED; tree type2 = TREE_TYPE (@2); bool type2_signed_p = TYPE_SIGN (type2) == SIGNED; } (if (fmt.can_represent_integral_type_p (type1) && fmt.can_represent_integral_type_p (type2)) (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR) { constant_boolean_node (cmp == ORDERED_EXPR, type); } (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2) && type1_signed_p >= type2_signed_p) (icmp @1 (convert @2)) (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2) && type1_signed_p <= type2_signed_p) (icmp (convert:type2 @1) @2) (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2) && type1_signed_p == type2_signed_p) (icmp @1 @2)))))))))) /* Optimize various special cases of (FTYPE) N CMP CST. */ (for cmp (lt le eq ne ge gt) icmp (le le eq ne ge ge) (simplify (cmp (float @0) REAL_CST@1) (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1)) && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))) (with { tree itype = TREE_TYPE (@0); format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1)))); const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1); /* Be careful to preserve any potential exceptions due to NaNs. qNaNs are ok in == or != context. TODO: relax under -fno-trapping-math or -fno-signaling-nans. */ bool exception_p = real_isnan (cst) && (cst->signalling || (cmp != EQ_EXPR && cmp != NE_EXPR)); } /* TODO: allow non-fitting itype and SNaNs when -fno-trapping-math. */ (if (fmt.can_represent_integral_type_p (itype) && ! exception_p) (with { signop isign = TYPE_SIGN (itype); REAL_VALUE_TYPE imin, imax; real_from_integer (&imin, fmt, wi::min_value (itype), isign); real_from_integer (&imax, fmt, wi::max_value (itype), isign); REAL_VALUE_TYPE icst; if (cmp == GT_EXPR || cmp == GE_EXPR) real_ceil (&icst, fmt, cst); else if (cmp == LT_EXPR || cmp == LE_EXPR) real_floor (&icst, fmt, cst); else real_trunc (&icst, fmt, cst); bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst); bool overflow_p = false; wide_int icst_val = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype)); } (switch /* Optimize cases when CST is outside of ITYPE's range. */ (if (real_compare (LT_EXPR, cst, &imin)) { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR, type); }) (if (real_compare (GT_EXPR, cst, &imax)) { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR, type); }) /* Remove cast if CST is an integer representable by ITYPE. */ (if (cst_int_p) (cmp @0 { gcc_assert (!overflow_p); wide_int_to_tree (itype, icst_val); }) ) /* When CST is fractional, optimize (FTYPE) N == CST -> 0 (FTYPE) N != CST -> 1. */ (if (cmp == EQ_EXPR || cmp == NE_EXPR) { constant_boolean_node (cmp == NE_EXPR, type); }) /* Otherwise replace with sensible integer constant. */ (with { gcc_checking_assert (!overflow_p); } (icmp @0 { wide_int_to_tree (itype, icst_val); }))))))))) /* Fold A /[ex] B CMP C to A CMP B * C. */ (for cmp (eq ne) (simplify (cmp (exact_div @0 @1) INTEGER_CST@2) (if (!integer_zerop (@1)) (if (wi::to_wide (@2) == 0) (cmp @0 @2) (if (TREE_CODE (@1) == INTEGER_CST) (with { wi::overflow_type ovf; wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1)), &ovf); } (if (ovf) { constant_boolean_node (cmp == NE_EXPR, type); } (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); })))))))) (for cmp (lt le gt ge) (simplify (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2) (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))) (with { wi::overflow_type ovf; wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1)), &ovf); } (if (ovf) { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))) != (cmp == LT_EXPR || cmp == LE_EXPR), type); } (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); })))))) /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0. For small C (less than max/B), this is (size_t)A CMP (size_t)B * C. For large C (more than min/B+2^size), this is also true, with the multiplication computed modulo 2^size. For intermediate C, this just tests the sign of A. */ (for cmp (lt le gt ge) cmp2 (ge ge lt lt) (simplify (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2) (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)) && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0)) && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))) (with { tree utype = TREE_TYPE (@2); wide_int denom = wi::to_wide (@1); wide_int right = wi::to_wide (@2); wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom); wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom); bool small = wi::leu_p (right, smax); bool large = wi::geu_p (right, smin); } (if (small || large) (cmp (convert:utype @0) (mult @2 (convert @1))) (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); })))))) /* Unordered tests if either argument is a NaN. */ (simplify (bit_ior (unordered @0 @0) (unordered @1 @1)) (if (types_match (@0, @1)) (unordered @0 @1))) (simplify (bit_and (ordered @0 @0) (ordered @1 @1)) (if (types_match (@0, @1)) (ordered @0 @1))) (simplify (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1)) @2) (simplify (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1)) @2) /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0 Note that comparisons A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0 will be canonicalized to above so there's no need to consider them here. */ (for cmp (le gt) eqcmp (eq ne) (simplify (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))) (with { tree ty = TREE_TYPE (@0); unsigned prec = TYPE_PRECISION (ty); wide_int mask = wi::to_wide (@2, prec); wide_int rhs = wi::to_wide (@3, prec); signop sgn = TYPE_SIGN (ty); } (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn) && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn)) (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); }) { build_zero_cst (ty); })))))) /* -A CMP -B -> B CMP A. */ (for cmp (tcc_comparison) scmp (swapped_tcc_comparison) (simplify (cmp (negate @0) (negate @1)) (if (FLOAT_TYPE_P (TREE_TYPE (@0)) || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && (cmp == EQ_EXPR || cmp == NE_EXPR || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))) (scmp @0 @1))) (simplify (cmp (negate @0) CONSTANT_CLASS_P@1) (if (FLOAT_TYPE_P (TREE_TYPE (@0)) || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && (cmp == EQ_EXPR || cmp == NE_EXPR || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))) (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); } (if (tem && !TREE_OVERFLOW (tem)) (scmp @0 { tem; })))))) /* Convert ABS[U]_EXPR == 0 or ABS[U]_EXPR != 0 to x == 0 or x != 0. */ (for op (abs absu) (for eqne (eq ne) (simplify (eqne (op @0) zerop@1) (eqne @0 { build_zero_cst (TREE_TYPE (@0)); })))) /* From fold_sign_changed_comparison and fold_widened_comparison. FIXME: the lack of symmetry is disturbing. */ (for cmp (simple_comparison) (simplify (cmp (convert@0 @00) (convert?@1 @10)) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) /* Disable this optimization if we're casting a function pointer type on targets that require function pointer canonicalization. */ && !(targetm.have_canonicalize_funcptr_for_compare () && ((POINTER_TYPE_P (TREE_TYPE (@00)) && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00)))) || (POINTER_TYPE_P (TREE_TYPE (@10)) && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10)))))) && single_use (@0)) (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0)) && (TREE_CODE (@10) == INTEGER_CST || @1 != @10) && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0)) || cmp == NE_EXPR || cmp == EQ_EXPR) && !POINTER_TYPE_P (TREE_TYPE (@00)) /* (int)bool:32 != (int)uint is not the same as bool:32 != (bool:32)uint since boolean types only have two valid values independent of their precision. */ && (TREE_CODE (TREE_TYPE (@00)) != BOOLEAN_TYPE || TREE_CODE (TREE_TYPE (@10)) == BOOLEAN_TYPE)) /* ??? The special-casing of INTEGER_CST conversion was in the original code and here to avoid a spurious overflow flag on the resulting constant which fold_convert produces. */ (if (TREE_CODE (@1) == INTEGER_CST) (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0, TREE_OVERFLOW (@1)); }) (cmp @00 (convert @1))) (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00))) /* If possible, express the comparison in the shorter mode. */ (if ((cmp == EQ_EXPR || cmp == NE_EXPR || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00)) || (!TYPE_UNSIGNED (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@00)))) && (types_match (TREE_TYPE (@10), TREE_TYPE (@00)) || ((TYPE_PRECISION (TREE_TYPE (@00)) >= TYPE_PRECISION (TREE_TYPE (@10))) && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@10)))) || (TREE_CODE (@10) == INTEGER_CST && INTEGRAL_TYPE_P (TREE_TYPE (@00)) && int_fits_type_p (@10, TREE_TYPE (@00))))) (cmp @00 (convert @10)) (if (TREE_CODE (@10) == INTEGER_CST && INTEGRAL_TYPE_P (TREE_TYPE (@00)) && !int_fits_type_p (@10, TREE_TYPE (@00))) (with { tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00)); tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00)); bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10)); bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min)); } (if (above || below) (if (cmp == EQ_EXPR || cmp == NE_EXPR) { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); } (if (cmp == LT_EXPR || cmp == LE_EXPR) { constant_boolean_node (above ? true : false, type); } (if (cmp == GT_EXPR || cmp == GE_EXPR) { constant_boolean_node (above ? false : true, type); }))))))))) /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */ (if (FLOAT_TYPE_P (TREE_TYPE (@00)) && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)) == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@00))) && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)) == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@10)))) (with { tree type1 = TREE_TYPE (@10); if (TREE_CODE (@10) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1)) { REAL_VALUE_TYPE orig = TREE_REAL_CST (@10); if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node) && exact_real_truncate (TYPE_MODE (float_type_node), &orig)) type1 = float_type_node; if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node) && exact_real_truncate (TYPE_MODE (double_type_node), &orig)) type1 = double_type_node; } tree newtype = (element_precision (TREE_TYPE (@00)) > element_precision (type1) ? TREE_TYPE (@00) : type1); } (if (element_precision (TREE_TYPE (@0)) > element_precision (newtype)) (cmp (convert:newtype @00) (convert:newtype @10)))))))) (for cmp (eq ne) (simplify /* SSA names are canonicalized to 2nd place. */ (cmp addr@0 SSA_NAME@1) (with { poly_int64 off; tree base; tree addr = (TREE_CODE (@0) == SSA_NAME ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0); } /* A local variable can never be pointed to by the default SSA name of an incoming parameter. */ (if (SSA_NAME_IS_DEFAULT_DEF (@1) && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL && (base = get_base_address (TREE_OPERAND (addr, 0))) && TREE_CODE (base) == VAR_DECL && auto_var_in_fn_p (base, current_function_decl)) (if (cmp == NE_EXPR) { constant_boolean_node (true, type); } { constant_boolean_node (false, type); }) /* If the address is based on @1 decide using the offset. */ (if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (addr, 0), &off)) && TREE_CODE (base) == MEM_REF && TREE_OPERAND (base, 0) == @1) (with { off += mem_ref_offset (base).force_shwi (); } (if (known_ne (off, 0)) { constant_boolean_node (cmp == NE_EXPR, type); } (if (known_eq (off, 0)) { constant_boolean_node (cmp == EQ_EXPR, type); })))))))) /* Equality compare simplifications from fold_binary */ (for cmp (eq ne) /* If we have (A | C) == D where C & ~D != 0, convert this into 0. Similarly for NE_EXPR. */ (simplify (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2) (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)) && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0) { constant_boolean_node (cmp == NE_EXPR, type); })) /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */ (simplify (cmp (bit_xor @0 @1) integer_zerop) (cmp @0 @1)) /* (X ^ Y) == Y becomes X == 0. Likewise (X ^ Y) == X becomes Y == 0. */ (simplify (cmp:c (bit_xor:c @0 @1) @0) (cmp @1 { build_zero_cst (TREE_TYPE (@1)); })) /* (X & Y) == X becomes (X & ~Y) == 0. */ (simplify (cmp:c (bit_and:c @0 @1) @0) (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); })) (simplify (cmp:c (convert@3 (bit_and (convert@2 @0) INTEGER_CST@1)) (convert @0)) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && INTEGRAL_TYPE_P (TREE_TYPE (@2)) && INTEGRAL_TYPE_P (TREE_TYPE (@3)) && TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@0)) && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@2)) && !wi::neg_p (wi::to_wide (@1))) (cmp (bit_and @0 (convert (bit_not @1))) { build_zero_cst (TREE_TYPE (@0)); }))) /* (X | Y) == Y becomes (X & ~Y) == 0. */ (simplify (cmp:c (bit_ior:c @0 @1) @1) (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); })) /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */ (simplify (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2) (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))) (cmp @0 (bit_xor @1 (convert @2))))) (simplify (cmp (nop_convert? @0) integer_zerop) (if (tree_expr_nonzero_p (@0)) { constant_boolean_node (cmp == NE_EXPR, type); })) /* (X & C) op (Y & C) into (X ^ Y) & C op 0. */ (simplify (cmp (bit_and:cs @0 @2) (bit_and:cs @1 @2)) (cmp (bit_and (bit_xor @0 @1) @2) { build_zero_cst (TREE_TYPE (@2)); }))) /* (X < 0) != (Y < 0) into (X ^ Y) < 0. (X >= 0) != (Y >= 0) into (X ^ Y) < 0. (X < 0) == (Y < 0) into (X ^ Y) >= 0. (X >= 0) == (Y >= 0) into (X ^ Y) >= 0. */ (for cmp (eq ne) ncmp (ge lt) (for sgncmp (ge lt) (simplify (cmp (sgncmp @0 integer_zerop@2) (sgncmp @1 integer_zerop)) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && !TYPE_UNSIGNED (TREE_TYPE (@0)) && types_match (@0, @1)) (ncmp (bit_xor @0 @1) @2))))) /* (X < 0) == (Y >= 0) into (X ^ Y) < 0. (X < 0) != (Y >= 0) into (X ^ Y) >= 0. */ (for cmp (eq ne) ncmp (lt ge) (simplify (cmp:c (lt @0 integer_zerop@2) (ge @1 integer_zerop)) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && !TYPE_UNSIGNED (TREE_TYPE (@0)) && types_match (@0, @1)) (ncmp (bit_xor @0 @1) @2)))) /* If we have (A & C) == C where C is a power of 2, convert this into (A & C) != 0. Similarly for NE_EXPR. */ (for cmp (eq ne) icmp (ne eq) (simplify (cmp (bit_and@2 @0 integer_pow2p@1) @1) (icmp @2 { build_zero_cst (TREE_TYPE (@0)); }))) #if GIMPLE /* From fold_binary_op_with_conditional_arg handle the case of rewriting (a ? b : c) > d to a ? (b > d) : (c > d) when the compares simplify. */ (for cmp (simple_comparison) (simplify (cmp:c (cond @0 @1 @2) @3) /* Do not move possibly trapping operations into the conditional as this pessimizes code and causes gimplification issues when applied late. */ (if (!FLOAT_TYPE_P (TREE_TYPE (@3)) || !operation_could_trap_p (cmp, true, false, @3)) (cond @0 (cmp! @1 @3) (cmp! @2 @3))))) #endif (for cmp (ge lt) /* x < 0 ? ~y : y into (x >> (prec-1)) ^ y. */ /* x >= 0 ? ~y : y into ~((x >> (prec-1)) ^ y). */ (simplify (cond (cmp @0 integer_zerop) (bit_not @1) @1) (if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (@0)) && !TYPE_UNSIGNED (TREE_TYPE (@0)) && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type)) (with { tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1); } (if (cmp == LT_EXPR) (bit_xor (convert (rshift @0 {shifter;})) @1) (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1)))))) /* x < 0 ? y : ~y into ~((x >> (prec-1)) ^ y). */ /* x >= 0 ? y : ~y into (x >> (prec-1)) ^ y. */ (simplify (cond (cmp @0 integer_zerop) @1 (bit_not @1)) (if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (@0)) && !TYPE_UNSIGNED (TREE_TYPE (@0)) && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type)) (with { tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1); } (if (cmp == GE_EXPR) (bit_xor (convert (rshift @0 {shifter;})) @1) (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1))))))) /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2, convert this into a shift followed by ANDing with D. */ (simplify (cond (ne (bit_and @0 integer_pow2p@1) integer_zerop) INTEGER_CST@2 integer_zerop) (if (!POINTER_TYPE_P (type) && integer_pow2p (@2)) (with { int shift = (wi::exact_log2 (wi::to_wide (@2)) - wi::exact_log2 (wi::to_wide (@1))); } (if (shift > 0) (bit_and (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2) (bit_and (convert (rshift @0 { build_int_cst (integer_type_node, -shift); })) @2))))) /* If we have (A & C) != 0 where C is the sign bit of A, convert this into A < 0. Similarly for (A & C) == 0 into A >= 0. */ (for cmp (eq ne) ncmp (ge lt) (simplify (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && type_has_mode_precision_p (TREE_TYPE (@0)) && element_precision (@2) >= element_precision (@0) && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0))) (with { tree stype = signed_type_for (TREE_TYPE (@0)); } (ncmp (convert:stype @0) { build_zero_cst (stype); }))))) /* If we have A < 0 ? C : 0 where C is a power of 2, convert this into a right shift or sign extension followed by ANDing with C. */ (simplify (cond (lt @0 integer_zerop) INTEGER_CST@1 integer_zerop) (if (integer_pow2p (@1) && !TYPE_UNSIGNED (TREE_TYPE (@0))) (with { int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1; } (if (shift >= 0) (bit_and (convert (rshift @0 { build_int_cst (integer_type_node, shift); })) @1) /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure sign extension followed by AND with C will achieve the effect. */ (bit_and (convert @0) @1))))) /* When the addresses are not directly of decls compare base and offset. This implements some remaining parts of fold_comparison address comparisons but still no complete part of it. Still it is good enough to make fold_stmt not regress when not dispatching to fold_binary. */ (for cmp (simple_comparison) (simplify (cmp (convert1?@2 addr@0) (convert2? addr@1)) (with { poly_int64 off0, off1; tree base0, base1; int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1, off0, off1, GENERIC); } (if (equal == 1) (switch (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1))) { constant_boolean_node (known_eq (off0, off1), type); }) (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1))) { constant_boolean_node (known_ne (off0, off1), type); }) (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1))) { constant_boolean_node (known_lt (off0, off1), type); }) (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1))) { constant_boolean_node (known_le (off0, off1), type); }) (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1))) { constant_boolean_node (known_ge (off0, off1), type); }) (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1))) { constant_boolean_node (known_gt (off0, off1), type); })) (if (equal == 0) (switch (if (cmp == EQ_EXPR) { constant_boolean_node (false, type); }) (if (cmp == NE_EXPR) { constant_boolean_node (true, type); }))))))) #if GIMPLE /* a?~t:t -> (-(a))^t */ (simplify (cond @0 @1 @2) (with { bool wascmp; } (if (INTEGRAL_TYPE_P (type) && bitwise_inverted_equal_p (@1, @2, wascmp) && (!wascmp || element_precision (type) == 1)) (with { auto prec = TYPE_PRECISION (type); auto unsign = TYPE_UNSIGNED (type); tree inttype = build_nonstandard_integer_type (prec, unsign); } (convert (bit_xor (negate (convert:inttype @0)) (convert:inttype @2))))))) #endif /* Simplify pointer equality compares using PTA. */ (for neeq (ne eq) (simplify (neeq @0 @1) (if (POINTER_TYPE_P (TREE_TYPE (@0)) && ptrs_compare_unequal (@0, @1)) { constant_boolean_node (neeq != EQ_EXPR, type); }))) /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST. and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST. Disable the transform if either operand is pointer to function. This broke pr22051-2.c for arm where function pointer canonicalizaion is not wanted. */ (for cmp (ne eq) (simplify (cmp (convert @0) INTEGER_CST@1) (if (((POINTER_TYPE_P (TREE_TYPE (@0)) && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0))) && INTEGRAL_TYPE_P (TREE_TYPE (@1)) /* Don't perform this optimization in GENERIC if @0 has reference type when sanitizing. See PR101210. */ && !(GENERIC && TREE_CODE (TREE_TYPE (@0)) == REFERENCE_TYPE && (flag_sanitize & (SANITIZE_NULL | SANITIZE_ALIGNMENT)))) || (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && POINTER_TYPE_P (TREE_TYPE (@1)) && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1))))) && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))) (cmp @0 (convert @1))))) /* Non-equality compare simplifications from fold_binary */ (for cmp (lt gt le ge) /* Comparisons with the highest or lowest possible integer of the specified precision will have known values. */ (simplify (cmp (convert?@2 @0) uniform_integer_cst_p@1) (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)) || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1))) && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))) (with { tree cst = uniform_integer_cst_p (@1); tree arg1_type = TREE_TYPE (cst); unsigned int prec = TYPE_PRECISION (arg1_type); wide_int max = wi::max_value (arg1_type); wide_int signed_max = wi::max_value (prec, SIGNED); wide_int min = wi::min_value (arg1_type); } (switch (if (wi::to_wide (cst) == max) (switch (if (cmp == GT_EXPR) { constant_boolean_node (false, type); }) (if (cmp == GE_EXPR) (eq @2 @1)) (if (cmp == LE_EXPR) { constant_boolean_node (true, type); }) (if (cmp == LT_EXPR) (ne @2 @1)))) (if (wi::to_wide (cst) == min) (switch (if (cmp == LT_EXPR) { constant_boolean_node (false, type); }) (if (cmp == LE_EXPR) (eq @2 @1)) (if (cmp == GE_EXPR) { constant_boolean_node (true, type); }) (if (cmp == GT_EXPR) (ne @2 @1)))) (if (wi::to_wide (cst) == max - 1) (switch (if (cmp == GT_EXPR) (eq @2 { build_uniform_cst (TREE_TYPE (@1), wide_int_to_tree (TREE_TYPE (cst), wi::to_wide (cst) + 1)); })) (if (cmp == LE_EXPR) (ne @2 { build_uniform_cst (TREE_TYPE (@1), wide_int_to_tree (TREE_TYPE (cst), wi::to_wide (cst) + 1)); })))) (if (wi::to_wide (cst) == min + 1) (switch (if (cmp == GE_EXPR) (ne @2 { build_uniform_cst (TREE_TYPE (@1), wide_int_to_tree (TREE_TYPE (cst), wi::to_wide (cst) - 1)); })) (if (cmp == LT_EXPR) (eq @2 { build_uniform_cst (TREE_TYPE (@1), wide_int_to_tree (TREE_TYPE (cst), wi::to_wide (cst) - 1)); })))) (if (wi::to_wide (cst) == signed_max && TYPE_UNSIGNED (arg1_type) && TYPE_MODE (arg1_type) != BLKmode /* We will flip the signedness of the comparison operator associated with the mode of @1, so the sign bit is specified by this mode. Check that @1 is the signed max associated with this sign bit. */ && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type)) /* signed_type does not work on pointer types. */ && INTEGRAL_TYPE_P (arg1_type)) /* The following case also applies to X < signed_max+1 and X >= signed_max+1 because previous transformations. */ (if (cmp == LE_EXPR || cmp == GT_EXPR) (with { tree st = signed_type_for (TREE_TYPE (@1)); } (switch (if (cst == @1 && cmp == LE_EXPR) (ge (convert:st @0) { build_zero_cst (st); })) (if (cst == @1 && cmp == GT_EXPR) (lt (convert:st @0) { build_zero_cst (st); })) (if (cmp == LE_EXPR) (ge (view_convert:st @0) { build_zero_cst (st); })) (if (cmp == GT_EXPR) (lt (view_convert:st @0) { build_zero_cst (st); }))))))))))) /* unsigned < (typeof unsigned)(unsigned != 0) is always false. */ (simplify (lt:c @0 (convert (ne @0 integer_zerop))) (if (TYPE_UNSIGNED (TREE_TYPE (@0))) { constant_boolean_node (false, type); })) /* x != (typeof x)(x == CST) -> CST == 0 ? 1 : (CST == 1 ? (x!=0&&x!=1) : x != 0) */ /* x != (typeof x)(x != CST) -> CST == 1 ? 1 : (CST == 0 ? (x!=0&&x!=1) : x != 1) */ /* x == (typeof x)(x == CST) -> CST == 0 ? 0 : (CST == 1 ? (x==0||x==1) : x == 0) */ /* x == (typeof x)(x != CST) -> CST == 1 ? 0 : (CST == 0 ? (x==0||x==1) : x == 1) */ (for outer (ne eq) (for inner (ne eq) (simplify (outer:c @0 (convert (inner @0 INTEGER_CST@1))) (with { bool cst1 = integer_onep (@1); bool cst0 = integer_zerop (@1); bool innereq = inner == EQ_EXPR; bool outereq = outer == EQ_EXPR; } (switch (if (innereq ? cst0 : cst1) { constant_boolean_node (!outereq, type); }) (if (innereq ? cst1 : cst0) (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); tree ucst1 = build_one_cst (utype); } (if (!outereq) (gt (convert:utype @0) { ucst1; }) (le (convert:utype @0) { ucst1; }) ) ) ) (with { tree value = build_int_cst (TREE_TYPE (@0), !innereq); } (if (outereq) (eq @0 { value; }) (ne @0 { value; }) ) ) ) ) ) ) ) (for cmp (unordered ordered unlt unle ungt unge uneq ltgt) /* If the second operand is NaN, the result is constant. */ (simplify (cmp @0 REAL_CST@1) (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1)) && (cmp != LTGT_EXPR || ! flag_trapping_math)) { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR ? false : true, type); }))) /* Fold UNORDERED if either operand must be NaN, or neither can be. */ (simplify (unordered @0 @1) (switch (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1)) { constant_boolean_node (true, type); }) (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1)) { constant_boolean_node (false, type); }))) /* Fold ORDERED if either operand must be NaN, or neither can be. */ (simplify (ordered @0 @1) (switch (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1)) { constant_boolean_node (false, type); }) (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1)) { constant_boolean_node (true, type); }))) /* bool_var != 0 becomes bool_var. */ (simplify (ne @0 integer_zerop) (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE && types_match (type, TREE_TYPE (@0))) (non_lvalue @0))) /* bool_var == 1 becomes bool_var. */ (simplify (eq @0 integer_onep) (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE && types_match (type, TREE_TYPE (@0))) (non_lvalue @0))) /* Do not handle bool_var == 0 becomes !bool_var or bool_var != 1 becomes !bool_var here because that only is good in assignment context as long as we require a tcc_comparison in GIMPLE_CONDs where we'd replace if (x == 0) with tem = ~x; if (tem != 0) which is clearly less optimal and which we'll transform again in forwprop. */ /* Transform comparisons of the form (X & Y) CMP 0 to X CMP2 Z where ~Y + 1 == pow2 and Z = ~Y. */ (for cst (VECTOR_CST INTEGER_CST) (for cmp (eq ne) icmp (le gt) (simplify (cmp (bit_and:c@2 @0 cst@1) integer_zerop) (with { tree csts = bitmask_inv_cst_vector_p (@1); } (if (csts && (VECTOR_TYPE_P (TREE_TYPE (@1)) || single_use (@2))) (with { auto optab = VECTOR_TYPE_P (TREE_TYPE (@1)) ? optab_vector : optab_default; tree utype = unsigned_type_for (TREE_TYPE (@1)); } (if (target_supports_op_p (utype, icmp, optab) || (optimize_vectors_before_lowering_p () && (!target_supports_op_p (type, cmp, optab) || !target_supports_op_p (type, BIT_AND_EXPR, optab)))) (if (TYPE_UNSIGNED (TREE_TYPE (@1))) (icmp @0 { csts; }) (icmp (view_convert:utype @0) { csts; }))))))))) /* When one argument is a constant, overflow detection can be simplified. Currently restricted to single use so as not to interfere too much with ADD_OVERFLOW detection in tree-ssa-math-opts.cc. CONVERT?