/* LRA (local register allocator) driver and LRA utilities. Copyright (C) 2010-2013 Free Software Foundation, Inc. Contributed by Vladimir Makarov . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* The Local Register Allocator (LRA) is a replacement of former reload pass. It is focused to simplify code solving the reload pass tasks, to make the code maintenance easier, and to implement new perspective optimizations. The major LRA design solutions are: o division small manageable, separated sub-tasks o reflection of all transformations and decisions in RTL as more as possible o insn constraints as a primary source of the info (minimizing number of target-depended macros/hooks) In brief LRA works by iterative insn process with the final goal is to satisfy all insn and address constraints: o New reload insns (in brief reloads) and reload pseudos might be generated; o Some pseudos might be spilled to assign hard registers to new reload pseudos; o Changing spilled pseudos to stack memory or their equivalences; o Allocation stack memory changes the address displacement and new iteration is needed. Here is block diagram of LRA passes: --------------------- --------------- | Undo inheritance | --------------- | Memory-memory | | for spilled pseudos)| | New (and old) | | move coalesce |<---| and splits (for |<-- | pseudos | --------------- | pseudos got the | | assignment | Start | | same hard regs) | --------------- | | --------------------- ^ V | ---------------- | ----------- V | Update virtual | | | Remove |----> ------------>| register | | | scratches | ^ | displacements | | ----------- | ---------------- | | | | | V New | ---------------- No ------------ pseudos ------------------- | Spilled pseudo | change |Constraints:| or insns | Inheritance/split | | to memory |<-------| RTL |--------->| transformations | | substitution | | transfor- | | in EBB scope | ---------------- | mations | ------------------- | ------------ V ------------------------- | Hard regs substitution, | | devirtalization, and |------> Finish | restoring scratches got | | memory | ------------------------- To speed up the process: o We process only insns affected by changes on previous iterations; o We don't use DFA-infrastructure because it results in much slower compiler speed than a special IR described below does; o We use a special insn representation for quick access to insn info which is always *synchronized* with the current RTL; o Insn IR is minimized by memory. It is divided on three parts: o one specific for each insn in RTL (only operand locations); o one common for all insns in RTL with the same insn code (different operand attributes from machine descriptions); o one oriented for maintenance of live info (list of pseudos). o Pseudo data: o all insns where the pseudo is referenced; o live info (conflicting hard regs, live ranges, # of references etc); o data used for assigning (preferred hard regs, costs etc). This file contains LRA driver, LRA utility functions and data, and code for dealing with scratches. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "hard-reg-set.h" #include "rtl.h" #include "tm_p.h" #include "regs.h" #include "insn-config.h" #include "insn-codes.h" #include "recog.h" #include "output.h" #include "addresses.h" #include "flags.h" #include "function.h" #include "expr.h" #include "basic-block.h" #include "except.h" #include "tree-pass.h" #include "timevar.h" #include "target.h" #include "vec.h" #include "ira.h" #include "lra-int.h" #include "df.h" /* Hard registers currently not available for allocation. It can changed after some hard registers become not eliminable. */ HARD_REG_SET lra_no_alloc_regs; static int get_new_reg_value (void); static void expand_reg_info (void); static void invalidate_insn_recog_data (int); static int get_insn_freq (rtx); static void invalidate_insn_data_regno_info (lra_insn_recog_data_t, rtx, int); /* Expand all regno related info needed for LRA. */ static void expand_reg_data (void) { resize_reg_info (); expand_reg_info (); ira_expand_reg_equiv (); } /* Create and return a new reg of ORIGINAL mode. If ORIGINAL is NULL or of VOIDmode, use MD_MODE for the new reg. Initialize its register class to RCLASS. Print message about assigning class RCLASS containing new register name TITLE unless it is NULL. Use attributes of ORIGINAL if it is a register. The created register will have unique held value. */ rtx lra_create_new_reg_with_unique_value (enum machine_mode md_mode, rtx original, enum reg_class rclass, const char *title) { enum machine_mode mode; rtx new_reg; if (original == NULL_RTX || (mode = GET_MODE (original)) == VOIDmode) mode = md_mode; lra_assert (mode != VOIDmode); new_reg = gen_reg_rtx (mode); if (original == NULL_RTX || ! REG_P (original)) { if (lra_dump_file != NULL) fprintf (lra_dump_file, " Creating newreg=%i", REGNO (new_reg)); } else { if (ORIGINAL_REGNO (original) >= FIRST_PSEUDO_REGISTER) ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original); REG_USERVAR_P (new_reg) = REG_USERVAR_P (original); REG_POINTER (new_reg) = REG_POINTER (original); REG_ATTRS (new_reg) = REG_ATTRS (original); if (lra_dump_file != NULL) fprintf (lra_dump_file, " Creating newreg=%i from oldreg=%i", REGNO (new_reg), REGNO (original)); } if (lra_dump_file != NULL) { if (title != NULL) fprintf (lra_dump_file, ", assigning class %s to%s%s r%d", reg_class_names[rclass], *title == '\0' ? "" : " ", title, REGNO (new_reg)); fprintf (lra_dump_file, "\n"); } expand_reg_data (); setup_reg_classes (REGNO (new_reg), rclass, NO_REGS, rclass); return new_reg; } /* Analogous to the previous function but also inherits value of ORIGINAL. */ rtx lra_create_new_reg (enum machine_mode md_mode, rtx original, enum reg_class rclass, const char *title) { rtx new_reg; new_reg = lra_create_new_reg_with_unique_value (md_mode, original, rclass, title); if (original != NULL_RTX && REG_P (original)) lra_assign_reg_val (REGNO (original), REGNO (new_reg)); return new_reg; } /* Set up for REGNO unique hold value. */ void lra_set_regno_unique_value (int regno) { lra_reg_info[regno].val = get_new_reg_value (); } /* Invalidate INSN related info used by LRA. */ void lra_invalidate_insn_data (rtx insn) { lra_invalidate_insn_regno_info (insn); invalidate_insn_recog_data (INSN_UID (insn)); } /* Mark INSN deleted and invalidate the insn related info used by LRA. */ void lra_set_insn_deleted (rtx insn) { lra_invalidate_insn_data (insn); SET_INSN_DELETED (insn); } /* Delete an unneeded INSN and any previous insns who sole purpose is loading data that is dead in INSN. */ void lra_delete_dead_insn (rtx insn) { rtx prev = prev_real_insn (insn); rtx prev_dest; /* If the previous insn sets a register that dies in our insn, delete it too. */ if (prev && GET_CODE (PATTERN (prev)) == SET && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest)) && reg_mentioned_p (prev_dest, PATTERN (insn)) && find_regno_note (insn, REG_DEAD, REGNO (prev_dest)) && ! side_effects_p (SET_SRC (PATTERN (prev)))) lra_delete_dead_insn (prev); lra_set_insn_deleted (insn); } /* Emit insn x = y + z. Return NULL if we failed to do it. Otherwise, return the insn. We don't use gen_add3_insn as it might clobber CC. */ static rtx emit_add3_insn (rtx x, rtx y, rtx z) { rtx insn, last; last = get_last_insn (); insn = emit_insn (gen_rtx_SET (VOIDmode, x, gen_rtx_PLUS (GET_MODE (y), y, z))); if (recog_memoized (insn) < 0) { delete_insns_since (last); insn = NULL_RTX; } return insn; } /* Emit insn x = x + y. Return the insn. We use gen_add2_insn as the last resort. */ static rtx emit_add2_insn (rtx x, rtx y) { rtx insn; insn = emit_add3_insn (x, x, y); if (insn == NULL_RTX) { insn = gen_add2_insn (x, y); if (insn != NULL_RTX) emit_insn (insn); } return insn; } /* Target checks operands through operand predicates to recognize an insn. We should have a special precaution to generate add insns which are frequent results of elimination. Emit insns for x = y + z. X can be used to store intermediate values and should be not in Y and Z when we use X to store an intermediate value. Y + Z should form [base] [+ index[ * scale]] [ + disp] where base and index are registers, disp and scale are constants. Y should contain base if it is present, Z should contain disp if any. index[*scale] can be part of Y or Z. */ void lra_emit_add (rtx x, rtx y, rtx z) { int old; rtx insn, last; rtx a1, a2, base, index, disp, scale, index_scale; bool ok_p; insn = emit_add3_insn (x, y, z); old = max_reg_num (); if (insn != NULL_RTX) ; else { disp = a2 = NULL_RTX; if (GET_CODE (y) == PLUS) { a1 = XEXP (y, 0); a2 = XEXP (y, 1); disp = z; } else { a1 = y; if (CONSTANT_P (z)) disp = z; else a2 = z; } index_scale = scale = NULL_RTX; if (GET_CODE (a1) == MULT) { index_scale = a1; index = XEXP (a1, 0); scale = XEXP (a1, 1); base = a2; } else if (a2 != NULL_RTX && GET_CODE (a2) == MULT) { index_scale = a2; index = XEXP (a2, 0); scale = XEXP (a2, 1); base = a1; } else { base = a1; index = a2; } if (! REG_P (base) || (index != NULL_RTX && ! REG_P (index)) || (disp != NULL_RTX && ! CONSTANT_P (disp)) || (scale != NULL_RTX && ! CONSTANT_P (scale))) { /* Probably we have no 3 op add. Last chance is to use 2-op add insn. To succeed, don't move Z to X as an address segment always comes in Y. Otherwise, we might fail when adding the address segment to register. */ lra_assert (x != y && x != z); emit_move_insn (x, y); insn = emit_add2_insn (x, z); lra_assert (insn != NULL_RTX); } else { if (index_scale == NULL_RTX) index_scale = index; if (disp == NULL_RTX) { /* Generate x = index_scale; x = x + base. */ lra_assert (index_scale != NULL_RTX && base != NULL_RTX); emit_move_insn (x, index_scale); insn = emit_add2_insn (x, base); lra_assert (insn != NULL_RTX); } else if (scale == NULL_RTX) { /* Try x = base + disp. */ lra_assert (base != NULL_RTX); last = get_last_insn (); insn = emit_move_insn (x, gen_rtx_PLUS (GET_MODE (base), base, disp)); if (recog_memoized (insn) < 0) { delete_insns_since (last); /* Generate x = disp; x = x + base. */ emit_move_insn (x, disp); insn = emit_add2_insn (x, base); lra_assert (insn != NULL_RTX); } /* Generate x = x + index. */ if (index != NULL_RTX) { insn = emit_add2_insn (x, index); lra_assert (insn != NULL_RTX); } } else { /* Try x = index_scale; x = x + disp; x = x + base. */ last = get_last_insn (); insn = emit_move_insn (x, index_scale); ok_p = false; if (recog_memoized (insn) >= 0) { insn = emit_add2_insn (x, disp); if (insn != NULL_RTX) { insn = emit_add2_insn (x, disp); if (insn != NULL_RTX) ok_p = true; } } if (! ok_p) { delete_insns_since (last); /* Generate x = disp; x = x + base; x = x + index_scale. */ emit_move_insn (x, disp); insn = emit_add2_insn (x, base); lra_assert (insn != NULL_RTX); insn = emit_add2_insn (x, index_scale); lra_assert (insn != NULL_RTX); } } } } /* Functions emit_... can create pseudos -- so expand the pseudo data. */ if (old != max_reg_num ()) expand_reg_data (); } /* The number of emitted reload insns so far. */ int lra_curr_reload_num; /* Emit x := y, processing special case when y = u + v or y = u + v * scale + w through emit_add (Y can be an address which is base + index reg * scale + displacement in general case). X may be used as intermediate result therefore it should be not in Y. */ void lra_emit_move (rtx x, rtx y) { int old; if (GET_CODE (y) != PLUS) { if (rtx_equal_p (x, y)) return; old = max_reg_num (); emit_move_insn (x, y); if (REG_P (x)) lra_reg_info[ORIGINAL_REGNO (x)].last_reload = ++lra_curr_reload_num; /* Function emit_move can create pseudos -- so expand the pseudo data. */ if (old != max_reg_num ()) expand_reg_data (); return; } lra_emit_add (x, XEXP (y, 0), XEXP (y, 1)); } /* Update insn operands which are duplication of operands whose numbers are in array of NOPS (with end marker -1). The insn is represented by its LRA internal representation ID. */ void lra_update_dups (lra_insn_recog_data_t id, signed char *nops) { int i, j, nop; struct lra_static_insn_data *static_id = id->insn_static_data; for (i = 0; i < static_id->n_dups; i++) for (j = 0; (nop = nops[j]) >= 0; j++) if (static_id->dup_num[i] == nop) *id->dup_loc[i] = *id->operand_loc[nop]; } /* This page contains code dealing with info about registers in the insns. */ /* Pools for insn reg info. */ static alloc_pool insn_reg_pool; /* Initiate pool for insn reg info. */ static void init_insn_regs (void) { insn_reg_pool = create_alloc_pool ("insn regs", sizeof (struct lra_insn_reg), 100); } /* Create LRA insn related info about referenced REGNO with TYPE (in/out/inout), biggest reference mode MODE, flag that it is reference through subreg (SUBREG_P), flag that is early clobbered in the insn (EARLY_CLOBBER), and reference to the next insn reg info (NEXT). */ static struct lra_insn_reg * new_insn_reg (int regno, enum op_type type, enum machine_mode mode, bool subreg_p, bool early_clobber, struct lra_insn_reg *next) { struct lra_insn_reg *ir; ir = (struct lra_insn_reg *) pool_alloc (insn_reg_pool); ir->type = type; ir->biggest_mode = mode; if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (lra_reg_info[regno].biggest_mode)) lra_reg_info[regno].biggest_mode = mode; ir->subreg_p = subreg_p; ir->early_clobber = early_clobber; ir->regno = regno; ir->next = next; return ir; } /* Free insn reg info IR. */ static void free_insn_reg (struct lra_insn_reg *ir) { pool_free (insn_reg_pool, ir); } /* Free insn reg info list IR. */ static void free_insn_regs (struct lra_insn_reg *ir) { struct lra_insn_reg *next_ir; for (; ir != NULL; ir = next_ir) { next_ir = ir->next; free_insn_reg (ir); } } /* Finish pool for insn reg info. */ static void finish_insn_regs (void) { free_alloc_pool (insn_reg_pool); } /* This page contains code dealing LRA insn info (or in other words LRA internal insn representation). */ struct target_lra_int default_target_lra_int; #if SWITCHABLE_TARGET struct target_lra_int *this_target_lra_int = &default_target_lra_int; #endif /* Map INSN_CODE -> the static insn data. This info is valid during all translation unit. */ struct lra_static_insn_data *insn_code_data[LAST_INSN_CODE]; /* Debug insns are represented as a special insn with one input operand which is RTL expression in var_location. */ /* The following data are used as static insn operand data for all debug insns. If structure lra_operand_data is changed, the initializer should be changed too. */ static struct lra_operand_data debug_operand_data = { NULL, /* alternative */ VOIDmode, /* We are not interesting in the operand mode. */ OP_IN, 0, 0, 0, 0 }; /* The following data are used as static insn data for all debug insns. If structure lra_static_insn_data is changed, the initializer should be changed too. */ static struct lra_static_insn_data debug_insn_static_data = { &debug_operand_data, 0, /* Duplication operands #. */ -1, /* Commutative operand #. */ 1, /* Operands #. There is only one operand which is debug RTL expression. */ 0, /* Duplications #. */ 0, /* Alternatives #. We are not interesting in alternatives because we does not proceed debug_insns for reloads. */ NULL, /* Hard registers referenced in machine description. */ NULL /* Descriptions of operands in alternatives. */ }; /* Called once per compiler work to initialize some LRA data related to insns. */ static void init_insn_code_data_once (void) { memset (insn_code_data, 0, sizeof (insn_code_data)); memset (op_alt_data, 0, sizeof (op_alt_data)); } /* Called once per compiler work to finalize some LRA data related to insns. */ static void finish_insn_code_data_once (void) { int i; for (i = 0; i < LAST_INSN_CODE; i++) { if (insn_code_data[i] != NULL) free (insn_code_data[i]); if (op_alt_data[i] != NULL) free (op_alt_data[i]); } } /* Initialize LRA info about operands in insn alternatives. */ static void init_op_alt_data (void) { int i; for (i = 0; i < LAST_INSN_CODE; i++) if (op_alt_data[i] != NULL) { free (op_alt_data[i]); op_alt_data[i] = NULL; } } /* Return static insn data, allocate and setup if necessary. Although dup_num is static data (it depends only on icode), to set it up we need to extract insn first. So recog_data should be valid for normal insn (ICODE >= 0) before the call. */ static struct lra_static_insn_data * get_static_insn_data (int icode, int nop, int ndup, int nalt) { struct lra_static_insn_data *data; size_t n_bytes; lra_assert (icode < LAST_INSN_CODE); if (icode >= 0 && (data = insn_code_data[icode]) != NULL) return data; lra_assert (nop >= 0 && ndup >= 0 && nalt >= 0); n_bytes = sizeof (struct lra_static_insn_data) + sizeof (struct lra_operand_data) * nop + sizeof (int) * ndup; data = XNEWVAR (struct lra_static_insn_data, n_bytes); data->n_operands = nop; data->n_dups = ndup; data->n_alternatives = nalt; data->operand = ((struct lra_operand_data *) ((char *) data + sizeof (struct lra_static_insn_data))); data->dup_num = ((int *) ((char *) data->operand + sizeof (struct lra_operand_data) * nop)); if (icode >= 0) { int i; insn_code_data[icode] = data; for (i = 0; i < nop; i++) { data->operand[i].constraint = insn_data[icode].operand[i].constraint; data->operand[i].mode = insn_data[icode].operand[i].mode; data->operand[i].strict_low = insn_data[icode].operand[i].strict_low; data->operand[i].is_operator = insn_data[icode].operand[i].is_operator; data->operand[i].type = (data->operand[i].constraint[0] == '=' ? OP_OUT : data->operand[i].constraint[0] == '+' ? OP_INOUT : OP_IN); data->operand[i].is_address = false; } for (i = 0; i < ndup; i++) data->dup_num[i] = recog_data.dup_num[i]; } return data; } /* The current length of the following array. */ int lra_insn_recog_data_len; /* Map INSN_UID -> the insn recog data (NULL if unknown). */ lra_insn_recog_data_t *lra_insn_recog_data; /* Initialize LRA data about insns. */ static void init_insn_recog_data (void) { lra_insn_recog_data_len = 0; lra_insn_recog_data = NULL; init_insn_regs (); } /* Expand, if necessary, LRA data about insns. */ static void check_and_expand_insn_recog_data (int index) { int i, old; if (lra_insn_recog_data_len > index) return; old = lra_insn_recog_data_len; lra_insn_recog_data_len = index * 3 / 2 + 1; lra_insn_recog_data = XRESIZEVEC (lra_insn_recog_data_t, lra_insn_recog_data, lra_insn_recog_data_len); for (i = old; i < lra_insn_recog_data_len; i++) lra_insn_recog_data[i] = NULL; } /* Finish LRA DATA about insn. */ static void free_insn_recog_data (lra_insn_recog_data_t data) { if (data->operand_loc != NULL) free (data->operand_loc); if (data->dup_loc != NULL) free (data->dup_loc); if (data->arg_hard_regs != NULL) free (data->arg_hard_regs); if (HAVE_ATTR_enabled && data->alternative_enabled_p != NULL) free (data->alternative_enabled_p); if (data->icode < 0 && NONDEBUG_INSN_P (data->insn)) { if (data->insn_static_data->operand_alternative != NULL) free (data->insn_static_data->operand_alternative); free_insn_regs (data->insn_static_data->hard_regs); free (data->insn_static_data); } free_insn_regs (data->regs); data->regs = NULL; free (data); } /* Finish LRA data about all insns. */ static void finish_insn_recog_data (void) { int i; lra_insn_recog_data_t data; for (i = 0; i < lra_insn_recog_data_len; i++) if ((data = lra_insn_recog_data[i]) != NULL) free_insn_recog_data (data); finish_insn_regs (); free (lra_insn_recog_data); } /* Setup info about operands in alternatives of LRA DATA of insn. */ static void setup_operand_alternative (lra_insn_recog_data_t data) { int i, nop, nalt; int icode = data->icode; struct lra_static_insn_data *static_data = data->insn_static_data; if (icode >= 0 && (static_data->operand_alternative = op_alt_data[icode]) != NULL) return; static_data->commutative = -1; nop = static_data->n_operands; if (nop == 0) { static_data->operand_alternative = NULL; return; } nalt = static_data->n_alternatives; static_data->operand_alternative = XNEWVEC (struct operand_alternative, nalt * nop); memset (static_data->operand_alternative, 0, nalt * nop * sizeof (struct operand_alternative)); if (icode >= 0) op_alt_data[icode] = static_data->operand_alternative; for (i = 0; i < nop; i++) { int j; struct operand_alternative *op_alt_start, *op_alt; const char *p = static_data->operand[i].constraint; static_data->operand[i].early_clobber = 0; op_alt_start = &static_data->operand_alternative[i]; for (j = 0; j < nalt; j++) { op_alt = op_alt_start + j * nop; op_alt->cl = NO_REGS; op_alt->constraint = p; op_alt->matches = -1; op_alt->matched = -1; if (*p == '\0' || *p == ',') { op_alt->anything_ok = 1; continue; } for (;;) { char c = *p; if (c == '#') do c = *++p; while (c != ',' && c != '\0'); if (c == ',' || c == '\0') { p++; break; } switch (c) { case '=': case '+': case '*': case 'E': case 'F': case 'G': case 'H': case 's': case 'i': case 'n': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': /* These don't say anything we care about. */ break; case '%': /* We currently only support one commutative pair of operands. */ if (static_data->commutative < 0) static_data->commutative = i; else lra_assert (data->icode < 0); /* Asm */ /* The last operand should not be marked commutative. */ lra_assert (i != nop - 1); break; case '?': op_alt->reject += LRA_LOSER_COST_FACTOR; break; case '!': op_alt->reject += LRA_MAX_REJECT; break; case '&': op_alt->earlyclobber = 1; static_data->operand[i].early_clobber = 1; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { char *end; op_alt->matches = strtoul (p, &end, 10); static_data->operand_alternative [j * nop + op_alt->matches].matched = i; p = end; } continue; case TARGET_MEM_CONSTRAINT: op_alt->memory_ok = 1; break; case '<': op_alt->decmem_ok = 1; break; case '>': op_alt->incmem_ok = 1; break; case 'V': op_alt->nonoffmem_ok = 1; break; case 'o': op_alt->offmem_ok = 1; break; case 'X': op_alt->anything_ok = 1; break; case 'p': static_data->operand[i].is_address = true; op_alt->is_address = 1; op_alt->cl = (reg_class_subunion[(int) op_alt->cl] [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC, ADDRESS, SCRATCH)]); break; case 'g': case 'r': op_alt->cl = reg_class_subunion[(int) op_alt->cl][(int) GENERAL_REGS]; break; default: if (EXTRA_MEMORY_CONSTRAINT (c, p)) { op_alt->memory_ok = 1; break; } if (EXTRA_ADDRESS_CONSTRAINT (c, p)) { static_data->operand[i].is_address = true; op_alt->is_address = 1; op_alt->cl = (reg_class_subunion [(int) op_alt->cl] [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC, ADDRESS, SCRATCH)]); break; } op_alt->cl = (reg_class_subunion [(int) op_alt->cl] [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]); break; } p += CONSTRAINT_LEN (c, p); } } } } /* Recursively process X and collect info about registers, which are not the insn operands, in X with TYPE (in/out/inout) and flag that it is early clobbered in the insn (EARLY_CLOBBER) and add the info to LIST. X is a part of insn given by DATA. Return the result list. */ static struct lra_insn_reg * collect_non_operand_hard_regs (rtx *x, lra_insn_recog_data_t