/* Source code parsing and tree node generation for the GNU compiler for the Java(TM) language. Copyright (C) 1997, 1998 Free Software Foundation, Inc. Contributed by Alexandre Petit-Bianco (apbianco@cygnus.com) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. The Free Software Foundation is independent of Sun Microsystems, Inc. */ /* This file parses java source code and issues a tree node image suitable for code generation (byte code and targeted CPU assembly language). The grammar conforms to the Java grammar described in "The Java(TM) Language Specification. J. Gosling, B. Joy, G. Steele. Addison Wesley 1996, ISBN 0-201-63451-1" The following modifications were brought to the original grammar: method_body: added the rule '| block SC_TK' constructor_declaration: added two rules to accept SC_TK. static_initializer: added the rule 'static block SC_TK'. Note: All the extra rules described above should go away when the empty_statement rule will work. statement_nsi: 'nsi' should be read no_short_if. Some rules have been modified to support JDK1.1 inner classes definitions and other extensions. */ %{ #include #include #include #include #ifdef __STDC__ #include #else #include #endif #include "config.h" #include "tree.h" #include "rtl.h" #include "obstack.h" #include "flags.h" #include "java-tree.h" #include "jcf.h" #include "lex.h" #include "parse.h" #include "zipfile.h" /* Number of error found so far. */ int java_error_count; /* Number of warning found so far. */ int java_warning_count; /* The current parser context */ static struct parser_ctxt *ctxp; /* binop_lookup maps token to tree_code. It is used where binary operations are involved and required by the parser. RDIV_EXPR covers both integral/floating point division. The code is changed once the type of both operator is worked out. */ static enum tree_code binop_lookup[19] = { PLUS_EXPR, MINUS_EXPR, MULT_EXPR, RDIV_EXPR, TRUNC_MOD_EXPR, LSHIFT_EXPR, RSHIFT_EXPR, URSHIFT_EXPR, BIT_AND_EXPR, BIT_XOR_EXPR, BIT_IOR_EXPR, TRUTH_ANDIF_EXPR, TRUTH_ORIF_EXPR, EQ_EXPR, NE_EXPR, GT_EXPR, GE_EXPR, LT_EXPR, LE_EXPR, }; #define BINOP_LOOKUP(VALUE) \ binop_lookup [((VALUE) - PLUS_TK)% \ (sizeof (binop_lookup) / sizeof (binop_lookup[0]))] /* Fake WFL used to report error message. It is initialized once if needed and reused with it's location information is overriden. */ static tree wfl_operator = NULL_TREE; /* The "$L" identifier we use to create labels. */ static tree label_id = NULL_TREE; /* The "StringBuffer" identifier used for the String `+' operator. */ static tree wfl_string_buffer = NULL_TREE; /* The "append" identifier used for String `+' operator. */ static tree wfl_append = NULL_TREE; /* The "toString" identifier used for String `+' operator. */ static tree wfl_to_string = NULL_TREE; %} %union { tree node; int sub_token; struct { int token; int location; } operator; int value; } %pure_parser /* Things defined here have to match the order of what's in the binop_lookup table. */ %token PLUS_TK MINUS_TK MULT_TK DIV_TK REM_TK %token LS_TK SRS_TK ZRS_TK %token AND_TK XOR_TK OR_TK %token BOOL_AND_TK BOOL_OR_TK %token EQ_TK NEQ_TK GT_TK GTE_TK LT_TK LTE_TK /* This maps to the same binop_lookup entry than the token above */ %token PLUS_ASSIGN_TK MINUS_ASSIGN_TK MULT_ASSIGN_TK DIV_ASSIGN_TK %token REM_ASSIGN_TK %token LS_ASSIGN_TK SRS_ASSIGN_TK ZRS_ASSIGN_TK %token AND_ASSIGN_TK XOR_ASSIGN_TK OR_ASSIGN_TK /* Modifier TOKEN have to be kept in this order. Don't scramble it */ %token PUBLIC_TK PRIVATE_TK PROTECTED_TK %token STATIC_TK FINAL_TK SYNCHRONIZED_TK %token VOLATILE_TK TRANSIENT_TK NATIVE_TK %token PAD_TK ABSTRACT_TK MODIFIER_TK /* Keep those two in order, too */ %token DECR_TK INCR_TK /* From now one, things can be in any order */ %token DEFAULT_TK IF_TK THROW_TK %token BOOLEAN_TK DO_TK IMPLEMENTS_TK %token THROWS_TK BREAK_TK IMPORT_TK %token ELSE_TK INSTANCEOF_TK RETURN_TK %token VOID_TK CATCH_TK INTERFACE_TK %token CASE_TK EXTENDS_TK FINALLY_TK %token SUPER_TK WHILE_TK CLASS_TK %token SWITCH_TK CONST_TK TRY_TK %token FOR_TK NEW_TK CONTINUE_TK %token GOTO_TK PACKAGE_TK THIS_TK %token BYTE_TK SHORT_TK INT_TK LONG_TK %token CHAR_TK INTEGRAL_TK %token FLOAT_TK DOUBLE_TK FP_TK %token ID_TK %token REL_QM_TK REL_CL_TK NOT_TK NEG_TK %token ASSIGN_ANY_TK ASSIGN_TK %token OP_TK CP_TK OCB_TK CCB_TK OSB_TK CSB_TK SC_TK C_TK DOT_TK %token STRING_LIT_TK CHAR_LIT_TK INT_LIT_TK FP_LIT_TK %token TRUE_TK FALSE_TK BOOL_LIT_TK NULL_TK %type modifiers MODIFIER_TK %type super ID_TK identifier %type name simple_name qualified_name %type class_declaration type_declaration compilation_unit field_declaration method_declaration extends_interfaces interfaces interface_type_list interface_declaration class_member_declaration import_declarations package_declaration type_declarations interface_body interface_member_declaration constant_declaration interface_member_declarations interface_type abstract_method_declaration interface_type_list %type class_body_declaration class_member_declaration static_initializer constructor_declaration block %type class_body_declarations %type class_or_interface_type class_type class_type_list constructor_declarator explicit_constructor_invocation %type dim_expr dim_exprs this_or_super throws %type variable_declarator_id variable_declarator variable_declarators variable_initializer variable_initializers %type class_body %type block_statement local_variable_declaration_statement block_statements local_variable_declaration %type statement statement_without_trailing_substatement labeled_statement if_then_statement label_decl if_then_else_statement while_statement for_statement statement_nsi labeled_statement_nsi do_statement if_then_else_statement_nsi while_statement_nsi for_statement_nsi statement_expression_list for_init for_update statement_expression expression_statement primary_no_new_array expression primary array_creation_expression array_type class_instance_creation_expression field_access method_invocation array_access something_dot_new argument_list postfix_expression while_expression post_increment_expression post_decrement_expression unary_expression_not_plus_minus unary_expression pre_increment_expression pre_decrement_expression unary_expression_not_plus_minus cast_expression multiplicative_expression additive_expression shift_expression relational_expression equality_expression and_expression exclusive_or_expression inclusive_or_expression conditional_and_expression conditional_or_expression conditional_expression assignment_expression left_hand_side assignment for_header for_begin constant_expression do_statement_begin empty_statement switch_statement synchronized_statement throw_statement try_statement switch_expression switch_block switch_block_statement_groups switch_labels switch_block_statement_group switch_label group_of_labels catches catch_clause catch_clause_parameter finally %type return_statement break_statement continue_statement %type ASSIGN_TK MULT_ASSIGN_TK DIV_ASSIGN_TK %type REM_ASSIGN_TK PLUS_ASSIGN_TK MINUS_ASSIGN_TK %type LS_ASSIGN_TK SRS_ASSIGN_TK ZRS_ASSIGN_TK %type AND_ASSIGN_TK XOR_ASSIGN_TK OR_ASSIGN_TK %type ASSIGN_ANY_TK assignment_operator %token EQ_TK GTE_TK ZRS_TK SRS_TK GT_TK LTE_TK LS_TK %token BOOL_AND_TK AND_TK BOOL_OR_TK OR_TK INCR_TK PLUS_TK %token DECR_TK MINUS_TK MULT_TK DIV_TK XOR_TK REM_TK NEQ_TK %token NEG_TK REL_QM_TK REL_CL_TK NOT_TK LT_TK %token OP_TK OSB_TK DOT_TK THROW_TK %type THIS_TK SUPER_TK RETURN_TK BREAK_TK CONTINUE_TK %type CASE_TK DEFAULT_TK TRY_TK CATCH_TK SYNCHRONIZED_TK %type method_body %type literal INT_LIT_TK FP_LIT_TK BOOL_LIT_TK CHAR_LIT_TK STRING_LIT_TK NULL_TK VOID_TK %type IF_TK WHILE_TK FOR_TK %type formal_parameter_list formal_parameter method_declarator method_header %type primitive_type reference_type type BOOLEAN_TK INTEGRAL_TK FP_TK %% /* 19.2 Production from 2.3: The Syntactic Grammar */ goal: compilation_unit {} ; /* 19.3 Productions from 3: Lexical structure */ literal: INT_LIT_TK | FP_LIT_TK | BOOL_LIT_TK | CHAR_LIT_TK | STRING_LIT_TK | NULL_TK ; /* 19.4 Productions from 4: Types, Values and Variables */ type: primitive_type | reference_type ; primitive_type: INTEGRAL_TK | FP_TK | BOOLEAN_TK ; reference_type: class_or_interface_type | array_type ; class_or_interface_type: name ; class_type: class_or_interface_type /* Default rule */ ; interface_type: class_or_interface_type ; array_type: primitive_type OSB_TK CSB_TK { $$ = build_java_array_type ($1, -1); CLASS_LOADED_P ($$) = 1; } | name OSB_TK CSB_TK { $$ = build_unresolved_array_type ($1); } | array_type OSB_TK CSB_TK { $$ = build_unresolved_array_type ($1); } | primitive_type OSB_TK error {RULE ("']' expected"); RECOVER;} | array_type OSB_TK error {RULE ("']' expected"); RECOVER;} ; /* 19.5 Productions from 6: Names */ name: simple_name /* Default rule */ | qualified_name /* Default rule */ ; simple_name: identifier /* Default rule */ ; qualified_name: name DOT_TK identifier { $$ = make_qualified_name ($1, $3, $2.location); } ; identifier: ID_TK ; /* 19.6: Production from 7: Packages */ compilation_unit: {$$ = NULL;} | package_declaration | import_declarations | type_declarations | package_declaration import_declarations | package_declaration type_declarations | import_declarations type_declarations | package_declaration import_declarations type_declarations ; import_declarations: import_declaration { $$ = NULL; } | import_declarations import_declaration { $$ = NULL; } ; type_declarations: type_declaration | type_declarations type_declaration ; package_declaration: PACKAGE_TK name SC_TK { ctxp->package = EXPR_WFL_NODE ($2); } | PACKAGE_TK error {yyerror ("Missing name"); RECOVER;} | PACKAGE_TK name error {yyerror ("';' expected"); RECOVER;} ; import_declaration: single_type_import_declaration | type_import_on_demand_declaration ; single_type_import_declaration: IMPORT_TK name SC_TK { tree name = EXPR_WFL_NODE ($2), node, last_name; int i = IDENTIFIER_LENGTH (name)-1; char *last = &IDENTIFIER_POINTER (name)[i]; while (last != IDENTIFIER_POINTER (name)) { if (last [0] == '.') break; last--; } last_name = get_identifier (++last); if (IS_A_SINGLE_IMPORT_CLASSFILE_NAME_P (last_name)) { tree err = find_name_in_single_imports (last_name); if (err && err != name) parse_error_context ($2, "Ambiguous class: `%s' and `%s'", IDENTIFIER_POINTER (name), IDENTIFIER_POINTER (err)); } else { IS_A_SINGLE_IMPORT_CLASSFILE_NAME_P (last_name) = 1; node = build_tree_list ($2, last_name); TREE_CHAIN (node) = ctxp->import_list; ctxp->import_list = node; } } | IMPORT_TK error {yyerror ("Missing name"); RECOVER;} | IMPORT_TK name error {yyerror ("';' expected"); RECOVER;} ; type_import_on_demand_declaration: IMPORT_TK name DOT_TK MULT_TK SC_TK { tree name = EXPR_WFL_NODE ($2); tree node = build_tree_list ($2, NULL_TREE); if (!IS_AN_IMPORT_ON_DEMAND_P (name)) { read_import_dir ($2); IS_AN_IMPORT_ON_DEMAND_P (name) = 1; } TREE_CHAIN (node) = ctxp->import_demand_list; ctxp->import_demand_list = node; } | IMPORT_TK name DOT_TK error {yyerror ("'*' expected"); RECOVER;} | IMPORT_TK name DOT_TK MULT_TK error {yyerror ("';' expected"); RECOVER;} ; type_declaration: class_declaration { maybe_generate_clinit (); $$ = $1; } | interface_declaration | SC_TK { $$ = NULL; } | error { YYERROR_NOW; yyerror ("Class or interface declaration expected"); } ; /* 19.7 Shortened from the original: modifiers: modifier | modifiers modifier modifier: any of public... */ modifiers: MODIFIER_TK { $$ = (1 << $1); } | modifiers MODIFIER_TK { int acc = (1 << $2); if ($$ & acc) parse_error_context (ctxp->modifier_ctx [$2], "Modifier `%s' declared twice", java_accstring_lookup (acc)); else { $$ |= acc; } } ; /* 19.8.1 Production from $8.1: Class Declaration */ class_declaration: modifiers CLASS_TK identifier super interfaces { create_class ($1, $3, $4, $5); } class_body { $$ = $7; } | CLASS_TK identifier super interfaces { create_class (0, $2, $3, $4); } class_body { $$ = $6; } | modifiers CLASS_TK error {yyerror ("Missing class name"); RECOVER;} | CLASS_TK error {yyerror ("Missing class name"); RECOVER;} | CLASS_TK identifier error {if (!ctxp->class_err) yyerror ("'{' expected"); DRECOVER(class1);} | modifiers CLASS_TK identifier error {if (!ctxp->class_err) yyerror ("'{' expected"); RECOVER;} ; super: { $$ = NULL; } | EXTENDS_TK class_type { $$ = $2; } | EXTENDS_TK class_type error {yyerror ("'{' expected"); ctxp->class_err=1;} | EXTENDS_TK error {yyerror ("Missing super class name"); ctxp->class_err=1;} ; interfaces: { $$ = NULL_TREE; } | IMPLEMENTS_TK interface_type_list { $$ = $2; } | IMPLEMENTS_TK error { ctxp->class_err=1; yyerror ("Missing interface name"); } ; interface_type_list: interface_type { ctxp->interface_number = 1; $$ = build_tree_list ($1, NULL_TREE); } | interface_type_list C_TK interface_type { ctxp->interface_number++; $$ = chainon ($1, build_tree_list ($3, NULL_TREE)); } | interface_type_list C_TK error {yyerror ("Missing interface name"); RECOVER;} ; class_body: OCB_TK CCB_TK { $$ = ctxp->current_parsed_class; } | OCB_TK class_body_declarations CCB_TK { $$ = ctxp->current_parsed_class; } ; class_body_declarations: class_body_declaration | class_body_declarations class_body_declaration ; class_body_declaration: class_member_declaration | static_initializer | constructor_declaration | block /* Added, JDK1.1, instance initializer */ { $$ = parse_jdk1_1_error ("instance initializer"); } ; class_member_declaration: field_declaration | method_declaration | class_declaration /* Added, JDK1.1 inner classes */ { $$ = parse_jdk1_1_error ("inner classe declaration"); } | interface_declaration /* Added, JDK1.1 inner classes */ { $$ = parse_jdk1_1_error ("inner interface declaration"); } ; /* 19.8.2 Productions from 8.3: Field Declarations */ field_declaration: type variable_declarators SC_TK { register_fields (0, $1, $2); } | modifiers type variable_declarators SC_TK { int acc_count = 0; check_modifiers ("Illegal modifier `%s' for field declaration", $1, FIELD_MODIFIERS); check_modifiers_consistency ($1); register_fields ($1, $2, $3); } ; variable_declarators: /* Should we use build_decl_list () instead ? FIXME */ variable_declarator /* Default rule */ | variable_declarators C_TK variable_declarator { $$ = chainon ($1, $3); } | variable_declarators C_TK error {yyerror ("Missing term"); RECOVER;} ; variable_declarator: variable_declarator_id { $$ = build_tree_list ($1, NULL_TREE); } | variable_declarator_id ASSIGN_TK variable_initializer { if (java_error_count) $3 = NULL_TREE; $$ = build_tree_list ($1, build_assignment ($2.token, $2.location, $1, $3)); } | variable_declarator_id ASSIGN_TK error { yyerror ("Missing variable initializer"); $$ = build_tree_list ($1, NULL_TREE); RECOVER; } | variable_declarator_id ASSIGN_TK variable_initializer error { yyerror ("';' expected"); $$ = build_tree_list ($1, NULL_TREE); RECOVER; } ; variable_declarator_id: identifier | variable_declarator_id OSB_TK CSB_TK { $$ = NULL; /* FIXME */ } | identifier error {yyerror ("Invalid declaration"); DRECOVER(vdi);} | variable_declarator_id OSB_TK error {yyerror ("']' expected"); DRECOVER(vdi);} | variable_declarator_id CSB_TK error {yyerror ("Unbalanced ']'"); DRECOVER(vdi);} ; variable_initializer: expression | array_initializer { $$ = NULL; } ; /* 19.8.3 Productions from 8.4: Method Declarations */ method_declaration: method_header { current_function_decl = $1; source_start_java_method (current_function_decl); } method_body { BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (current_function_decl)) = $3; maybe_absorb_scoping_blocks (); exit_block (); /* Exit function's body. */ /* Merge last line of the function with first line, directly in the function decl. It will be used to emit correct debug info. */ DECL_SOURCE_LINE_MERGE (current_function_decl, ctxp->last_ccb_indent1); } | method_header error {YYNOT_TWICE yyerror ("'{' expected"); RECOVER;} ; method_header: type method_declarator throws { $$ = method_header (0, $1, $2, $3); } | VOID_TK method_declarator throws { $$ = method_header (0, void_type_node, $2, $3); } | modifiers type method_declarator throws { $$ = method_header ($1, $2, $3, $4); } | modifiers VOID_TK method_declarator throws { $$ = method_header ($1, void_type_node, $3, $4); } | type error {RECOVER;} | modifiers type error {RECOVER;} | VOID_TK error {yyerror ("Identifier expected"); RECOVER;} | modifiers VOID_TK error {yyerror ("Identifier expected"); RECOVER;} | modifiers error { yyerror ("Invalid method declaration, return type required"); RECOVER; } ; method_declarator: identifier OP_TK CP_TK { $$ = method_declarator ($1, NULL_TREE); } | identifier OP_TK formal_parameter_list CP_TK { $$ = method_declarator ($1, $3); } | method_declarator OSB_TK CSB_TK { /* Issue a warning here: obsolete declaration. FIXME */ $$ = NULL; /* FIXME */ } | identifier OP_TK error {yyerror ("')' expected"); DRECOVER(method_declarator);} | method_declarator OSB_TK error {yyerror ("']' expected"); RECOVER;} ; formal_parameter_list: formal_parameter { ctxp->formal_parameter_number = 1; } | formal_parameter_list C_TK formal_parameter { ctxp->formal_parameter_number += 1; $$ = chainon ($1, $3); } | formal_parameter_list C_TK error {yyerror ("Missing formal parameter term"); RECOVER;} ; formal_parameter: type variable_declarator_id { $$ = build_tree_list ($2, $1); } | modifiers type variable_declarator_id /* Added, JDK1.1 final locals */ { $$ = parse_jdk1_1_error ("final local"); } | type error {yyerror ("Missing identifier"); RECOVER;} | modifiers type error { SOURCE_FRONTEND_DEBUG (("Modifiers: %d", $1)); yyerror ("Missing identifier"); RECOVER; } ; throws: { $$ = NULL_TREE; } | THROWS_TK class_type_list { $$ = $2; } | THROWS_TK error {yyerror ("Missing class type term"); RECOVER;} ; class_type_list: class_type { $$ = build_tree_list (NULL_TREE, $1); } | class_type_list C_TK class_type { $$ = tree_cons (NULL_TREE, $3, $1); } | class_type_list C_TK error {yyerror ("Missing class type term"); RECOVER;} ; method_body: block | block SC_TK | SC_TK { $$ = NULL_TREE; } /* Probably not the right thing to do. */ ; /* 19.8.4 Productions from 8.5: Static Initializers */ static_initializer: static block { RULE ("STATIC_INITIALIZER"); } | static block SC_TK /* Shouldn't be here. FIXME */ { RULE ("STATIC_INITIALIZER"); } ; static: /* Test lval.sub_token here */ MODIFIER_TK { SOURCE_FRONTEND_DEBUG (("Modifiers: %d", $1)); } ; /* 19.8.5 Productions from 8.6: Constructor Declarations */ /* NOTE FOR FURTHER WORK ON CONSTRUCTORS: - If a forbidded modifier is found, the the error is either the use of a forbidded modifier for a constructor OR bogus attempt to declare a method without having specified the return type. FIXME */ constructor_declaration: constructor_declarator throws constructor_body { RULE ("CONSTRUCTOR_DECLARATION"); } | modifiers constructor_declarator throws constructor_body { SOURCE_FRONTEND_DEBUG (("Modifiers: %d", $1)); RULE ("CONSTRUCTOR_DECLARATION (modifier)"); } /* extra SC_TK, FIXME */ | constructor_declarator throws constructor_body SC_TK { RULE ("CONSTRUCTOR_DECLARATION"); } /* extra SC_TK, FIXME */ | modifiers constructor_declarator throws constructor_body SC_TK { SOURCE_FRONTEND_DEBUG (("Modifiers: %d", $1)); RULE ("CONSTRUCTOR_DECLARATION (modifier)"); } /* I'm not happy with the SC_TK addition. It isn't in the grammer and should probably be matched by and empty statement. But it doesn't work. FIXME */ ; constructor_declarator: simple_name OP_TK CP_TK | simple_name OP_TK formal_parameter_list CP_TK ; constructor_body: OCB_TK CCB_TK | OCB_TK