(* LongComplexMath.mod implement the ISO LongComplexMath specification. Copyright (C) 2009-2024 Free Software Foundation, Inc. Contributed by Gaius Mulley . This file is part of GNU Modula-2. GNU Modula-2 is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GNU Modula-2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . *) IMPLEMENTATION MODULE LongComplexMath ; IMPORT cbuiltin ; (* Returns the length of z *) PROCEDURE __ATTRIBUTE__ __BUILTIN__ ((__builtin_cabsl)) abs (z: LONGCOMPLEX): LONGREAL; BEGIN RETURN cbuiltin.cabsl (z) END abs ; (* Returns the angle that z subtends to the positive real axis *) PROCEDURE __ATTRIBUTE__ __BUILTIN__ ((__builtin_cargl)) arg (z: LONGCOMPLEX): LONGREAL; BEGIN RETURN cbuiltin.cargl (z) END arg ; (* Returns the complex conjugate of z *) PROCEDURE __ATTRIBUTE__ __BUILTIN__ ((__builtin_conjl)) conj (z: LONGCOMPLEX): LONGCOMPLEX; BEGIN RETURN cbuiltin.conjl (z) END conj ; (* Returns the value of the number base raised to the power exponent *) PROCEDURE __ATTRIBUTE__ __BUILTIN__ ((__builtin_cpowerl)) power (base: LONGCOMPLEX; exponent: LONGREAL): LONGCOMPLEX; BEGIN RETURN cbuiltin.cpowl (base, exponent) END power ; (* Returns the principal square root of z *) PROCEDURE __ATTRIBUTE__ __BUILTIN__ ((__builtin_csqrtl)) sqrt (z: LONGCOMPLEX): LONGCOMPLEX; BEGIN RETURN cbuiltin.csqrtl (z) END sqrt ; (* Returns the complex exponential of z *) PROCEDURE __ATTRIBUTE__ __BUILTIN__ ((__builtin_cexpl)) exp (z: LONGCOMPLEX): LONGCOMPLEX; BEGIN RETURN cbuiltin.cexpl (z) END exp ; (* Returns the principal value of the natural logarithm of z *) PROCEDURE __ATTRIBUTE__ __BUILTIN__ ((__builtin_clnl)) ln (z: LONGCOMPLEX): LONGCOMPLEX; BEGIN RETURN cbuiltin.clogl (z) END ln ; (* Returns the sine of z *) PROCEDURE __ATTRIBUTE__ __BUILTIN__ ((__builtin_csinl)) sin (z: LONGCOMPLEX): LONGCOMPLEX; BEGIN RETURN cbuiltin.csinl (z) END sin ; (* Returns the cosine of z *) PROCEDURE __ATTRIBUTE__ __BUILTIN__ ((__builtin_ccosl)) cos (z: LONGCOMPLEX): LONGCOMPLEX; BEGIN RETURN cbuiltin.ccosl (z) END cos ; (* Returns the tangent of z *) PROCEDURE __ATTRIBUTE__ __BUILTIN__ ((__builtin_ctanl)) tan (z: LONGCOMPLEX): LONGCOMPLEX; BEGIN RETURN cbuiltin.ctanl (z) END tan ; (* Returns the arcsine of z *) PROCEDURE __ATTRIBUTE__ __BUILTIN__ ((__builtin_carcsinl)) arcsin (z: LONGCOMPLEX): LONGCOMPLEX; BEGIN RETURN cbuiltin.casinl (z) END arcsin ; (* Returns the arccosine of z *) PROCEDURE __ATTRIBUTE__ __BUILTIN__ ((__builtin_carccosl)) arccos (z: LONGCOMPLEX): LONGCOMPLEX; BEGIN RETURN cbuiltin.cacosl (z) END arccos ; (* Returns the arctangent of z *) PROCEDURE __ATTRIBUTE__ __BUILTIN__ ((__builtin_carctanl)) arctan (z: LONGCOMPLEX): LONGCOMPLEX; BEGIN RETURN cbuiltin.catanl (z) END arctan ; (* Returns the complex number with the specified polar coordinates *) PROCEDURE polarToComplex (abs, arg: LONGREAL): LONGCOMPLEX; BEGIN RETURN CMPLX (abs*cbuiltin.cosl(arg), abs*cbuiltin.sinl(arg)) END polarToComplex ; (* Returns the scalar product of scalar with z *) PROCEDURE scalarMult (scalar: LONGREAL; z: LONGCOMPLEX): LONGCOMPLEX; BEGIN RETURN CMPLX (RE(z)*scalar, IM(z)*scalar) END scalarMult ; (* Returns TRUE if the current coroutine is in the exceptional execution state because of the raising of an exception in a routine from this module; otherwise returns FALSE. *) PROCEDURE IsCMathException (): BOOLEAN; BEGIN (* --fixme-- we should really attempt to catch sigfpe in these procedures *) RETURN( FALSE ) END IsCMathException ; END LongComplexMath.