data, struct lra_insn_reg *list, enum op_type type, bool early_clobber) { int i, j, regno, last; bool subreg_p; enum machine_mode mode; struct lra_insn_reg *curr; rtx op = *x; enum rtx_code code = GET_CODE (op); const char *fmt = GET_RTX_FORMAT (code); for (i = 0; i < data->insn_static_data->n_operands; i++) if (x == data->operand_loc[i]) /* It is an operand loc. Stop here. */ return list; for (i = 0; i < data->insn_static_data->n_dups; i++) if (x == data->dup_loc[i]) /* It is a dup loc. Stop here. */ return list; mode = GET_MODE (op); subreg_p = false; if (code == SUBREG) { op = SUBREG_REG (op); code = GET_CODE (op); if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (op))) { mode = GET_MODE (op); if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode)) subreg_p = true; } } if (REG_P (op)) { if ((regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER) return list; for (last = regno + hard_regno_nregs[regno][mode]; regno < last; regno++) if (! TEST_HARD_REG_BIT (lra_no_alloc_regs, regno) || TEST_HARD_REG_BIT (eliminable_regset, regno)) { for (curr = list; curr != NULL; curr = curr->next) if (curr->regno == regno && curr->subreg_p == subreg_p && curr->biggest_mode == mode) { if (curr->type != type) curr->type = OP_INOUT; if (curr->early_clobber != early_clobber) curr->early_clobber = true; break; } if (curr == NULL) { /* This is a new hard regno or the info can not be integrated into the found structure. */ #ifdef STACK_REGS early_clobber = (early_clobber /* This clobber is to inform popping floating point stack only. */ && ! (FIRST_STACK_REG <= regno && regno <= LAST_STACK_REG)); #endif list = new_insn_reg (regno, type, mode, subreg_p, early_clobber, list); } } return list; } switch (code) { case SET: list = collect_non_operand_hard_regs (&SET_DEST (op), data, list, OP_OUT, false); list = collect_non_operand_hard_regs (&SET_SRC (op), data, list, OP_IN, false); break; case CLOBBER: /* We treat clobber of non-operand hard registers as early clobber (the behavior is expected from asm). */ list = collect_non_operand_hard_regs (&XEXP (op, 0), data, list, OP_OUT, true); break; case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC: list = collect_non_operand_hard_regs (&XEXP (op, 0), data, list, OP_INOUT, false); break; case PRE_MODIFY: case POST_MODIFY: list = collect_non_operand_hard_regs (&XEXP (op, 0), data, list, OP_INOUT, false); list = collect_non_operand_hard_regs (&XEXP (op, 1), data, list, OP_IN, false); break; default: fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') list = collect_non_operand_hard_regs (&XEXP (op, i), data, list, OP_IN, false); else if (fmt[i] == 'E') for (j = XVECLEN (op, i) - 1; j >= 0; j--) list = collect_non_operand_hard_regs (&XVECEXP (op, i, j), data, list, OP_IN, false); } } return list; } /* Set up and return info about INSN. Set up the info if it is not set up yet. */ lra_insn_recog_data_t lra_set_insn_recog_data (rtx insn) { lra_insn_recog_data_t data; int i, n, icode; rtx **locs; unsigned int uid = INSN_UID (insn); struct lra_static_insn_data *insn_static_data; check_and_expand_insn_recog_data (uid); if (DEBUG_INSN_P (insn)) icode = -1; else { icode = INSN_CODE (insn); if (icode < 0) /* It might be a new simple insn which is not recognized yet. */ INSN_CODE (insn) = icode = recog_memoized (insn); } data = XNEW (struct lra_insn_recog_data); lra_insn_recog_data[uid] = data; data->insn = insn; data->used_insn_alternative = -1; data->icode = icode; data->regs = NULL; if (DEBUG_INSN_P (insn)) { data->insn_static_data = &debug_insn_static_data; data->dup_loc = NULL; data->arg_hard_regs = NULL; data->alternative_enabled_p = NULL; data->operand_loc = XNEWVEC (rtx *, 1); data->operand_loc[0] = &INSN_VAR_LOCATION_LOC (insn); return data; } if (icode < 0) { int nop; enum machine_mode operand_mode[MAX_RECOG_OPERANDS]; const char *constraints[MAX_RECOG_OPERANDS]; nop = asm_noperands (PATTERN (insn)); data->operand_loc = data->dup_loc = NULL; if (nop < 0) /* Its is a special insn like USE or CLOBBER. */ data->insn_static_data = insn_static_data = get_static_insn_data (-1, 0, 0, 1); else { /* expand_asm_operands makes sure there aren't too many operands. */ lra_assert (nop <= MAX_RECOG_OPERANDS); if (nop != 0) data->operand_loc = XNEWVEC (rtx *, nop); /* Now get the operand values and constraints out of the insn. */ decode_asm_operands (PATTERN (insn), NULL, data->operand_loc, constraints, operand_mode, NULL); n = 1; if (nop > 0) { const char *p = recog_data.constraints[0]; for (p = constraints[0]; *p; p++) n += *p == ','; } data->insn_static_data = insn_static_data = get_static_insn_data (-1, nop, 0, n); for (i = 0; i < nop; i++) { insn_static_data->operand[i].mode = operand_mode[i]; insn_static_data->operand[i].constraint = constraints[i]; insn_static_data->operand[i].strict_low = false; insn_static_data->operand[i].is_operator = false; insn_static_data->operand[i].is_address = false; } } for (i = 0; i < insn_static_data->n_operands; i++) insn_static_data->operand[i].type = (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT : OP_IN); data->alternative_enabled_p = NULL; } else { insn_extract (insn); data->insn_static_data = insn_static_data = get_static_insn_data (icode, insn_data[icode].n_operands, insn_data[icode].n_dups, insn_data[icode].n_alternatives); n = insn_static_data->n_operands; if (n == 0) locs = NULL; else { locs = XNEWVEC (rtx *, n); memcpy (locs, recog_data.operand_loc, n * sizeof (rtx *)); } data->operand_loc = locs; n = insn_static_data->n_dups; if (n == 0) locs = NULL; else { locs = XNEWVEC (rtx *, n); memcpy (locs, recog_data.dup_loc, n * sizeof (rtx *)); } data->dup_loc = locs; if (HAVE_ATTR_enabled) { bool *bp; n = insn_static_data->n_alternatives; lra_assert (n >= 0); data->alternative_enabled_p = bp = XNEWVEC (bool, n); /* Cache the insn because we don't want to call extract_insn from get_attr_enabled as extract_insn modifies which_alternative. The attribute enabled should not depend on insn operands, operand modes, operand types, and operand constraints. It should depend on the architecture. If it is not true, we should rewrite this file code to use extract_insn instead of less expensive insn_extract. */ recog_data.insn = insn; for (i = 0; i < n; i++) { which_alternative = i; bp[i] = get_attr_enabled (insn); } } } if (GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == USE) insn_static_data->hard_regs = NULL; else insn_static_data->hard_regs = collect_non_operand_hard_regs (&PATTERN (insn), data, NULL, OP_IN, false); setup_operand_alternative (data); data->arg_hard_regs = NULL; if (CALL_P (insn)) { rtx link; int n_hard_regs, regno, arg_hard_regs[FIRST_PSEUDO_REGISTER]; n_hard_regs = 0; /* Finding implicit hard register usage. We believe it will be not changed whatever transformations are used. Call insns are such example. */ for (link = CALL_INSN_FUNCTION_USAGE (insn); link != NULL_RTX; link = XEXP (link, 1)) if (GET_CODE (XEXP (link, 0)) == USE && REG_P (XEXP (XEXP (link, 0), 0))) { regno = REGNO (XEXP (XEXP (link, 0), 0)); lra_assert (regno < FIRST_PSEUDO_REGISTER); /* It is an argument register. */ for (i = (hard_regno_nregs [regno][GET_MODE (XEXP (XEXP (link, 0), 0))]) - 1; i >= 0; i--) arg_hard_regs[n_hard_regs++] = regno + i; } if (n_hard_regs != 0) { arg_hard_regs[n_hard_regs++] = -1; data->arg_hard_regs = XNEWVEC (int, n_hard_regs); memcpy (data->arg_hard_regs, arg_hard_regs, sizeof (int) * n_hard_regs); } } /* Some output operand can be recognized only from the context not from the constraints which are empty in this case. Call insn may contain a hard register in set destination with empty constraint and