explicit_constructor_invocation CCB_TK | OCB_TK block_statements CCB_TK | OCB_TK explicit_constructor_invocation block_statements CCB_TK ; /* Error recovery for that rule moved down expression_statement: rule. */ explicit_constructor_invocation: this_or_super OP_TK CP_TK SC_TK | this_or_super OP_TK argument_list CP_TK SC_TK /* Added, JDK1.1 inner classes. Modified because the rule 'primary' couldn't work. */ | name DOT_TK SUPER_TK OP_TK argument_list CP_TK SC_TK {$$ = parse_jdk1_1_error ("explicit constructor invocation"); } | name DOT_TK SUPER_TK OP_TK CP_TK SC_TK {$$ = parse_jdk1_1_error ("explicit constructor invocation"); } ; this_or_super: /* Added, simplifies error diagnostics */ THIS_TK { tree wfl = build_wfl_node (this_identifier_node, input_filename, 0, 0); EXPR_WFL_LINECOL (wfl) = $1.location; $$ = wfl; } | SUPER_TK { tree wfl = build_wfl_node (super_identifier_node, input_filename, 0, 0); EXPR_WFL_LINECOL (wfl) = $1.location; $$ = wfl; } ; /* 19.9 Productions from 9: Interfaces */ /* 19.9.1 Productions from 9.1: Interfaces Declarations */ interface_declaration: INTERFACE_TK identifier { create_interface (0, $2, NULL_TREE); } interface_body { $$ = $4; } | modifiers INTERFACE_TK identifier { create_interface ($1, $3, NULL_TREE); } interface_body { $$ = $5; } | INTERFACE_TK identifier extends_interfaces { create_interface (0, $2, $3); } interface_body { $$ = $5; } | modifiers INTERFACE_TK identifier extends_interfaces { create_interface ($1, $3, $4); } interface_body { $$ = $6; } | INTERFACE_TK identifier error {yyerror ("(here)'{' expected"); RECOVER;} | modifiers INTERFACE_TK identifier error {yyerror ("(there)'{' expected"); RECOVER;} ; extends_interfaces: EXTENDS_TK interface_type { ctxp->interface_number = 1; $$ = build_tree_list ($2, NULL_TREE); } | extends_interfaces C_TK interface_type { ctxp->interface_number++; $$ = chainon ($1, build_tree_list ($3, NULL_TREE)); } | EXTENDS_TK error {yyerror ("Invalid interface type"); RECOVER;} | extends_interfaces C_TK error {yyerror ("Missing term"); RECOVER;} ; interface_body: OCB_TK CCB_TK { $$ = NULL_TREE; } | OCB_TK interface_member_declarations CCB_TK { $$ = NULL_TREE; } ; interface_member_declarations: interface_member_declaration | interface_member_declarations interface_member_declaration ; interface_member_declaration: constant_declaration | abstract_method_declaration | class_declaration /* Added, JDK1.1 inner classes */ { $$ = parse_jdk1_1_error ("inner class declaration"); } | interface_declaration /* Added, JDK1.1 inner classes */ { $$ = parse_jdk1_1_error ("inner interface declaration"); } ; constant_declaration: field_declaration ; abstract_method_declaration: method_header SC_TK { check_abstract_method_header ($1); current_function_decl = NULL_TREE; /* FIXME ? */ } | method_header error {yyerror ("';' expected"); RECOVER;} ; /* 19.10 Productions from 10: Arrays */ array_initializer: OCB_TK CCB_TK { RULE ("ARRAY_INITIALIZER (empty)"); } | OCB_TK variable_initializers CCB_TK { RULE ("ARRAY_INITIALIZER (variable)"); } | OCB_TK C_TK CCB_TK { RULE ("ARRAY_INITIALIZER (,)"); } | OCB_TK variable_initializers C_TK CCB_TK { RULE ("ARRAY_INITIALIZER (variable, ,)"); } ; variable_initializers: variable_initializer | variable_initializers C_TK variable_initializer | variable_initializers C_TK error {yyerror ("Missing term"); RECOVER;} ; /* 19.11 Production from 14: Blocks and Statements */ block: OCB_TK CCB_TK { $$ = size_zero_node; } | OCB_TK { enter_block (); } block_statements CCB_TK { maybe_absorb_scoping_blocks (); $$ = exit_block (); } ; block_statements: block_statement | block_statements block_statement ; block_statement: local_variable_declaration_statement | statement { $$ = java_method_add_stmt (current_function_decl, $1); } | class_declaration /* Added, JDK1.1 inner classes */ { $$ = parse_jdk1_1_error ("inner class declaration"); } ; local_variable_declaration_statement: local_variable_declaration SC_TK /* Can't catch missing ';' here */ ; local_variable_declaration: type variable_declarators { declare_local_variables (0, $1, $2); } | modifiers type variable_declarators /* Added, JDK1.1 final locals */ { declare_local_variables ($1, $2, $3); } ; statement: statement_without_trailing_substatement | labeled_statement | if_then_statement | if_then_else_statement | while_statement | for_statement { /* If the for loop is unlabeled, we must return the block it was defined it. It our last chance to get a hold on it. */ if (!LOOP_HAS_LABEL_P ($$)) $$ = exit_block (); } ; statement_nsi: statement_without_trailing_substatement | labeled_statement_nsi | if_then_else_statement_nsi | while_statement_nsi | for_statement_nsi ; statement_without_trailing_substatement: block | empty_statement | expression_statement | switch_statement | do_statement | break_statement | continue_statement | return_statement | synchronized_statement | throw_statement | try_statement ; empty_statement: SC_TK { $$ = size_zero_node; } ; label_decl: identifier REL_CL_TK { $$ = build_labeled_block (EXPR_WFL_LINECOL ($1), EXPR_WFL_NODE ($1), $1); pushlevel (2); push_labeled_block ($$); PUSH_LABELED_BLOCK ($$); } ; labeled_statement: label_decl statement { $$ = complete_labeled_statement ($1, $2); pop_labeled_block (); POP_LABELED_BLOCK (); } | identifier error {yyerror ("':' expected"); RECOVER;} ; labeled_statement_nsi: label_decl statement_nsi { $$ = complete_labeled_statement ($1, $2); pop_labeled_block (); POP_LABELED_BLOCK (); } ; /* We concentrate here a bunch of error handling rules that we couldn't write earlier, because expression_statement catches a missing ';'. */ expression_statement: statement_expression SC_TK { /* We have a statement. Generate a WFL around it so we can debug it */ $$ = build_expr_wfl ($1, input_filename, lineno, 0); /* We know we have a statement, so set the debug info to be eventually generate here. */ $$ = JAVA_MAYBE_GENERATE_DEBUG_INFO ($$); } | error SC_TK { if (ctxp->prevent_ese != lineno) yyerror ("Invalid expression statement"); DRECOVER (expr_stmt); } | error OCB_TK { if (ctxp->prevent_ese != lineno) yyerror ("Invalid expression statement"); DRECOVER (expr_stmt); } | error CCB_TK { if (ctxp->prevent_ese != lineno) yyerror ("Invalid expression statement"); DRECOVER (expr_stmt); } | this_or_super OP_TK error {yyerror ("')' expected"); RECOVER;} | this_or_super OP_TK CP_TK error {yyerror ("';' expected"); RECOVER;} | this_or_super OP_TK argument_list error {yyerror ("')' expected"); RECOVER;} | this_or_super OP_TK argument_list CP_TK error {yyerror ("';' expected"); RECOVER;} | name DOT_TK SUPER_TK error {yyerror ("'(' expected"); RECOVER;} | name DOT_TK SUPER_TK OP_TK error {yyerror ("')' expected"); RECOVER;} | name DOT_TK SUPER_TK OP_TK argument_list error {yyerror ("')' expected"); RECOVER;} | name DOT_TK SUPER_TK OP_TK argument_list CP_TK error {yyerror ("';' expected"); RECOVER;} | name DOT_TK SUPER_TK OP_TK CP_TK error {yyerror ("';' expected"); RECOVER;} ; statement_expression: assignment | pre_increment_expression | pre_decrement_expression | post_increment_expression | post_decrement_expression | method_invocation | class_instance_creation_expression ; if_then_statement: IF_TK OP_TK expression CP_TK statement { $$ = build_if_else_statement ($2.location, $3, $5, NULL_TREE); } | IF_TK error {yyerror ("'(' expected"); RECOVER;} | IF_TK OP_TK error {yyerror ("Missing term"); RECOVER;} | IF_TK OP_TK expression error {yyerror ("')' expected"); RECOVER;} ; if_then_else_statement: IF_TK OP_TK expression CP_TK statement_nsi ELSE_TK statement { $$ = build_if_else_statement ($2.location, $3, $5, $7); } ; if_then_else_statement_nsi: IF_TK OP_TK expression CP_TK statement_nsi ELSE_TK statement_nsi { $$ = build_if_else_statement ($2.location, $3, $5, $7); } ; switch_statement: switch_expression switch_block { TREE_OPERAND ($1, 1) = $2; $$ = build_debugable_stmt (EXPR_WFL_LINECOL ($1), $1); } ; switch_expression: SWITCH_TK OP_TK expression CP_TK { $$ = build (SWITCH_EXPR, NULL_TREE, $3, NULL_TREE); EXPR_WFL_LINECOL ($$) = $2.location; } | SWITCH_TK error {yyerror ("'(' expected"); RECOVER;} | SWITCH_TK OP_TK error {yyerror ("Missing term or ')'"); DRECOVER(switch_statement);} | SWITCH_TK OP_TK expression CP_TK error {yyerror ("'{' expected"); RECOVER;} ; switch_block: OCB_TK CCB_TK { $$ = NULL_TREE; } | OCB_TK switch_labels CCB_TK { $$ = build_tree_list ($2, NULL_TREE); } | OCB_TK switch_block_statement_groups CCB_TK { $$ = $2; } | OCB_TK switch_block_statement_groups switch_labels CCB_TK { /* Switch labels alone are empty switch statements */ tree sl = build_tree_list ($3, NULL_TREE); TREE_CHAIN (sl) = $2; $$ = sl; } ; switch_block_statement_groups: switch_block_statement_group | switch_block_statement_groups switch_block_statement_group { TREE_CHAIN ($2) = $1; $$ = $2; } ; switch_block_statement_group: group_of_labels block_statements { $$ = build_tree_list ($1, exit_block ()); } ; group_of_labels: switch_labels { /* All statements attached to this group of cases will be stored in a block */ enter_block (); $$ = $1; } switch_labels: switch_label | switch_labels switch_label { TREE_CHAIN ($2) = $1; $$ = $2; } ; switch_label: CASE_TK constant_expression REL_CL_TK { $$ = build1 (CASE_EXPR, NULL_TREE, $2); EXPR_WFL_LINECOL ($$) = $1.location; } | DEFAULT_TK REL_CL_TK { $$ = build1 (DEFAULT_EXPR, NULL_TREE, NULL_TREE); EXPR_WFL_LINECOL ($$) = $1.location; } | CASE_TK error {yyerror ("Missing or invalid constant expression"); RECOVER;} | CASE_TK constant_expression error {yyerror ("':' expected"); RECOVER;} | DEFAULT_TK error {yyerror ("':' expected"); RECOVER;} ; while_expression: WHILE_TK OP_TK expression CP_TK { tree body = build_loop_body ($2.location, $3, 0); $$ = build_new_loop (body); } ; while_statement: while_expression statement { $$ = complete_loop_body (0, NULL_TREE, $2, 0); } | WHILE_TK error {YYERROR_NOW; yyerror ("'(' expected"); RECOVER;} | WHILE_TK OP_TK error {yyerror ("Missing term and ')' expected"); RECOVER;} | WHILE_TK OP_TK expression error {yyerror ("')' expected"); RECOVER;} ; while_statement_nsi: while_expression statement_nsi { $$ = complete_loop_body (0, NULL_TREE, $2, 0); } ; do_statement_begin: DO_TK { tree body = build_loop_body (0, NULL_TREE, 1); $$ = build_new_loop (body); } /* Need error handing here. FIXME */ ; do_statement: do_statement_begin statement WHILE_TK OP_TK expression CP_TK SC_TK { $$ = complete_loop_body ($4.location, $5, $2, 1); } ; for_statement: for_begin SC_TK expression SC_TK for_update CP_TK statement { $$ = complete_for_loop (EXPR_WFL_LINECOL ($3), $3, $5, $7);} | for_begin SC_TK SC_TK for_update CP_TK statement { $$ = complete_for_loop (0, NULL_TREE, $4, $6); /* We have not condition, so we get rid of the EXIT_EXPR */ LOOP_EXPR_BODY_CONDITION_EXPR (LOOP_EXPR_BODY ($$), 0) = size_zero_node; } | for_begin SC_TK error {yyerror ("Invalid control expression"); RECOVER;} | for_begin SC_TK expression SC_TK error {yyerror ("Invalid update expression"); RECOVER;} | for_begin SC_TK SC_TK error {yyerror ("Invalid update expression"); RECOVER;} ; for_statement_nsi: for_begin SC_TK expression SC_TK for_update CP_TK statement_nsi { $$ = complete_for_loop (EXPR_WFL_LINECOL ($3), $3, $5, $7);} | for_begin SC_TK SC_TK for_update CP_TK statement_nsi { $$ = complete_for_loop (0, NULL_TREE, $4, $6); /* We have not condition, so we get rid of the EXIT_EXPR */ LOOP_EXPR_BODY_CONDITION_EXPR (LOOP_EXPR_BODY ($$), 0) = size_zero_node; } ; for_header: FOR_TK OP_TK { /* This scope defined for local variable that may be defined within the scope of the for loop */ enter_block (); } | FOR_TK error {yyerror ("'(' expected"); DRECOVER(for_1);} | FOR_TK OP_TK error {yyerror ("Invalid init statement"); RECOVER;} ; for_begin: for_header for_init { /* We now declare the loop body. The loop is declared as a for loop. */ tree body = build_loop_body (0, NULL_TREE, 0); $$ = build_new_loop (body); IS_FOR_LOOP_P ($$) = 1; /* The loop is added to the current block the for statement is defined within */ java_method_add_stmt (current_function_decl, $$); } ; for_init: /* Can be empty */ { $$ = size_zero_node; } | statement_expression_list { /* Init statement recorded within the previously defined block scope */ $$ = java_method_add_stmt (current_function_decl, $1); } | local_variable_declaration { /* Local variable are recorded within the previously defined block scope */ $$ = NULL_TREE; } | statement_expression_list error {yyerror ("';' expected"); DRECOVER(for_init_1);} ; for_update: /* Can be empty */ {$$ = size_zero_node;} | statement_expression_list { $$ = build_debugable_stmt (BUILD_LOCATION (), $1); } ; statement_expression_list: statement_expression { $$ = add_stmt_to_compound (NULL_TREE, NULL_TREE, $1); } | statement_expression_list C_TK statement_expression { $$ = add_stmt_to_compound ($1, NULL_TREE, $3); } | statement_expression_list C_TK error {yyerror ("Missing term"); RECOVER;} ; break_statement: BREAK_TK SC_TK { $$ = build_bc_statement ($1.location, 1, NULL_TREE); } | BREAK_TK identifier SC_TK { $$ = build_bc_statement ($1.location, 1, $2); } | BREAK_TK error {yyerror ("Missing term"); RECOVER;} | BREAK_TK identifier error {yyerror ("';' expected"); RECOVER;} ; continue_statement: CONTINUE_TK SC_TK { $$ = build_bc_statement ($1.location, 0, NULL_TREE); } | CONTINUE_TK identifier SC_TK { $$ = build_bc_statement ($1.location, 0, $2); } | CONTINUE_TK error {yyerror ("Missing term"); RECOVER;} | CONTINUE_TK identifier error {yyerror ("';' expected"); RECOVER;} ; return_statement: RETURN_TK SC_TK { $$ = build_return ($1.location, NULL_TREE); } | RETURN_TK expression SC_TK { $$ = build_return ($1.location, $2); } | RETURN_TK error {yyerror ("Missing term"); RECOVER;} | RETURN_TK expression error {yyerror ("';' expected"); RECOVER;} ; throw_statement: THROW_TK expression SC_TK { $$ = build1 (THROW_EXPR, NULL_TREE, $2); EXPR_WFL_LINECOL ($$) = $1.location; } | THROW_TK error {yyerror ("Missing term"); RECOVER;} | THROW_TK expression error {yyerror ("';' expected"); RECOVER;} ; synchronized_statement: synchronized OP_TK expression CP_TK block { $$ = build (SYNCHRONIZED_EXPR, NULL_TREE, $3, $5); EXPR_WFL_LINECOL ($$) = EXPR_WFL_LINECOL (MODIFIER_WFL (SYNCHRONIZED_TK)); } | synchronized OP_TK expression CP_TK error {yyerror ("'{' expected"); RECOVER;} | synchronized error {yyerror ("'(' expected"); RECOVER;} | synchronized OP_TK error CP_TK {yyerror ("Missing term"); RECOVER;} | synchronized OP_TK error {yyerror ("Missing term"); RECOVER;} ; synchronized: MODIFIER_TK { if ((1 << $1) != ACC_SYNCHRONIZED) fatal ("synchronized was '%d' - yyparse", (1 << $1)); } ; try_statement: TRY_TK block catches { $$ = build_try_statement ($1.location, $2, $3, NULL_TREE); } | TRY_TK block finally { $$ = build_try_statement ($1.location, $2, NULL_TREE, $3); } | TRY_TK block catches finally { $$ = build_try_statement ($1.location, $2, $3, $4); } | TRY_TK error {yyerror ("'{' expected"); DRECOVER (try_statement);} ; catches: catch_clause | catches catch_clause { TREE_CHAIN ($2) = $1; $$ = $2; } ; catch_clause: catch_clause_parameter block { java_method_add_stmt (current_function_decl, $2); exit_block (); $$ = $1; } catch_clause_parameter: CATCH_TK OP_TK formal_parameter CP_TK { /* We add a block to define a scope for formal_parameter (CCBP). The formal parameter is declared initialized by the appropriate function call */ tree ccpb = enter_block (); tree init = build_assignment (ASSIGN_TK, $2.location, TREE_PURPOSE ($3), soft_exceptioninfo_call_node); declare_local_variables (0, TREE_VALUE ($3), build_tree_list (TREE_PURPOSE ($3), init)); $$ = build1 (CATCH_EXPR, NULL_TREE, ccpb); EXPR_WFL_LINECOL ($$) = $1.location; } | CATCH_TK error {yyerror ("'(' expected"); RECOVER;} | CATCH_TK OP_TK error {yyerror ("Missing term or ')' expected"); DRECOVER (2);} | CATCH_TK OP_TK error CP_TK /* That's for () */ {yyerror ("')' expected"); DRECOVER (1);} ; finally: FINALLY_TK block { $$ = build (FINALLY_EXPR, NULL_TREE, create_label_decl (generate_name ()), $2); } | FINALLY_TK error {yyerror ("'{' expected"); RECOVER; } ; /* 19.12 Production from 15: Expressions */ primary: primary_no_new_array | array_creation_expression ; primary_no_new_array: literal | THIS_TK { $$ = build_this ($1.location); } | OP_TK expression CP_TK {$$ = $2;} | class_instance_creation_expression | field_access | method_invocation | array_access /* type DOT_TK CLASS_TK doens't work. So we split the rule 'type' into its components. Missing is something for array, which will complete the reference_type part. FIXME */ | name DOT_TK CLASS_TK /* Added, JDK1.1 class literals */ { $$ = parse_jdk1_1_error ("class literals"); } | primitive_type DOT_TK CLASS_TK /* Added, JDK1.1 class literals */ { $$ = parse_jdk1_1_error ("class literals"); } | VOID_TK DOT_TK CLASS_TK /* Added, JDK1.1 class literals */ { $$ = parse_jdk1_1_error ("class literals"); } /* Added, JDK1.1 inner classes. Documentation is wrong refering to a 'ClassName' (class_name) rule that doesn't exist. Used name instead. */ | name DOT_TK THIS_TK { $$ = parse_jdk1_1_error ("class literals"); } | OP_TK expression error {yyerror ("')' expected"); RECOVER;} | name DOT_TK error {yyerror ("'class' or 'this' expected" ); RECOVER;} | primitive_type DOT_TK error {yyerror ("'class' expected" ); RECOVER;} | VOID_TK DOT_TK error {yyerror ("'class' expected" ); RECOVER;} ; class_instance_creation_expression: NEW_TK class_type OP_TK argument_list CP_TK { $$ = build_new_invocation ($2, $4); } | NEW_TK class_type OP_TK CP_TK { $$ = build_new_invocation ($2, NULL_TREE); } /* Added, JDK1.1 inner classes but modified to use 'class_type' instead of 'TypeName' (type_name) mentionned in the documentation but doesn't exist. */ | NEW_TK class_type OP_TK argument_list CP_TK class_body { $$ = parse_jdk1_1_error ("inner class instance creation"); } | NEW_TK class_type OP_TK CP_TK class_body { $$ = parse_jdk1_1_error ("inner class instance creation"); } /* Added, JDK1.1 inner classes, modified to use name or primary instead of primary solely which couldn't work in all situations. */ | something_dot_new identifier OP_TK CP_TK | something_dot_new identifier OP_TK CP_TK class_body | something_dot_new identifier OP_TK argument_list CP_TK | something_dot_new identifier OP_TK argument_list CP_TK class_body | NEW_TK error SC_TK {yyerror ("'(' expected"); DRECOVER(new_1);} | NEW_TK class_type error {yyerror ("'(' expected"); RECOVER;} | NEW_TK class_type OP_TK error {yyerror ("')' or term expected"); RECOVER;} | NEW_TK class_type OP_TK argument_list error {yyerror ("')' expected"); RECOVER;} | something_dot_new error {YYERROR_NOW; yyerror ("Identifier expected"); RECOVER;} | something_dot_new identifier error {yyerror ("'(' expected"); RECOVER;} ; something_dot_new: /* Added, not part of the specs. */ name DOT_TK NEW_TK | primary DOT_TK NEW_TK ; argument_list: expression { $$ = tree_cons (NULL_TREE, $1, NULL_TREE); ctxp->formal_parameter_number = 1; } | argument_list C_TK expression { ctxp->formal_parameter_number += 1; $$ = tree_cons (NULL_TREE, $3, $1); } | argument_list C_TK error {yyerror ("Missing term"); RECOVER;} ; array_creation_expression: NEW_TK primitive_type dim_exprs { $$ = build_newarray_node ($2, $3, 0); } | NEW_TK class_or_interface_type dim_exprs { $$ = build_newarray_node ($2, $3, 0); } | NEW_TK primitive_type dim_exprs dims { $$ = build_newarray_node ($2, $3, ctxp->osb_number); } | NEW_TK class_or_interface_type dim_exprs dims { $$ = build_newarray_node ($2, $3, ctxp->osb_number); } /* Added, JDK1.1 anonymous array. Initial