(CONVERT?(A) + CST) CMP A -> A CMP' CST' */ (for cmp (lt le ge gt) out (gt gt le le) (simplify (cmp:c (convert?@3 (plus@2 (convert?@4 @0) INTEGER_CST@1)) @0) (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@2)) && types_match (TREE_TYPE (@0), TREE_TYPE (@3)) && tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@0)) && wi::to_wide (@1) != 0 && single_use (@2)) (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); signop sign = TYPE_SIGN (TREE_TYPE (@0)); } (out @0 { wide_int_to_tree (TREE_TYPE (@0), wi::max_value (prec, sign) - wi::to_wide (@1)); }))))) /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A. However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.cc expects the long form, so we restrict the transformation for now. */ (for cmp (gt le) (simplify (cmp:c (minus@2 @0 @1) @0) (if (single_use (@2) && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0))) (cmp @1 @0)))) /* Optimize A - B + -1 >= A into B >= A for unsigned comparisons. */ (for cmp (ge lt) (simplify (cmp:c (plus (minus @0 @1) integer_minus_onep) @0) (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0))) (cmp @1 @0)))) /* Testing for overflow is unnecessary if we already know the result. */ /* A - B > A */ (for cmp (gt le) out (ne eq) (simplify (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0) (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && types_match (TREE_TYPE (@0), TREE_TYPE (@1))) (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); })))) /* A + B < A */ (for cmp (lt ge) out (ne eq) (simplify (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0) (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && types_match (TREE_TYPE (@0), TREE_TYPE (@1))) (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); })))) /* For unsigned operands, -1 / B < A checks whether A * B would overflow. Simplify it to __builtin_mul_overflow (A, B, ). */ (for cmp (lt ge) out (ne eq) (simplify (cmp:c (trunc_div:s integer_all_onesp @1) @0) (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0))) (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); } (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); }))))) /* Similarly, for unsigned operands, (((type) A * B) >> prec) != 0 where type is at least twice as wide as type of A and B, simplify to __builtin_mul_overflow (A, B, ). */ (for cmp (eq ne) (simplify (cmp (rshift (mult:s (convert@3 @0) (convert @1)) INTEGER_CST@2) integer_zerop) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && INTEGRAL_TYPE_P (TREE_TYPE (@3)) && TYPE_UNSIGNED (TREE_TYPE (@0)) && (TYPE_PRECISION (TREE_TYPE (@3)) >= 2 * TYPE_PRECISION (TREE_TYPE (@0))) && tree_fits_uhwi_p (@2) && tree_to_uhwi (@2) == TYPE_PRECISION (TREE_TYPE (@0)) && types_match (@0, @1) && type_has_mode_precision_p (TREE_TYPE (@0)) && (optab_handler (umulv4_optab, TYPE_MODE (TREE_TYPE (@0))) != CODE_FOR_nothing)) (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); } (cmp (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); }))))) /* Demote operands of IFN_{ADD,SUB,MUL}_OVERFLOW. */ (for ovf (IFN_ADD_OVERFLOW IFN_SUB_OVERFLOW IFN_MUL_OVERFLOW) (simplify (ovf (convert@2 @0) @1) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && INTEGRAL_TYPE_P (TREE_TYPE (@2)) && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0)) && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0)))) (ovf @0 @1))) (simplify (ovf @1 (convert@2 @0)) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && INTEGRAL_TYPE_P (TREE_TYPE (@2)) && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0)) && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0)))) (ovf @1 @0)))) /* Optimize __builtin_mul_overflow_p (x, cst, (utype) 0) if all 3 types are unsigned to x > (umax / cst). Similarly for signed type, but in that case it needs to be outside of a range. */ (simplify (imagpart (IFN_MUL_OVERFLOW:cs@2 @0 integer_nonzerop@1)) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_MAX_VALUE (TREE_TYPE (@0)) && types_match (TREE_TYPE (@0), TREE_TYPE (TREE_TYPE (@2))) && int_fits_type_p (@1, TREE_TYPE (@0))) (if (TYPE_UNSIGNED (TREE_TYPE (@0))) (convert (gt @0 (trunc_div! { TYPE_MAX_VALUE (TREE_TYPE (@0)); } @1))) (if (TYPE_MIN_VALUE (TREE_TYPE (@0))) (if (integer_minus_onep (@1)) (convert (eq @0 { TYPE_MIN_VALUE (TREE_TYPE (@0)); })) (with { tree div = fold_convert (TREE_TYPE (@0), @1); tree lo = int_const_binop (TRUNC_DIV_EXPR, TYPE_MIN_VALUE (TREE_TYPE (@0)), div); tree hi = int_const_binop (TRUNC_DIV_EXPR, TYPE_MAX_VALUE (TREE_TYPE (@0)), div); tree etype = range_check_type (TREE_TYPE (@0)); if (etype) { if (wi::neg_p (wi::to_wide (div))) std::swap (lo, hi); lo = fold_convert (etype, lo); hi = fold_convert (etype, hi); hi = int_const_binop (MINUS_EXPR, hi, lo); } } (if (etype) (convert (gt (minus (convert:etype @0) { lo; }) { hi; }))))))))) /* Simplification of math builtins. These rules must all be optimizations as well as IL simplifications. If there is a possibility that the new form could be a pessimization, the rule should go in the canonicalization section that follows this one. Rules can generally go in this section if they satisfy one of the following: - the rule describes an identity - the rule replaces calls with something as simple as addition or multiplication - the rule contains unary calls only and simplifies the surrounding arithmetic. (The idea here is to exclude non-unary calls in which one operand is constant and in which the call is known to be cheap when the operand has that value.) */ (if (flag_unsafe_math_optimizations) /* Simplify sqrt(x) * sqrt(x) -> x. */ (simplify (mult (SQRT_ALL@1 @0) @1) (if (!tree_expr_maybe_signaling_nan_p (@0)) @0)) (for op (plus minus) /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */ (simplify (op (rdiv @0 @1) (rdiv @2 @1)) (rdiv (op @0 @2) @1))) (for cmp (lt le gt ge) neg_cmp (gt ge lt le) /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */ (simplify (cmp (mult @0 REAL_CST@1) REAL_CST@2) (with { tree tem = const_binop (RDIV_EXPR, type, @2, @1); } (if (tem && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem)) || (real_zerop (tem) && !real_zerop (@1)))) (switch (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1))) (cmp @0 { tem; })) (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0)) (neg_cmp @0 { tem; }))))))) /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */ (for root (SQRT CBRT) (simplify (mult (root:s @0) (root:s @1)) (root (mult @0 @1)))) /* Simplify expN(x) * expN(y) -> expN(x+y). */ (for exps (EXP EXP2 EXP10 POW10) (simplify (mult (exps:s @0) (exps:s @1)) (exps (plus @0 @1)))) /* Simplify a/root(b/c) into a*root(c/b). */ (for root (SQRT CBRT) (simplify (rdiv @0 (root:s (rdiv:s @1 @2))) (mult @0 (root (rdiv @2 @1))))) /* Simplify x/expN(y) into x*expN(-y). */ (for exps (EXP EXP2 EXP10 POW10) (simplify (rdiv @0 (exps:s @1)) (mult @0 (exps (negate @1))))) (for logs (LOG LOG2 LOG10 LOG10) exps (EXP EXP2 EXP10 POW10) /* logN(expN(x)) -> x. */ (simplify (logs (exps @0)) @0) /* expN(logN(x)) -> x. */ (simplify (exps (logs @0)) @0)) /* Optimize logN(func()) for various exponential functions. We want to determine the value "x" and the power "exponent" in order to transform logN(x**exponent) into exponent*logN(x). */ (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10) exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2) (simplify (logs (exps @0)) (if (SCALAR_FLOAT_TYPE_P (type)) (with { tree x; switch (exps) { CASE_CFN_EXP: /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */ x = build_real_truncate (type, dconst_e ()); break; CASE_CFN_EXP2: /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */ x = build_real (type, dconst2); break; CASE_CFN_EXP10: CASE_CFN_POW10: /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */ { REAL_VALUE_TYPE dconst10; real_from_integer (&dconst10, VOIDmode, 10, SIGNED); x = build_real (type, dconst10); } break; default: gcc_unreachable (); } } (mult (logs { x; }) @0))))) (for logs (LOG LOG LOG2 LOG2 LOG10 LOG10) exps (SQRT CBRT) (simplify (logs (exps @0)) (if (SCALAR_FLOAT_TYPE_P (type)) (with { tree x; switch (exps) { CASE_CFN_SQRT: /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */ x = build_real (type, dconsthalf); break; CASE_CFN_CBRT: /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */ x = build_real_truncate (type, dconst_third ()); break; default: gcc_unreachable (); } } (mult { x; } (logs @0)))))) /* logN(pow(x,exponent)) -> exponent*logN(x). */ (for logs (LOG LOG2 LOG10) pows (POW) (simplify (logs (pows @0 @1)) (mult @1 (logs @0)))) /* pow(C,x) -> exp(log(C)*x) if C > 0, or if C is a positive power of 2, pow(C,x) -> exp2(log2(C)*x). */ #if GIMPLE (for pows (POW) exps (EXP) logs (LOG) exp2s (EXP2) log2s (LOG2) (simplify (pows REAL_CST@0 @1) (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0) && real_isfinite (TREE_REAL_CST_PTR (@0)) /* As libmvec doesn't have a vectorized exp2, defer optimizing the use_exp2 case until after vectorization. It seems actually beneficial for all constants to postpone this until later, because exp(log(C)*x), while faster, will have worse precision and if x folds into a constant too, that is unnecessary pessimization. */ && canonicalize_math_after_vectorization_p ()) (with { const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0); bool use_exp2 = false; if (targetm.libc_has_function (function_c99_misc, TREE_TYPE (@0)) && value->cl == rvc_normal) { REAL_VALUE_TYPE frac_rvt = *value; SET_REAL_EXP (&frac_rvt, 1); if (real_equal (&frac_rvt, &dconst1)) use_exp2 = true; } } (if (!use_exp2) (if (optimize_pow_to_exp (@0, @1)) (exps (mult (logs @0) @1))) (exp2s (mult (log2s @0) @1))))))) #endif /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */ (for pows (POW) exps (EXP EXP2 EXP10 POW10) logs (LOG LOG2 LOG10 LOG10) (simplify (mult:c (pows:s REAL_CST@0 @1) (exps:s @2)) (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0) && real_isfinite (TREE_REAL_CST_PTR (@0))) (exps (plus (mult (logs @0) @1) @2))))) (for sqrts (SQRT) cbrts (CBRT) pows (POW) exps (EXP EXP2 EXP10 POW10) /* sqrt(expN(x)) -> expN(x*0.5). */ (simplify (sqrts (exps @0)) (exps (mult @0 { build_real (type, dconsthalf); }))) /* cbrt(expN(x)) -> expN(x/3). */ (simplify (cbrts (exps @0)) (exps (mult @0 { build_real_truncate (type, dconst_third ()); }))) /* pow(expN(x), y) -> expN(x*y). */ (simplify (pows (exps @0) @1) (exps (mult @0 @1)))) /* tan(atan(x)) -> x. */ (for tans (TAN) atans (ATAN) (simplify (tans (atans @0)) @0))) /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */ (for sins (SIN) atans (ATAN) sqrts (SQRT) copysigns (COPYSIGN) (simplify (sins (atans:s @0)) (with { REAL_VALUE_TYPE r_cst; build_sinatan_real (&r_cst, type); tree t_cst = build_real (type, r_cst); tree t_one = build_one_cst (type); } (if (SCALAR_FLOAT_TYPE_P (type)) (cond (lt (abs @0) { t_cst; }) (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; }))) (copysigns { t_one; } @0)))))) /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */ (for coss (COS) atans (ATAN) sqrts (SQRT) copysigns (COPYSIGN) (simplify (coss (atans:s @0)) (with { REAL_VALUE_TYPE r_cst; build_sinatan_real (&r_cst, type); tree t_cst = build_real (type, r_cst); tree t_one = build_one_cst (type); tree t_zero = build_zero_cst (type); } (if (SCALAR_FLOAT_TYPE_P (type)) (cond (lt (abs @0) { t_cst; }) (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; }))) (copysigns { t_zero; } @0)))))) (if (!flag_errno_math) /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */ (for sinhs (SINH) atanhs (ATANH) sqrts (SQRT) (simplify (sinhs (atanhs:s @0)) (with { tree t_one = build_one_cst (type); } (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))) /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */ (for coshs (COSH) atanhs (ATANH) sqrts (SQRT) (simplify (coshs (atanhs:s @0)) (with { tree t_one = build_one_cst (type); } (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))) /* cabs(x+0i) or cabs(0+xi) -> abs(x). */ (simplify (CABS (complex:C @0 real_zerop@1)) (abs @0)) /* trunc(trunc(x)) -> trunc(x), etc. */ (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL) (simplify (fns (fns @0)) (fns @0))) /* f(x) -> x if x is integer valued and f does nothing for such values. */ (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL) (simplify (fns integer_valued_real_p@0) @0)) /* hypot(x,0) and hypot(0,x) -> abs(x). */ (simplify (HYPOT:c @0 real_zerop@1) (abs @0)) /* pow(1,x) -> 1. */ (simplify (POW real_onep@0 @1) @0) (simplify /* copysign(x,x) -> x. */ (COPYSIGN_ALL @0 @0) @0) (simplify /* copysign(x,-x) -> -x. */ (COPYSIGN_ALL @0 (negate@1 @0)) @1) (simplify /* copysign(x,y) -> fabs(x) if y is nonnegative. */ (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1) (abs @0)) (for scale (LDEXP SCALBN SCALBLN) /* ldexp(0, x) -> 0. */ (simplify (scale real_zerop@0 @1) @0) /* ldexp(x, 0) -> x. */ (simplify (scale @0 integer_zerop@1) @0) /* ldexp(x, y) -> x if x is +-Inf or NaN. */ (simplify (scale REAL_CST@0 @1) (if (!real_isfinite (TREE_REAL_CST_PTR (@0))) @0))) /* Canonicalization of sequences of math builtins. These rules represent IL simplifications but are not necessarily optimizations. The sincos pass is responsible for picking "optimal" implementations of math builtins, which may be more complicated and can sometimes go the other way, e.g. converting pow into a sequence of sqrts. We only want to do these canonicalizations before the pass has run. */ (if (flag_unsafe_math_optimizations && canonicalize_math_p ()) /* Simplify tan(x) * cos(x) -> sin(x). */ (simplify (mult:c (TAN:s @0) (COS:s @0)) (SIN @0)) /* Simplify x * pow(x,c) -> pow(x,c+1). */ (simplify (mult:c @0 (POW:s @0 REAL_CST@1)) (if (!TREE_OVERFLOW (@1)) (POW @0 (plus @1 { build_one_cst (type); })))) /* Simplify sin(x) / cos(x) -> tan(x). */ (simplify (rdiv (SIN:s @0) (COS:s @0)) (TAN @0)) /* Simplify sinh(x) / cosh(x) -> tanh(x). */ (simplify (rdiv (SINH:s @0) (COSH:s @0)) (TANH @0)) /* Simplify tanh (x) / sinh (x) -> 1.0 / cosh (x). */ (simplify (rdiv (TANH:s @0) (SINH:s @0)) (rdiv {build_one_cst (type);} (COSH @0))) /* Simplify cos(x) / sin(x) -> 1 / tan(x). */ (simplify (rdiv (COS:s @0) (SIN:s @0)) (rdiv { build_one_cst (type); } (TAN @0))) /* Simplify sin(x) / tan(x) -> cos(x). */ (simplify (rdiv (SIN:s @0) (TAN:s @0)) (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0)) (COS @0))) /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */ (simplify (rdiv (TAN:s @0) (SIN:s @0)) (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0)) (rdiv { build_one_cst (type); } (COS @0)))) /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */ (simplify (mult (POW:s @0 @1) (POW:s @0 @2)) (POW @0 (plus @1 @2))) /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */ (simplify (mult (POW:s @0 @1) (POW:s @2 @1)) (POW (mult @0 @2) @1)) /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */ (simplify (mult (POWI:s @0 @1) (POWI:s @2 @1)) (POWI (mult @0 @2) @1)) /* Simplify pow(x,c) / x -> pow(x,c-1). */ (simplify (rdiv (POW:s @0 REAL_CST@1) @0) (if (!TREE_OVERFLOW (@1)) (POW @0 (minus @1 { build_one_cst (type); })))) /* Simplify x / pow (y,z) -> x * pow(y,-z). */ (simplify (rdiv @0 (POW:s @1 @2)) (mult @0 (POW @1 (negate @2)))) (for sqrts (SQRT) cbrts (CBRT) pows (POW) /* sqrt(sqrt(x)) -> pow(x,1/4). */ (simplify (sqrts (sqrts @0)) (pows @0 { build_real (type, dconst_quarter ()); })) /* sqrt(cbrt(x)) -> pow(x,1/6). */ (simplify (sqrts (cbrts @0)) (pows @0 { build_real_truncate (type, dconst_sixth ()); })) /* cbrt(sqrt(x)) -> pow(x,1/6). */ (simplify (cbrts (sqrts @0)) (pows @0 { build_real_truncate (type, dconst_sixth ()); })) /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */ (simplify (cbrts (cbrts tree_expr_nonnegative_p@0)) (pows @0 { build_real_truncate (type, dconst_ninth ()); })) /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */ (simplify (sqrts (pows @0 @1)) (pows (abs @0) (mult @1 { build_real (type, dconsthalf); }))) /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */ (simplify (cbrts (pows tree_expr_nonnegative_p@0 @1)) (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); }))) /* pow(sqrt(x),y) -> pow(x,y*0.5). */ (simplify (pows (sqrts @0) @1) (pows @0 (mult @1 { build_real (type, dconsthalf); }))) /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */ (simplify (pows (cbrts tree_expr_nonnegative_p@0) @1) (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); }))) /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */ (simplify (pows (pows tree_expr_nonnegative_p@0 @1) @2) (pows @0 (mult @1 @2)))) /* cabs(x+xi) -> fabs(x)*sqrt(2). */ (simplify (CABS (complex @0 @0)) (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); })) /* hypot(x,x) -> fabs(x)*sqrt(2). */ (simplify (HYPOT @0 @0) (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); })) /* cexp(x+yi) -> exp(x)*cexpi(y). */ (for cexps (CEXP) exps (EXP) cexpis (CEXPI) (simplify (cexps compositional_complex@0) (if (targetm.libc_has_function (function_c99_math_complex, TREE_TYPE (@0))) (complex (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0)))) (mult @1 (imagpart @2))))))) (if (canonicalize_math_p ()) /* floor(x) -> trunc(x) if x is nonnegative. */ (for floors (FLOOR_ALL) truncs (TRUNC_ALL) (simplify (floors tree_expr_nonnegative_p@0) (truncs @0)))) (match double_value_p @0 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node))) (for froms (BUILT_IN_TRUNCL BUILT_IN_FLOORL BUILT_IN_CEILL BUILT_IN_ROUNDL BUILT_IN_NEARBYINTL BUILT_IN_RINTL) tos (BUILT_IN_TRUNC BUILT_IN_FLOOR BUILT_IN_CEIL BUILT_IN_ROUND BUILT_IN_NEARBYINT BUILT_IN_RINT) /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */ (if (optimize && canonicalize_math_p ()) (simplify (froms (convert double_value_p@0)) (convert (tos @0))))) (match float_value_p @0 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node))) (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC BUILT_IN_FLOORL BUILT_IN_FLOOR BUILT_IN_CEILL BUILT_IN_CEIL BUILT_IN_ROUNDL BUILT_IN_ROUND BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT BUILT_IN_RINTL BUILT_IN_RINT) tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF BUILT_IN_FLOORF BUILT_IN_FLOORF BUILT_IN_CEILF BUILT_IN_CEILF BUILT_IN_ROUNDF BUILT_IN_ROUNDF BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF BUILT_IN_RINTF BUILT_IN_RINTF) /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc., if x is a float. */ (if (optimize && canonicalize_math_p () && targetm.libc_has_function (function_c99_misc, NULL_TREE)) (simplify (froms (convert float_value_p@0)) (convert (tos @0))))) #if GIMPLE (match float16_value_p @0 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float16_type_node))) (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC BUILT_IN_TRUNCF BUILT_IN_FLOORL BUILT_IN_FLOOR BUILT_IN_FLOORF BUILT_IN_CEILL BUILT_IN_CEIL BUILT_IN_CEILF BUILT_IN_ROUNDEVENL BUILT_IN_ROUNDEVEN BUILT_IN_ROUNDEVENF BUILT_IN_ROUNDL BUILT_IN_ROUND BUILT_IN_ROUNDF BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT BUILT_IN_NEARBYINTF BUILT_IN_RINTL BUILT_IN_RINT BUILT_IN_RINTF BUILT_IN_SQRTL BUILT_IN_SQRT BUILT_IN_SQRTF) tos (IFN_TRUNC IFN_TRUNC IFN_TRUNC IFN_FLOOR IFN_FLOOR IFN_FLOOR IFN_CEIL IFN_CEIL IFN_CEIL IFN_ROUNDEVEN IFN_ROUNDEVEN IFN_ROUNDEVEN IFN_ROUND IFN_ROUND IFN_ROUND IFN_NEARBYINT IFN_NEARBYINT IFN_NEARBYINT IFN_RINT IFN_RINT IFN_RINT IFN_SQRT IFN_SQRT IFN_SQRT) /* (_Float16) round ((doube) x) -> __built_in_roundf16 (x), etc., if x is a _Float16. */ (simplify (convert (froms (convert float16_value_p@0))) (if (optimize && types_match (type, TREE_TYPE (@0)) && direct_internal_fn_supported_p (as_internal_fn (tos), type, OPTIMIZE_FOR_BOTH)) (tos @0)))) /* Simplify (trunc)copysign ((extend)x, (extend)y) to copysignf (x, y), x,y is float value, similar for _Float16/double. */ (for copysigns (COPYSIGN_ALL) (simplify (convert (copysigns (convert@2 @0) (convert @1))) (if (optimize && !HONOR_SNANS (@2) && types_match (type, TREE_TYPE (@0)) && types_match (type, TREE_TYPE (@1)) && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@2)) && direct_internal_fn_supported_p (IFN_COPYSIGN, type, OPTIMIZE_FOR_BOTH)) (IFN_COPYSIGN @0 @1)))) (for froms (BUILT_IN_FMAF BUILT_IN_FMA BUILT_IN_FMAL) tos (IFN_FMA IFN_FMA IFN_FMA) (simplify (convert (froms (convert@3 @0) (convert @1) (convert @2))) (if (flag_unsafe_math_optimizations && optimize && FLOAT_TYPE_P (type) && FLOAT_TYPE_P (TREE_TYPE (@3)) && types_match (type, TREE_TYPE (@0)) && types_match (type, TREE_TYPE (@1)) && types_match (type, TREE_TYPE (@2)) && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@3)) && direct_internal_fn_supported_p (as_internal_fn (tos), type, OPTIMIZE_FOR_BOTH)) (tos @0 @1 @2)))) (for maxmin (max min) (simplify (convert (maxmin (convert@2 @0) (convert @1))) (if (optimize && FLOAT_TYPE_P (type) && FLOAT_TYPE_P (TREE_TYPE (@2)) && types_match (type, TREE_TYPE (@0)) && types_match (type, TREE_TYPE (@1)) && element_precision (type) < element_precision (TREE_TYPE (@2))) (maxmin @0 @1)))) #endif (for froms (XFLOORL XCEILL XROUNDL XRINTL) tos (XFLOOR XCEIL XROUND XRINT) /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */ (if (optimize && canonicalize_math_p ()) (simplify (froms (convert double_value_p@0)) (tos @0)))) (for froms (XFLOORL XCEILL XROUNDL XRINTL XFLOOR XCEIL XROUND XRINT) tos (XFLOORF XCEILF XROUNDF XRINTF) /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc., if x is a float. */ (if (optimize && canonicalize_math_p ()) (simplify (froms (convert float_value_p@0)) (tos @0)))) (if (canonicalize_math_p ()) /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */ (for floors (IFLOOR LFLOOR LLFLOOR) (simplify (floors tree_expr_nonnegative_p@0) (fix_trunc @0)))) (if (canonicalize_math_p ()) /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */ (for fns (IFLOOR LFLOOR LLFLOOR ICEIL LCEIL LLCEIL IROUND LROUND LLROUND) (simplify (fns integer_valued_real_p@0) (fix_trunc @0))) (if (!flag_errno_math) /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */ (for rints (IRINT LRINT LLRINT) (simplify (rints integer_valued_real_p@0) (fix_trunc @0))))) (if (canonicalize_math_p ()) (for ifn (IFLOOR ICEIL IROUND IRINT) lfn (LFLOOR LCEIL LROUND LRINT) llfn (LLFLOOR LLCEIL LLROUND LLRINT) /* Canonicalize iround (x) to lround (x) on ILP32 targets where sizeof (int) == sizeof (long). */ (if (TYPE_PRECISION (integer_type_node) == TYPE_PRECISION (long_integer_type_node)) (simplify (ifn @0) (lfn:long_integer_type_node @0))) /* Canonicalize llround (x) to lround (x) on LP64 targets where sizeof (long long) == sizeof (long). */ (if (TYPE_PRECISION (long_long_integer_type_node) == TYPE_PRECISION (long_integer_type_node)) (simplify (llfn @0) (lfn:long_integer_type_node @0))))) /* cproj(x) -> x if we're ignoring infinities. */ (simplify (CPROJ @0) (if (!HONOR_INFINITIES (type)) @0)) /* If the real part is inf and the imag part is known to be nonnegative, return (inf + 0i). */ (simplify (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1)) (if (real_isinf (TREE_REAL_CST_PTR (@0))) { build_complex_inf (type, false); })) /* If the imag part is inf, return (inf+I*copysign(0,imag)). */ (simplify (CPROJ (complex @0 REAL_CST@1)) (if (real_isinf (TREE_REAL_CST_PTR (@1))) { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); })) (for pows (POW) sqrts (SQRT) cbrts (CBRT) (simplify (pows @0 REAL_CST@1) (with { const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1); REAL_VALUE_TYPE tmp; } (switch /* pow(x,0) -> 1. */ (if (real_equal (value, &dconst0)) { build_real (type, dconst1); }) /* pow(x,1) -> x. */ (if (real_equal (value, &dconst1)) @0) /* pow(x,-1) -> 1/x. */ (if (real_equal (value, &dconstm1)) (rdiv { build_real (type, dconst1); } @0)) /* pow(x,0.5) -> sqrt(x). */ (if (flag_unsafe_math_optimizations && canonicalize_math_p () && real_equal (value, &dconsthalf)) (sqrts @0)) /* pow(x,1/3) -> cbrt(x). */ (if (flag_unsafe_math_optimizations && canonicalize_math_p () && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()), real_equal (value, &tmp))) (cbrts @0)))))) /* powi(1,x) -> 1. */ (simplify (POWI real_onep@0 @1) @0) (simplify (POWI @0 INTEGER_CST@1) (switch /* powi(x,0) -> 1. */ (if (wi::to_wide (@1) == 0) { build_real (type, dconst1); }) /* powi(x,1) -> x. */ (if (wi::to_wide (@1) == 1) @0) /* powi(x,-1) -> 1/x. */ (if (wi::to_wide (@1) == -1) (rdiv { build_real (type, dconst1); } @0)))) /* Narrowing of arithmetic and logical operations. These are conceptually similar to the transformations performed for the C/C++ front-ends by shorten_binary_op and shorten_compare. Long term we want to move all that code out of the front-ends into here. */ /* Convert (outertype)((innertype0)a+(innertype1)b) into ((newtype)a+(newtype)b) where newtype is the widest mode from all of these. */ (for op (plus minus mult rdiv) (simplify (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2))) /* If