extract_insn treats them as an input. */ for (i = 0; i < insn_static_data->n_operands; i++) { int j; rtx pat, set; struct lra_operand_data *operand = &insn_static_data->operand[i]; /* ??? Should we treat 'X' the same way. It looks to me that 'X' means anything and empty constraint means we do not care. */ if (operand->type != OP_IN || *operand->constraint != '\0' || operand->is_operator) continue; pat = PATTERN (insn); if (GET_CODE (pat) == SET) { if (data->operand_loc[i] != &SET_DEST (pat)) continue; } else if (GET_CODE (pat) == PARALLEL) { for (j = XVECLEN (pat, 0) - 1; j >= 0; j--) { set = XVECEXP (PATTERN (insn), 0, j); if (GET_CODE (set) == SET && &SET_DEST (set) == data->operand_loc[i]) break; } if (j < 0) continue; } else continue; operand->type = OP_OUT; } return data; } /* Return info about insn give by UID. The info should be already set up. */ static lra_insn_recog_data_t get_insn_recog_data_by_uid (int uid) { lra_insn_recog_data_t data; data = lra_insn_recog_data[uid]; lra_assert (data != NULL); return data; } /* Invalidate all info about insn given by its UID. */ static void invalidate_insn_recog_data (int uid) { lra_insn_recog_data_t data; data = lra_insn_recog_data[uid]; lra_assert (data != NULL); free_insn_recog_data (data); lra_insn_recog_data[uid] = NULL; } /* Update all the insn info about INSN. It is usually called when something in the insn was changed. Return the updated info. */ lra_insn_recog_data_t lra_update_insn_recog_data (rtx insn) { lra_insn_recog_data_t data; int n; unsigned int uid = INSN_UID (insn); struct lra_static_insn_data *insn_static_data; check_and_expand_insn_recog_data (uid); if ((data = lra_insn_recog_data[uid]) != NULL && data->icode != INSN_CODE (insn)) { invalidate_insn_data_regno_info (data, insn, get_insn_freq (insn)); invalidate_insn_recog_data (uid); data = NULL; } if (data == NULL) return lra_get_insn_recog_data (insn); insn_static_data = data->insn_static_data; data->used_insn_alternative = -1; if (DEBUG_INSN_P (insn)) return data; if (data->icode < 0) { int nop; enum machine_mode operand_mode[MAX_RECOG_OPERANDS]; const char *constraints[MAX_RECOG_OPERANDS]; nop = asm_noperands (PATTERN (insn)); if (nop >= 0) { lra_assert (nop == data->insn_static_data->n_operands); /* Now get the operand values and constraints out of the insn. */ decode_asm_operands (PATTERN (insn), NULL, data->operand_loc, constraints, operand_mode, NULL); #ifdef ENABLE_CHECKING { int i; for (i = 0; i < nop; i++) lra_assert (insn_static_data->operand[i].mode == operand_mode[i] && insn_static_data->operand[i].constraint == constraints[i] && ! insn_static_data->operand[i].is_operator); } #endif } #ifdef ENABLE_CHECKING { int i; for (i = 0; i < insn_static_data->n_operands; i++) lra_assert (insn_static_data->operand[i].type == (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT : OP_IN)); } #endif } else { insn_extract (insn); n = insn_static_data->n_operands; if (n != 0) memcpy (data->operand_loc, recog_data.operand_loc, n * sizeof (rtx *)); n = insn_static_data->n_dups; if (n != 0) memcpy (data->dup_loc, recog_data.dup_loc, n * sizeof (rtx *)); #if HAVE_ATTR_enabled #ifdef ENABLE_CHECKING { int i; bool *bp; n = insn_static_data->n_alternatives; bp = data->alternative_enabled_p; lra_assert (n >= 0 && bp != NULL); /* Cache the insn to prevent extract_insn call from get_attr_enabled. */ recog_data.insn = insn; for (i = 0; i < n; i++) { which_alternative = i; lra_assert (bp[i] == get_attr_enabled (insn)); } } #endif #endif } return data; } /* Set up that INSN is using alternative ALT now. */ void lra_set_used_insn_alternative (rtx insn, int alt) { lra_insn_recog_data_t data; data = lra_get_insn_recog_data (insn); data->used_insn_alternative = alt; } /* Set up that insn with UID is using alternative ALT now. The insn info should be already set up. */ void lra_set_used_insn_alternative_by_uid (int uid, int alt) { lra_insn_recog_data_t data; check_and_expand_insn_recog_data (uid); data = lra_insn_recog_data[uid]; lra_assert (data != NULL); data->used_insn_alternative = alt; } /* This page contains code dealing with common register info and pseudo copies. */ /* The size of the following array. */ static int reg_info_size; /* Common info about each register. */ struct lra_reg *lra_reg_info; /* Last register value. */ static int last_reg_value; /* Return new register value. */ static int get_new_reg_value (void) { return ++last_reg_value; } /* Pools for copies. */ static alloc_pool copy_pool; /* Vec referring to pseudo copies. */ static vec copy_vec; /* Initialize I-th element of lra_reg_info. */ static inline void initialize_lra_reg_info_element (int i) { bitmap_initialize (&lra_reg_info[i].insn_bitmap, ®_obstack); #ifdef STACK_REGS lra_reg_info[i].no_stack_p = false; #endif CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs); lra_reg_info[i].preferred_hard_regno1 = -1; lra_reg_info[i].preferred_hard_regno2 = -1; lra_reg_info[i].preferred_hard_regno_profit1 = 0; lra_reg_info[i].preferred_hard_regno_profit2 = 0; lra_reg_info[i].biggest_mode = VOIDmode; lra_reg_info[i].live_ranges = NULL; lra_reg_info[i].nrefs = lra_reg_info[i].freq = 0; lra_reg_info[i].last_reload = 0; lra_reg_info[i].restore_regno = -1; lra_reg_info[i].val = get_new_reg_value (); lra_reg_info[i].offset = 0; lra_reg_info[i].copies = NULL; } /* Initialize common reg info and copies. */ static void init_reg_info (void) { int i; last_reg_value = 0; reg_info_size = max_reg_num () * 3 / 2 + 1; lra_reg_info = XNEWVEC (struct lra_reg, reg_info_size); for (i = 0; i < reg_info_size; i++) initialize_lra_reg_info_element (i); copy_pool = create_alloc_pool ("lra copies", sizeof (struct lra_copy), 100); copy_vec.create (100); } /* Finish common reg info and copies. */ static void finish_reg_info (void) { int i; for (i = 0; i < reg_info_size; i++) bitmap_clear (&lra_reg_info[i].insn_bitmap); free (lra_reg_info); reg_info_size = 0; free_alloc_pool (copy_pool); copy_vec.release (); } /* Expand common reg info if it is necessary. */ static void expand_reg_info (void) { int i, old = reg_info_size; if (reg_info_size > max_reg_num ()) return; reg_info_size = max_reg_num () * 3 / 2 + 1; lra_reg_info = XRESIZEVEC (struct lra_reg, lra_reg_info, reg_info_size); for (i = old; i < reg_info_size; i++) initialize_lra_reg_info_element (i); } /* Free all copies. */ void lra_free_copies (void) { lra_copy_t cp; while (copy_vec.length () != 0) { cp = copy_vec.pop (); lra_reg_info[cp->regno1].copies = lra_reg_info[cp->regno2].copies = NULL; pool_free (copy_pool, cp); } } /* Create copy of two pseudos REGNO1 and REGNO2. The copy execution frequency is FREQ. */ void lra_create_copy (int regno1, int regno2, int freq) { bool regno1_dest_p; lra_copy_t cp; lra_assert (regno1 != regno2); regno1_dest_p = true; if (regno1 > regno2) { int temp = regno2; regno1_dest_p = false; regno2 = regno1; regno1 = temp; } cp = (lra_copy_t) pool_alloc (copy_pool); copy_vec.safe_push (cp); cp->regno1_dest_p = regno1_dest_p; cp->freq = freq; cp->regno1 = regno1; cp->regno2 = regno2; cp->regno1_next = lra_reg_info[regno1].copies; lra_reg_info[regno1].copies = cp; cp->regno2_next = lra_reg_info[regno2].copies; lra_reg_info[regno2].copies = cp; if (lra_dump_file != NULL) fprintf (lra_dump_file, " Creating copy r%d%sr%d@%d\n", regno1, regno1_dest_p ? "<-" : "->", regno2, freq); } /* Return N-th (0, 1, ...) copy. If there is no copy, return NULL. */ lra_copy_t lra_get_copy (int n) { if (n >= (int) copy_vec.length ()) return NULL; return copy_vec[n]; } /* This page contains code dealing with info about registers in insns. */ /* Process X of insn UID recursively and add