documentation rule modified */ | NEW_TK class_or_interface_type dims array_initializer { $$ = parse_jdk1_1_error ("anonymous array"); } | NEW_TK primitive_type dims array_initializer { $$ = parse_jdk1_1_error ("anonymous array"); } | NEW_TK error CSB_TK {yyerror ("'[' expected"); DRECOVER ("]");} | NEW_TK error OSB_TK {yyerror ("']' expected"); RECOVER;} ; dim_exprs: dim_expr { $$ = build_tree_list (NULL_TREE, $1); } | dim_exprs dim_expr { $$ = tree_cons (NULL_TREE, $2, $$); } ; dim_expr: OSB_TK expression CSB_TK { EXPR_WFL_LINECOL ($2) = $1.location; $$ = $2; } | OSB_TK expression error {yyerror ("']' expected"); RECOVER;} | OSB_TK error { yyerror ("Missing term"); yyerror ("']' expected"); RECOVER; } ; dims: OSB_TK CSB_TK { ctxp->osb_number = 1; } | dims OSB_TK CSB_TK { ctxp->osb_number++; } | dims OSB_TK error { yyerror ("']' expected"); RECOVER;} ; field_access: primary DOT_TK identifier { $$ = make_qualified_primary ($1, $3, $2.location); } | SUPER_TK DOT_TK identifier { tree super_wfl = build_wfl_node (super_identifier_node, input_filename, 0, 0); EXPR_WFL_LINECOL (super_wfl) = $1.location; $$ = make_qualified_name (super_wfl, $3, $2.location); } | SUPER_TK error {yyerror ("Field expected"); DRECOVER (super_field_acces);} ; method_invocation: name OP_TK CP_TK { $$ = build_method_invocation ($1, NULL_TREE); } | name OP_TK argument_list CP_TK { $$ = build_method_invocation ($1, $3); } | primary DOT_TK identifier OP_TK CP_TK { tree invok = build_method_invocation ($3, NULL_TREE); $$ = make_qualified_primary ($1, invok, $2.location); } | primary DOT_TK identifier OP_TK argument_list CP_TK { tree invok = build_method_invocation ($3, $5); $$ = make_qualified_primary ($1, invok, $2.location); } | SUPER_TK DOT_TK identifier OP_TK CP_TK { tree invok; tree wfl = build_wfl_node (super_identifier_node, input_filename, 0, 0); EXPR_WFL_LINECOL (wfl) = $1.location; invok = build_method_invocation ($3, NULL_TREE); $$ = make_qualified_primary (wfl, invok, $2.location); } | SUPER_TK DOT_TK identifier OP_TK argument_list CP_TK { tree invok; tree wfl = build_wfl_node (super_identifier_node, input_filename, 0, 0); EXPR_WFL_LINECOL (wfl) = $1.location; invok = build_method_invocation ($3, $5); $$ = make_qualified_primary (wfl, invok, $2.location); } /* Screws up thing. I let it here until I'm convinced it can be removed. FIXME | primary DOT_TK error {yyerror ("'(' expected"); DRECOVER(bad);} */ | SUPER_TK DOT_TK error CP_TK { yyerror ("'(' expected"); DRECOVER (method_invocation); } | SUPER_TK DOT_TK error DOT_TK { yyerror ("'(' expected"); DRECOVER (method_invocation); } ; array_access: name OSB_TK expression CSB_TK { $$ = build_array_ref ($2.location, $1, $3); } | primary_no_new_array OSB_TK expression CSB_TK { $$ = build_array_ref ($2.location, $1, $3); } | name OSB_TK error { yyerror ("Missing term and ']' expected"); DRECOVER(array_access); } | name OSB_TK expression error { yyerror ("']' expected"); DRECOVER(array_access); } | primary_no_new_array OSB_TK error { yyerror ("Missing term and ']' expected"); DRECOVER(array_access); } | primary_no_new_array OSB_TK expression error { yyerror ("']' expected"); DRECOVER(array_access); } ; postfix_expression: primary | name | post_increment_expression | post_decrement_expression ; post_increment_expression: postfix_expression INCR_TK { $$ = build_incdec ($2.token, $2.location, $1, 1); } ; post_decrement_expression: postfix_expression DECR_TK { $$ = build_incdec ($2.token, $2.location, $1, 1); } ; unary_expression: pre_increment_expression | pre_decrement_expression | PLUS_TK unary_expression {$$ = build_unaryop ($1.token, $1.location, $2); } | MINUS_TK unary_expression {$$ = build_unaryop ($1.token, $1.location, $2); } | unary_expression_not_plus_minus | PLUS_TK error {yyerror ("Missing term"); RECOVER} | MINUS_TK error {yyerror ("Missing term"); RECOVER} ; pre_increment_expression: INCR_TK unary_expression {$$ = build_incdec ($1.token, $1.location, $2, 0); } | INCR_TK error {yyerror ("Missing term"); RECOVER} ; pre_decrement_expression: DECR_TK unary_expression {$$ = build_incdec ($1.token, $1.location, $2, 0); } | DECR_TK error {yyerror ("Missing term"); RECOVER} ; unary_expression_not_plus_minus: postfix_expression | NOT_TK unary_expression {$$ = build_unaryop ($1.token, $1.location, $2); } | NEG_TK unary_expression {$$ = build_unaryop ($1.token, $1.location, $2); } | cast_expression | NOT_TK error {yyerror ("Missing term"); RECOVER} | NEG_TK error {yyerror ("Missing term"); RECOVER} ; cast_expression: /* Error handling here is potentially weak */ OP_TK primitive_type dims CP_TK unary_expression { tree type = $2; while (ctxp->osb_number--) type = build_java_array_type (type, -1); $$ = build_cast ($1.location, type, $5); } | OP_TK primitive_type CP_TK unary_expression { $$ = build_cast ($1.location, $2, $4); } | OP_TK expression CP_TK unary_expression_not_plus_minus { $$ = build_cast ($1.location, $2, $4); } | OP_TK name dims CP_TK unary_expression_not_plus_minus { char *ptr; while (ctxp->osb_number--) obstack_1grow (&temporary_obstack, '['); obstack_grow0 (&temporary_obstack, IDENTIFIER_POINTER (EXPR_WFL_NODE ($2)), IDENTIFIER_LENGTH (EXPR_WFL_NODE ($2))); ptr = obstack_finish (&temporary_obstack); EXPR_WFL_NODE ($2) = get_identifier (ptr); $$ = build_cast ($1.location, $2, $5); } | OP_TK primitive_type OSB_TK error {yyerror ("']' expected, invalid type expression");} | OP_TK error { if (ctxp->prevent_ese != lineno) yyerror ("Invalid type expression"); RECOVER; RECOVER; } | OP_TK primitive_type dims CP_TK error {yyerror ("Missing term"); RECOVER;} | OP_TK primitive_type CP_TK error {yyerror ("Missing term"); RECOVER;} | OP_TK name dims CP_TK error {yyerror ("Missing term"); RECOVER;} ; multiplicative_expression: unary_expression | multiplicative_expression MULT_TK unary_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | multiplicative_expression DIV_TK unary_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | multiplicative_expression REM_TK unary_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | multiplicative_expression MULT_TK error {yyerror ("Missing term"); RECOVER;} | multiplicative_expression DIV_TK error {yyerror ("Missing term"); RECOVER;} | multiplicative_expression REM_TK error {yyerror ("Missing term"); RECOVER;} ; additive_expression: multiplicative_expression | additive_expression PLUS_TK multiplicative_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | additive_expression MINUS_TK multiplicative_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | additive_expression PLUS_TK error {yyerror ("Missing term"); RECOVER;} | additive_expression MINUS_TK error {yyerror ("Missing term"); RECOVER;} ; shift_expression: additive_expression | shift_expression LS_TK additive_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | shift_expression SRS_TK additive_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | shift_expression ZRS_TK additive_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | shift_expression LS_TK error {yyerror ("Missing term"); RECOVER;} | shift_expression SRS_TK error {yyerror ("Missing term"); RECOVER;} | shift_expression ZRS_TK error {yyerror ("Missing term"); RECOVER;} ; relational_expression: shift_expression | relational_expression LT_TK shift_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | relational_expression GT_TK shift_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | relational_expression LTE_TK shift_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | relational_expression GTE_TK shift_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | relational_expression INSTANCEOF_TK reference_type | relational_expression LT_TK error {yyerror ("Missing term"); RECOVER;} | relational_expression GT_TK error {yyerror ("Missing term"); RECOVER;} | relational_expression LTE_TK error {yyerror ("Missing term"); RECOVER;} | relational_expression GTE_TK error {yyerror ("Missing term"); RECOVER;} | relational_expression INSTANCEOF_TK error {yyerror ("Invalid reference type"); RECOVER;} ; equality_expression: relational_expression | equality_expression EQ_TK relational_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | equality_expression NEQ_TK relational_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | equality_expression EQ_TK error {yyerror ("Missing term"); RECOVER;} | equality_expression NEQ_TK error {yyerror ("Missing term"); RECOVER;} ; and_expression: equality_expression | and_expression AND_TK equality_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | and_expression AND_TK error {yyerror ("Missing term"); RECOVER;} ; exclusive_or_expression: and_expression | exclusive_or_expression XOR_TK and_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | exclusive_or_expression XOR_TK error {yyerror ("Missing term"); RECOVER;} ; inclusive_or_expression: exclusive_or_expression | inclusive_or_expression OR_TK exclusive_or_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | inclusive_or_expression OR_TK error {yyerror ("Missing term"); RECOVER;} ; conditional_and_expression: inclusive_or_expression | conditional_and_expression BOOL_AND_TK inclusive_or_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | conditional_and_expression BOOL_AND_TK error {yyerror ("Missing term"); RECOVER;} ; conditional_or_expression: conditional_and_expression | conditional_or_expression BOOL_OR_TK conditional_and_expression { $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location, $1, $3); } | conditional_or_expression BOOL_OR_TK error {yyerror ("Missing term"); RECOVER;} ; conditional_expression: /* Error handling here is weak */ conditional_or_expression | conditional_or_expression REL_QM_TK expression REL_CL_TK conditional_expression | conditional_or_expression REL_QM_TK REL_CL_TK error { YYERROR_NOW; yyerror ("Missing term"); DRECOVER (1); } | conditional_or_expression REL_QM_TK error {yyerror ("Missing term"); DRECOVER (2);} | conditional_or_expression REL_QM_TK expression REL_CL_TK error {yyerror ("Missing term"); DRECOVER (3);} ; assignment_expression: conditional_expression | assignment ; assignment: left_hand_side assignment_operator assignment_expression { $$ = build_assignment ($2.token, $2.location, $1, $3); } | left_hand_side assignment_operator error { if (ctxp->prevent_ese != lineno) yyerror ("Missing term"); DRECOVER (assign); } ; left_hand_side: name | field_access | array_access ; assignment_operator: ASSIGN_ANY_TK | ASSIGN_TK ; expression: assignment_expression ; constant_expression: expression ; %% #include "lex.c" /* Flag for the error report routine to issue the error the first time it's called (overriding the default behavior which is to drop the first invocation and honor the second one, taking advantage of a richer context. */ static int force_error = 0; /* Create a new parser context and make it the current one. */ void java_push_parser_context () { struct parser_ctxt *new = (struct parser_ctxt *)malloc(sizeof (struct parser_ctxt)); bzero (new, sizeof (struct parser_ctxt)); new->next = ctxp; ctxp = new; if (ctxp->next) ctxp->incomplete_class = ctxp->next->incomplete_class; } void java_parser_context_save_global () { ctxp->finput = finput; ctxp->lineno = lineno; ctxp->current_class = current_class; ctxp->filename = input_filename; ctxp->current_function_decl = current_function_decl; } void java_parser_context_restore_global () { finput = ctxp->finput; lineno = ctxp->lineno; current_class = ctxp->current_class; input_filename = ctxp->filename; current_function_decl = ctxp->current_function_decl; } void java_pop_parser_context () { tree current; struct parser_ctxt *toFree = ctxp; struct parser_ctxt *next = ctxp->next; if (next) { next->incomplete_class = ctxp->incomplete_class; lineno = ctxp->lineno; finput = ctxp->finput; current_class = ctxp->current_class; } /* Set the single import class file flag to 0 for the current list of imported things */ for (current = ctxp->import_list; current; current = TREE_CHAIN (current)) IS_A_SINGLE_IMPORT_CLASSFILE_NAME_P (TREE_PURPOSE (current)) = 0; /* And restore those of the previous context */ if (ctxp = next) for (current = ctxp->import_list; current; current = TREE_CHAIN (current)) IS_A_SINGLE_IMPORT_CLASSFILE_NAME_P (TREE_PURPOSE (current)) = 1; free (toFree); } /* Reporting JDK1.1 features not implemented */ static tree parse_jdk1_1_error (msg) char *msg; { sorry (": `%s' JDK1.1(TM) feature", msg); java_error_count++; return size_zero_node; } static int do_warning = 0; void yyerror (msg) char *msg; { static java_lc elc; static int prev_lineno; static char *prev_msg; int i, save_lineno; char *remainder, *code_from_source; extern struct obstack temporary_obstack; if (!force_error && prev_lineno == lineno) return; /* Save current error location but report latter, when the context is richer. */ if (ctxp->java_error_flag == 0) { ctxp->java_error_flag = 1; elc = ctxp->elc; /* Do something to use the previous line if we're reaching the end of the file... */ #ifdef VERBOSE_SKELETON printf ("* Error detected (%s)\n", (msg ? msg : "(null)")); #endif return; } /* Ignore duplicate message on the same line. BTW, this is dubious. FIXME */ if (!force_error && msg == prev_msg && prev_lineno == elc.line) return; ctxp->java_error_flag = 0; if (do_warning) java_warning_count++; else java_error_count++; if (elc.col == 0 && msg[1] == ';') { elc.col = ctxp->p_line->char_col-1; elc.line = ctxp->p_line->lineno; } save_lineno = lineno; prev_lineno = lineno = elc.line; prev_msg = msg; code_from_source = java_get_line_col (ctxp->filename, elc.line, elc.col); obstack_grow0 (&temporary_obstack, code_from_source, strlen (code_from_source)); remainder = obstack_finish (&temporary_obstack); if (do_warning) warning ("%s.\n%s", msg, remainder); else error ("%s.\n%s", msg, remainder); /* This allow us to cheaply avoid an extra 'Invalid expression statement' error report when errors have been already reported on the same line. This occurs when we report an error but don't have a synchronization point other than ';', which expression_statement is the only one to take care of. */ ctxp->prevent_ese = lineno = save_lineno; } static void parse_error (msg) char *msg; { java_error (NULL); java_error (msg); } /* Issue an error message at a current source line CL */ static void parse_error_context VPROTO ((tree cl, char *msg, ...)) { #ifndef __STDC__ tree cl; char *msg; #endif char buffer [4096]; va_list ap; VA_START (ap, msg); #ifndef __STDC__ cl = va_arg (ap, tree); msg = va_arg (ap, char *); #endif vsprintf (buffer, msg, ap); force_error = 1; ctxp->elc.line = EXPR_WFL_LINENO (cl); ctxp->elc.col = (EXPR_WFL_COLNO (cl) == 0xfff ? -1 : EXPR_WFL_COLNO (cl)); parse_error (buffer); force_error = 0; } /* Issue a warning at a current source line CL */ static void parse_warning_context VPROTO ((tree cl, char *msg, ...)) { #ifndef __STDC__ tree cl; char *msg; #endif char buffer [4096]; va_list ap; VA_START (ap, msg); #ifndef __STDC__ cl = va_arg (ap, tree); msg = va_arg (ap, char *); #endif vsprintf (buffer, msg, ap); force_error = do_warning = 1; ctxp->elc.line = EXPR_WFL_LINENO (cl); ctxp->elc.col = (EXPR_WFL_COLNO (cl) == 0xfff ? -1 : EXPR_WFL_COLNO (cl)); parse_error (buffer); do_warning = force_error = 0; } void java_report_errors () { if (java_error_count) fprintf (stderr, "%d error%s", java_error_count, (java_error_count == 1 ? "" : "s")); if (java_warning_count) fprintf (stderr, "%s%d warning%s", (java_error_count ? ", " : ""), java_warning_count, (java_warning_count == 1 ? "" : "s")); if (java_error_count || java_warning_count) putc ('\n', stderr); } static char * java_accstring_lookup (flags) int flags; { static char buffer [80]; #define COPY_RETURN(S) {strcpy (buffer, S); return buffer;} /* Access modifier looked-up first for easier report on forbidden access. */ if (flags & ACC_PUBLIC) COPY_RETURN ("public"); if (flags & ACC_PRIVATE) COPY_RETURN ("private"); if (flags & ACC_PROTECTED) COPY_RETURN ("protected"); if (flags & ACC_STATIC) COPY_RETURN ("static"); if (flags & ACC_FINAL) COPY_RETURN ("final"); if (flags & ACC_SYNCHRONIZED) COPY_RETURN ("synchronized"); if (flags & ACC_VOLATILE) COPY_RETURN ("volatile"); if (flags & ACC_TRANSIENT) COPY_RETURN ("transient"); if (flags & ACC_NATIVE) COPY_RETURN ("native"); if (flags & ACC_INTERFACE) COPY_RETURN ("interface"); if (flags & ACC_ABSTRACT) COPY_RETURN ("abstract"); buffer [0] = '\0'; return buffer; #undef COPY_RETURN } /* Issuing error messages upon redefinition of classes, interfaces or variables. */ static void classitf_redefinition_error (context, id, decl, cl) char *context; tree id, decl, cl; { parse_error_context (cl, "%s `%s' already defined in %s:%d", context, IDENTIFIER_POINTER (id), DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl)); /* Here we should point out where its redefined. It's a unicode. FIXME */ } static void variable_redefinition_error (context, name, type, line) tree context, name, type; int line; { char *type_name; /* Figure a proper name for type. We might haven't resolved it */ if (TREE_CODE (type) == TREE_LIST) type_name = IDENTIFIER_POINTER (TYPE_NAME (TREE_PURPOSE (type))); else type_name = (char *)lang_printable_name (type); parse_error_context (context, "Variable `%s' is already defined in this method and " "was declared `%s %s' at line %d", IDENTIFIER_POINTER (name), type_name, IDENTIFIER_POINTER (name), line); } /* Build something that the type identifier resolver will identify as being an array to an unresolved type. TYPE_WFL is a WFL on a identifier. */ static tree build_unresolved_array_type (type_or_wfl) tree type_or_wfl; { char *ptr; /* TYPE_OR_WFL might be an array on a primitive type. In this case, just create a array type */ if (TREE_CODE (type_or_wfl) == RECORD_TYPE) { tree type = build_java_array_type (type_or_wfl, -1); CLASS_LOADED_P (type) = CLASS_LOADED_P (type_or_wfl); return type; } obstack_1grow (&temporary_obstack, '['); obstack_grow0 (&temporary_obstack, IDENTIFIER_POINTER (EXPR_WFL_NODE (type_or_wfl)), IDENTIFIER_LENGTH (EXPR_WFL_NODE (type_or_wfl))); ptr = obstack_finish (&temporary_obstack); return build_expr_wfl (get_identifier (ptr), EXPR_WFL_FILENAME (type_or_wfl), EXPR_WFL_LINENO (type_or_wfl), EXPR_WFL_COLNO (type_or_wfl)); } /* Check modifiers. If one doesn't fit, retrieve it in its declaration line and point it out. */ static void check_modifiers (message, value, mask) char *message; int value; int mask; { /* Should point out the one that don't fit. ASCII/unicode, going backward. FIXME */ if (value & ~mask) { int i, remainder = value & ~mask; for (i = 0; i <= 10; i++) if ((1 << i) & remainder) parse_error_context (ctxp->modifier_ctx [i], message, java_accstring_lookup (1 << i)); } } static void parser_add_interface (class_decl, interface_decl, wfl) tree class_decl, interface_decl, wfl; { if (maybe_add_interface (TREE_TYPE (class_decl), TREE_TYPE (interface_decl))) parse_error_context (wfl, "Interface `%s' repeated", IDENTIFIER_POINTER (DECL_NAME (interface_decl))); } /* Bulk of common class/interface checks. Return 1 if an error was encountered. TAG is 0 for a class, 1 for an interface. */ static int check_class_interface_creation (is_interface, flags, raw_name, qualified_name, decl, cl) int is_interface, flags; tree raw_name, qualified_name, decl, cl; { tree node; if (!quiet_flag) fprintf (stderr, " %s %s", (is_interface ? "interface" : "class"), IDENTIFIER_POINTER (qualified_name)); /* Scope of an interface/class type name: - Can't be imported by a single type import - Can't already exists in the package */ if (IS_A_SINGLE_IMPORT_CLASSFILE_NAME_P (raw_name) && (node = find_name_in_single_imports (raw_name))) { parse_error_context (cl, "%s name `%s' clashes with imported type `%s'", (is_interface ? "Interface" : "Class"), IDENTIFIER_POINTER (raw_name), IDENTIFIER_POINTER (node)); return 1; } if (decl && CLASS_COMPLETE_P (decl)) { classitf_redefinition_error ((is_interface ? "Interface" : "Class"), qualified_name, decl, cl); return 1; } /* If public, file name should match class/interface name */ if (flags & ACC_PUBLIC) { char *f; /* Contains OS dependent assumption on path separator. FIXME */ for (f = &input_filename [strlen (input_filename)]; f != input_filename && f[0] != '/'; f--); if (f[0] == '/') f++; if (strncmp (IDENTIFIER_POINTER (raw_name), f , IDENTIFIER_LENGTH (raw_name)) || f [IDENTIFIER_LENGTH (raw_name)] != '.') parse_error_context (cl, "Public %s `%s' must be defined in a file " "called `%s.java'", (is_interface ? "interface" : "class"), IDENTIFIER_POINTER (qualified_name), IDENTIFIER_POINTER (raw_name)); } check_modifiers ((is_interface ? "Illegal modifier `%s' for interface declaration" : "Illegal modifier `%s' for class declaration"), flags, (is_interface ? INTERFACE_MODIFIERS : CLASS_MODIFIERS)); return 0; } /* If DECL is NULL, create and push a new DECL, record the current line CL and do other maintenance things. */ static tree maybe_create_class_interface_decl (decl, qualified_name, cl) tree decl, qualified_name, cl; { if (decl) DECL_ARTIFICIAL (decl) = 1; /* FIXME */ else decl = push_class (make_class (), qualified_name); /* Take care of the file and line business */ DECL_SOURCE_FILE (decl) = EXPR_WFL_FILENAME (cl); DECL_SOURCE_LINE (decl) = EXPR_WFL_LINENO (cl); CLASS_FROM_SOURCE_P (TREE_TYPE (decl)) = 1; ctxp->current_parsed_class = decl; /* Link the declaration to the already seen ones */ TREE_CHAIN (decl) = ctxp->class_list; ctxp->class_list = decl; /* Install a new dependency list element */ create_jdep_list (ctxp); SOURCE_FRONTEND_DEBUG (("Defining class/interface %s", IDENTIFIER_POINTER (qualified_name))); return decl; } static void add_superinterfaces (decl, interface_list) tree decl, interface_list; { tree node; /* Superinterface(s): if present and defined, parser_check_super_interface () takes care of ensuring that: - This is an accessible interface type, - Circularity detection. parser_add_interface is then called. If present but not defined, the check operation is delayed until the super interface gets defined. */ for (node = interface_list; node; node = TREE_CHAIN (node)) { tree current = TREE_PURPOSE (node), interface_decl; if ((interface_decl = IDENTIFIER_CLASS_VALUE (EXPR_WFL_NODE (current)))) { if (!parser_check_super_interface (interface_decl, decl, current)) parser_add_interface (decl, interface_decl, current); } else register_incomplete_type (JDEP_INTERFACE, current, decl, NULL_TREE); } } /* Create an interface in pass1 and return its decl. Return the interface's decl in pass 2. */ static tree create_interface (flags, id, super) int flags; tree id, super; { int chk; tree raw_name = EXPR_WFL_NODE (id); tree q_name = parser_qualified_classname (id); tree decl = IDENTIFIER_CLASS_VALUE (q_name); EXPR_WFL_NODE (id) = q_name; /* Keep source location, even if refined. */ /* Basic checks: scope, redefinition, modifiers */ if (check_class_interface_creation (1, flags, raw_name, q_name, decl, id)) return NULL_TREE; /* Interface modifiers check - public/abstract allowed (already done at that point) - abstract is obsolete (comes first, it's a warning, or should be) - Can't use twice the same (checked in the modifier rule) */ if (flags & ACC_ABSTRACT) parse_warning_context (MODIFIER_WFL (ABSTRACT_TK), "Obsolete use of `abstract' modifier. Interface `%s' is implicitely " "abstract", IDENTIFIER_POINTER (raw_name)); if (flags & ACC_PUBLIC && flags & ACC_ABSTRACT) parse_error_context (MODIFIER_WFL (ABSTRACT_TK), "Can't specify both `public' and `abstract' modifiers in the " "definition of interface `%s'", IDENTIFIER_POINTER (raw_name)); /* Create a new decl if DECL is NULL, otherwise fix it */ decl = maybe_create_class_interface_decl (decl, q_name, id); /* Set super info and mark the class a complete */ set_super_info (ACC_ABSTRACT | ACC_INTERFACE | flags, TREE_TYPE (decl), object_type_node, ctxp->interface_number); ctxp->interface_number = 0; CLASS_COMPLETE_P (decl) = 1; add_superinterfaces (decl, super); return decl; } /* Create an class in pass1 and return its decl. Return class interface's decl in pass 2. */ static tree create_class (flags, id, super, interfaces) int flags; tree id, super, interfaces; { int chk; tree raw_name = EXPR_WFL_NODE (id); tree class_id, decl; tree super_decl = NULL, super_decl_type; class_id = parser_qualified_classname (id); decl = IDENTIFIER_CLASS_VALUE (class_id); EXPR_WFL_NODE (id) = class_id; /* Basic check: scope, redefinition, modifiers */ if (check_class_interface_creation (0, flags, raw_name, class_id, decl, id)) return NULL_TREE; /* Class modifier check: - Allowed modifier (already done at that point) - abstract AND final forbidden - Public classes defined in the correct file */ if ((flags & ACC_ABSTRACT) && (flags & ACC_FINAL)) parse_error_context (id, "Class `%s' can't be declared both abstract " "and final", IDENTIFIER_POINTER (raw_name)); /* Create a new decl if DECL is NULL, otherwise fix it */ decl = maybe_create_class_interface_decl (decl, class_id, id); /* If SUPER exists, use it, otherwise use Object */ if (super) { /* Can't extend java.lang.Object */ if (TREE_TYPE (IDENTIFIER_CLASS_VALUE (class_id)) == object_type_node) { parse_error_context (id, "Can't extend `java.lang.Object'"); return NULL_TREE; } /* The class is known and exists if there is a decl. Otherwise, postpone the operation and do it later. */ super_decl = IDENTIFIER_CLASS_VALUE (EXPR_WFL_NODE (super)); if (super_decl) { parser_check_super (super_decl, decl, id); super_decl_type = TREE_TYPE (super_decl); } else super_decl_type = register_incomplete_type (JDEP_SUPER, super, decl, NULL_TREE); } else if (TREE_TYPE (decl) != object_type_node) super_decl_type = object_type_node; /* We're defining java.lang.Object */ else super_decl_type = NULL_TREE; /* Set super info and mark the class a complete */ set_super_info (flags, TREE_TYPE (decl), super_decl_type, ctxp->interface_number); ctxp->interface_number = 0; CLASS_COMPLETE_P (decl) = 1; add_superinterfaces (decl, interfaces); return decl; } /* Can't use lookup_field () since we don't want to load the class and can't set the CLASS_LOADED_P flag */ static tree find_field (class, name) tree class; tree name; { tree decl; for (decl = TYPE_FIELDS (class); decl; decl = TREE_CHAIN (decl)) { if (DECL_NAME (decl) == name) return decl; } return NULL_TREE; } /* Wrap around lookup_field that doesn't potentially upset the value of CLASS */ static tree lookup_field_wrapper (class, name) tree class, name; { tree type = class; return lookup_field (&type, name); } /* Find duplicate field within the same class declarations and report the error */ static int duplicate_declaration_error (class, new_field_name, new_type, cl) tree class, new_field_name, new_type, cl; { /* This might be modified to work with method decl as well */ tree decl = find_field (TREE_TYPE (ctxp->current_parsed_class), new_field_name); if (decl) { char *t1 = strdup ((char *)lang_printable_name (new_type, 1)); char *t2 = strdup ((TREE_CODE (TREE_TYPE (decl)) == TREE_LIST ? IDENTIFIER_POINTER (TYPE_NAME (TREE_PURPOSE (TREE_TYPE (decl)))) : (char *)lang_printable_name (TREE_TYPE (decl), 1))); parse_error_context (cl , "Duplicate variable declaration: `%s %s' was `%s %s' (%s:%d)", t1, IDENTIFIER_POINTER (new_field_name), t2, IDENTIFIER_POINTER (DECL_NAME (decl)), DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl)); free (t1); free (t2); return 0; } return 1; } /* Field registration routine. If TYPE doesn't exist, field declarations are linked to the undefined TYPE dependency list, to be later resolved in java_complete_class () */ static void register_fields (flags, type, variable_list) int flags; tree type, variable_list; { tree current, type_decl, returned_type; tree class_type = TREE_TYPE (ctxp->current_parsed_class); int saved_lineno = lineno; int must_chain = 0; tree wfl = NULL_TREE; /* If we're adding fields to interfaces, those fields are public, static, final */ if (CLASS_INTERFACE (TYPE_NAME (class_type))) { OBSOLETE_MODIFIER_WARNING (MODIFIER_WFL (PUBLIC_TK), flags, ACC_PUBLIC, "%s", "interface field(s)"); OBSOLETE_MODIFIER_WARNING (MODIFIER_WFL (STATIC_TK), flags, ACC_STATIC, "%s", "interface field(s)"); OBSOLETE_MODIFIER_WARNING (MODIFIER_WFL (FINAL_TK), flags, ACC_FINAL, "%s", "interface field(s)"); check_modifiers ("Illegal interface member modifier `%s'", flags, INTERFACE_FIELD_MODIFIERS); flags |= (ACC_PUBLIC | ACC_STATIC | ACC_FINAL); } if (unresolved_type_p (type, &returned_type)) { if (returned_type) type = returned_type; else { wfl = type; type = obtain_incomplete_type (type); must_chain = 1; } } if (!must_chain && TREE_CODE (type) == RECORD_TYPE) type = promote_type (type); for (current = variable_list; current; current = TREE_CHAIN (current)) { tree cl = TREE_PURPOSE (current); tree init = TREE_VALUE (current); tree current_name = EXPR_WFL_NODE (cl); if (duplicate_declaration_error (class_type, current_name, type, cl)) { tree field_decl; lineno = EXPR_WFL_LINENO (cl); field_decl = add_field (class_type, current_name, type, flags); /* Check if we must chain. */ if (must_chain) register_incomplete_type (JDEP_FIELD, wfl, field_decl, type); /* Default value of a static field is 0 and it is considered initialized. */ if (flags & ACC_STATIC) INITIALIZED_P (field_decl) = 1; /* If we have an initialization value tied to the field */ if (init) { /* The field is declared static */ if (flags & ACC_STATIC) { /* FIXME */ if (flags & ACC_FINAL) ; /* Otherwise, the field should be initialized in . This field is remembered so we can generate later. */ else { INITIALIZED_P (field_decl) = 1; TREE_CHAIN (init) = ctxp->static_initialized; ctxp->static_initialized = init; } } /* A non-static field declared with an immediate initialization is to be initialized in , if any. This field is remembered to be processed at the time of the generation of . */ else { TREE_CHAIN (init) = ctxp->non_static_initialized; ctxp->non_static_initialized = init; } } } } lineno = saved_lineno; } /* Check whether it is necessary to generate a for the class we just parsed. */ static void maybe_generate_clinit () { int saved_lineno; tree meth, mdecl, c; tree cclass, class_wfl; if (!ctxp->static_initialized || java_error_count) return; cclass = TREE_TYPE (ctxp->current_parsed_class); class_wfl = build_expr_wfl (DECL_NAME (TYPE_NAME (cclass)), input_filename, 0, 0); saved_lineno = lineno; lineno = 0; meth = make_node (FUNCTION_TYPE); TREE_TYPE (meth) = void_type_node; TYPE_ARG_TYPES (meth) = NULL_TREE; mdecl = add_method (cclass, ACC_STATIC, clinit_identifier_node, build_java_signature (meth)); lineno = saved_lineno; DECL_SOURCE_LINE (mdecl) = 1; DECL_SOURCE_LINE_MERGE (mdecl, 1); source_start_java_method (mdecl); enter_block (); /* Keep initialization in order to enforce 8.5 */ ctxp->static_initialized = nreverse (ctxp->static_initialized); /* We process the list of assignment we produced as the result of the declaration of initialized static field and add them as statement to the method. */ for (c = ctxp->static_initialized; c; c = TREE_CHAIN (c)) { /* We build the assignment expression that will initialize the field to its value. There are strict rules on static initializers (8.5). FIXME */ java_method_add_stmt (mdecl, c); } BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (mdecl)) = exit_block (); exit_block (); ctxp->static_initialized = NULL_TREE; } /* Shared accros method_declarator and method_header to remember the patch stage that was reached during the declaration of the method. A method DECL is built differently is there is no patch (JDEP_NO_PATCH) or a patch (JDEP_METHOD or JDEP_METHOD_RETURN) pending on the currently defined method. */ static int patch_stage; /* Check the method declaration and add the method to its current class. If the argument list is known to contain incomplete types, the method is partially added and the registration will be resume once the method arguments resolved */ static tree method_header (flags, type, mdecl, throws) int flags; tree type, mdecl, throws; { tree meth = TREE_VALUE (mdecl); tree id = TREE_PURPOSE (mdecl); tree this_class = TREE_TYPE (ctxp->current_parsed_class); tree handle_class = CLASS_TO_HANDLE_TYPE (this_class); tree meth_name, returned_type, current; int saved_lineno; check_modifiers_consistency (flags); /* There are some forbidden modifiers for an abstract method and its class must be abstract as well. */ if (flags & ACC_ABSTRACT) { ABSTRACT_CHECK (flags, ACC_PRIVATE, id, "Private"); ABSTRACT_CHECK (flags, ACC_STATIC, id, "Static"); ABSTRACT_CHECK (flags, ACC_FINAL, id, "Final"); ABSTRACT_CHECK (flags, ACC_NATIVE, id, "Native"); ABSTRACT_CHECK (flags, ACC_SYNCHRONIZED,id, "Synchronized"); if (!CLASS_ABSTRACT (TYPE_NAME (this_class))) parse_error_context (id, "Class `%s' must be declared abstract to define abstract " "method `%s'", IDENTIFIER_POINTER (DECL_NAME (ctxp->current_parsed_class)), IDENTIFIER_POINTER (EXPR_WFL_NODE (id))); } /* Method declared within the scope of an interface are implicitly abstract and public. Conflicts with other erroneously provided modifiers are check right after. */ if (CLASS_INTERFACE (TYPE_NAME (this_class))) { /* If FLAGS isn't set because of a modifier, turn the corresponding modifier WFL to NULL so we issue a warning on the obsolete use of the modifier */ if (!(flags & ACC_PUBLIC)) MODIFIER_WFL (PUBLIC_TK) = NULL; if (!(flags & ACC_ABSTRACT)) MODIFIER_WFL (ABSTRACT_TK) = NULL; flags |= ACC_PUBLIC; flags |= ACC_ABSTRACT; } /* Modifiers context reset moved up, so abstract method declaration modifiers can be later checked. */ meth_name = EXPR_WFL_NODE (id); if (unresolved_type_p (type, &returned_type)) { if (returned_type) TREE_TYPE (meth) = returned_type; else { patch_stage = JDEP_METHOD_RETURN; TREE_TYPE (meth) = register_incomplete_type (patch_stage, type, id, NULL_TREE); } } else TREE_TYPE (meth) = type; saved_lineno = lineno; /* When defining an abstract or interface method, the curly bracket at level 1 doesn't exist because there is no function body */ lineno = (ctxp->first_ccb_indent1 ? ctxp->first_ccb_indent1 : EXPR_WFL_LINENO (id)); if (patch_stage) /* includes ret type and/or all args */ { jdep *jdep; meth = add_method_1 (this_class, flags, meth_name, meth); /* Patch for the return type */ if (patch_stage == JDEP_METHOD_RETURN) { jdep = CLASSD_LAST (ctxp->classd_list); JDEP_GET_PATCH (jdep) = &TREE_TYPE (TREE_TYPE (meth)); } /* This is the stop JDEP. METH allows the function's signature to be computed. */ register_incomplete_type (JDEP_METHOD_END, NULL_TREE, meth, NULL_TREE); } else { tree signature = build_java_signature (meth); tree arg, orig_arg; /* Save original argument list, including argument's names */ orig_arg = TYPE_ARG_TYPES (meth); /* Add the method to its class */ meth = add_method (this_class, flags, meth_name, signature); /* Fix the method argument list so we have the argument name information */ arg = TYPE_ARG_TYPES (TREE_TYPE (meth)); if (TREE_CODE (TREE_TYPE (meth)) == METHOD_TYPE) { TREE_PURPOSE (arg) = this_identifier_node; arg = TREE_CHAIN (arg); } while (orig_arg) { TREE_PURPOSE (arg) = TREE_PURPOSE (orig_arg); orig_arg = TREE_CHAIN (orig_arg); arg = TREE_CHAIN (arg); } } DECL_MAX_LOCALS (meth) = ctxp->formal_parameter_number+1; lineno = saved_lineno; /* Register exception specified by the `throws' keyword for resolution and set the method decl appropriate field to the list. Note: the grammar ensures that what we get here are class types. */ if (throws) { throws = nreverse (throws); for (current = throws; current; current = TREE_CHAIN (current)) { register_incomplete_type (JDEP_EXCEPTION, TREE_VALUE (current), NULL_TREE, NULL_TREE); JDEP_GET_PATCH (CLASSD_LAST (ctxp->classd_list)) = &TREE_VALUE (current); } DECL_FUNCTION_THROWS (meth) = throws; } /* We set the DECL_NAME to ID so we can track the location where the function was declared. This allow us to report redefinition error accurately. When method are verified, DECL_NAME is reinstalled properly (using the content of the WFL node ID) (see check_method_redefinition). We don't do that when Object is being defined. */ if (TREE_TYPE (ctxp->current_parsed_class) != object_type_node) DECL_NAME (meth) = id; return meth; } /* Check modifiers that can be declared but exclusively */ static void check_modifiers_consistency (flags) int flags; { int acc_count = 0; tree cl = NULL_TREE; THIS_MODIFIER_ONLY (flags, ACC_PUBLIC, 0, acc_count, cl); THIS_MODIFIER_ONLY (flags, ACC_PRIVATE, 1, acc_count, cl); THIS_MODIFIER_ONLY (flags, ACC_PROTECTED, 2, acc_count, cl); if (acc_count > 1) parse_error_context (cl, "Inconsistent member declaration. At most one of `public', " "`private', or `protected' may be specified"); } /* Check the methode header METH for abstract specifics features */ static void check_abstract_method_header (meth) tree meth; { int flags = get_access_flags_from_decl (meth); /* DECL_NAME might still be a WFL node */ tree name = (TREE_CODE (DECL_NAME (meth)) == EXPR_WITH_FILE_LOCATION ? EXPR_WFL_NODE (DECL_NAME (meth)) : DECL_NAME (meth)); OBSOLETE_MODIFIER_WARNING (MODIFIER_WFL (ABSTRACT_TK), flags, ACC_ABSTRACT, "abstract method `%s'", IDENTIFIER_POINTER (name)); OBSOLETE_MODIFIER_WARNING (MODIFIER_WFL (PUBLIC_TK), flags, ACC_PUBLIC, "abstract method `%s'", IDENTIFIER_POINTER (name)); check_modifiers ("Illegal modifier `%s' for interface method", flags, INTERFACE_METHOD_MODIFIERS); } /* Create a FUNCTION_TYPE node and start augmenting it with the declared function arguments. Arguments type that can't be resolved are left as they are, but the returned node is marked as containing incomplete types. */ static tree method_declarator (id, list) tree id, list; { tree arg_types = NULL_TREE, current, node; tree meth = make_node (FUNCTION_TYPE); jdep *jdep; int incomplete = 0; patch_stage = JDEP_NO_PATCH; for (current = list; current; current = TREE_CHAIN (current)) { tree wfl_name = TREE_PURPOSE (current); tree type = TREE_VALUE (current); tree name = EXPR_WFL_NODE (wfl_name); tree patchable_type = NULL_TREE, already; tree arg_node, returned_type; /* Check redefinition */ for (already = arg_types; already; already = TREE_CHAIN (already)) if (TREE_PURPOSE (already) == name) { parse_error_context (wfl_name, "Variable `%s' is used more than once in the " "argument list of method `%s'", IDENTIFIER_POINTER (name), IDENTIFIER_POINTER (EXPR_WFL_NODE (id))); break; } /* If we've an incomplete argument type, we know there is a location to patch when the type get resolved, later. */ jdep = NULL; if (unresolved_type_p (type, &returned_type)) { if (returned_type) type = returned_type; else { patch_stage = JDEP_METHOD; type = register_incomplete_type (patch_stage, type, wfl_name, NULL_TREE); jdep = CLASSD_LAST (ctxp->classd_list); JDEP_MISC (jdep) = id; } } /* The argument node: a name and a (possibly) incomplete type */ arg_node = build_tree_list (name, type); if (jdep) JDEP_GET_PATCH (jdep) = &TREE_VALUE (arg_node); TREE_CHAIN (arg_node) = arg_types; arg_types = arg_node; } TYPE_ARG_TYPES (meth) = nreverse (arg_types); node = build_tree_list (id, meth); return node; } static int unresolved_type_p (wfl, returned) tree wfl; tree *returned; { if (TREE_CODE (wfl) == EXPR_WITH_FILE_LOCATION) { tree decl = IDENTIFIER_CLASS_VALUE (EXPR_WFL_NODE (wfl)); if (returned) *returned = (decl ? TREE_TYPE (decl) : NULL_TREE); return 1; } if (returned) *returned = wfl; return 0; } /* From NAME, build a qualified identifier node using the qualification from the current package definition. */ static tree parser_qualified_classname (name) tree name; { if (ctxp->package) return merge_qualified_name (ctxp->package, EXPR_WFL_NODE (name)); else return EXPR_WFL_NODE (name); } /* Called once the type a interface extends is resolved. Returns 0 if everything is OK. */ static int parser_check_super_interface (super_decl, this_decl, this_wfl) tree super_decl, this_decl, this_wfl; { tree super_type = TREE_TYPE (super_decl); /* Has to be an interface */ if (!CLASS_INTERFACE (TYPE_NAME (TREE_TYPE (super_decl)))) { parse_error_context (this_wfl, "Can't use %s `%s' to implement/extend %s `%s'", (TYPE_ARRAY_P (super_type) ? "array" : "class"), IDENTIFIER_POINTER (DECL_NAME (super_decl)), (CLASS_INTERFACE (TYPE_NAME (TREE_TYPE (this_decl))) ? "interface" : "class"), IDENTIFIER_POINTER (DECL_NAME (this_decl))); return 1; } /* Check scope: same package OK, other package: OK if public */ if (check_pkg_class_access (DECL_NAME (super_decl), lookup_cl (this_decl))) return 1; SOURCE_FRONTEND_DEBUG (("Completing interface %s with %s", IDENTIFIER_POINTER (DECL_NAME (this_decl)), IDENTIFIER_POINTER (DECL_NAME (super_decl)))); return 0; } /* Makes sure that SUPER_DECL is suitable to extend THIS_DECL. Returns 0 if everthing is OK. */ static int parser_check_super (super_decl, this_decl, wfl) tree super_decl, this_decl, wfl; { tree this_type = TREE_TYPE (this_decl); tree super_type = TREE_TYPE (super_decl); /* SUPER should be a CLASS (neither an array nor an interface) */ if (TYPE_ARRAY_P (super_type) || CLASS_INTERFACE (TYPE_NAME (super_type))) { parse_error_context (wfl, "Class `%s' can't subclass %s `%s'", IDENTIFIER_POINTER (DECL_NAME (this_decl)), (CLASS_INTERFACE (TYPE_NAME (super_type)) ? "interface" : "array"), IDENTIFIER_POINTER (DECL_NAME (super_decl))); return 1; } if (CLASS_FINAL (TYPE_NAME (super_type))) { parse_error_context (wfl, "Can't subclass final classes: %s", IDENTIFIER_POINTER (DECL_NAME (super_decl))); return 1; } /* Check scope: same package OK, other package: OK if public */ if (check_pkg_class_access (DECL_NAME (super_decl), wfl)) return 1; SOURCE_FRONTEND_DEBUG (("Completing class %s with %s", IDENTIFIER_POINTER (DECL_NAME (this_decl)), IDENTIFIER_POINTER (DECL_NAME (super_decl)))); return 0; } /* Create a new dependency list and link it (in a LIFO manner) to the CTXP list of type dependency list. */ static void create_jdep_list (ctxp) struct parser_ctxt *ctxp; { jdeplist *new = malloc (sizeof (jdeplist)); if (!new) fatal ("Can't alloc jdeplist - create_jdep_list"); new->first = new->last = NULL; new->next = ctxp->classd_list; ctxp->classd_list = new; } static jdeplist * reverse_jdep_list (ctxp) struct parser_ctxt *ctxp; { register jdeplist *prev = NULL, *current, *next; for (current = ctxp->classd_list; current; current = next) { next = current->next; current->next = prev; prev = current; } return prev; } /* Create a fake pointer based on the ID stored in the WFL */ static tree obtain_incomplete_type (wfl) tree wfl; { tree ptr; tree name = EXPR_WFL_NODE (wfl); for (ptr = ctxp->incomplete_class; ptr; ptr = TREE_CHAIN (ptr)) if (TYPE_NAME (TREE_PURPOSE (ptr)) == name) break; if (!ptr) { tree core; push_obstacks (&permanent_obstack, &permanent_obstack); BUILD_PTR_FROM_NAME (core, name); ptr = build_tree_list (core, NULL_TREE); pop_obstacks (); TREE_CHAIN (ptr) = ctxp->incomplete_class; ctxp->incomplete_class = ptr; } return ptr; } /* Register a incomplete type whose name is WFL. Reuse PTR if PTR is non NULL instead of computing a new fake type based on WFL. The new dependency is inserted in the current type dependency list, in FIFO manner. */ static tree register_incomplete_type (kind, wfl, decl, ptr) int kind; tree wfl, decl, ptr; { jdep *new = malloc (sizeof (jdep)); if (!new) fatal ("Can't allocate new jdep - register_incomplete_type"); if (!ptr && kind != JDEP_METHOD_END) /* JDEP_METHOD_END is a mere marker */ ptr = obtain_incomplete_type (wfl); JDEP_KIND (new) = kind; JDEP_DECL (new) = decl; JDEP_SOLV (new) = ptr; JDEP_WFL (new) = wfl; JDEP_CHAIN (new) = NULL; JDEP_MISC (new) = NULL_TREE; JDEP_GET_PATCH (new) = (tree *)NULL; JDEP_INSERT (ctxp->classd_list, new); return ptr; } void java_check_circular_reference () { tree current; for (current = ctxp->class_list; current; current = TREE_CHAIN (current)) { tree type = TREE_TYPE (current); if (CLASS_INTERFACE (TYPE_NAME (type))) { /* Check all interfaces this class extends */ tree basetype_vec = TYPE_BINFO_BASETYPES (type); int n, i; if (!basetype_vec) return; n = TREE_VEC_LENGTH (basetype_vec); for (i = 0; i < n; i++) { tree vec_elt = TREE_VEC_ELT (basetype_vec, i); if (vec_elt && BINFO_TYPE (vec_elt) != object_type_node && interface_of_p (type, BINFO_TYPE (vec_elt))) parse_error_context (lookup_cl (current), "Cyclic interface inheritance"); } } else if (inherits_from_p (CLASSTYPE_SUPER (type), type)) parse_error_context (lookup_cl (current), "Cyclic class inheritance"); } } void safe_layout_class (class) tree class; { tree save_current_class = current_class; char *save_input_filename = input_filename; int save_lineno = lineno; push_obstacks (&permanent_obstack, &permanent_obstack); layout_class (class); pop_obstacks (); current_class = save_current_class; input_filename = save_input_filename; lineno = save_lineno; CLASS_LOADED_P (class) = 1; } static tree jdep_resolve_class (dep) jdep *dep; { tree decl; if (!JDEP_RESOLVED_P (dep)) { decl = resolve_class (JDEP_TO_RESOLVE (dep), JDEP_DECL (dep), JDEP_WFL (dep)); JDEP_RESOLVED (dep, decl); } else decl = JDEP_RESOLVED_DECL (dep); if (!decl) { complete_class_report_errors (dep); return NULL_TREE; } return decl; } /* Complete unsatisfied class declaration and their dependencies */ void java_complete_class () { tree current; tree cclass; jdeplist *cclassd; int error_found; tree type; push_obstacks (&permanent_obstack, &permanent_obstack); /* Process imports and reverse the import on demand list */ process_imports (); if (ctxp->import_demand_list) ctxp->import_demand_list = nreverse (ctxp->import_demand_list); /* Rever things so we have the right order */ ctxp->class_list = nreverse (ctxp->class_list); ctxp->classd_list = reverse_jdep_list (ctxp); for (cclassd = ctxp->classd_list, cclass = ctxp->class_list; cclass && cclassd; cclass = TREE_CHAIN (cclass), cclassd = CLASSD_CHAIN (cclassd)) { jdep *dep; for (dep = CLASSD_FIRST (cclassd); dep; dep = JDEP_CHAIN (dep)) { tree decl; if (!(decl = jdep_resolve_class (dep))) continue; /* Now it's time to patch */ switch (JDEP_KIND (dep)) { case JDEP_SUPER: /* Simply patch super */ if (parser_check_super (decl, JDEP_DECL (dep), JDEP_WFL (dep))) continue; BINFO_TYPE (TREE_VEC_ELT (BINFO_BASETYPES (TYPE_BINFO (TREE_TYPE (JDEP_DECL (dep)))), 0)) = TREE_TYPE (decl); break; case JDEP_FIELD: { /* We do part of the job done in add_field */ tree field_decl = JDEP_DECL (dep); tree field_type = TREE_TYPE (decl); push_obstacks (&permanent_obstack, &permanent_obstack); if (TREE_CODE (field_type) == RECORD_TYPE) field_type = promote_type (field_type); pop_obstacks (); TREE_TYPE (field_decl) = field_type; SOURCE_FRONTEND_DEBUG (("Completed field/var decl `%s' with `%s'", IDENTIFIER_POINTER (DECL_NAME (field_decl)), IDENTIFIER_POINTER (DECL_NAME (decl)))); break; } case JDEP_METHOD: /* We start patching a method */ case JDEP_METHOD_RETURN: error_found = 0; while (1) { if (decl) { type = TREE_TYPE(decl); if (TREE_CODE (type) == RECORD_TYPE) type = promote_type (type); JDEP_APPLY_PATCH (dep, type); SOURCE_FRONTEND_DEBUG (((JDEP_KIND (dep) == JDEP_METHOD_RETURN ? "Completing fct `%s' with ret type `%s'": "Completing arg `%s' with type `%s'"), IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_DECL_WFL (dep))), IDENTIFIER_POINTER (DECL_NAME (decl)))); } else error_found = 1; dep = JDEP_CHAIN (dep); if (JDEP_KIND (dep) == JDEP_METHOD_END) break; else decl = jdep_resolve_class (dep); } if (!error_found) { tree mdecl = JDEP_DECL (dep), signature; push_obstacks (&permanent_obstack, &permanent_obstack); /* Recompute and reset the signature */ signature = build_java_signature (TREE_TYPE (mdecl)); set_java_signature (TREE_TYPE (mdecl), signature); pop_obstacks (); } else continue; break; case JDEP_INTERFACE: if (parser_check_super_interface (decl, JDEP_DECL (dep), JDEP_WFL (dep))) continue; parser_add_interface (JDEP_DECL (dep), decl, JDEP_WFL (dep)); break; case JDEP_PARM: case JDEP_VARIABLE: type = TREE_TYPE(decl); if (TREE_CODE (type) == RECORD_TYPE) type = promote_type (type); JDEP_APPLY_PATCH (dep, type); break; case JDEP_TYPE: JDEP_APPLY_PATCH (dep, TREE_TYPE (decl)); SOURCE_FRONTEND_DEBUG (("Completing a random type dependency on a '%s' node", tree_code_name [TREE_CODE (JDEP_DECL (dep))])); break; case JDEP_EXCEPTION: /* Check for righteous inheritance here */ if (!inherits_from_p (TREE_TYPE (decl), throwable_type_node)) { parse_error_context (JDEP_WFL (dep), "Class `%s' in `throws' clause must be " "a subclass of class `java.lang.Throwable'", IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_WFL (dep)))); } else { JDEP_APPLY_PATCH (dep, TREE_TYPE (decl)); SOURCE_FRONTEND_DEBUG (("Completing `%s' `throws' argument node", IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_WFL (dep))))); } break; default: fatal ("incomplete switch - java_complete_class"); } } } pop_obstacks (); return; } /* Resolve class CLASS_TYPE. Handle the case of trying to resolve an array. */ static tree resolve_class (class_type, decl, cl) tree class_type, decl, cl; { char *name = IDENTIFIER_POINTER (TYPE_NAME (class_type)); char *base = name; tree resolved_type, resolved_type_decl; /* 1- Check to see if we have an array. If true, find what we really want to resolve */ while (name[0] == '[') name++; if (base != name) TYPE_NAME (class_type) = get_identifier (name); /* 2- Resolve the bare type */ if (!(resolved_type_decl = do_resolve_class (class_type, decl, cl))) return NULL_TREE; resolved_type = TREE_TYPE (resolved_type_decl); /* 3- If we have and array, reconstruct the array down to its nesting */ if (base != name) { while (base != name) { if (TREE_CODE (resolved_type) == RECORD_TYPE) resolved_type = promote_type (resolved_type); resolved_type = build_java_array_type (resolved_type, -1); name--; } /* Build a fake decl for this, since this is what is expected to be returned. */ resolved_type_decl = build_decl (TYPE_DECL, TYPE_NAME (resolved_type), resolved_type); /* Figure how those two things are important for error report. FIXME */ DECL_SOURCE_LINE (resolved_type_decl) = 0; DECL_SOURCE_FILE (resolved_type_decl) = input_filename; } return resolved_type_decl; } /* Effectively perform the resolution of class CLASS_TYPE. DECL or CL are used to report error messages. */ static tree do_resolve_class (class_type, decl, cl) tree class_type; tree decl; tree cl; { tree new_class_decl; tree original_name = NULL_TREE; /* Do not try to replace TYPE_NAME (class_type) by a variable, since its is changed by find_in_imports{_on_demand} */ /* 1- Check for the type in single imports */ if (find_in_imports (class_type)) return NULL_TREE; /* 2- And check for the type in the current compilation unit. If it fails, try with a name qualified with the package name if appropriate. */ if ((new_class_decl = IDENTIFIER_CLASS_VALUE (TYPE_NAME (class_type)))) { if (!CLASS_LOADED_P (TREE_TYPE (new_class_decl)) && !CLASS_FROM_SOURCE_P (TREE_TYPE (new_class_decl))) load_class (TYPE_NAME (class_type), 0); return IDENTIFIER_CLASS_VALUE (TYPE_NAME (class_type)); } original_name = TYPE_NAME (class_type); if (!QUALIFIED_P (TYPE_NAME (class_type)) && ctxp->package) TYPE_NAME (class_type) = merge_qualified_name (ctxp->package, TYPE_NAME (class_type)); if ((new_class_decl = IDENTIFIER_CLASS_VALUE (TYPE_NAME (class_type)))) { if (!CLASS_LOADED_P (TREE_TYPE (new_class_decl)) && !CLASS_FROM_SOURCE_P (TREE_TYPE (new_class_decl))) load_class (TYPE_NAME (class_type), 0); return IDENTIFIER_CLASS_VALUE (TYPE_NAME (class_type)); } TYPE_NAME (class_type) = original_name; /* 3- Check an other compilation unit that bears the name of type */ load_class (TYPE_NAME (class_type), 0); if (check_pkg_class_access (TYPE_NAME (class_type), (cl ? cl : lookup_cl (decl)))) return NULL_TREE; if ((new_class_decl = IDENTIFIER_CLASS_VALUE (TYPE_NAME (class_type)))) return new_class_decl; /* 4- Check the import on demands. Don't allow bar.baz to be imported from foo.* */ if (!QUALIFIED_P (TYPE_NAME (class_type))) if (find_in_imports_on_demand (class_type)) return NULL_TREE; /* 5- Last call for a resolution */ return IDENTIFIER_CLASS_VALUE (TYPE_NAME (class_type)); } /* Resolve NAME and lay it out (if not done and if not the current parsed class). Return a decl node. */ static tree resolve_and_layout (name, cl) tree name; tree cl; { tree decl = resolve_no_layout (name, cl); if (decl && TREE_TYPE (decl) != current_class && !CLASS_LOADED_P (TREE_TYPE (decl))) safe_layout_class (TREE_TYPE (decl)); return decl; } /* Resolve a class, returns its decl but doesn't perform any layout. The current parsing context is saved and restored */ static tree resolve_no_layout (name, cl) tree name, cl; { tree ptr, decl; BUILD_PTR_FROM_NAME (ptr, name); java_parser_context_save_global (); decl = resolve_class (ptr, NULL_TREE, cl); java_parser_context_restore_global (); return decl; } /* Called to report errors. Skip leader '[' in a complex array type description that failed to be resolved. */ static char * purify_type_name (name) char *name; { while (*name && *name == '[') name++; return name; } /* The type CURRENT refers to can't be found. We print error messages. */ static void complete_class_report_errors (dep) jdep *dep; { switch (JDEP_KIND (dep)) { case JDEP_SUPER: parse_error_context (JDEP_WFL (dep), "Superclass `%s' of class `%s' not found", IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_WFL (dep))), IDENTIFIER_POINTER (DECL_NAME (JDEP_DECL (dep)))); break; case JDEP_FIELD: parse_error_context (JDEP_WFL (dep), "Type `%s' not found in declaration of field `%s'", IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_WFL (dep))), IDENTIFIER_POINTER (DECL_NAME (JDEP_DECL (dep)))); break; case JDEP_METHOD: /* Covers arguments */ parse_error_context (JDEP_WFL (dep), "Type `%s' not found in the declaration of the " "argument `%s' of method `%s'", IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_WFL (dep))), IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_DECL_WFL (dep))), IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_MISC (dep)))); break; case JDEP_METHOD_RETURN: /* Covers return type */ parse_error_context (JDEP_WFL (dep), "Type `%s' not found in the declaration of the " "return type of method `%s'", IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_WFL (dep))), IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_DECL_WFL (dep)))); break; case JDEP_INTERFACE: parse_error_context (JDEP_WFL (dep), "Superinterface `%s' of %s `%s' not found", IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_WFL (dep))), (CLASS_OR_INTERFACE (JDEP_DECL (dep), "class", "interface")), IDENTIFIER_POINTER (DECL_NAME (JDEP_DECL (dep)))); break; case JDEP_VARIABLE: parse_error_context (JDEP_WFL (dep), "Type `%s' not found in the declaration of the " "local variable `%s'", purify_type_name (IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_WFL (dep)))), IDENTIFIER_POINTER (DECL_NAME (JDEP_DECL (dep)))); break; case JDEP_EXCEPTION: /* As specified by `throws' */ parse_error_context (JDEP_WFL (dep), "Class `%s' not found in `throws'", IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_WFL (dep)))); break; } } /* Check uninitialized final. */ void java_check_final () { } static int check_method_redefinition (class, method) tree class, method; { tree redef, name; tree cl = DECL_NAME (method); tree sig = TYPE_LANG_SPECIFIC (TREE_TYPE (method))->signature; /* decl name of generated doesn't need to be fixed and checked */ if (DECL_NAME (method) != clinit_identifier_node) { /* NAME is just the plain name when Object is being defined */ if (class != object_type_node) name = DECL_NAME (method) = EXPR_WFL_NODE (DECL_NAME (method)); else name = DECL_NAME (method); } else return 0; for (redef = TYPE_METHODS (class); redef; redef = TREE_CHAIN (redef)) { struct lang_type *t = TYPE_LANG_SPECIFIC (TREE_TYPE (redef)); if (! t || (redef == method)) break; if (DECL_NAME (redef) == name && sig == t->signature) { parse_error_context (cl, "Duplicate method declaration"); return 1; } } return 0; } /* Check all the methods of CLASS. Methods are first completed then checked according to regular method existance rules. If no constructor were encountered, then build its declaration. */ static void java_check_regular_methods (class_decl) tree class_decl; { tree method; tree class = CLASS_TO_HANDLE_TYPE (TREE_TYPE (class_decl)); tree super_class = CLASSTYPE_SUPER (class); int seen_constructor = 0; TYPE_METHODS (class) = nreverse (TYPE_METHODS (class)); /* Should take interfaces into account. FIXME */ for (method = TYPE_METHODS (class); method; method = TREE_CHAIN (method)) { tree found, sig; tree method_wfl = DECL_NAME (method); int aflags; if (DECL_CONSTRUCTOR_P (method)) seen_constructor = 1; /* Check for redefinitions */ if (check_method_redefinition (class, method)) continue; sig = build_java_argument_signature (TREE_TYPE (method)); found = lookup_argument_method (super_class, DECL_NAME (method), sig); /* Nothing overrides or it's a private method */ if (!found || (found && METHOD_PRIVATE (found))) continue; /* Can't override a method with the same name and different return types. */ if (TREE_TYPE (TREE_TYPE (found)) != TREE_TYPE (TREE_TYPE (method))) { char *t = strdup ((char *)lang_printable_name (TREE_TYPE (TREE_TYPE (found)))); parse_error_context (method_wfl, "Method `%s' was defined with return type `%s' in class `%s'", lang_printable_name (found), t, IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found))))); free (t); } /* Can't override final. Can't override static. */ if (METHOD_FINAL (found) || METHOD_STATIC (found)) { /* Static *can* override static */ if (METHOD_STATIC (found) && METHOD_STATIC (method)) continue; parse_error_context (method_wfl, "%s methods can't be overriden. Method `%s' is %s in class `%s'", (METHOD_FINAL (found) ? "Final" : "Static"), lang_printable_name (found), (METHOD_FINAL (found) ? "final" : "static"), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found))))); continue; } /* Static method can't override instance method. */ if (METHOD_STATIC (method)) { parse_error_context (method_wfl, "Instance methods can't be overriden by a static method. Method " "`%s' is an instance method in class `%s'", lang_printable_name (found), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found))))); continue; } /* Overriding/hiding public must be public or overriding/hiding protected must be protected or public */ if ((METHOD_PUBLIC (found) && !METHOD_PUBLIC (method)) || (METHOD_PROTECTED (found) && !