we have a narrowing conversion of an arithmetic operation where both operands are widening conversions from the same type as the outer narrowing conversion. Then convert the innermost operands to a suitable unsigned type (to avoid introducing undefined behavior), perform the operation and convert the result to the desired type. */ (if (INTEGRAL_TYPE_P (type) && op != MULT_EXPR && op != RDIV_EXPR /* We check for type compatibility between @0 and @1 below, so there's no need to check that @2/@4 are integral types. */ && INTEGRAL_TYPE_P (TREE_TYPE (@1)) && INTEGRAL_TYPE_P (TREE_TYPE (@3)) /* The precision of the type of each operand must match the precision of the mode of each operand, similarly for the result. */ && type_has_mode_precision_p (TREE_TYPE (@1)) && type_has_mode_precision_p (TREE_TYPE (@2)) && type_has_mode_precision_p (type) /* The inner conversion must be a widening conversion. */ && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1)) && types_match (@1, type) && (types_match (@1, @2) /* Or the second operand is const integer or converted const integer from valueize. */ || poly_int_tree_p (@4))) (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1))) (op @1 (convert @2)) (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); } (convert (op (convert:utype @1) (convert:utype @2))))) (if (FLOAT_TYPE_P (type) && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)) == DECIMAL_FLOAT_TYPE_P (type)) (with { tree arg0 = strip_float_extensions (@1); tree arg1 = strip_float_extensions (@2); tree itype = TREE_TYPE (@0); tree ty1 = TREE_TYPE (arg0); tree ty2 = TREE_TYPE (arg1); enum tree_code code = TREE_CODE (itype); } (if (FLOAT_TYPE_P (ty1) && FLOAT_TYPE_P (ty2)) (with { tree newtype = type; if (TYPE_MODE (ty1) == SDmode || TYPE_MODE (ty2) == SDmode || TYPE_MODE (type) == SDmode) newtype = dfloat32_type_node; if (TYPE_MODE (ty1) == DDmode || TYPE_MODE (ty2) == DDmode || TYPE_MODE (type) == DDmode) newtype = dfloat64_type_node; if (TYPE_MODE (ty1) == TDmode || TYPE_MODE (ty2) == TDmode || TYPE_MODE (type) == TDmode) newtype = dfloat128_type_node; } (if ((newtype == dfloat32_type_node || newtype == dfloat64_type_node || newtype == dfloat128_type_node) && newtype == type && types_match (newtype, type)) (op (convert:newtype @1) (convert:newtype @2)) (with { if (element_precision (ty1) > element_precision (newtype)) newtype = ty1; if (element_precision (ty2) > element_precision (newtype)) newtype = ty2; } /* Sometimes this transformation is safe (cannot change results through affecting double rounding cases) and sometimes it is not. If NEWTYPE is wider than TYPE, e.g. (float)((long double)double + (long double)double) converted to (float)(double + double), the transformation is unsafe regardless of the details of the types involved; double rounding can arise if the result of NEWTYPE arithmetic is a NEWTYPE value half way between two representable TYPE values but the exact value is sufficiently different (in the right direction) for this difference to be visible in ITYPE arithmetic. If NEWTYPE is the same as TYPE, however, the transformation may be safe depending on the types involved: it is safe if the ITYPE has strictly more than twice as many mantissa bits as TYPE, can represent infinities and NaNs if the TYPE can, and has sufficient exponent range for the product or ratio of two values representable in the TYPE to be within the range of normal values of ITYPE. */ (if (element_precision (newtype) < element_precision (itype) && (!VECTOR_MODE_P (TYPE_MODE (newtype)) || target_supports_op_p (newtype, op, optab_default)) && (flag_unsafe_math_optimizations || (element_precision (newtype) == element_precision (type) && real_can_shorten_arithmetic (element_mode (itype), element_mode (type)) && !excess_precision_type (newtype))) && !types_match (itype, newtype)) (convert:type (op (convert:newtype @1) (convert:newtype @2))) )))) ) )) ))) /* This is another case of narrowing, specifically when there's an outer BIT_AND_EXPR which masks off bits outside the type of the innermost operands. Like the previous case we have to convert the operands to unsigned types to avoid introducing undefined behavior for the arithmetic operation. */ (for op (minus plus) (simplify (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4) (if (INTEGRAL_TYPE_P (type) /* We check for type compatibility between @0 and @1 below, so there's no need to check that @1/@3 are integral types. */ && INTEGRAL_TYPE_P (TREE_TYPE (@0)) && INTEGRAL_TYPE_P (TREE_TYPE (@2)) /* The precision of the type of each operand must match the precision of the mode of each operand, similarly for the result. */ && type_has_mode_precision_p (TREE_TYPE (@0)) && type_has_mode_precision_p (TREE_TYPE (@1)) && type_has_mode_precision_p (type) /* The inner conversion must be a widening conversion. */ && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0)) && types_match (@0, @1) && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0))) <= TYPE_PRECISION (TREE_TYPE (@0))) && (wi::to_wide (@4) & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)), true, TYPE_PRECISION (type))) == 0) (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))) (with { tree ntype = TREE_TYPE (@0); } (convert (bit_and (op @0 @1) (convert:ntype @4)))) (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); } (convert (bit_and (op (convert:utype @0) (convert:utype @1)) (convert:utype @4)))))))) /* Transform (@0 < @1 and @0 < @2) to use min, (@0 > @1 and @0 > @2) to use max */ (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior) op (lt le gt ge lt le gt ge ) ext (min min max max max max min min ) (simplify (logic (op:cs @0 @1) (op:cs @0 @2)) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TREE_CODE (@0) != INTEGER_CST) (op @0 (ext @1 @2))))) /* Max -> bool0 | bool1 Min -> bool0 & bool1 */ (for op (max min) logic (bit_ior bit_and) (simplify (op zero_one_valued_p@0 zero_one_valued_p@1) (logic @0 @1))) /* signbit(x) != 0 ? -x : x -> abs(x) signbit(x) == 0 ? -x : x -> -abs(x) */ (for sign (SIGNBIT) (for neeq (ne eq) (simplify (cond (neeq (sign @0) integer_zerop) (negate @0) @0) (if (neeq == NE_EXPR) (abs @0) (negate (abs @0)))))) (simplify /* signbit(x) -> 0 if x is nonnegative. */ (SIGNBIT tree_expr_nonnegative_p@0) { integer_zero_node; }) (simplify /* signbit(x) -> x<0 if x doesn't have signed zeros. */ (SIGNBIT @0) (if (!HONOR_SIGNED_ZEROS (@0)) (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); })))) /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */ (for cmp (eq ne) (for op (plus minus) rop (minus plus) (simplify (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2) (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)) && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0)) && !TYPE_SATURATING (TREE_TYPE (@0))) (with { tree res = int_const_binop (rop, @2, @1); } (if (TREE_OVERFLOW (res) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))) { constant_boolean_node (cmp == NE_EXPR, type); } (if (single_use (@3)) (cmp @0 { TREE_OVERFLOW (res) ? drop_tree_overflow (res) : res; })))))))) (for cmp (lt le gt ge) (for op (plus minus) rop (minus plus) (simplify (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2) (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2) && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))) (with { tree res = int_const_binop (rop, @2, @1); } (if (TREE_OVERFLOW (res)) { fold_overflow_warning (("assuming signed overflow does not occur " "when simplifying conditional to constant"), WARN_STRICT_OVERFLOW_CONDITIONAL); bool less = cmp == LE_EXPR || cmp == LT_EXPR; /* wi::ges_p (@2, 0) should be sufficient for a signed type. */ bool ovf_high = wi::lt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))) != (op == MINUS_EXPR); constant_boolean_node (less == ovf_high, type); } (if (single_use (@3)) (with { fold_overflow_warning (("assuming signed overflow does not occur " "when changing X +- C1 cmp C2 to " "X cmp C2 -+ C1"), WARN_STRICT_OVERFLOW_COMPARISON); } (cmp @0 { res; }))))))))) /* Canonicalizations of BIT_FIELD_REFs. */ (simplify (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4) (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); })) (simplify (BIT_FIELD_REF (view_convert @0) @1 @2) (BIT_FIELD_REF @0 @1 @2)) (simplify (BIT_FIELD_REF @0 @1 integer_zerop) (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0)))) (view_convert @0))) (simplify (BIT_FIELD_REF @0 @1 @2) (switch (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0))))) (switch (if (integer_zerop (@2)) (view_convert (realpart @0))) (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0))))) (view_convert (imagpart @0))))) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && INTEGRAL_TYPE_P (type) /* On GIMPLE this should only apply to register arguments. */ && (! GIMPLE || is_gimple_reg (@0)) /* A bit-field-ref that referenced the full argument can be stripped. */ && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0 && integer_zerop (@2)) /* Low-parts can be reduced to integral conversions. ??? The following doesn't work for PDP endian. */ || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN /* But only do this after vectorization. */ && canonicalize_math_after_vectorization_p () /* Don't even think about BITS_BIG_ENDIAN. */ && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0 && compare_tree_int (@2, (BYTES_BIG_ENDIAN ? (TYPE_PRECISION (TREE_TYPE (@0)) - TYPE_PRECISION (type)) : 0)) == 0))) (convert @0)))) /* Simplify vector extracts. */ (simplify (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2) (if (VECTOR_TYPE_P (TREE_TYPE (@0)) && tree_fits_uhwi_p (TYPE_SIZE (type)) && ((tree_to_uhwi (TYPE_SIZE (type)) == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0))))) || (VECTOR_TYPE_P (type) && (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type))) == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))))) (with { tree ctor = (TREE_CODE (@0) == SSA_NAME ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0); tree eltype = TREE_TYPE (TREE_TYPE (ctor)); unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype)); unsigned HOST_WIDE_INT n = tree_to_uhwi (@1); unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2); } (if (n != 0 && (idx % width) == 0 && (n % width) == 0 && known_le ((idx + n) / width, TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor)))) (with { idx = idx / width; n = n / width; /* Constructor elements can be subvectors. */ poly_uint64 k = 1; if (CONSTRUCTOR_NELTS (ctor) != 0) { tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value); if (TREE_CODE (cons_elem) == VECTOR_TYPE) k = TYPE_VECTOR_SUBPARTS (cons_elem); } unsigned HOST_WIDE_INT elt, count, const_k; } (switch /* We keep an exact subset of the constructor elements. */ (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count)) (if (CONSTRUCTOR_NELTS (ctor) == 0) { build_zero_cst (type); } (if (count == 1) (if (elt < CONSTRUCTOR_NELTS (ctor)) (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; }) { build_zero_cst (type); }) /* We don't want to emit new CTORs unless the old one goes away. ??? Eventually allow this if the CTOR ends up constant or uniform. */ (if (single_use (@0)) (with { vec *vals; vec_alloc (vals, count); bool constant_p = true; tree res; for (unsigned i = 0; i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i) { tree e = CONSTRUCTOR_ELT (ctor, elt + i)->value; CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE, e); if (!CONSTANT_CLASS_P (e)) constant_p = false; } tree evtype = (types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (ctor))) ? type : build_vector_type (TREE_TYPE (TREE_TYPE (ctor)), count * k)); /* We used to build a CTOR in the non-constant case here but that's not a GIMPLE value. We'd have to expose this operation somehow so the code generation can properly split it out to a separate stmt. */ res = (constant_p ? build_vector_from_ctor (evtype, vals) : (GIMPLE ? NULL_TREE : build_constructor (evtype, vals))); } (if (res) (view_convert { res; }))))))) /* The bitfield references a single constructor element. */ (if (k.is_constant (&const_k) && idx + n <= (idx / const_k + 1) * const_k) (switch (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k) { build_zero_cst (type); }) (if (n == const_k) (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; })) (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; } @1 { bitsize_int ((idx % const_k) * width); }))))))))) /* Simplify a bit extraction from a bit insertion for the cases with the inserted element fully covering the extraction or the insertion not touching the extraction. */ (simplify (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos) (with { unsigned HOST_WIDE_INT isize; if (INTEGRAL_TYPE_P (TREE_TYPE (@1))) isize = TYPE_PRECISION (TREE_TYPE (@1)); else isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1))); } (switch (if ((!INTEGRAL_TYPE_P (TREE_TYPE (@1)) || type_has_mode_precision_p (TREE_TYPE (@1))) && wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos)) && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize), wi::to_wide (@ipos) + isize)) (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype, wi::to_wide (@rpos) - wi::to_wide (@ipos)); })) (if (wi::eq_p (wi::to_wide (@ipos), wi::to_wide (@rpos)) && compare_tree_int (@rsize, isize) == 0) (convert @1)) (if (wi::geu_p (wi::to_wide (@ipos), wi::to_wide (@rpos) + wi::to_wide (@rsize)) || wi::geu_p (wi::to_wide (@rpos), wi::to_wide (@ipos) + isize)) (BIT_FIELD_REF @0 @rsize @rpos))))) /* Simplify vector inserts of other vector extracts to a permute. */ (simplify (bit_insert @0 (BIT_FIELD_REF@2 @1 @rsize @rpos) @ipos) (if (VECTOR_TYPE_P (type) && types_match (@0, @1) && types_match (TREE_TYPE (TREE_TYPE (@0)), TREE_TYPE (@2)) && TYPE_VECTOR_SUBPARTS (type).is_constant ()) (with { unsigned HOST_WIDE_INT elsz = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@1)))); poly_uint64 relt = exact_div (tree_to_poly_uint64 (@rpos), elsz); poly_uint64 ielt = exact_div (tree_to_poly_uint64 (@ipos), elsz); unsigned nunits = TYPE_VECTOR_SUBPARTS (type).to_constant (); vec_perm_builder builder; builder.new_vector (nunits, nunits, 1); for (unsigned i = 0; i < nunits; ++i) builder.quick_push (known_eq (ielt, i) ? nunits + relt : i); vec_perm_indices sel (builder, 2, nunits); } (if (!VECTOR_MODE_P (TYPE_MODE (type)) || can_vec_perm_const_p (TYPE_MODE (type), TYPE_MODE (type), sel, false)) (vec_perm @0 @1 { vec_perm_indices_to_tree (build_vector_type (ssizetype, nunits), sel); }))))) (if (canonicalize_math_after_vectorization_p ()) (for fmas (FMA) (simplify (fmas:c (negate @0) @1 @2) (IFN_FNMA @0 @1 @2)) (simplify (fmas @0 @1 (negate @2)) (IFN_FMS @0 @1 @2)) (simplify (fmas:c (negate @0) @1 (negate @2)) (IFN_FNMS @0 @1 @2)) (simplify (negate (fmas@3 @0 @1 @2)) (if (single_use (@3)) (IFN_FNMS @0 @1 @2)))) (simplify (IFN_FMS:c (negate @0) @1 @2) (IFN_FNMS @0 @1 @2)) (simplify (IFN_FMS @0 @1 (negate @2)) (IFN_FMA @0 @1 @2)) (simplify (IFN_FMS:c (negate @0) @1 (negate @2)) (IFN_FNMA @0 @1 @2)) (simplify (negate (IFN_FMS@3 @0 @1 @2)) (if (single_use (@3)) (IFN_FNMA @0 @1 @2))) (simplify (IFN_FNMA:c (negate @0) @1 @2) (IFN_FMA @0 @1 @2)) (simplify (IFN_FNMA @0 @1 (negate @2)) (IFN_FNMS @0 @1 @2)) (simplify (IFN_FNMA:c (negate @0) @1 (negate @2)) (IFN_FMS @0 @1 @2)) (simplify (negate (IFN_FNMA@3 @0 @1 @2)) (if (single_use (@3)) (IFN_FMS @0 @1 @2))) (simplify (IFN_FNMS:c (negate @0) @1 @2) (IFN_FMS @0 @1 @2)) (simplify (IFN_FNMS @0 @1 (negate @2)) (IFN_FNMA @0 @1 @2)) (simplify (IFN_FNMS:c (negate @0) @1 (negate @2)) (IFN_FMA @0 @1 @2)) (simplify (negate (IFN_FNMS@3 @0 @1 @2)) (if (single_use (@3)) (IFN_FMA @0 @1 @2)))) /* CLZ simplifications. */ (for clz (CLZ) (for op (eq ne) cmp (lt ge) (simplify (op (clz:s@2 @0) INTEGER_CST@1) (if (integer_zerop (@1) && single_use (@2)) /* clz(X) == 0 is (int)X < 0 and clz(X) != 0 is (int)X >= 0. */ (with { tree type0 = TREE_TYPE (@0); tree stype = signed_type_for (type0); HOST_WIDE_INT val = 0; /* Punt on hypothetical weird targets. */ if (clz == CFN_CLZ && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0), val) == 2 && val == 0) stype = NULL_TREE; } (if (stype) (cmp (convert:stype @0) { build_zero_cst (stype); }))) /* clz(X) == (prec-1) is X == 1 and clz(X) != (prec-1) is X != 1. */ (with { bool ok = true; HOST_WIDE_INT val = 0; tree type0 = TREE_TYPE (@0); /* Punt on hypothetical weird targets. */ if (clz == CFN_CLZ && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0), val) == 2 && val == TYPE_PRECISION (type0) - 1) ok = false; } (if (ok && wi::to_wide (@1) == (TYPE_PRECISION (type0) - 1)) (op @0 { build_one_cst (type0); }))))))) /* CTZ simplifications. */ (for ctz (CTZ) (for op (ge gt le lt) cmp (eq eq ne ne) (simplify /* __builtin_ctz (x) >= C -> (x & ((1 << C) - 1)) == 0. */ (op (ctz:s @0) INTEGER_CST@1) (with { bool ok = true; HOST_WIDE_INT val = 0; if (!tree_fits_shwi_p (@1)) ok = false; else { val = tree_to_shwi (@1); /* Canonicalize to >= or <. */ if (op == GT_EXPR || op == LE_EXPR) { if (val == HOST_WIDE_INT_MAX) ok = false; else val++; } } bool zero_res = false; HOST_WIDE_INT zero_val = 0; tree type0 = TREE_TYPE (@0); int prec = TYPE_PRECISION (type0); if (ctz == CFN_CTZ && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0), zero_val) == 2) zero_res = true; } (if (val <= 0) (if (ok && (!zero_res || zero_val >= val)) { constant_boolean_node (cmp == EQ_EXPR ? true : false, type); }) (if (val >= prec) (if (ok && (!zero_res || zero_val < val)) { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }) (if (ok && (!zero_res || zero_val < 0 || zero_val >= prec)) (cmp (bit_and @0 { wide_int_to_tree (type0, wi::mask (val, false, prec)); }) { build_zero_cst (type0); }))))))) (for op (eq ne) (simplify /* __builtin_ctz (x) == C -> (x & ((1 << (C + 1)) - 1)) == (1 << C). */ (op (ctz:s @0) INTEGER_CST@1) (with { bool zero_res = false; HOST_WIDE_INT zero_val = 0; tree type0 = TREE_TYPE (@0); int prec = TYPE_PRECISION (type0); if (ctz == CFN_CTZ && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0), zero_val) == 2) zero_res = true; } (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) >= prec) (if (!zero_res || zero_val != wi::to_widest (@1)) { constant_boolean_node (op == EQ_EXPR ? false : true, type); }) (if (!zero_res || zero_val < 0 || zero_val >= prec) (op (bit_and @0 { wide_int_to_tree (type0, wi::mask (tree_to_uhwi (@1) + 1, false, prec)); }) { wide_int_to_tree (type0, wi::shifted_mask (tree_to_uhwi (@1), 1, false, prec)); }))))))) /* POPCOUNT simplifications. */ /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */ (simplify (plus (POPCOUNT:s @0) (POPCOUNT:s @1)) (if (INTEGRAL_TYPE_P (type) && wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0) (POPCOUNT (bit_ior @0 @1)))) /* popcount(X) == 0 is X == 0, and related (in)equalities. */ (for popcount (POPCOUNT) (for cmp (le eq ne gt) rep (eq eq ne ne) (simplify (cmp (popcount @0) integer_zerop) (rep @0 { build_zero_cst (TREE_TYPE (@0)); })))) /* popcount(bswap(x)) is popcount(x). */ (for popcount (POPCOUNT) (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64 BUILT_IN_BSWAP128) (simplify (popcount (convert?@0 (bswap:s@1 @2))) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && INTEGRAL_TYPE_P (TREE_TYPE (@1))) (with { tree type0 = TREE_TYPE (@0); tree type1 = TREE_TYPE (@1); unsigned int prec0 = TYPE_PRECISION (type0); unsigned int prec1 = TYPE_PRECISION (type1); } (if (prec0 == prec1 || (prec0 > prec1 && TYPE_UNSIGNED (type1))) (popcount (convert:type0 (convert:type1 @2))))))))) /* popcount(rotate(X Y)) is popcount(X). */ (for popcount (POPCOUNT) (for rot (lrotate rrotate) (simplify (popcount (convert?@0 (rot:s@1 @2 @3))) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && INTEGRAL_TYPE_P (TREE_TYPE (@1)) && (GIMPLE || !TREE_SIDE_EFFECTS (@3))) (with { tree type0 = TREE_TYPE (@0); tree type1 = TREE_TYPE (@1); unsigned int prec0 = TYPE_PRECISION (type0); unsigned int prec1 = TYPE_PRECISION (type1); } (if (prec0 == prec1 || (prec0 > prec1 && TYPE_UNSIGNED (type1))) (popcount (convert:type0 @2)))))))) /* Canonicalize POPCOUNT(x)&1 as PARITY(X). */ (simplify (bit_and (POPCOUNT @0) integer_onep) (PARITY @0)) /* popcount(X&Y) + popcount(X|Y) is popcount(x) + popcount(Y). */ (simplify (plus:c (POPCOUNT:s (bit_and:s @0 @1)) (POPCOUNT:s (bit_ior:cs @0 @1))) (plus (POPCOUNT @0) (POPCOUNT @1))) /* popcount(X) + popcount(Y) - popcount(X&Y) is popcount(X|Y). */ /* popcount(X) + popcount(Y) - popcount(X|Y) is popcount(X&Y). */ (for popcount (POPCOUNT) (for log1 (bit_and bit_ior) log2 (bit_ior bit_and) (simplify (minus (plus:s (popcount:s @0) (popcount:s @1)) (popcount:s (log1:cs @0 @1))) (popcount (log2 @0 @1))) (simplify (plus:c (minus:s (popcount:s @0) (popcount:s (log1:cs @0 @1))) (popcount:s @1)) (popcount (log2 @0 @1))))) /* PARITY simplifications. */ /* parity(~X) is parity(X). */ (simplify (PARITY (bit_not @0)) (PARITY @0)) /* parity(bswap(x)) is parity(x). */ (for parity (PARITY) (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64 BUILT_IN_BSWAP128) (simplify (parity (convert?@0 (bswap:s@1 @2))) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && INTEGRAL_TYPE_P (TREE_TYPE (@1)) && TYPE_PRECISION (TREE_TYPE (@0)) >= TYPE_PRECISION (TREE_TYPE (@1))) (with { tree type0 = TREE_TYPE (@0); tree type1 = TREE_TYPE (@1); } (parity (convert:type0 (convert:type1 @2)))))))) /* parity(rotate(X Y)) is parity(X). */ (for parity (PARITY) (for rot (lrotate rrotate) (simplify (parity (convert?@0 (rot:s@1 @2 @3))) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && INTEGRAL_TYPE_P (TREE_TYPE (@1)) && (GIMPLE || !TREE_SIDE_EFFECTS (@3)) && TYPE_PRECISION (TREE_TYPE (@0)) >= TYPE_PRECISION (TREE_TYPE (@1))) (with { tree type0 = TREE_TYPE (@0); } (parity (convert:type0 @2))))))) /* parity(X)^parity(Y) is parity(X^Y). */ (simplify (bit_xor (PARITY:s @0) (PARITY:s @1)) (PARITY (bit_xor @0 @1))) /* a != 0 ? FUN(a) : 0 -> Fun(a) for some builtin functions. */ (for func (POPCOUNT BSWAP FFS PARITY) (simplify (cond (ne @0 integer_zerop@1) (func@3 (convert? @0)) integer_zerop@2) @3)) /* a != 0 ? FUN(a) : CST -> Fun(a) for some CLRSB builtins where CST is precision-1. */ (for func (CLRSB) (simplify (cond (ne @0 integer_zerop@1) (func@4 (convert?@3 @0)) INTEGER_CST@2) (if (wi::to_widest (@2) == TYPE_PRECISION (TREE_TYPE (@3)) - 1) @4))) #if GIMPLE /* a != 0 ? CLZ(a) : CST -> .CLZ(a) where CST is the result of the internal function for 0. */ (for func (CLZ) (simplify (cond (ne @0 integer_zerop@1) (func (convert?@3 @0)) INTEGER_CST@2) (with { int val; internal_fn ifn = IFN_LAST; if (direct_internal_fn_supported_p (IFN_CLZ, type, OPTIMIZE_FOR_BOTH) && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (type), val) == 2) ifn = IFN_CLZ; } (if (ifn == IFN_CLZ && wi::to_widest (@2) == val) (IFN_CLZ @3))))) /* a != 0 ? CTZ(a) : CST -> .CTZ(a) where CST is the result of the internal function for 0. */ (for func (CTZ) (simplify (cond (ne @0 integer_zerop@1) (func (convert?@3 @0)) INTEGER_CST@2) (with { int val; internal_fn ifn = IFN_LAST; if (direct_internal_fn_supported_p (IFN_CTZ, type, OPTIMIZE_FOR_BOTH) && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (type), val) == 2) ifn = IFN_CTZ; } (if (ifn == IFN_CTZ && wi::to_widest (@2) == val) (IFN_CTZ @3))))) #endif /* Common POPCOUNT/PARITY simplifications. */ /* popcount(X&C1) is (X>>C2)&1 when C1 == 1<> 1) & 0x5555555555555555ULL; x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL); x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL; return (x * 0x0101010101010101ULL) >> 56; } int popcount32c (uint32_t x) { x -= (x >> 1) & 0x55555555; x = (x & 0x33333333) + ((x >> 2) & 0x33333333); x = (x + (x >> 4)) & 0x0f0f0f0f; return (x * 0x01010101) >> 24; } */ (simplify (rshift (mult (bit_and (plus:c (rshift @8 INTEGER_CST@5) (plus:c@8 (bit_and @6 INTEGER_CST@7) (bit_and (rshift (minus@6 @0 (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11)) INTEGER_CST@10) INTEGER_CST@9))) INTEGER_CST@3) INTEGER_CST@2) INTEGER_CST@1) /* Check constants and optab. */ (with { unsigned prec = TYPE_PRECISION (type); int shift = (64 - prec) & 63; unsigned HOST_WIDE_INT c1 = HOST_WIDE_INT_UC (0x0101010101010101) >> shift; unsigned HOST_WIDE_INT c2 = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift; unsigned HOST_WIDE_INT c3 = HOST_WIDE_INT_UC (0x3333333333333333) >> shift; unsigned HOST_WIDE_INT c4 = HOST_WIDE_INT_UC (0x5555555555555555) >> shift; } (if (prec >= 16 && prec <= 64 && pow2p_hwi (prec) && TYPE_UNSIGNED (type) && integer_onep (@4) && wi::to_widest (@10) == 2 && wi::to_widest (@5) == 4 && wi::to_widest (@1) == prec - 8 && tree_to_uhwi (@2) == c1 && tree_to_uhwi (@3) == c2 && tree_to_uhwi (@9) == c3 && tree_to_uhwi (@7) == c3 && tree_to_uhwi (@11) == c4) (if (direct_internal_fn_supported_p (IFN_POPCOUNT, type, OPTIMIZE_FOR_BOTH)) (convert (IFN_POPCOUNT:type @0)) /* Try to do popcount in two halves. PREC must be at least five bits for this to work without extension before adding. */ (with { tree half_type = NULL_TREE; opt_machine_mode m = mode_for_size ((prec + 1) / 2, MODE_INT, 1); int half_prec = 8; if (m.exists () && m.require () != TYPE_MODE (type)) { half_prec = GET_MODE_PRECISION (as_a (m)); half_type = build_nonstandard_integer_type (half_prec, 1); } gcc_assert (half_prec > 2); } (if (half_type != NULL_TREE && direct_internal_fn_supported_p (IFN_POPCOUNT, half_type, OPTIMIZE_FOR_BOTH)) (convert (plus (IFN_POPCOUNT:half_type (convert @0)) (IFN_POPCOUNT:half_type (convert (rshift @0 { build_int_cst (integer_type_node, half_prec); } ))))))))))) /* __builtin_ffs needs to deal on many targets with the possible zero argument. If we know the argument is always non-zero, __builtin_ctz + 1 should lead to better code. */ (simplify (FFS tree_expr_nonzero_p@0) (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && direct_internal_fn_supported_p (IFN_CTZ, TREE_TYPE (@0), OPTIMIZE_FOR_SPEED)) (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); } (plus (CTZ:type (convert:utype @0)) { build_one_cst (type); })))) #endif (for ffs (BUILT_IN_FFS BUILT_IN_FFSL BUILT_IN_FFSLL BUILT_IN_FFSIMAX) /* __builtin_ffs (X) == 0 -> X == 0. __builtin_ffs (X) == 6 -> (X & 63) == 32. */ (for cmp (eq ne) (simplify (cmp (ffs@2 @0) INTEGER_CST@1) (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); } (switch (if (integer_zerop (@1)) (cmp @0 { build_zero_cst (TREE_TYPE (@0)); })) (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) > prec) { constant_boolean_node (cmp == NE_EXPR ? true : false, type); }) (if (single_use (@2)) (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0), wi::mask (tree_to_uhwi (@1), false, prec)); }) { wide_int_to_tree (TREE_TYPE (@0), wi::shifted_mask (tree_to_uhwi (@1) - 1, 1, false, prec)); })))))) /* __builtin_ffs (X) > 6 -> X != 0 && (X & 63) == 0. */ (for cmp (gt le) cmp2 (ne eq) cmp3 (eq ne) bit_op (bit_and bit_ior) (simplify (cmp (ffs@2 @0) INTEGER_CST@1) (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); } (switch (if (integer_zerop (@1)) (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); })) (if (tree_int_cst_sgn (@1) < 0) { constant_boolean_node (cmp == GT_EXPR ? true : false, type); }) (if (wi::to_widest (@1) >= prec) { constant_boolean_node (cmp == GT_EXPR ? false : true, type); }) (if (wi::to_widest (@1) == prec - 1) (cmp3 @0 { wide_int_to_tree (TREE_TYPE (@0), wi::shifted_mask (prec - 1, 1, false, prec)); })) (if (single_use (@2)) (bit_op (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }) (cmp3 (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0), wi::mask (tree_to_uhwi (@1), false, prec)); }) { build_zero_cst (TREE_TYPE (@0)); })))))))) #if GIMPLE /* Simplify: a = op a1 r = cond ? a : b --> r = .COND_FN (cond, a, b) and, a = op a1 r = cond ? b : a --> r = .COND_FN (~cond, b, a). */ (for uncond_op (UNCOND_UNARY) cond_op (COND_UNARY) (simplify (vec_cond @0 (view_convert? (uncond_op@3 @1)) @2) (with { tree op_type = TREE_TYPE (@3); } (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type) && is_truth_type_for (op_type, TREE_TYPE (@0))) (cond_op @0 @1 @2)))) (simplify (vec_cond @0 @1 (view_convert? (uncond_op@3 @2))) (with { tree op_type = TREE_TYPE (@3); } (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type) && is_truth_type_for (op_type, TREE_TYPE (@0))) (cond_op (bit_not @0) @2 @1))))) /* `(a ? -1 : 0) ^ b` can be converted into a conditional not. */ (simplify (bit_xor:c (vec_cond @0 uniform_integer_cst_p@1 uniform_integer_cst_p@2) @3) (if (canonicalize_math_after_vectorization_p () && vectorized_internal_fn_supported_p (IFN_COND_NOT, type) && is_truth_type_for (type, TREE_TYPE (@0))) (if (integer_all_onesp (@1) && integer_zerop (@2)) (IFN_COND_NOT @0 @3 @3)) (if (integer_all_onesp (@2) && integer_zerop (@1)) (IFN_COND_NOT (bit_not @0) @3 @3)))) /* Simplify: a = a1 op a2 r = c ? a : b; to: r = c ? a1 op a2 : b; if the target can do it in one go. This makes the operation conditional on c, so could drop potentially-trapping arithmetic, but that's a valid simplification if the result of the operation isn't needed. Avoid speculatively generating a stand-alone vector comparison on targets that might not support them. Any target implementing conditional internal functions must support the same comparisons inside and outside a VEC_COND_EXPR. */ (for uncond_op (UNCOND_BINARY) cond_op (COND_BINARY) (simplify (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3) (with { tree op_type = TREE_TYPE (@4); } (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type) && is_truth_type_for (op_type, TREE_TYPE (@0)) && single_use (@4)) (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3)))))) (simplify (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3))) (with { tree op_type = TREE_TYPE (@4); } (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type) && is_truth_type_for (op_type, TREE_TYPE (@0)) && single_use (@4)) (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1))))))) /* Same for ternary operations. */ (for uncond_op (UNCOND_TERNARY) cond_op (COND_TERNARY) (simplify (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4) (with { tree op_type = TREE_TYPE (@5); } (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type) && is_truth_type_for (op_type, TREE_TYPE (@0)) && single_use (@5)) (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4)))))) (simplify (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4))) (with { tree op_type = TREE_TYPE (@5); } (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type) && is_truth_type_for (op_type, TREE_TYPE (@0)) && single_use (@5)) (view_convert (cond_op (bit_not @0) @2 @3 @4 (view_convert:op_type @1))))))) #endif /* Detect cases in which a VEC_COND_EXPR effectively replaces the "else" value of an IFN_COND_*. */ (for cond_op (COND_BINARY) (simplify (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4) (with { tree op_type = TREE_TYPE (@3); } (if (element_precision (type) == element_precision (op_type)) (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4)))))) (simplify (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5))) (with { tree op_type = TREE_TYPE (@5); } (if (inverse_conditions_p (@0, @2) && element_precision (type) == element_precision (op_type)) (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1))))))) /* Same for ternary operations. */ (for cond_op (COND_TERNARY) (simplify (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5) (with { tree op_type = TREE_TYPE (@4); } (if (element_precision (type) == element_precision (op_type)) (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5)))))) (simplify (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6))) (with { tree op_type = TREE_TYPE (@6); } (if (inverse_conditions_p (@0, @2) && element_precision (type) == element_precision (op_type)) (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1))))))) /* Detect simplication for a conditional reduction where a = mask1 ? b : 0 c = mask2 ? d + a : d is turned into c = mask1 && mask2 ? d + b : d. */ (simplify (IFN_COND_ADD @0 @1 (vec_cond @2 @3 integer_zerop) @1) (IFN_COND_ADD (bit_and @0 @2) @1 @3 @1)) /* For pointers @0 and @2 and nonnegative constant offset @1, look for expressions like: A: (@0 + @1 < @2) | (@2 + @1 < @0) B: (@0 + @1 <= @2) | (@2 + @1 <= @0) If pointers are known not to wrap, B checks whether @1 bytes starting at @0 and @2 do not overlap, while A tests the same thing for @1 + 1 bytes. A is more efficiently tested as: A: (sizetype) (@0 + @1 - @2) > @1 * 2 The equivalent expression for B is given by replacing @1 with @1 - 1: B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2 @0 and @2 can be swapped in both expressions without changing the result. The folds rely on sizetype's being unsigned (which is always true) and on its being the same width as the pointer (which we have to check). The fold replaces two pointer_plus expressions, two comparisons and an IOR with a pointer_plus, a pointer_diff, and a comparison, so in the best case it's a saving of two operations. The A fold retains one of the original pointer_pluses, so is a win even if both pointer_pluses are used elsewhere. The B fold is a wash if both pointer_pluses are used elsewhere, since all we end up doing is replacing a comparison with a pointer_plus. We do still apply the fold under those circumstances though, in case applying it to other conditions eventually makes one of the pointer_pluses dead. */ (for ior (truth_orif truth_or bit_ior) (for cmp (le lt) (simplify (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2) (cmp:cs (pointer_plus@4 @2 @1) @0)) (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)) && TYPE_OVERFLOW_WRAPS (sizetype) && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype)) /* Calculate the rhs constant. */ (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0); offset_int rhs = off * 2; } /* Always fails for negative values. */ (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype)) /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p pick a canonical order. This increases the chances of using the same pointer_plus in multiple checks. */ (with { bool swap_p = tree_swap_operands_p (@0, @2); tree rhs_tree = wide_int_to_tree (sizetype, rhs); } (if (cmp == LT_EXPR) (gt (convert:sizetype (pointer_diff:ssizetype { swap_p ? @4 : @3; } { swap_p ? @0 : @2; })) { rhs_tree; }) (gt (convert:sizetype (pointer_diff:ssizetype (pointer_plus { swap_p ? @2 : @0; } { wide_int_to_tree (sizetype, off); }) { swap_p ? @0 : @2; })) { rhs_tree; }))))))))) /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero element of @1. */ (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR) (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1))) (with { int i = single_nonzero_element (@1); } (if (i >= 0) (with { tree elt = vector_cst_elt (@1, i); tree elt_type = TREE_TYPE (elt); unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type)); tree size = bitsize_int (elt_bits); tree pos = bitsize_int (elt_bits * i); } (view_convert (bit_and:elt_type (BIT_FIELD_REF:elt_type @0 { size; } { pos; }) { elt; }))))))) /* Fold reduction of a single nonzero element constructor. */ (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR) (simplify (reduc (CONSTRUCTOR@0)) (with { tree ctor = (TREE_CODE (@0) == SSA_NAME ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0); tree elt = ctor_single_nonzero_element (ctor); } (if (elt && !HONOR_SNANS (type) && !HONOR_SIGNED_ZEROS (type)) { elt; })))) /* Fold REDUC (@0 op VECTOR_CST) as REDUC (@0) op REDUC (VECTOR_CST). */ (for reduc (IFN_REDUC_PLUS IFN_REDUC_MAX IFN_REDUC_MIN IFN_REDUC_FMAX IFN_REDUC_FMIN IFN_REDUC_AND IFN_REDUC_IOR IFN_REDUC_XOR) op (plus max min IFN_FMAX IFN_FMIN bit_and bit_ior bit_xor) (simplify (reduc (op @0 VECTOR_CST@1)) (op (reduc:type @0) (reduc:type @1)))) /* Simplify vector floating point operations of alternating sub/add pairs into using an fneg of a wider element type followed by a normal add. under IEEE 754 the fneg of the wider type will negate every even entry and when doing an add we get a sub of the even and add of every odd elements. */ (for plusminus (plus minus) minusplus (minus plus) (simplify (vec_perm (plusminus @0 @1) (minusplus @2 @3) VECTOR_CST@4) (if (!VECTOR_INTEGER_TYPE_P (type) && !FLOAT_WORDS_BIG_ENDIAN /* plus is commutative, while minus is not, so :c can't be used. Do equality comparisons by hand and at the end pick the operands from the minus. */ && (operand_equal_p (@0, @2, 0) ? operand_equal_p (@1, @3, 0) : operand_equal_p (@0, @3, 0) && operand_equal_p (@1, @2, 0))) (with { /* Build a vector of integers from the tree mask. */ vec_perm_builder builder; } (if (tree_to_vec_perm_builder (&builder, @4)) (with { /* Create a vec_perm_indices for the integer vector. */ poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type); vec_perm_indices sel (builder, 2, nelts); machine_mode vec_mode = TYPE_MODE (type); machine_mode wide_mode; scalar_mode wide_elt_mode; poly_uint64 wide_nunits; scalar_mode inner_mode = GET_MODE_INNER (vec_mode); } (if (VECTOR_MODE_P (vec_mode) && sel.series_p (0, 2, 0, 2) && sel.series_p (1, 2, nelts + 1, 2) && GET_MODE_2XWIDER_MODE (inner_mode).exists (&wide_elt_mode) && multiple_p (GET_MODE_NUNITS (vec_mode), 2, &wide_nunits) && related_vector_mode (vec_mode, wide_elt_mode, wide_nunits).exists (&wide_mode)) (with { tree stype = lang_hooks.types.type_for_mode (GET_MODE_INNER (wide_mode), TYPE_UNSIGNED (type)); tree ntype = build_vector_type_for_mode (stype, wide_mode); /* The format has to be a non-extended ieee format. */ const struct real_format *fmt_old = FLOAT_MODE_FORMAT (vec_mode); const struct real_format *fmt_new = FLOAT_MODE_FORMAT (wide_mode); } (if (TYPE_MODE (stype) != BLKmode && VECTOR_TYPE_P (ntype) && fmt_old != NULL && fmt_new != NULL) (with { /* If the target doesn't support v1xx vectors, try using scalar mode xx instead. */ if (known_eq (GET_MODE_NUNITS (wide_mode), 1) && !target_supports_op_p (ntype, NEGATE_EXPR, optab_vector)) ntype = stype; } (if (fmt_new->signbit_rw == fmt_old->signbit_rw + GET_MODE_UNIT_BITSIZE (vec_mode) && fmt_new->signbit_rw == fmt_new->signbit_ro && targetm.can_change_mode_class (TYPE_MODE (ntype), TYPE_MODE (type), ALL_REGS) && ((optimize_vectors_before_lowering_p () && VECTOR_TYPE_P (ntype)) || target_supports_op_p (ntype, NEGATE_EXPR, optab_vector))) (if (plusminus == PLUS_EXPR) (plus (view_convert:type (negate (view_convert:ntype @3))) @2) (minus @0 (view_convert:type (negate (view_convert:ntype @1)))))))))))))))) (simplify (vec_perm @0 @1 VECTOR_CST@2) (with { tree op0 = @0, op1 = @1, op2 = @2; machine_mode result_mode = TYPE_MODE (type); machine_mode op_mode = TYPE_MODE (TREE_TYPE (op0)); /* Build a vector of integers from the tree mask. */ vec_perm_builder builder; } (if (tree_to_vec_perm_builder (&builder, op2)) (with { /* Create a vec_perm_indices for the integer vector. */ poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type); bool