info (operand type is given by TYPE, flag of that it is early clobber is EARLY_CLOBBER) about registers in X to the insn DATA. */ static void add_regs_to_insn_regno_info (lra_insn_recog_data_t data, rtx x, int uid, enum op_type type, bool early_clobber) { int i, j, regno; bool subreg_p; enum machine_mode mode; const char *fmt; enum rtx_code code; struct lra_insn_reg *curr; code = GET_CODE (x); mode = GET_MODE (x); subreg_p = false; if (GET_CODE (x) == SUBREG) { x = SUBREG_REG (x); code = GET_CODE (x); if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))) { mode = GET_MODE (x); if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode)) subreg_p = true; } } if (REG_P (x)) { regno = REGNO (x); if (regno < FIRST_PSEUDO_REGISTER && TEST_HARD_REG_BIT (lra_no_alloc_regs, regno) && ! TEST_HARD_REG_BIT (eliminable_regset, regno)) return; expand_reg_info (); if (bitmap_set_bit (&lra_reg_info[regno].insn_bitmap, uid)) { data->regs = new_insn_reg (regno, type, mode, subreg_p, early_clobber, data->regs); return; } else { for (curr = data->regs; curr != NULL; curr = curr->next) if (curr->regno == regno) { if (curr->subreg_p != subreg_p || curr->biggest_mode != mode) /* The info can not be integrated into the found structure. */ data->regs = new_insn_reg (regno, type, mode, subreg_p, early_clobber, data->regs); else { if (curr->type != type) curr->type = OP_INOUT; if (curr->early_clobber != early_clobber) curr->early_clobber = true; } return; } gcc_unreachable (); } } switch (code) { case SET: add_regs_to_insn_regno_info (data, SET_DEST (x), uid, OP_OUT, false); add_regs_to_insn_regno_info (data, SET_SRC (x), uid, OP_IN, false); break; case CLOBBER: /* We treat clobber of non-operand hard registers as early clobber (the behavior is expected from asm). */ add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_OUT, true); break; case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC: add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false); break; case PRE_MODIFY: case POST_MODIFY: add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false); add_regs_to_insn_regno_info (data, XEXP (x, 1), uid, OP_IN, false); break; default: if ((code != PARALLEL && code != EXPR_LIST) || type != OP_OUT) /* Some targets place small structures in registers for return values of functions, and those registers are wrapped in PARALLEL that we may see as the destination of a SET. Here is an example: (call_insn 13 12 14 2 (set (parallel:BLK [ (expr_list:REG_DEP_TRUE (reg:DI 0 ax) (const_int 0 [0])) (expr_list:REG_DEP_TRUE (reg:DI 1 dx) (const_int 8 [0x8])) ]) (call (mem:QI (symbol_ref:DI (... */ type = OP_IN; fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') add_regs_to_insn_regno_info (data, XEXP (x, i), uid, type, false); else if (fmt[i] == 'E') { for (j = XVECLEN (x, i) - 1; j >= 0; j--) add_regs_to_insn_regno_info (data, XVECEXP (x, i, j), uid, type, false); } } } } /* Return execution frequency of INSN. */ static int get_insn_freq (rtx insn) { basic_block bb = BLOCK_FOR_INSN (insn); gcc_checking_assert (bb != NULL); return REG_FREQ_FROM_BB (bb); } /* Invalidate all reg info of INSN with DATA and execution frequency FREQ. Update common info about the invalidated registers. */ static void invalidate_insn_data_regno_info (lra_insn_recog_data_t data, rtx insn, int freq) { int uid; bool debug_p; unsigned int i; struct lra_insn_reg *ir, *next_ir; uid = INSN_UID (insn); debug_p = DEBUG_INSN_P (insn); for (ir = data->regs; ir != NULL; ir = next_ir) { i = ir->regno; next_ir = ir->next; free_insn_reg (ir); bitmap_clear_bit (&lra_reg_info[i].insn_bitmap, uid); if (i >= FIRST_PSEUDO_REGISTER && ! debug_p) { lra_reg_info[i].nrefs--; lra_reg_info[i].freq -= freq; lra_assert (lra_reg_info[i].nrefs >= 0 && lra_reg_info[i].freq >= 0); } } data->regs = NULL; } /* Invalidate all reg info of INSN. Update common info about the invalidated registers. */ void lra_invalidate_insn_regno_info (rtx insn) { invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn), insn, get_insn_freq (insn)); } /* Update common reg info from reg info of insn given by its DATA and execution frequency FREQ. */ static void setup_insn_reg_info (lra_insn_recog_data_t data, int freq) { unsigned int i; struct lra_insn_reg *ir; for (ir = data->regs; ir != NULL; ir = ir->next) if ((i = ir->regno) >= FIRST_PSEUDO_REGISTER) { lra_reg_info[i].nrefs++; lra_reg_info[i].freq += freq; } } /* Set up insn reg info of INSN. Update common reg info from reg info of INSN. */ void lra_update_insn_regno_info (rtx insn) { int i, uid, freq; lra_insn_recog_data_t data; struct lra_static_insn_data *static_data; enum rtx_code code; if (! INSN_P (insn)) return; data = lra_get_insn_recog_data (insn); static_data = data->insn_static_data; freq = get_insn_freq (insn); invalidate_insn_data_regno_info (data, insn, freq); uid = INSN_UID (insn); for (i = static_data->n_operands - 1; i >= 0; i--) add_regs_to_insn_regno_info (data, *data->operand_loc[i], uid, static_data->operand[i].type, static_data->operand[i].early_clobber); if ((code = GET_CODE (PATTERN (insn))) == CLOBBER || code == USE) add_regs_to_insn_regno_info (data, XEXP (PATTERN (insn), 0), uid, code == USE ? OP_IN : OP_OUT, false); if (NONDEBUG_INSN_P (insn)) setup_insn_reg_info (data, freq); } /* Return reg info of insn given by it UID. */ struct lra_insn_reg * lra_get_insn_regs (int uid) { lra_insn_recog_data_t data; data = get_insn_recog_data_by_uid (uid); return data->regs; } /* This page contains code dealing with stack of the insns which should be processed by the next constraint pass. */ /* Bitmap used to put an insn on the stack only in one exemplar. */ static sbitmap lra_constraint_insn_stack_bitmap; /* The stack itself. */ vec lra_constraint_insn_stack; /* Put INSN on the stack. If ALWAYS_UPDATE is true, always update the reg info for INSN, otherwise only update it if INSN is not already on the stack. */ static inline void lra_push_insn_1 (rtx insn, bool always_update) { unsigned int uid = INSN_UID (insn); if (always_update) lra_update_insn_regno_info (insn); if (uid >= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap)) lra_constraint_insn_stack_bitmap = sbitmap_resize (lra_constraint_insn_stack_bitmap, 3 * uid / 2, 0); if (bitmap_bit_p (lra_constraint_insn_stack_bitmap, uid)) return; bitmap_set_bit (lra_constraint_insn_stack_bitmap, uid); if (! always_update) lra_update_insn_regno_info (insn); lra_constraint_insn_stack.safe_push (insn); } /* Put INSN on the stack. */ void lra_push_insn (rtx insn) { lra_push_insn_1 (insn, false); } /* Put INSN on the stack and update its reg info. */ void lra_push_insn_and_update_insn_regno_info (rtx insn) { lra_push_insn_1 (insn, true); } /* Put insn with UID on the stack. */ void lra_push_insn_by_uid (unsigned int uid) { lra_push_insn (lra_insn_recog_data[uid]->insn); } /* Take the last-inserted insns off the stack and return it. */ rtx lra_pop_insn (void) { rtx insn = lra_constraint_insn_stack.pop (); bitmap_clear_bit (lra_constraint_insn_stack_bitmap, INSN_UID (insn)); return insn; } /* Return the current size of the insn stack. */ unsigned int lra_insn_stack_length (void) { return lra_constraint_insn_stack.length (); } /* Push insns FROM to TO (excluding it) going in reverse order. */ static void push_insns (rtx from, rtx to) { rtx insn; if (from == NULL_RTX) return; for (insn = from; insn != to; insn = PREV_INSN (insn)) if (INSN_P (insn)) lra_push_insn (insn); } /* Emit insns BEFORE before INSN and insns AFTER after INSN. Put the insns onto the stack. Print about emitting the insns with TITLE. */ void lra_process_new_insns (rtx insn, rtx before, rtx after, const