(METHOD_PUBLIC (method) || METHOD_PROTECTED (method)))) { parse_error_context (method_wfl, "Methods can't be overridden to be more private. Method `%s' is " "%s in class `%s'", lang_printable_name (found), (METHOD_PUBLIC (found) ? "public" : "protected"), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found))))); continue; } /* Overriding methods must have compatible `throws' clauses on checked exceptions, if any */ check_throws_clauses (method, method_wfl, found); /* If the method has default access in an other package, then issue a warning that the current method doesn't override the one that was found elsewhere */ aflags = get_access_flags_from_decl (found); if ((!aflags || (aflags > ACC_PROTECTED)) && !class_in_current_package (DECL_CONTEXT (found))) parse_warning_context (method_wfl, "Method `%s' in class `%s' does not " "override the corresponding method in class `%s', which is " "private to a different package", lang_printable_name (found), IDENTIFIER_POINTER (DECL_NAME (class_decl)), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found))))); /* Check on (default) package access. FIXME. */ /* Inheriting multiple methods with the same signature. FIXME */ } TYPE_METHODS (class) = nreverse (TYPE_METHODS (class)); if (!seen_constructor) { /* No constructor seen, we craft one, at line 0 */ int saved_lineno = lineno; tree meth, decl; lineno = 0; meth = make_node (FUNCTION_TYPE); TREE_TYPE (meth) = void_type_node; TYPE_ARG_TYPES (meth) = NULL_TREE; decl = add_method (class, 0, init_identifier_node, build_java_signature (meth)); DECL_CONSTRUCTOR_P (decl) = 1; lineno = saved_lineno; } } /* Return a non zero value if the `throws' clause of METHOD (if any) is incompatible with the `throws' clause of FOUND (if any). */ static void check_throws_clauses (method, method_wfl, found) tree method, method_wfl, found; { tree mthrows, fthrows; for (mthrows = DECL_FUNCTION_THROWS (method); mthrows; mthrows = TREE_CHAIN (mthrows)) { /* We don't verify unchecked expressions */ if (IS_UNCHECKED_EXPRESSION_P (TREE_VALUE (mthrows))) continue; /* Checked expression must be compatible */ for (fthrows = DECL_FUNCTION_THROWS (found); fthrows; fthrows = TREE_CHAIN (fthrows)) if (inherits_from_p (TREE_VALUE (mthrows), TREE_VALUE (fthrows))) break; if (!fthrows) { parse_error_context (method_wfl, "Invalid checked exception class `%s' in " "`throws' clause. The exception must be a subclass of an " "exception thrown by `%s' from class `%s'", IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (TREE_VALUE (mthrows)))), lang_printable_name (found), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found))))); } } } /* Check abstract method of interface INTERFACE */ static void java_check_abstract_methods (interface) tree interface; { int i, n; tree method, basetype_vec, found; for (method = TYPE_METHODS (interface); method; method = TREE_CHAIN (method)) { char *csig; tree method_wfl = DECL_NAME (method); /* 2- Check for double definition inside the defining interface */ if (check_method_redefinition (interface, method)) continue; /* 3- Overriding is OK as far as we preserve the return type and the thrown exceptions (FIXME) */ found = lookup_java_interface_method2 (interface, method); if (found) { char *t = strdup ((char *)lang_printable_name (TREE_TYPE (TREE_TYPE (found)))); parse_error_context (method_wfl, "Method `%s' was defined with return type `%s' in class `%s ", lang_printable_name (found), t, IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found))))); free (t); continue; } } /* 4- Inherited methods can't differ by their returned types */ if (!(basetype_vec = TYPE_BINFO_BASETYPES (interface))) return; n = TREE_VEC_LENGTH (basetype_vec); for (i = 0; i < n; i++) { tree sub_interface_method, sub_interface; tree vec_elt = TREE_VEC_ELT (basetype_vec, i); if (!vec_elt) continue; sub_interface = BINFO_TYPE (vec_elt); for (sub_interface_method = TYPE_METHODS (sub_interface); sub_interface_method; sub_interface_method = TREE_CHAIN (sub_interface_method)) { found = lookup_java_interface_method2 (interface, sub_interface_method); if (found && (found != sub_interface_method)) parse_error_context (lookup_cl (sub_interface_method), "Interface `%s' inherits method `%s' from interface `%s'. This " "method is redefined with a different return " "type in interface `%s'", IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (interface))), lang_printable_name (found), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (sub_interface_method)))), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found))))); } } } /* Check the method on all the defined classes. Should be done to the classes declared in the compilation unit only. FIXME */ void java_check_methods () { tree current; for (current = ctxp->class_list; current; current = TREE_CHAIN (current)) if (CLASS_FROM_SOURCE_P (TREE_TYPE (current))) { tree class = CLASS_TO_HANDLE_TYPE (TREE_TYPE (current)); if (CLASS_INTERFACE (TYPE_NAME (class))) java_check_abstract_methods (class); else java_check_regular_methods (current); } } /* Lookup methods in interfaces using their name and partial signature. Return a matching method only if their types differ. */ static tree lookup_java_interface_method2 (class, method_decl) tree class, method_decl; { int i, n; tree basetype_vec = TYPE_BINFO_BASETYPES (class), to_return; if (!basetype_vec) return NULL_TREE; n = TREE_VEC_LENGTH (basetype_vec); for (i = 0; i < n; i++) { tree vec_elt = TREE_VEC_ELT (basetype_vec, i), to_return; if ((BINFO_TYPE (vec_elt) != object_type_node) && (to_return = lookup_java_method2 (BINFO_TYPE (vec_elt), method_decl, 1))) return to_return; } for (i = 0; i < n; i++) { to_return = lookup_java_interface_method2 (BINFO_TYPE (TREE_VEC_ELT (basetype_vec, i)), method_decl); if (to_return) return to_return; } return NULL_TREE; } /* Lookup method using their name and partial signature. Return a matching method only if their types differ. */ static tree lookup_java_method2 (clas, method_decl, do_interface) tree clas, method_decl; int do_interface; { tree method, method_signature, method_name, method_type; method_signature = build_java_argument_signature (TREE_TYPE (method_decl)); method_name = DECL_NAME (method_decl); method_type = TREE_TYPE (TREE_TYPE (method_decl)); while (clas != NULL_TREE) { for (method = TYPE_METHODS (clas); method != NULL_TREE; method = TREE_CHAIN (method)) { tree method_sig = build_java_argument_signature (TREE_TYPE (method)); if (DECL_NAME (method) == method_name && method_sig == method_signature && TREE_TYPE (TREE_TYPE (method)) != method_type) { return method; } } clas = (do_interface ? NULL_TREE : CLASSTYPE_SUPER (clas)); } return NULL_TREE; } /* Return the line that matches DECL line number. Used during error report */ static tree lookup_cl (decl) tree decl; { static tree cl = NULL_TREE; if (!decl) return NULL_TREE; if (cl == NULL_TREE) cl = build_expr_wfl (NULL_TREE, NULL, 0, 0); EXPR_WFL_FILENAME_NODE (cl) = get_identifier (DECL_SOURCE_FILE (decl)); EXPR_WFL_SET_LINECOL (cl, DECL_SOURCE_LINE_FIRST (decl), -1); return cl; } /* Look for a simple name in the single-type import list */ static tree find_name_in_single_imports (name) tree name; { tree node; for (node = ctxp->import_list; node; node = TREE_CHAIN (node)) if (TREE_VALUE (node) == name) return (EXPR_WFL_NODE (TREE_PURPOSE (node))); return NULL_TREE; } /* Process all single-type import. */ static int process_imports () { tree import; int error_found; for (import = ctxp->import_list; import; import = TREE_CHAIN (import)) { tree to_be_found = EXPR_WFL_NODE (TREE_PURPOSE (import)); /* Don't load twice something already defined. */ if (IDENTIFIER_CLASS_VALUE (to_be_found)) continue; QUALIFIED_P (to_be_found) = 1; load_class (to_be_found, 0); error_found = check_pkg_class_access (to_be_found, TREE_PURPOSE (import)); if (!IDENTIFIER_CLASS_VALUE (to_be_found)) { parse_error_context (TREE_PURPOSE (import), "Class or interface `%s' not found in import", IDENTIFIER_POINTER (to_be_found)); return 1; } if (error_found) return 1; } return 0; } /* Possibly find a class imported by a single-type import statement. Return 1 if an error occured, 0 otherwise. */ static int find_in_imports (class_type) tree class_type; { tree import; for (import = ctxp->import_list; import; import = TREE_CHAIN (import)) if (TREE_VALUE (import) == TYPE_NAME (class_type)) { TYPE_NAME (class_type) = EXPR_WFL_NODE (TREE_PURPOSE (import)); QUALIFIED_P (TYPE_NAME (class_type)) = 1; return check_pkg_class_access (TYPE_NAME (class_type), TREE_PURPOSE (import)); } return 0; } /* Process a import on demand statement (lazy) */ static int read_import_entry (jcf, dirp, returned_name) JCF *jcf; DIR *dirp; char **returned_name; { if (dirp) { struct dirent *direntp = readdir (dirp); if (!direntp) { *returned_name = NULL; return 0; } else { *returned_name = direntp->d_name; return (strlen (direntp->d_name)); } } else { int current_dir_len = strlen (jcf->classname); char *current_entry; int current_entry_len; /* Here we read a zip directory as a file directory. The files we're selecting must have the same root than the directory we're examining. */ ZipDirectory *zipd = (ZipDirectory *)jcf->zipd; while (zipd) { current_entry = ZIPDIR_FILENAME (zipd); current_entry_len = zipd->filename_length; while (current_entry_len && current_entry [current_entry_len] != '/') current_entry_len--; /* If the path of the current file doesn't match the directory we're scanning, that the end of the search */ current_entry_len++; if (strncmp (jcf->classname, current_entry, current_dir_len)) { *returned_name = NULL; return 0; } /* Ok, we have at least the same path. The position of the last '/' of the current file we're examining should match the size of name of the directory we're browsing, otherwise that an entry belonging to a sub directory, we want to skip it. */ if (current_entry_len != current_dir_len) zipd = ZIPDIR_NEXT (zipd); else { jcf->zipd = ZIPDIR_NEXT (zipd); /* Prepare next read */ *returned_name = ¤t_entry [current_entry_len]; return (zipd->filename_length - current_entry_len); } } } } /* Read a import directory, gathering potential match for further type references. Indifferently reads a filesystem or a ZIP archive directory. */ static void read_import_dir (wfl) tree wfl; { char *name = IDENTIFIER_POINTER (EXPR_WFL_NODE (wfl)); int name_len = IDENTIFIER_LENGTH (EXPR_WFL_NODE (wfl)), reclen; DIR *dirp = NULL; tree dirname = ident_subst (name, name_len, "", '.', '/', ""); JCF jcfr, *jcf, *saved_jcf = current_jcf; char *founddirname, *d_name; struct ZipFileCache zip_cache; jcf = &jcfr; if (!classpath) fix_classpath (); if (!(founddirname = find_class (name, name_len, jcf, 0))) fatal ("Can't import `%s'", name); if (jcf->outofsynch) jcf_out_of_synch (jcf); if (jcf->seen_in_zip) jcf->zipd = ZIPDIR_NEXT ((ZipDirectory *)jcf->zipd); else if (founddirname && (dirp = opendir (founddirname))) { readdir (dirp); readdir (dirp); } if (!founddirname && !dirp) { static int first = 1; if (first) { char buffer [256]; sprintf (buffer, "Can't find default package `%s'. Check " "the CLASSPATH environment variable and the access to the " "archives.", name); error (buffer); java_error_count++; first = 0; } else parse_error_context (wfl, "Package `%s' not found in import", name); current_jcf = saved_jcf; return; } /* Here we should have a unified way of retrieving an entry, to be indexed. */ while ((reclen = read_import_entry (jcf, dirp, &d_name))) { int java_or_class = 0; int len; if ((reclen > 5) && !strcmp (&d_name [reclen-5], ".java")) { java_or_class = 1; len = reclen - 5; } if (!java_or_class && (reclen > 6) && !strcmp (&d_name [reclen-6], ".class")) { java_or_class = 2; len = reclen - 6; } if (java_or_class) { char *id_name; tree node, old; obstack_grow (&temporary_obstack, name, name_len); obstack_1grow (&temporary_obstack, '/'); obstack_grow0 (&temporary_obstack, d_name, len); id_name = obstack_finish (&temporary_obstack); node = get_identifier (id_name); IS_A_CLASSFILE_NAME (node) = 1; /* Or soon to be */ QUALIFIED_P (node) = 1; /* As soon as we turn / into . */ } } if (dirp) closedir (dirp); current_jcf = saved_jcf; } /* Possibly find a type in the import on demands specified types. Returns 1 if an error occured, 0 otherwise. Run throught the entire list, to detected potential double definitions. */ static int find_in_imports_on_demand (class_type) tree class_type; { tree node, import, node_to_use; int seen_once = -1; tree cl; for (import = ctxp->import_demand_list; import; import = TREE_CHAIN (import)) { char *id_name; tree found; obstack_grow (&temporary_obstack, IDENTIFIER_POINTER (EXPR_WFL_NODE (TREE_PURPOSE (import))), IDENTIFIER_LENGTH (EXPR_WFL_NODE (TREE_PURPOSE (import)))); obstack_1grow (&temporary_obstack, '/'); obstack_grow0 (&temporary_obstack, IDENTIFIER_POINTER (TYPE_NAME (class_type)), IDENTIFIER_LENGTH (TYPE_NAME (class_type))); id_name = obstack_finish (&temporary_obstack); node = maybe_get_identifier (id_name); if (node && IS_A_CLASSFILE_NAME (node)) { if (seen_once < 0) { cl = TREE_PURPOSE (import); seen_once = 1; node_to_use = node; } else { seen_once++; parse_error_context (import, "Type `%s' also potentially defined in package `%s'", IDENTIFIER_POINTER (TYPE_NAME (class_type)), IDENTIFIER_POINTER (EXPR_WFL_NODE (TREE_PURPOSE (import)))); } } } if (seen_once == 1) { /* Setup lineno so that it refers to the line of the import (in case we parse a class file and encounter errors */ tree decl; int saved_lineno = lineno; lineno = EXPR_WFL_LINENO (cl); TYPE_NAME (class_type) = ident_subst (IDENTIFIER_POINTER (node_to_use), IDENTIFIER_LENGTH (node_to_use), "", '/', '.', ""); QUALIFIED_P (TYPE_NAME (class_type)) = 1; decl = IDENTIFIER_CLASS_VALUE (TYPE_NAME (class_type)); /* If there is no DECL set for the class or if the class isn't loaded and not seen in source yet, the load */ if (!decl || (!CLASS_LOADED_P (TREE_TYPE (decl)) && !CLASS_FROM_SOURCE_P (TREE_TYPE (decl)))) load_class (node_to_use, 0); lineno = saved_lineno; return check_pkg_class_access (TYPE_NAME (class_type), cl); } else return (seen_once < 0 ? 0 : seen_once); /* It's ok not to have found */ } /* Check that CLASS_NAME refers to a PUBLIC class. Return 0 if no access violations were found, 1 otherwise. */ static int check_pkg_class_access (class_name, cl) tree class_name; tree cl; { tree type; int access; if (!QUALIFIED_P (class_name) || !IDENTIFIER_CLASS_VALUE (class_name)) return 0; if (!(type = TREE_TYPE (IDENTIFIER_CLASS_VALUE (class_name)))) return 0; if (!CLASS_PUBLIC (TYPE_NAME (type))) { parse_error_context (cl, "Can't access %s `%s'. Only public classes and interfaces in " "other packages can be accessed", (CLASS_INTERFACE (TYPE_NAME (type)) ? "interface" : "class"), IDENTIFIER_POINTER (class_name)); return 1; } return 0; } /* Local variable declaration. */ static void declare_local_variables (modifier, type, vlist) int modifier; tree type; tree vlist; { tree decl, current, returned_type, type_wfl, init_stmt = NULL_TREE; int must_chain = 0; /* Push a new block if statement were seen between the last time we pushed a block and now. Keep a cound of block to close */ if (BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (current_function_decl))) { tree body = DECL_FUNCTION_BODY (current_function_decl); tree b = enter_block (); BLOCK_EXPR_ORIGIN(b) = body; } if (modifier) { int i; for (i = 0; i <= 10; i++) if (1 << i & modifier) break; parse_error_context (ctxp->modifier_ctx [i], (modifier == ACC_FINAL ? "Unsupported JDK1.1 `final' locals" : "Only `final' is allowed as a local variables modifier")); return; } if (unresolved_type_p (type, &returned_type)) { if (returned_type) type = returned_type; else { type_wfl = type; type = obtain_incomplete_type (type); must_chain = 1; } } if (!must_chain && TREE_CODE (type) == RECORD_TYPE) type = promote_type (type); for (current = vlist; current; current = TREE_CHAIN (current)) { tree wfl = TREE_PURPOSE (current); tree name = EXPR_WFL_NODE (wfl); tree init = TREE_VALUE (current); tree other = lookup_name_in_blocks (name); /* Don't try to use an INIT statement when an error was found */ if (init && java_error_count) init = NULL_TREE; if (other) variable_redefinition_error (wfl, name, TREE_TYPE (other), DECL_SOURCE_LINE (other)); else { /* Never layout this decl. This will be done when its scope will be entered */ decl = build_decl_no_layout (VAR_DECL, name, type); BLOCK_CHAIN_DECL (decl); /* Add the initialization function to the current function's code */ if (init) { tree wfl; MODIFY_EXPR_FROM_INITIALIZATION_P (init) = 1; java_method_add_stmt (current_function_decl, build_debugable_stmt (EXPR_WFL_LINECOL (init), init)); } if (must_chain) { jdep *dep; register_incomplete_type (JDEP_VARIABLE, type_wfl, decl, type); dep = CLASSD_LAST (ctxp->classd_list); JDEP_GET_PATCH (dep) = &TREE_TYPE (decl); } } } SOURCE_FRONTEND_DEBUG (("Defined locals")); } /* Called during parsing. Build decls from argument list. */ static void source_start_java_method (fndecl) tree fndecl; { tree tem; tree parm_decl; int i; extern tree current_binding_level; current_function_decl = fndecl; /* New scope for the function */ enter_block (); for (tem = TYPE_ARG_TYPES (TREE_TYPE (fndecl)), i = 0; tem != NULL_TREE; tem = TREE_CHAIN (tem), i++) { tree type = TREE_VALUE (tem); tree name = TREE_PURPOSE (tem); /* If type is incomplete. Layout can't take place now. Create an incomplete decl and ask for the decl to be patched later */ if (INCOMPLETE_TYPE_P (type)) { jdep *jdep; parm_decl = build_decl_no_layout (PARM_DECL, name, type); register_incomplete_type (JDEP_PARM, NULL_TREE, NULL_TREE, type); jdep = CLASSD_LAST (ctxp->classd_list); JDEP_MISC (jdep) = name; JDEP_GET_PATCH (jdep) = &TREE_TYPE (parm_decl); } else parm_decl = build_decl (PARM_DECL, name, type); BLOCK_CHAIN_DECL (parm_decl); } tem = BLOCK_EXPR_DECLS (DECL_FUNCTION_BODY (current_function_decl)); BLOCK_EXPR_DECLS (DECL_FUNCTION_BODY (current_function_decl)) = nreverse (tem); DECL_ARG_SLOT_COUNT (current_function_decl) = i; } /* Called during expansion. Push decls formerly built from argument list so they're usable during expansion. */ static void expand_start_java_method (fndecl) tree fndecl; { tree tem, *ptr; tree parm_decl; extern tree current_binding_level; current_function_decl = fndecl; announce_function (fndecl); pushlevel (1); /* Push parameters */ ptr = &DECL_ARGUMENTS (fndecl); tem = BLOCK_EXPR_DECLS (DECL_FUNCTION_BODY (current_function_decl)); while (tem) { tree next = TREE_CHAIN (tem); tree type = TREE_TYPE (tem); #ifdef PROMOTE_PROTOTYPES if (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node) && INTEGRAL_TYPE_P (type)) type = integer_type_node; #endif DECL_ARG_TYPE (tem) = type; layout_decl (tem, 0); pushdecl (tem); INITIALIZED_P (tem) = 1; /* Parms are initialized */ *ptr = tem; ptr = &TREE_CHAIN (tem); tem = next; } *ptr = NULL_TREE; pushdecl_force_head (DECL_ARGUMENTS (fndecl)); lineno = DECL_SOURCE_LINE_FIRST (fndecl); complete_start_java_method (fndecl); } /* Terminate a function and expand its body. */ static void source_end_java_method () { tree fndecl = current_function_decl; java_parser_context_save_global (); lineno = ctxp->last_ccb_indent1; /* Set EH language codes */ java_set_exception_lang_code (); /* Generate function's code */ if (BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (fndecl)) && ! flag_emit_class_files) expand_expr_stmt (BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (fndecl))); /* pop out of its parameters */ pushdecl_force_head (DECL_ARGUMENTS (fndecl)); poplevel (1, 0, 1); BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl; /* Generate rtl for function exit. */ if (! flag_emit_class_files) { lineno = DECL_SOURCE_LINE_LAST (fndecl); /* Emit catch-finally clauses */ emit_handlers (); expand_function_end (input_filename, lineno, 0); /* Run