single_arg = (op0 == op1); vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts); } (if (sel.series_p (0, 1, 0, 1)) { op0; } (if (sel.series_p (0, 1, nelts, 1)) { op1; } (with { if (!single_arg) { if (sel.all_from_input_p (0)) op1 = op0; else if (sel.all_from_input_p (1)) { op0 = op1; sel.rotate_inputs (1); } else if (known_ge (poly_uint64 (sel[0]), nelts)) { std::swap (op0, op1); sel.rotate_inputs (1); } } gassign *def; tree cop0 = op0, cop1 = op1; if (TREE_CODE (op0) == SSA_NAME && (def = dyn_cast (SSA_NAME_DEF_STMT (op0))) && gimple_assign_rhs_code (def) == CONSTRUCTOR) cop0 = gimple_assign_rhs1 (def); if (TREE_CODE (op1) == SSA_NAME && (def = dyn_cast (SSA_NAME_DEF_STMT (op1))) && gimple_assign_rhs_code (def) == CONSTRUCTOR) cop1 = gimple_assign_rhs1 (def); tree t; } (if ((TREE_CODE (cop0) == VECTOR_CST || TREE_CODE (cop0) == CONSTRUCTOR) && (TREE_CODE (cop1) == VECTOR_CST || TREE_CODE (cop1) == CONSTRUCTOR) && (t = fold_vec_perm (type, cop0, cop1, sel))) { t; } (with { bool changed = (op0 == op1 && !single_arg); tree ins = NULL_TREE; unsigned at = 0; /* See if the permutation is performing a single element insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR in that case. But only if the vector mode is supported, otherwise this is invalid GIMPLE. */ if (op_mode != BLKmode && (TREE_CODE (cop0) == VECTOR_CST || TREE_CODE (cop0) == CONSTRUCTOR || TREE_CODE (cop1) == VECTOR_CST || TREE_CODE (cop1) == CONSTRUCTOR)) { bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1); if (insert_first_p) { /* After canonicalizing the first elt to come from the first vector we only can insert the first elt from the first vector. */ at = 0; if ((ins = fold_read_from_vector (cop0, sel[0]))) op0 = op1; } /* The above can fail for two-element vectors which always appear to insert the first element, so try inserting into the second lane as well. For more than two elements that's wasted time. */ if (!insert_first_p || (!ins && maybe_eq (nelts, 2u))) { unsigned int encoded_nelts = sel.encoding ().encoded_nelts (); for (at = 0; at < encoded_nelts; ++at) if (maybe_ne (sel[at], at)) break; if (at < encoded_nelts && (known_eq (at + 1, nelts) || sel.series_p (at + 1, 1, at + 1, 1))) { if (known_lt (poly_uint64 (sel[at]), nelts)) ins = fold_read_from_vector (cop0, sel[at]); else ins = fold_read_from_vector (cop1, sel[at] - nelts); } } } /* Generate a canonical form of the selector. */ if (!ins && sel.encoding () != builder) { /* Some targets are deficient and fail to expand a single argument permutation while still allowing an equivalent 2-argument version. */ tree oldop2 = op2; if (sel.ninputs () == 2 || can_vec_perm_const_p (result_mode, op_mode, sel, false)) op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel); else { vec_perm_indices sel2 (builder, 2, nelts); if (can_vec_perm_const_p (result_mode, op_mode, sel2, false)) op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2); else /* Not directly supported with either encoding, so use the preferred form. */ op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel); } if (!operand_equal_p (op2, oldop2, 0)) changed = true; } } (if (ins) (bit_insert { op0; } { ins; } { bitsize_int (at * vector_element_bits (type)); }) (if (changed) (vec_perm { op0; } { op1; } { op2; })))))))))))) /* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */ (match vec_same_elem_p (vec_duplicate @0)) (match vec_same_elem_p CONSTRUCTOR@0 (if (TREE_CODE (@0) == SSA_NAME && uniform_vector_p (gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)))))) (match vec_same_elem_p @0 (if (uniform_vector_p (@0)))) (simplify (vec_perm vec_same_elem_p@0 @0 @1) (if (types_match (type, TREE_TYPE (@0))) @0 (with { tree elem = uniform_vector_p (@0); } (if (elem) { build_vector_from_val (type, elem); })))) /* Push VEC_PERM earlier if that may help FMA perception (PR101895). */ (simplify (plus:c (vec_perm:s (mult:c@0 @1 vec_same_elem_p@2) @0 @3) @4) (if (TREE_CODE (@0) == SSA_NAME && num_imm_uses (@0) == 2) (plus (mult (vec_perm @1 @1 @3) @2) @4))) (simplify (minus (vec_perm:s (mult:c@0 @1 vec_same_elem_p@2) @0 @3) @4) (if (TREE_CODE (@0) == SSA_NAME && num_imm_uses (@0) == 2) (minus (mult (vec_perm @1 @1 @3) @2) @4))) /* Merge c = VEC_PERM_EXPR ; d = VEC_PERM_EXPR ; to d = VEC_PERM_EXPR ; */ (simplify (vec_perm (vec_perm@0 @1 @2 VECTOR_CST@3) @0 VECTOR_CST@4) (if (TYPE_VECTOR_SUBPARTS (type).is_constant ()) (with { machine_mode result_mode = TYPE_MODE (type); machine_mode op_mode = TYPE_MODE (TREE_TYPE (@1)); int nelts = TYPE_VECTOR_SUBPARTS (type).to_constant (); vec_perm_builder builder0; vec_perm_builder builder1; vec_perm_builder builder2 (nelts, nelts, 1); } (if (tree_to_vec_perm_builder (&builder0, @3) && tree_to_vec_perm_builder (&builder1, @4)) (with { vec_perm_indices sel0 (builder0, 2, nelts); vec_perm_indices sel1 (builder1, 1, nelts); for (int i = 0; i < nelts; i++) builder2.quick_push (sel0[sel1[i].to_constant ()]); vec_perm_indices sel2 (builder2, 2, nelts); tree op0 = NULL_TREE; /* If the new VEC_PERM_EXPR can't be handled but both original VEC_PERM_EXPRs can, punt. If one or both of the original VEC_PERM_EXPRs can't be handled and the new one can't be either, don't increase number of VEC_PERM_EXPRs that can't be handled. */ if (can_vec_perm_const_p (result_mode, op_mode, sel2, false) || (single_use (@0) ? (!can_vec_perm_const_p (result_mode, op_mode, sel0, false) || !can_vec_perm_const_p (result_mode, op_mode, sel1, false)) : !can_vec_perm_const_p (result_mode, op_mode, sel1, false))) op0 = vec_perm_indices_to_tree (TREE_TYPE (@4), sel2); } (if (op0) (vec_perm @1 @2 { op0; }))))))) /* Merge c = VEC_PERM_EXPR ; d = VEC_PERM_EXPR ; to d = VEC_PERM_EXPR ; when all elements from a or b are replaced by the later permutation. */ (simplify (vec_perm @5 (vec_perm@0 @1 @2 VECTOR_CST@3) VECTOR_CST@4) (if (TYPE_VECTOR_SUBPARTS (type).is_constant ()) (with { machine_mode result_mode = TYPE_MODE (type); machine_mode op_mode = TYPE_MODE (TREE_TYPE (@1)); int nelts = TYPE_VECTOR_SUBPARTS (type).to_constant (); vec_perm_builder builder0; vec_perm_builder builder1; vec_perm_builder builder2 (nelts, nelts, 2); } (if (tree_to_vec_perm_builder (&builder0, @3) && tree_to_vec_perm_builder (&builder1, @4)) (with { vec_perm_indices sel0 (builder0, 2, nelts); vec_perm_indices sel1 (builder1, 2, nelts); bool use_1 = false, use_2 = false; for (int i = 0; i < nelts; i++) { if (known_lt ((poly_uint64)sel1[i], sel1.nelts_per_input ())) builder2.quick_push (sel1[i]); else { poly_uint64 j = sel0[(sel1[i] - sel1.nelts_per_input ()) .to_constant ()]; if (known_lt (j, sel0.nelts_per_input ())) use_1 = true; else { use_2 = true; j -= sel0.nelts_per_input (); } builder2.quick_push (j + sel1.nelts_per_input ()); } } } (if (use_1 ^ use_2) (with { vec_perm_indices sel2 (builder2, 2, nelts); tree op0 = NULL_TREE; /* If the new VEC_PERM_EXPR can't be handled but both original VEC_PERM_EXPRs can, punt. If one or both of the original VEC_PERM_EXPRs can't be handled and the new one can't be either, don't increase number of VEC_PERM_EXPRs that can't be handled. */ if (can_vec_perm_const_p (result_mode, op_mode, sel2, false) || (single_use (@0) ? (!can_vec_perm_const_p (result_mode, op_mode, sel0, false) || !can_vec_perm_const_p (result_mode, op_mode, sel1, false)) : !can_vec_perm_const_p (result_mode, op_mode, sel1, false))) op0 = vec_perm_indices_to_tree (TREE_TYPE (@4), sel2); } (if (op0) (switch (if (use_1) (vec_perm @5 @1 { op0; })) (if (use_2) (vec_perm @5 @2 { op0; }))))))))))) /* And the case with swapped outer permute sources. */ (simplify (vec_perm (vec_perm@0 @1 @2 VECTOR_CST@3) @5 VECTOR_CST@4) (if (TYPE_VECTOR_SUBPARTS (type).is_constant ()) (with { machine_mode result_mode = TYPE_MODE (type); machine_mode op_mode = TYPE_MODE (TREE_TYPE (@1)); int nelts = TYPE_VECTOR_SUBPARTS (type).to_constant (); vec_perm_builder builder0; vec_perm_builder builder1; vec_perm_builder builder2 (nelts, nelts, 2); } (if (tree_to_vec_perm_builder (&builder0, @3) && tree_to_vec_perm_builder (&builder1, @4)) (with { vec_perm_indices sel0 (builder0, 2, nelts); vec_perm_indices sel1 (builder1, 2, nelts); bool use_1 = false, use_2 = false; for (int i = 0; i < nelts; i++) { if (known_ge ((poly_uint64)sel1[i], sel1.nelts_per_input ())) builder2.quick_push (sel1[i]); else { poly_uint64 j = sel0[sel1[i].to_constant ()]; if (known_lt (j, sel0.nelts_per_input ())) use_1 = true; else { use_2 = true; j -= sel0.nelts_per_input (); } builder2.quick_push (j); } } } (if (use_1 ^ use_2) (with { vec_perm_indices sel2 (builder2, 2, nelts); tree op0 = NULL_TREE; /* If the new VEC_PERM_EXPR can't be handled but both original VEC_PERM_EXPRs can, punt. If one or both of the original VEC_PERM_EXPRs can't be handled and the new one can't be either, don't increase number of VEC_PERM_EXPRs that can't be handled. */ if (can_vec_perm_const_p (result_mode, op_mode, sel2, false) || (single_use (@0) ? (!can_vec_perm_const_p (result_mode, op_mode, sel0, false) || !can_vec_perm_const_p (result_mode, op_mode, sel1, false)) : !can_vec_perm_const_p (result_mode, op_mode, sel1, false))) op0 = vec_perm_indices_to_tree (TREE_TYPE (@4), sel2); } (if (op0) (switch (if (use_1) (vec_perm @1 @5 { op0; })) (if (use_2) (vec_perm @2 @5 { op0; }))))))))))) /* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop. The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic constant which when multiplied by a power of 2 contains a unique value in the top 5 or 6 bits. This is then indexed into a table which maps it to the number of trailing zeroes. */ (match (ctz_table_index @1 @2 @3) (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3)) (match (cond_expr_convert_p @0 @2 @3 @6) (cond (simple_comparison@6 @0 @1) (convert@4 @2) (convert@5 @3)) (if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (@2)) && INTEGRAL_TYPE_P (TREE_TYPE (@0)) && INTEGRAL_TYPE_P (TREE_TYPE (@3)) && TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (@0)) && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@2)) && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@3)) /* For vect_recog_cond_expr_convert_pattern, @2 and @3 can differ in signess when convert is truncation, but not ok for extension since it's sign_extend vs zero_extend. */ && (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type) || (TYPE_UNSIGNED (TREE_TYPE (@2)) == TYPE_UNSIGNED (TREE_TYPE (@3)))) && single_use (@4) && single_use (@5)))) (for bit_op (bit_and bit_ior bit_xor) (match (bitwise_induction_p @0 @2 @3) (bit_op:c (nop_convert1? (bit_not2?@0 (convert3? (lshift integer_onep@1 @2)))) @3))) (match (bitwise_induction_p @0 @2 @3) (bit_not (nop_convert1? (bit_xor@0 (convert2? (lshift integer_onep@1 @2)) @3)))) /* n - (((n > C1) ? n : C1) & -C2) -> n & C1 for unsigned case. n - (((n > C1) ? n : C1) & -C2) -> (n <= C1) ? n : (n & C1) for signed case. */ (simplify (minus @0 (bit_and (max @0 INTEGER_CST@1) INTEGER_CST@2)) (with { auto i = wi::neg (wi::to_wide (@2)); } /* Check if -C2 is a power of 2 and C1 = -C2 - 1. */ (if (wi::popcount (i) == 1 && (wi::to_wide (@1)) == (i - 1)) (if (TYPE_UNSIGNED (TREE_TYPE (@0))) (bit_and @0 @1) (cond (le @0 @1) @0 (bit_and @0 @1)))))) /* -x & 1 -> x & 1. */ (simplify (bit_and (negate @0) integer_onep@1) (if (!TYPE_OVERFLOW_SANITIZED (type)) (bit_and @0 @1))) /* `-a` is just `a` if the type is 1bit wide or when converting to a 1bit type; similar to the above transformation of `(-x)&1`. This is used mostly with the transformation of `a ? ~b : b` into `(-a)^b`. It also can show up with bitfields. */ (simplify (convert? (negate @0)) (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))) (convert @0))) /* Optimize c1 = VEC_PERM_EXPR (a, a, mask) c2 = VEC_PERM_EXPR (b, b, mask) c3 = c1 op c2 --> c = a op b c3 = VEC_PERM_EXPR (c, c, mask) For all integer non-div operations. */ (for op (plus minus mult bit_and bit_ior bit_xor lshift rshift) (simplify (op (vec_perm @0 @0 @2) (vec_perm @1 @1 @2)) (if (VECTOR_INTEGER_TYPE_P (type)) (vec_perm (op@3 @0 @1) @3 @2)))) /* Similar for float arithmetic when permutation constant covers all vector elements. */ (for op (plus minus mult) (simplify (op (vec_perm @0 @0 VECTOR_CST@2) (vec_perm @1 @1 VECTOR_CST@2)) (if (VECTOR_FLOAT_TYPE_P (type) && TYPE_VECTOR_SUBPARTS (type).is_constant ()) (with { tree perm_cst = @2; vec_perm_builder builder; bool full_perm_p = false; if (tree_to_vec_perm_builder (&builder, perm_cst)) { unsigned HOST_WIDE_INT nelts; nelts = TYPE_VECTOR_SUBPARTS (type).to_constant (); /* Create a vec_perm_indices for the VECTOR_CST. */ vec_perm_indices sel (builder, 1, nelts); /* Check if perm indices covers all vector elements. */ if (sel.encoding ().encoded_full_vector_p ()) { auto_sbitmap seen (nelts); bitmap_clear (seen); unsigned HOST_WIDE_INT count = 0, i; for (i = 0; i < nelts; i++) { if (!bitmap_set_bit (seen, sel[i].to_constant ())) break; count++; } full_perm_p = count == nelts; } } } (if (full_perm_p) (vec_perm (op@3 @0 @1) @3 @2))))))