char *title) { rtx last; if (lra_dump_file != NULL && (before != NULL_RTX || after != NULL_RTX)) { dump_insn_slim (lra_dump_file, insn); if (before != NULL_RTX) { fprintf (lra_dump_file," %s before:\n", title); dump_rtl_slim (lra_dump_file, before, NULL_RTX, -1, 0); } if (after != NULL_RTX) { fprintf (lra_dump_file, " %s after:\n", title); dump_rtl_slim (lra_dump_file, after, NULL_RTX, -1, 0); } fprintf (lra_dump_file, "\n"); } if (before != NULL_RTX) { emit_insn_before (before, insn); push_insns (PREV_INSN (insn), PREV_INSN (before)); } if (after != NULL_RTX) { for (last = after; NEXT_INSN (last) != NULL_RTX; last = NEXT_INSN (last)) ; emit_insn_after (after, insn); push_insns (last, insn); } } /* This page contains code dealing with scratches (changing them onto pseudos and restoring them from the pseudos). We change scratches into pseudos at the beginning of LRA to simplify dealing with them (conflicts, hard register assignments). If the pseudo denoting scratch was spilled it means that we do need a hard register for it. Such pseudos are transformed back to scratches at the end of LRA. */ /* Description of location of a former scratch operand. */ struct sloc { rtx insn; /* Insn where the scratch was. */ int nop; /* Number of the operand which was a scratch. */ }; typedef struct sloc *sloc_t; /* Locations of the former scratches. */ static vec scratches; /* Bitmap of scratch regnos. */ static bitmap_head scratch_bitmap; /* Bitmap of scratch operands. */ static bitmap_head scratch_operand_bitmap; /* Return true if pseudo REGNO is made of SCRATCH. */ bool lra_former_scratch_p (int regno) { return bitmap_bit_p (&scratch_bitmap, regno); } /* Return true if the operand NOP of INSN is a former scratch. */ bool lra_former_scratch_operand_p (rtx insn, int nop) { return bitmap_bit_p (&scratch_operand_bitmap, INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0; } /* Change scratches onto pseudos and save their location. */ static void remove_scratches (void) { int i; bool insn_changed_p; basic_block bb; rtx insn, reg; sloc_t loc; lra_insn_recog_data_t id; struct lra_static_insn_data *static_id; scratches.create (get_max_uid ()); bitmap_initialize (&scratch_bitmap, ®_obstack); bitmap_initialize (&scratch_operand_bitmap, ®_obstack); FOR_EACH_BB (bb) FOR_BB_INSNS (bb, insn) if (INSN_P (insn)) { id = lra_get_insn_recog_data (insn); static_id = id->insn_static_data; insn_changed_p = false; for (i = 0; i < static_id->n_operands; i++) if (GET_CODE (*id->operand_loc[i]) == SCRATCH && GET_MODE (*id->operand_loc[i]) != VOIDmode) { insn_changed_p = true; *id->operand_loc[i] = reg = lra_create_new_reg (static_id->operand[i].mode, *id->operand_loc[i], ALL_REGS, NULL); add_reg_note (insn, REG_UNUSED, reg); lra_update_dup (id, i); loc = XNEW (struct sloc); loc->insn = insn; loc->nop = i; scratches.safe_push (loc); bitmap_set_bit (&scratch_bitmap, REGNO (*id->operand_loc[i])); bitmap_set_bit (&scratch_operand_bitmap, INSN_UID (insn) * MAX_RECOG_OPERANDS + i); if (lra_dump_file != NULL) fprintf (lra_dump_file, "Removing SCRATCH in insn #%u (nop %d)\n", INSN_UID (insn), i); } if (insn_changed_p) /* Because we might use DF right after caller-saves sub-pass we need to keep DF info up to date. */ df_insn_rescan (insn); } } /* Changes pseudos created by function remove_scratches onto scratches. */ static void restore_scratches (void) { int regno; unsigned i; sloc_t loc; rtx last = NULL_RTX; lra_insn_recog_data_t id = NULL; for (i = 0; scratches.iterate (i, &loc); i++) { if (last != loc->insn) { last = loc->insn; id = lra_get_insn_recog_data (last); } if (REG_P (*id->operand_loc[loc->nop]) && ((regno = REGNO (*id->operand_loc[loc->nop])) >= FIRST_PSEUDO_REGISTER) && lra_get_regno_hard_regno (regno) < 0) { /* It should be only case when scratch register with chosen constraint 'X' did not get memory or hard register. */ lra_assert (lra_former_scratch_p (regno)); *id->operand_loc[loc->nop] = gen_rtx_SCRATCH (GET_MODE (*id->operand_loc[loc->nop])); lra_update_dup (id, loc->nop); if (lra_dump_file != NULL) fprintf (lra_dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n", INSN_UID (loc->insn), loc->nop); } } for (i = 0; scratches.iterate (i, &loc); i++) free (loc); scratches.release (); bitmap_clear (&scratch_bitmap); bitmap_clear (&scratch_operand_bitmap); } #ifdef ENABLE_CHECKING /* Function checks RTL for correctness. If FINAL_P is true, it is done at the end of LRA and the check is more rigorous. */ static void check_rtl (bool final_p) { int i; basic_block bb; rtx insn; lra_insn_recog_data_t id; lra_assert (! final_p || reload_completed); FOR_EACH_BB (bb) FOR_BB_INSNS (bb, insn) if (NONDEBUG_INSN_P (insn) && GET_CODE (PATTERN (insn)) != USE && GET_CODE (PATTERN (insn)) != CLOBBER && GET_CODE (PATTERN (insn)) != ASM_INPUT) { if (final_p) { extract_insn (insn); lra_assert (constrain_operands (1)); continue; } if (insn_invalid_p (insn, false)) fatal_insn_not_found (insn); if (asm_noperands (PATTERN (insn)) >= 0) continue; id = lra_get_insn_recog_data (insn); /* The code is based on assumption that all addresses in regular instruction are legitimate before LRA. The code in lra-constraints.c is based on assumption that there is no subreg of memory as an insn operand. */ for (i = 0; i < id->insn_static_data->n_operands; i++) { rtx op = *id->operand_loc[i]; if (MEM_P (op) && (GET_MODE (op) != BLKmode || GET_CODE (XEXP (op, 0)) != SCRATCH) && ! memory_address_p (GET_MODE (op), XEXP (op, 0)) /* Some ports don't recognize the following addresses as legitimate. Although they are legitimate if they satisfies the constraints and will be checked by insn constraints which we ignore here. */ && GET_CODE (XEXP (op, 0)) != UNSPEC && GET_RTX_CLASS (GET_CODE (XEXP (op, 0))) != RTX_AUTOINC) fatal_insn_not_found (insn); } } } #endif /* #ifdef ENABLE_CHECKING */ /* Determine if the current function has an exception receiver block that reaches the exit block via non-exceptional edges */ static bool has_nonexceptional_receiver (void) { edge e; edge_iterator ei; basic_block *tos, *worklist, bb; /* If we're not optimizing, then just err on the safe side. */ if (!optimize) return true; /* First determine which blocks can reach exit via normal paths. */ tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1); FOR_EACH_BB (bb) bb->flags &= ~BB_REACHABLE; /* Place the exit block on our worklist. */ EXIT_BLOCK_PTR->flags |= BB_REACHABLE; *tos++ = EXIT_BLOCK_PTR; /* Iterate: find everything reachable from what we've already seen. */ while (tos != worklist) { bb = *--tos; FOR_EACH_EDGE (e, ei, bb->preds) if (e->flags & EDGE_ABNORMAL) { free (worklist); return true; } else { basic_block src = e->src; if (!