the optimizers and output assembler code for this function. */ rest_of_compilation (fndecl); } current_function_decl = NULL_TREE; /* permanent_allocation (1); */ java_parser_context_restore_global (); } /* Record EXPR in the current function block. Complements compound expression second operand if necessary. */ tree java_method_add_stmt (fndecl, expr) tree fndecl, expr; { return add_stmt_to_block (DECL_FUNCTION_BODY (fndecl), NULL_TREE, expr); } static tree add_stmt_to_block (b, type, stmt) tree b, type, stmt; { tree body = BLOCK_EXPR_BODY (b), c; if (java_error_count) return body; if ((c = add_stmt_to_compound (body, type, stmt)) == body) return body; BLOCK_EXPR_BODY (b) = c; TREE_SIDE_EFFECTS (c) = 1; return c; } /* Add STMT to EXISTING if possible, otherwise create a new COMPOUND_EXPR and add STMT to it. */ static tree add_stmt_to_compound (existing, type, stmt) tree existing, type, stmt; { tree node; if (existing && (TREE_CODE (existing) == COMPOUND_EXPR) && TREE_OPERAND (existing, 1) == size_zero_node) { TREE_OPERAND (existing, 1) = stmt; TREE_TYPE (existing) = type; return existing; } else if (existing) node = build (COMPOUND_EXPR, type, existing, stmt); else node = build (COMPOUND_EXPR, type, stmt, size_zero_node); return node; } /* Hold THIS for the scope of the current public method decl. */ static tree current_this; /* Layout all class found during parsing */ void java_layout_classes () { tree current; for (current = ctxp->class_list; current; current = TREE_CHAIN (current)) { current_class = TREE_TYPE (current); TYPE_FIELDS (current_class) = nreverse (TYPE_FIELDS (current_class)); if (!TYPE_SIZE (current_class)) safe_layout_class (current_class); } } /* Expand all methods in all registered classes. */ void java_complete_expand_methods () { tree current; for (current = ctxp->class_list; current; current = TREE_CHAIN (current)) { extern tree current_constant_pool_data_ref; tree class_type = CLASS_TO_HANDLE_TYPE (TREE_TYPE (current)); tree decl; int saved_lineno; current_class = TREE_TYPE (current); /* Initialize a new constant pool */ init_outgoing_cpool (); /* Don't process function bodies in interfaces */ if (!CLASS_INTERFACE (TYPE_NAME (current_class))) for (decl = TYPE_METHODS (class_type); decl; decl = TREE_CHAIN (decl)) { current_function_decl = decl; /* Don't generate debug info on line zero when expanding a generated constructor. */ if (DECL_CONSTRUCTOR_P (decl) && !DECL_FUNCTION_BODY (decl)) { /* If we found errors, it's too dangerous to try to generate and expand a constructor */ if (!java_error_count) { restore_line_number_status (1); java_complete_expand_method (decl); restore_line_number_status (0); } } else java_complete_expand_method (decl); } /* Make the class data, register it and run the rest of decl compilation on it */ if (!java_error_count && ! flag_emit_class_files) { make_class_data (current_class); register_class (); rest_of_decl_compilation (TYPE_NAME (current_class), (char*) 0, 1, 0); } } } /* Hold a list of catch clauses list. The first element of this list is the list of the catch clauses of the currently analysed try block. */ static tree currently_caught_type_list; /* Complete and expand a method. */ static void java_complete_expand_method (mdecl) tree mdecl; { tree node; jdep *current; int no_ac_found = 1; /* We generate some code for an empty constructor */ if (DECL_CONSTRUCTOR_P (mdecl) && !DECL_FUNCTION_BODY (mdecl)) { tree arg_list, func, call; tree method_type = TREE_TYPE (mdecl); tree class_type = CLASS_TO_HANDLE_TYPE (current_class); tree self_type = (CLASSTYPE_SUPER (class_type) ? CLASSTYPE_SUPER (class_type) : class_type); tree method_signature = TYPE_LANG_SPECIFIC (method_type)->signature; tree method = lookup_java_constructor (CLASS_TO_HANDLE_TYPE (self_type), method_signature); tree block, compound; /* Fixe the begining/ending lines of the method so that with no_line_numbers set to 1 it doesn't generate debug info at line 1 for this artificial constructor. */ DECL_SOURCE_LINE (mdecl) = 1; DECL_SOURCE_LINE_MERGE (mdecl, 1); source_start_java_method (mdecl); arg_list = BLOCK_EXPR_DECLS (DECL_FUNCTION_BODY (mdecl)); enter_block (); func = build_known_method_ref (method, method_type, self_type, method_signature, arg_list); if (! flag_emit_class_files) func = build1 (NOP_EXPR, build_pointer_type (method_type), func); call = build (CALL_EXPR, TREE_TYPE (method_type), func, build_tree_list (NULL_TREE, arg_list), NULL_TREE); TREE_SIDE_EFFECTS (call) = 1; call = build_class_init (self_type, call); compound = java_method_add_stmt (mdecl, call); block = exit_block (); BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (mdecl)) = block; /* The function decl, its block and the compound statement within this block are all of void type. */ TREE_TYPE (block) = TREE_TYPE (compound) = TREE_TYPE (DECL_FUNCTION_BODY (mdecl)) = void_type_node; exit_block (); no_ac_found = 0; } if (DECL_FUNCTION_BODY (mdecl)) { expand_start_java_method (mdecl); current_this = (!METHOD_STATIC (mdecl) ? BLOCK_EXPR_DECLS (DECL_FUNCTION_BODY (mdecl)) : NULL_TREE); /* Purge the `throws' list of unchecked exceptions */ purge_unchecked_exceptions (mdecl); /* Install exceptions thrown with `throws' */ PUSH_EXCEPTIONS (DECL_FUNCTION_THROWS (mdecl)); if (BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (mdecl)) && no_ac_found) java_complete_tree (BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (mdecl))); /* Don't go any further if we've found error(s) during the expansion */ if (!java_error_count) source_end_java_method (); /* Pop the exceptions and sanity check */ POP_EXCEPTIONS(); if (currently_caught_type_list) fatal ("Exception list non empty - java_complete_expand_method"); } } /* Expand finals. */ void java_expand_finals () { } /* Wrap non WFL PRIMARY around a WFL and set EXPR_WFL_QUALIFICATION to a tree list node containing RIGHT. Fore coming RIGHTs will be chained to this hook. LOCATION contains the location of the separating `.' operator. */ static tree make_qualified_primary (primary, right, location) tree primary, right; int location; { tree wfl; /* We want to process THIS . xxx symbolicaly, to keep it consistent with the way we're processing SUPER. A THIS from a primary as a different form than a SUPER. Turn THIS into something symbolic */ if (TREE_CODE (primary) == THIS_EXPR) { wfl = build_wfl_node (this_identifier_node, input_filename, 0, 0); EXPR_WFL_LINECOL (wfl) = EXPR_WFL_LINECOL (primary); wfl = make_qualified_name (wfl, right, location); PRIMARY_P (wfl) = 1; return wfl; } /* Other non WFL node are wrapped around a WFL */ else if (TREE_CODE (primary) != EXPR_WITH_FILE_LOCATION) { wfl = build_expr_wfl (NULL_TREE, ctxp->filename, 0, 0); EXPR_WFL_LINECOL (wfl) = EXPR_WFL_LINECOL (primary); EXPR_WFL_QUALIFICATION (wfl) = build_tree_list (primary, NULL_TREE); } else { wfl = primary; if (!EXPR_WFL_QUALIFICATION (primary)) EXPR_WFL_QUALIFICATION (primary) = build_tree_list (primary, NULL_TREE); } EXPR_WFL_LINECOL (right) = location; chainon (EXPR_WFL_QUALIFICATION (wfl), build_tree_list (right, NULL_TREE)); PRIMARY_P (wfl) = 1; return wfl; } /* Simple merge of two name separated by a `.' */ static tree merge_qualified_name (left, right) tree left, right; { tree node; obstack_grow (&temporary_obstack, IDENTIFIER_POINTER (left), IDENTIFIER_LENGTH (left)); obstack_1grow (&temporary_obstack, '.'); obstack_grow0 (&temporary_obstack, IDENTIFIER_POINTER (right), IDENTIFIER_LENGTH (right)); node = get_identifier (obstack_base (&temporary_obstack)); obstack_free (&temporary_obstack, obstack_base (&temporary_obstack)); QUALIFIED_P (node) = 1; return node; } /* Merge the two parts of a qualified name into LEFT. Set the location information of the resulting node to LOCATION, usually inherited from the location information of the `.' operator. */ static tree make_qualified_name (left, right, location) tree left, right; int location; { int qualified; tree left_id = EXPR_WFL_NODE (left); tree right_id = EXPR_WFL_NODE (right); tree wfl, merge; merge = merge_qualified_name (left_id, right_id); /* Left wasn't qualified and is now qualified */ if (!QUALIFIED_P (left_id)) { tree wfl = build_expr_wfl (left_id, ctxp->filename, 0, 0); EXPR_WFL_LINECOL (wfl) = EXPR_WFL_LINECOL (left); EXPR_WFL_QUALIFICATION (left) = build_tree_list (wfl, NULL_TREE); } wfl = build_expr_wfl (right_id, ctxp->filename, 0, 0); EXPR_WFL_LINECOL (wfl) = location; chainon (EXPR_WFL_QUALIFICATION (left), build_tree_list (wfl, NULL_TREE)); EXPR_WFL_NODE (left) = merge; return left; } /* Extract the last identifier component of the qualified in WFL. The last identifier is removed from the linked list */ static tree cut_identifier_in_qualified (wfl) tree wfl; { tree q; tree previous = NULL_TREE; for (q = EXPR_WFL_QUALIFICATION (wfl); ; previous = q, q = TREE_CHAIN (q)) if (!TREE_CHAIN (q)) { if (!previous) fatal ("Operating on a non qualified qualified WFL - " "cut_identifier_in_qualified"); TREE_CHAIN (previous) = NULL_TREE; return TREE_PURPOSE (q); } } /* Resolve the expression name NAME. Return its decl. */ static tree resolve_expression_name (id) tree id; { tree name = EXPR_WFL_NODE (id); tree decl; /* 6.5.5.1: Simple expression names */ if (!PRIMARY_P (id) && !QUALIFIED_P (name)) { /* 15.13.1: NAME can appear within the scope of a local variable declaration */ if ((decl = IDENTIFIER_LOCAL_VALUE (name))) return decl; /* 15.13.1: NAME can appear within a class declaration */ else { decl = lookup_field_wrapper (current_class, name); if (decl) { int fs = FIELD_STATIC (decl); /* Instance variable (8.3.1.1) can't appear within static method, static initializer or initializer for a static variable. */ if (!fs && METHOD_STATIC (current_function_decl)) { parse_error_context (id, "Can't make a static reference to nonstatic variable " "`%s' in class `%s'", IDENTIFIER_POINTER (name), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (current_class)))); return error_mark_node; } decl = build_field_ref ((fs ? NULL_TREE : current_this), current_class, name); return (fs ? build_class_init (current_class, decl) : decl); } /* Fall down to error report on undefined variable */ } } /* 6.5.5.2 Qualified Expression Names */ else { qualify_ambiguous_name (id); /* 15.10.1 Field Access Using a Primary and/or Expression Name */ /* 15.10.2: Accessing Superclass Members using super */ return resolve_field_access (id, NULL, NULL); } /* We've got an error here */ parse_error_context (id, "Undefined variable `%s'", IDENTIFIER_POINTER (name)); return error_mark_node; } /* 15.10.1 Field Acess Using a Primary and/or Expression Name. We return something suitable to generate the field access. We also return the field decl in FIELD_DECL and its type in FIELD_TYPE. If recipient's address can be null. */ static tree resolve_field_access (qual_wfl, field_decl, field_type) tree qual_wfl; tree *field_decl, *field_type; { int is_static = 0; tree field_ref; tree decl, where_found, type_found; if (resolve_qualified_expression_name (qual_wfl, &decl, &where_found, &type_found)) return error_mark_node; /* Resolve the LENGTH field of an array here */ if (DECL_NAME (decl) == length_identifier_node && TYPE_ARRAY_P (type_found) && ! flag_emit_class_files) { tree length = build_java_array_length_access (where_found); field_ref = build_java_arraynull_check (type_found, length, int_type_node); } /* We might have been trying to resolve field.method(). In which case, the resolution is over and decl is the answer */ else if (DECL_P (decl) && IDENTIFIER_LOCAL_VALUE (DECL_NAME (decl)) == decl) field_ref = decl; else if (DECL_P (decl)) { is_static = DECL_P (decl) && FIELD_STATIC (decl); field_ref = build_field_ref ((is_static ? NULL_TREE : where_found), type_found, DECL_NAME (decl)); if (field_ref == error_mark_node) return error_mark_node; if (is_static) { field_ref = build_class_init (type_found, field_ref); /* If the static field was identified by an expression that needs to be generated, make the field access a compound expression whose first part of the evaluation of the field selector part. */ if (where_found && TREE_CODE (where_found) != TYPE_DECL) { tree type = QUAL_DECL_TYPE (field_ref); field_ref = build (COMPOUND_EXPR, type, where_found, field_ref); } } } else field_ref = decl; if (field_decl) *field_decl = decl; if (field_type) *field_type = QUAL_DECL_TYPE (decl); return field_ref; } /* 6.5.5.2: Qualified Expression Names */ static int resolve_qualified_expression_name (wfl, found_decl, where_found, type_found) tree wfl; tree *found_decl, *type_found, *where_found; { int from_type = 0; /* Field search initiated from a type */ int from_super = 0, from_cast = 0; int previous_call_static = 0; int is_static; tree decl = NULL_TREE, type = NULL_TREE, q; *where_found = NULL_TREE; for (q = EXPR_WFL_QUALIFICATION (wfl); q; q = TREE_CHAIN (q)) { tree qual_wfl = QUAL_WFL (q); /* 15.10.1 Field Access Using a Primary */ switch (TREE_CODE (qual_wfl)) { case CALL_EXPR: case NEW_CLASS_EXPR: /* If the access to the function call is a non static field, build the code to access it. */ if (DECL_P (decl) && !FIELD_STATIC (decl)) { decl = maybe_access_field (decl, *where_found, type); if (decl == error_mark_node) return 1; } /* And code for the function call */ if (complete_function_arguments (qual_wfl)) return 1; *where_found = patch_method_invocation_stmt (qual_wfl, decl, type, &is_static, NULL); if (*where_found == error_mark_node) return 1; *type_found = type = QUAL_DECL_TYPE (*where_found); /* If the previous call was static and this one is too, build a compound expression to hold the two (because in that case, previous function calls aren't transported as forcoming function's argument. */ if (previous_call_static && is_static) { decl = build (COMPOUND_EXPR, type, decl, *where_found); TREE_SIDE_EFFECTS (decl) = 1; } else { previous_call_static = is_static; decl = *where_found; } continue; case CONVERT_EXPR: *where_found = decl = java_complete_tree (qual_wfl); if (decl == error_mark_node) return 1; *type_found = type = QUAL_DECL_TYPE (decl); from_cast = 1; continue; case ARRAY_REF: /* If the access to the function call is a non static field, build the code to access it. */ if (DECL_P (decl) && !FIELD_STATIC (decl)) { decl = maybe_access_field (decl, *where_found, type); if (decl == error_mark_node) return 1; } /* And code for the array reference expression */ decl = java_complete_tree (qual_wfl); if (decl == error_mark_node) return 1; type = QUAL_DECL_TYPE (decl); continue; } /* If we fall here, we weren't processing a (static) function call. */ previous_call_static = 0; /* It can be the keyword THIS */ if (EXPR_WFL_NODE (qual_wfl) == this_identifier_node) { if (!current_this) { parse_error_context (wfl, "Keyword `this' used outside allowed context"); return 1; } /* We have to generate code for intermediate acess */ *where_found = decl = current_this; type = QUAL_DECL_TYPE (decl); continue; } /* 15.10.2 Accessing Superclass Members using SUPER */ if (EXPR_WFL_NODE (qual_wfl) == super_identifier_node) { tree node; /* Check on the restricted use of SUPER */ if (METHOD_STATIC (current_function_decl) || current_class == object_type_node) { parse_error_context (wfl, "Keyword `super' used outside allowed context"); return 1; } /* Otherwise, treat SUPER as (SUPER_CLASS)THIS */ node = build_cast (EXPR_WFL_LINECOL (qual_wfl), CLASSTYPE_SUPER (current_class), build_this (EXPR_WFL_LINECOL (qual_wfl))); *where_found = decl = java_complete_tree (node); *type_found = type = QUAL_DECL_TYPE (decl); from_super = from_type = 1; continue; } /* 15.13.1: Can't search for field name in packages, so we assume a variable/class name was meant. */ if (RESOLVE_PACKAGE_NAME_P (qual_wfl)) { if (from_super || from_cast) parse_error_context ((from_cast ? qual_wfl : wfl), "No variable `%s' defined in class `%s'", IDENTIFIER_POINTER (EXPR_WFL_NODE (qual_wfl)), lang_printable_name (type)); else parse_error_context (qual_wfl, "Undefined variable or class name: `%s'", IDENTIFIER_POINTER (EXPR_WFL_NODE (qual_wfl))); return 1; } /* We have a type name. It's been already resolved when the expression was qualified. */ else if (RESOLVE_TYPE_NAME_P (qual_wfl)) { if (!(decl = QUAL_RESOLUTION (q))) return 1; /* Error reported already */ if (not_accessible_p (TREE_TYPE (decl), decl, 0)) { parse_error_context (qual_wfl, "Can't access %s field `%s.%s' from `%s'", java_accstring_lookup (get_access_flags_from_decl (decl)), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))), IDENTIFIER_POINTER (DECL_NAME (decl)), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (current_class)))); return 1; } type = TREE_TYPE (decl); from_type = 1; } /* We resolve and expression name */ else { tree field_decl; /* If there exists an early resolution, use it. That occurs only once and we know that there are more things to come. Don't do that when processing something after SUPER (we need more thing to be put in place below */ if (!from_super && QUAL_RESOLUTION (q)) { decl = QUAL_RESOLUTION (q); *type_found = type; } /* We have to search for a field, knowing the type of its container. The flag FROM_TYPE indicates that we resolved the last member of the expression as a type name, which means that for the resolution of this field, will check on other errors than if the it was resolved as a member of an other field. */ else { int is_static; if (!from_type && !JREFERENCE_TYPE_P (type)) { parse_error_context (qual_wfl, "Attempt to reference field `%s' in `%s %s'", IDENTIFIER_POINTER (EXPR_WFL_NODE (qual_wfl)), lang_printable_name (type), IDENTIFIER_POINTER (DECL_NAME (field_decl))); return 1; } if (!(field_decl = lookup_field_wrapper (type, EXPR_WFL_NODE (qual_wfl)))) { parse_error_context (qual_wfl, "No variable `%s' defined in class `%s'", IDENTIFIER_POINTER (EXPR_WFL_NODE (qual_wfl)), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)))); return 1; } /* Check on accessibility here */ if (not_accessible_p (type, field_decl, from_super)) { parse_error_context (qual_wfl, "Can't access %s field `%s.%s' from `%s'", java_accstring_lookup (get_access_flags_from_decl (field_decl)), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))), IDENTIFIER_POINTER (DECL_NAME (field_decl)), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (current_class)))); return 1; } /* There are things to check when fields are accessed from type. There are no restrictions on a static declaration of the field when it is accessed from an interface */ is_static = FIELD_STATIC (field_decl); if (!from_super && from_type && !TYPE_INTERFACE_P (type) && !is_static) { parse_error_context (qual_wfl, "Can't make a static reference to nonstatic " "variable `%s' in class `%s'", IDENTIFIER_POINTER (EXPR_WFL_NODE (qual_wfl)), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)))); return 1; } from_cast = from_super = 0; /* If we need to generate something to get a proper handle on what this field is accessed from, do it now. */ if (!is_static) { decl = maybe_access_field (decl, *where_found, type); if (decl == error_mark_node) return 1; } /* We want to keep the location were found it, and the type we found. */ *where_found = decl; *type_found = type; /* This is the decl found and eventually the next one to search from */ decl = field_decl; } from_type = 0; type = QUAL_DECL_TYPE (decl); } } *found_decl = decl; return 0; } /* 6.6 Qualified name and access control. Returns 1 if MEMBER (a decl) can't be accessed from REFERENCE (a record type). */ int not_accessible_p (reference, member, from_super) tree reference, member; int from_super; { int access_flag = get_access_flags_from_decl (member); /* Access always granted for members declared public */ if (access_flag & ACC_PUBLIC) return 0; /* Check access on protected members */ if (access_flag & ACC_PROTECTED) { /* Access granted if it occurs from within the package containing the class in which the protected member is declared */ if (class_in_current_package (DECL_CONTEXT (member))) return 0; if (TREE_CODE (member) == FUNCTION_DECL && DECL_CONSTRUCTOR_P (member)) { /* Access from SUPER is granted */ if (from_super) return 0; /* Otherwise, access isn't granted */ return 1; } else { /* If accessed with the form `super.member', then access is granted */ if (from_super) return 0; /* Otherwise, access is granted if occuring from the class where member is declared or a subclass of it */ if (inherits_from_p (reference, current_class)) return 0; } return 1; } /* Check access on private members. Access is granted only if it occurs from within the class in witch it is declared*/ if (access_flag & ACC_PRIVATE) return (current_class == DECL_CONTEXT (member) ? 