(src->flags & BB_REACHABLE)) { src->flags |= BB_REACHABLE; *tos++ = src; } } } free (worklist); /* No exceptional block reached exit unexceptionally. */ return false; } #ifdef AUTO_INC_DEC /* Process recursively X of INSN and add REG_INC notes if necessary. */ static void add_auto_inc_notes (rtx insn, rtx x) { enum rtx_code code = GET_CODE (x); const char *fmt; int i, j; if (code == MEM && auto_inc_p (XEXP (x, 0))) { add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0)); return; } /* Scan all X sub-expressions. */ fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') add_auto_inc_notes (insn, XEXP (x, i)); else if (fmt[i] == 'E') for (j = XVECLEN (x, i) - 1; j >= 0; j--) add_auto_inc_notes (insn, XVECEXP (x, i, j)); } } #endif /* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC. We change pseudos by hard registers without notification of DF and that can make the notes obsolete. DF-infrastructure does not deal with REG_INC notes -- so we should regenerate them here. */ static void update_inc_notes (void) { rtx *pnote; basic_block bb; rtx insn; FOR_EACH_BB (bb) FOR_BB_INSNS (bb, insn) if (NONDEBUG_INSN_P (insn)) { pnote = ®_NOTES (insn); while (*pnote != 0) { if (REG_NOTE_KIND (*pnote) == REG_INC) *pnote = XEXP (*pnote, 1); else pnote = &XEXP (*pnote, 1); } #ifdef AUTO_INC_DEC add_auto_inc_notes (insn, PATTERN (insn)); #endif } } /* Set to 1 while in lra. */ int lra_in_progress; /* Start of pseudo regnos before the LRA. */ int lra_new_regno_start; /* Start of reload pseudo regnos before the new spill pass. */ int lra_constraint_new_regno_start; /* Inheritance pseudo regnos before the new spill pass. */ bitmap_head lra_inheritance_pseudos; /* Split regnos before the new spill pass. */ bitmap_head lra_split_regs; /* Reload pseudo regnos before the new assign pass which still can be spilled after the assinment pass. */ bitmap_head lra_optional_reload_pseudos; /* First UID of insns generated before a new spill pass. */ int lra_constraint_new_insn_uid_start; /* File used for output of LRA debug information. */ FILE *lra_dump_file; /* True if we should try spill into registers of different classes instead of memory. */ bool lra_reg_spill_p; /* Set up value LRA_REG_SPILL_P. */ static void setup_reg_spill_flag (void) { int cl, mode; if (targetm.spill_class != NULL) for (cl = 0; cl < (int) LIM_REG_CLASSES; cl++) for (mode = 0; mode < MAX_MACHINE_MODE; mode++) if (targetm.spill_class ((enum reg_class) cl, (enum machine_mode) mode) != NO_REGS) { lra_reg_spill_p = true; return; } lra_reg_spill_p = false; } /* True if the current function is too big to use regular algorithms in LRA. In other words, we should use simpler and faster algorithms in LRA. It also means we should not worry about generation code for caller saves. The value is set up in IRA. */ bool lra_simple_p; /* Major LRA entry function. F is a file should be used to dump LRA debug info. */ void lra (FILE *f) { int i; bool live_p, scratch_p, inserted_p; lra_dump_file = f; timevar_push (TV_LRA); /* Make sure that the last insn is a note. Some subsequent passes need it. */ emit_note (NOTE_INSN_DELETED); COPY_HARD_REG_SET (lra_no_alloc_regs, ira_no_alloc_regs); init_reg_info (); expand_reg_info (); init_insn_recog_data (); #ifdef ENABLE_CHECKING check_rtl (false); #endif lra_live_range_iter = lra_coalesce_iter = 0; lra_constraint_iter = lra_constraint_iter_after_spill = 0; lra_inheritance_iter = lra_undo_inheritance_iter = 0; setup_reg_spill_flag (); /* We can not set up reload_in_progress because it prevents new pseudo creation. */ lra_in_progress = 1; /* Function remove_scratches can creates new pseudos for clobbers -- so set up lra_constraint_new_regno_start before its call to permit changing reg classes for pseudos created by this simplification. */ lra_constraint_new_regno_start = lra_new_regno_start = max_reg_num (); remove_scratches (); scratch_p = lra_constraint_new_regno_start != max_reg_num (); /* A function that has a non-local label that can reach the exit block via non-exceptional paths must save all call-saved registers. */ if (cfun->has_nonlocal_label && has_nonexceptional_receiver ()) crtl->saves_all_registers = 1; if (crtl->saves_all_registers) for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i)) df_set_regs_ever_live (i, true); /* We don't DF from now and avoid its using because it is to expensive when a lot of RTL changes are made. */ df_set_flags (DF_NO_INSN_RESCAN); lra_constraint_insn_stack.create (get_max_uid ()); lra_constraint_insn_stack_bitmap = sbitmap_alloc (get_max_uid ()); bitmap_clear (lra_constraint_insn_stack_bitmap); lra_live_ranges_init (); lra_constraints_init (); lra_curr_reload_num = 0; push_insns (get_last_insn (), NULL_RTX); /* It is needed for the 1st coalescing. */ lra_constraint_new_insn_uid_start = get_max_uid (); bitmap_initialize (&lra_inheritance_pseudos, ®_obstack); bitmap_initialize (&lra_split_regs, ®_obstack); bitmap_initialize (&lra_optional_reload_pseudos, ®_obstack); live_p = false; if (get_frame_size () != 0 && crtl->stack_alignment_needed) /* If we have a stack frame, we must align it now. The stack size may be a part of the offset computation for register elimination. */ assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed); for (;;) { for (;;) { /* We should try to assign hard registers to scratches even if there were no RTL transformations in lra_constraints. */ if (! lra_constraints (lra_constraint_iter == 0) && (lra_constraint_iter > 1 || (! scratch_p && ! caller_save_needed))) break; /* Constraint transformations may result in that eliminable hard regs become uneliminable and pseudos which use them should be spilled. It is better to do it before pseudo assignments. For example, rs6000 can make RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started to use a constant pool. */ lra_eliminate (false); /* Do inheritance only for regular algorithms. */ if (! lra_simple_p) lra_inheritance (); if (live_p) lra_clear_live_ranges (); /* We need live ranges for lra_assign -- so build them. */ lra_create_live_ranges (true); live_p = true; /* If we don't spill non-reload and non-inheritance pseudos, there is no sense to run memory-memory move coalescing. If inheritance pseudos were spilled, the memory-memory moves involving them will be removed by pass undoing inheritance. */ if (lra_simple_p) lra_assign (); else { bool spill_p = !lra_assign (); if (lra_undo_inheritance ()) live_p = false; if (spill_p) { if (! live_p) { lra_create_live_ranges (true); live_p = true; } if (lra_coalesce ()) live_p = false; } if (! live_p) lra_clear_live_ranges (); } } bitmap_clear (&lra_optional_reload_pseudos); bitmap_clear (&lra_inheritance_pseudos); bitmap_clear (&lra_split_regs); if (! lra_need_for_spills_p ()) break; if (! live_p) { /* We need full live info for spilling pseudos into registers instead of memory. */ lra_create_live_ranges (lra_reg_spill_p); live_p = true; } lra_spill (); /* Assignment of stack slots changes elimination offsets for some eliminations. So update the offsets here. */ lra_eliminate (false); lra_constraint_new_regno_start = max_reg_num (); lra_constraint_new_insn_uid_start = get_max_uid (); lra_constraint_iter_after_spill = 0; } restore_scratches (); lra_eliminate (true); lra_final_code_change (); lra_in_progress = 0; if (live_p) lra_clear_live_ranges (); lra_live_ranges_finish (); lra_constraints_finish (); finish_reg_info (); sbitmap_free (lra_constraint_insn_stack_bitmap); lra_constraint_insn_stack.release (); finish_insn_recog_data (); regstat_free_n_sets_and_refs (); regstat_free_ri (); reload_completed = 1; update_inc_notes (); inserted_p = fixup_abnormal_edges (); /* We've possibly turned single trapping insn into multiple ones. */ if (cfun->can_throw_non_call_exceptions) { sbitmap blocks; blocks = sbitmap_alloc (last_basic_block); bitmap_ones (blocks); find_many_sub_basic_blocks (blocks); sbitmap_free (blocks); } if (inserted_p) commit_edge_insertions (); /* Replacing pseudos with their memory equivalents might have created shared rtx. Subsequent passes would get confused by this, so unshare everything here. */ unshare_all_rtl_again (get_insns ()); #ifdef ENABLE_CHECKING check_rtl (true); #endif timevar_pop (TV_LRA); } /* Called once per compiler to initialize LRA data once. */ void lra_init_once (void) { init_insn_code_data_once (); } /* Initialize LRA whenever register-related information is changed. */ void lra_init (void) { init_op_alt_data (); } /* Called once per compiler to finish LRA data which are initialize once. */ void lra_finish_once (void) { finish_insn_code_data_once (); }