0 : 1); /* Default access are permitted only when occuring within the package in which the type (REFERENCE) is declared. In other words, REFERENCE is defined in the current package */ if (ctxp->package) return !class_in_current_package (reference); /* Otherwise, access is granted */ return 0; } /* Returns 1 if class was declared in the current package, 0 otherwise */ static int class_in_current_package (class) tree class; { static tree cache = NULL_TREE; int qualified_flag; tree left; if (cache == class) return 1; qualified_flag = QUALIFIED_P (DECL_NAME (TYPE_NAME (class))); /* If the current package is empty and the name of CLASS is qualified, class isn't in the current package. If there is a current package and the name of the CLASS is not qualified, class isn't in the current package */ if (!ctxp->package && qualified_flag || ctxp->package && !qualified_flag) return 0; /* If there is not package and the name of CLASS isn't qualified, they belong to the same unnamed package */ if (!ctxp->package && !qualified_flag) return 1; /* Compare the left part of the name of CLASS with the package name */ breakdown_qualified (&left, NULL, DECL_NAME (TYPE_NAME (class))); if (ctxp->package == left) { cache = class; return 1; } return 0; } /* This function may generate code to access DECL from WHERE. This is done only if certain conditions meet. */ static tree maybe_access_field (decl, where, type) tree decl, where, type; { if (DECL_P (decl) && decl != current_this && (!(TREE_CODE (decl) != PARM_DECL && FIELD_STATIC (decl))) && !IDENTIFIER_LOCAL_VALUE (DECL_NAME (decl))) decl = build_field_ref (where ? where : current_this, type, DECL_NAME (decl)); return decl; } /* Build a method invocation statement, by patching PATCH. If non NULL and according to the situation, PRIMARY and WHERE may be used. IS_STATIC is set to 1 if the invoked function is static. */ static tree patch_method_invocation_stmt (patch, primary, where, is_static, ret_decl) tree patch, primary, where; int *is_static; tree *ret_decl; { tree wfl = TREE_OPERAND (patch, 0); tree args = TREE_OPERAND (patch, 1); tree name = EXPR_WFL_NODE (wfl); tree list, class_type; /* Should be overriden if everything goes well. Otherwise, if something fails, it should keep this value. It stop the evaluation of a bogus assignment. See java_complete_tree, MODIFY_EXPR: for the reasons why we sometimes want to keep on evaluating an assignment */ TREE_TYPE (patch) = error_mark_node; /* Since lookup functions are messing with line numbers, save the context now. */ java_parser_context_save_global (); /* 15.11.1: Compile-Time Step 1: Determine Class or Interface to Search */ /* Resolution of qualified name, excluding constructors */ if (QUALIFIED_P (name) && !CALL_CONSTRUCTOR_P (patch)) { tree class_decl, identifier, identifier_wfl; /* Extract the last IDENTIFIER of the qualified expression. This is a wfl and we will use it's location data during error report. */ identifier_wfl = cut_identifier_in_qualified (wfl); identifier = EXPR_WFL_NODE (identifier_wfl); /* Given the context, IDENTIFIER is syntactically qualified as a MethodName. We need to qualify what's before */ qualify_ambiguous_name (wfl); /* Package resolution are erroneous */ if (RESOLVE_PACKAGE_NAME_P (wfl)) { tree remainder; breakdown_qualified (&remainder, NULL, EXPR_WFL_NODE (wfl)); parse_error_context (wfl, "Can't search method `%s' in package " "`%s'",IDENTIFIER_POINTER (identifier), IDENTIFIER_POINTER (remainder)); PATCH_METHOD_RETURN_ERROR (); } /* We're resolving a call from a type */ else if (RESOLVE_TYPE_NAME_P (wfl)) { tree decl = QUAL_RESOLUTION (EXPR_WFL_QUALIFICATION (wfl)); tree name = DECL_NAME (decl); tree type; class_decl = resolve_and_layout (name, wfl); if (CLASS_INTERFACE (decl)) { parse_error_context (identifier_wfl, "Can't make static reference to method " "`%s' in interface `%s'", IDENTIFIER_POINTER (identifier), IDENTIFIER_POINTER (name)); PATCH_METHOD_RETURN_ERROR (); } /* Look the method up in the type selector. The method ought to be static. */ type = TREE_TYPE (class_decl); list = lookup_method_invoke (0, wfl, type, identifier, args); if (list && !METHOD_STATIC (list)) { char *fct_name = strdup ((char *)lang_printable_name (list)); parse_error_context (identifier_wfl, "Can't make static reference to method `%s %s' in class `%s'", lang_printable_name (TREE_TYPE (TREE_TYPE (list))), fct_name, IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)))); free (fct_name); PATCH_METHOD_RETURN_ERROR (); } } /* We're resolving an expression name */ else { tree field, type; /* 1- Find the field to which the call applies */ field = resolve_field_access (wfl, NULL, &type); if (field == error_mark_node) PATCH_METHOD_RETURN_ERROR (); /* 2- Do the layout of the class where the last field was found, so we can search it. */ class_decl = resolve_and_layout (DECL_NAME (TYPE_NAME (type)), NULL_TREE); /* 3- Retrieve a filtered list of method matches, Refine if necessary. In any cases, point out errors. */ list = lookup_method_invoke (0, identifier_wfl, type, identifier, args); /* 4- Add the field as an argument */ args = tree_cons (NULL_TREE, field, nreverse (args)); } /* CLASS_TYPE is used during the call to not_accessible_p and IDENTIFIER_WFL will be used to report any problem further */ class_type = TREE_TYPE (class_decl); wfl = identifier_wfl; } /* Resolution of simple names, names generated after a primary: or constructors */ else { tree class_to_search; int lc; /* Looking for Constructor */ /* We search constructor in their target class */ if (CALL_CONSTRUCTOR_P (patch)) { class_to_search = resolve_no_layout (EXPR_WFL_NODE (wfl), NULL_TREE); if (!class_to_search) { parse_error_context (wfl, "Class `%s' not found in type declaration", IDENTIFIER_POINTER (EXPR_WFL_NODE (wfl))); PATCH_METHOD_RETURN_ERROR (); } /* Can't instantiate an abstract class */ if (CLASS_ABSTRACT (class_to_search)) { parse_error_context (wfl, "Class `%s' is an abstract class. It can't be " "instantiated", IDENTIFIER_POINTER (EXPR_WFL_NODE (wfl))); PATCH_METHOD_RETURN_ERROR (); } class_to_search = TREE_TYPE (class_to_search); lc = 1; } /* This is a regular search in the local class, unless an alternate class is specified. */ else { class_to_search = (where ? where : current_class); lc = 0; } /* NAME is a simple identifier or comes from a primary. Search in the class whose declaration contain the method being invoked. */ list = lookup_method_invoke (lc, wfl, class_to_search, name, args); /* Don't continue if no method were found, as the next statement can't be executed then. */ if (!list) PATCH_METHOD_RETURN_ERROR (); /* Check for static reference if non static methods */ if (check_for_static_method_reference (wfl, patch, list, class_to_search, primary)) PATCH_METHOD_RETURN_ERROR (); /* Non static/constructor methods are called with the current object extra argument. If method is resolved as a primary, use the primary otherwise use the current THIS. */ args = nreverse (args); if (!CALL_CONSTRUCTOR_P (patch) && !METHOD_STATIC (list)) args = tree_cons (NULL_TREE, primary ? primary : current_this, args); class_type = class_to_search; } /* Merge point of all resolution schemes. If we have nothing, this is an error, already signaled */ if (!list) PATCH_METHOD_RETURN_ERROR (); /* Check accessibility, position the is_static flag, build and return the call */ if (not_accessible_p (class_type, list, 0)) { char *fct_name = strdup ((char *)lang_printable_name (list)); parse_error_context (wfl, "Can't access %s method `%s %s.%s' from `%s'", java_accstring_lookup (get_access_flags_from_decl (list)), lang_printable_name (TREE_TYPE (TREE_TYPE (list))), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (class_type))), fct_name, IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (current_class)))); free (fct_name); PATCH_METHOD_RETURN_ERROR (); } if (is_static) *is_static = METHOD_STATIC (list); java_parser_context_restore_global (); /* Sometimes, we want the decl of the selected method. Such as for EH checking */ if (ret_decl) *ret_decl = list; return patch_invoke (patch, list, args, wfl); } /* Check that we're not trying to do a static reference to a method in non static method. Return 1 if it's the case, 0 otherwise. */ static int check_for_static_method_reference (wfl, node, method, where, primary) tree wfl, node, method, where, primary; { if (METHOD_STATIC (current_function_decl) && !METHOD_STATIC (method) && !primary && !CALL_CONSTRUCTOR_P (node)) { char *fct_name = strdup ((char *)lang_printable_name (method)); parse_error_context (wfl, "Can't make static reference to method `%s %s' in class `%s'", lang_printable_name (TREE_TYPE (TREE_TYPE (method))), fct_name, IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (where)))); free (fct_name); return 1; } return 0; } /* Patch an invoke expression METHOD and ARGS, based on its invocation mode. */ static tree patch_invoke (patch, method, args, cl) tree patch, method, args; tree cl; { int im; tree dtable, func; tree signature = build_java_signature (TREE_TYPE (method)); tree original_call, node, t, ta; /* Last step for args: convert build-in types */ for (t = TYPE_ARG_TYPES (TREE_TYPE (method)), ta = args; t && ta; t = TREE_CHAIN (t), ta = TREE_CHAIN (ta)) if (JPRIMITIVE_TYPE_P (TREE_TYPE (TREE_VALUE (ta))) && TREE_TYPE (TREE_VALUE (ta)) != TREE_VALUE (t)) TREE_VALUE (ta) = convert (TREE_VALUE (t), TREE_VALUE (ta)); switch ((im = invocation_mode (method, 0))) { case INVOKE_VIRTUAL: dtable = invoke_build_dtable (0, args); func = build_invokevirtual (dtable, method); break; case INVOKE_STATIC: func = build_known_method_ref (method, TREE_TYPE (method), DECL_CONTEXT (method), signature, args); break; default: fatal ("Unknown invocation mode - build_invoke"); return NULL_TREE; } /* Ensure self_type is initialized, (invokestatic). FIXME */ func = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (method)), func); TREE_TYPE (patch) = TREE_TYPE (TREE_TYPE (method)); TREE_OPERAND (patch, 0) = func; TREE_OPERAND (patch, 1) = args; original_call = patch; /* We're calling a constructor. New is called an its returned value is an argument to the constructor. We build a COMPOUND_EXPR and use saved expression so that the overall NEW expression value is a pointer to a newly created and initialized class. */ if (CALL_CONSTRUCTOR_P (original_call)) { tree class = DECL_CONTEXT (method); tree c1, saved_new, size, new; if (!TYPE_SIZE (class)) safe_layout_class (class); size = size_in_bytes (class); new = build (CALL_EXPR, promote_type (class), build_address_of (alloc_object_node), tree_cons (NULL_TREE, build_class_ref (class), build_tree_list (NULL_TREE, size_in_bytes (class))), NULL_TREE); saved_new = save_expr (new); c1 = build_tree_list (NULL_TREE, saved_new); TREE_CHAIN (c1) = TREE_OPERAND (original_call, 1); TREE_OPERAND (original_call, 1) = c1; TREE_SET_CODE (original_call, CALL_EXPR); patch = build (COMPOUND_EXPR, TREE_TYPE (new), patch, saved_new); } return patch; } static int invocation_mode (method, super) tree method; int super; { int access = get_access_flags_from_decl (method); if (access & ACC_STATIC || access & ACC_FINAL) return INVOKE_STATIC; if (CLASS_FINAL (TYPE_NAME (DECL_CONTEXT (method)))) return INVOKE_STATIC; if (super) return INVOKE_SUPER; if (CLASS_INTERFACE (TYPE_NAME (DECL_CONTEXT (method)))) return INVOKE_INTERFACE; if (DECL_CONSTRUCTOR_P (method)) return INVOKE_STATIC; return INVOKE_VIRTUAL; } /* Retrieve a refined list of matching methods. It covers the step 15.11.2 (Compile-Time Step 2) */ static tree lookup_method_invoke (lc, cl, class, name, arg_list) int lc; tree cl; tree class, name, arg_list; { tree method = make_node (FUNCTION_TYPE); tree arg_type_list = NULL_TREE; tree signature, list, node, scratch; char *candidates; /* Used for error report */ for (node = arg_list; node; node = TREE_CHAIN (node)) { tree current_arg = TREE_TYPE (TREE_VALUE (node)); if (TREE_CODE (current_arg) == RECORD_TYPE) current_arg = promote_type (current_arg); arg_type_list = tree_cons (NULL_TREE, current_arg, arg_type_list); } TYPE_ARG_TYPES (method) = arg_type_list; if (!lc) { list = find_applicable_accessible_methods_list (class, name, arg_type_list); list = find_most_specific_methods_list (list); } else { TREE_TYPE (method) = void_type_node; signature = build_java_signature (method); list = lookup_java_constructor (class, signature); } if (lc && list) return list; if (list && !TREE_CHAIN (list)) return TREE_VALUE (list); /* Issue an error. List candidates if any. Candidates are listed only if accessible (non accessible methods may end-up here for the sake of a better error report). */ candidates = NULL; if (list) { tree current; obstack_grow (&temporary_obstack, ". Candidates are:\n", 18); for (current = list; current; current = TREE_CHAIN (current)) { tree cm = TREE_VALUE (current); char string [4096]; if (!cm || not_accessible_p (class, cm, 0)) continue; signature = build_java_argument_signature (TREE_TYPE (cm)); sprintf (string, " `%s(%s)' in `%s'%s", IDENTIFIER_POINTER (name), IDENTIFIER_POINTER (signature), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (cm)))), (TREE_CHAIN (current) ? "\n" : "")); obstack_grow (&temporary_obstack, string, strlen (string)); } obstack_1grow (&temporary_obstack, '\0'); candidates = obstack_finish (&temporary_obstack); } /* Issue the error message */ signature = build_java_argument_signature (method); parse_error_context (cl, "Can't find method `%s(%s)' in class `%s'%s", IDENTIFIER_POINTER (name), IDENTIFIER_POINTER (signature), IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (class))), (candidates ? candidates : "")); return NULL_TREE; } /* 15.11.2.1: Find Methods that are Applicable and Accessible */ static tree find_applicable_accessible_methods_list (class, name, arglist) tree class, name, arglist; { tree method; tree list = NULL_TREE, all_list = NULL_TREE; while (class != NULL_TREE) { for (method = TYPE_METHODS (class); method != NULL_TREE; method = TREE_CHAIN (method)) { /* Names have to match and we're not looking for constructor */ if (DECL_NAME (method) != name || DECL_CONSTRUCTOR_P (method)) continue; if (argument_types_convertible (method, arglist)) { /* Retain accessible methods only */ if (!not_accessible_p (class, method, 0)) list = tree_cons (NULL_TREE, method, list); else /* Also retain all selected method here */ all_list = tree_cons (NULL_TREE, method, list); } } class = CLASSTYPE_SUPER (class); } /* Either return the list obtained or all selected (but inaccessible) methods for better error report. */ return (!list ? all_list : list); } /* 15.11.2.2 Choose the Most Specific Method */ static tree find_most_specific_methods_list (list) tree list; { int max = 0; tree current, new_list = NULL_TREE; for (current = list; current; current = TREE_CHAIN (current)) { tree method; DECL_SPECIFIC_COUNT (TREE_VALUE (current)) = 0; for (method = list; method; method = TREE_CHAIN (method)) { /* Don't test a method against itself */ if (method == current) continue; /* Compare arguments and location where method where declared */ if (argument_types_convertible (TREE_VALUE (method), TREE_VALUE (current)) && valid_method_invocation_conversion_p (DECL_CONTEXT (TREE_VALUE (method)), DECL_CONTEXT (TREE_VALUE (current)))) { int v = ++DECL_SPECIFIC_COUNT (TREE_VALUE (current)); max = (v > max ? v : max); } } } /* Review the list and select the maximally specific methods */ for (current = list; current; current = TREE_CHAIN (current)) if (DECL_SPECIFIC_COUNT (TREE_VALUE (current)) == max) new_list = tree_cons (NULL_TREE, TREE_VALUE (current), new_list); /* If we can't find one, lower expectations and try to gather multiple maximally specific methods */ while (!new_list) { while (--max > 0) { if (DECL_SPECIFIC_COUNT (TREE_VALUE (current)) == max) new_list = tree_cons (NULL_TREE, TREE_VALUE (current), new_list); } return new_list; } return new_list; } /* Make sure that the type of each M2_OR_ARGLIST arguments can be converted by method invocation conversion (5.3) to the type of the corresponding parameter of M1. Implementation expects M2_OR_ARGLIST to change less often than M1. */ static int argument_types_convertible (m1, m2_or_arglist) tree m1, m2_or_arglist; { static tree m2_arg_value = NULL_TREE; static tree m2_arg_cache = NULL_TREE; register tree m1_arg, m2_arg; m1_arg = TYPE_ARG_TYPES (TREE_TYPE (m1)); if (!METHOD_STATIC (m1)) m1_arg = TREE_CHAIN (m1_arg); if (m2_arg_value == m2_or_arglist) m2_arg = m2_arg_cache; else { /* M2_OR_ARGLIST can be a function DECL or a raw list of argument types */ if (m2_or_arglist && TREE_CODE (m2_or_arglist) == FUNCTION_DECL) { m2_arg = TYPE_ARG_TYPES (TREE_TYPE (m2_or_arglist)); if (!METHOD_STATIC (m2_or_arglist)) m2_arg = TREE_CHAIN (m2_arg); } else m2_arg = m2_or_arglist; m2_arg_value = m2_or_arglist; m2_arg_cache = m2_arg; } while (m1_arg && m2_arg) { if (!valid_method_invocation_conversion_p (TREE_VALUE (m1_arg), TREE_VALUE (m2_arg))) break; m1_arg = TREE_CHAIN (m1_arg); m2_arg = TREE_CHAIN (m2_arg); } return (!m1_arg && !m2_arg ? 1 : 0); } /* Qualification routines */ static void qualify_ambiguous_name (id) tree id; { tree qual, qual_wfl, name, decl, ptr_type, saved_current_class; int again, super_found = 0, this_found = 0; /* We first qualify the first element, then derive qualification of others based on the first one. If the first element is qualified by a resolution (field or type), this resolution is stored in the QUAL_RESOLUTION of the qual element being examined. We need to save the current_class since the use of SUPER might change the its value. */ saved_current_class = current_class; qual = EXPR_WFL_QUALIFICATION (id); do { /* Simple qualified expression feature a qual_wfl that is a WFL. Expression derived from a primary feature more complicated things like a CALL_EXPR. Expression from primary need to be worked out to extract the part on which the qualification will take place. */ qual_wfl = QUAL_WFL (qual); switch (TREE_CODE (qual_wfl)) { case CALL_EXPR: qual_wfl = TREE_OPERAND (qual_wfl, 0); if (TREE_CODE (qual_wfl) != EXPR_WITH_FILE_LOCATION) { qual = EXPR_WFL_QUALIFICATION (qual_wfl); qual_wfl = QUAL_WFL (qual); } break; case NEW_CLASS_EXPR: case CONVERT_EXPR: case ARRAY_REF: qual_wfl = TREE_OPERAND (qual_wfl, 0); break; } name = EXPR_WFL_NODE (qual_wfl); ptr_type = current_class; again = 0; /* If we have a THIS (from a primary), we set the context accordingly */ if (name == this_identifier_node) { qual = TREE_CHAIN (qual); qual_wfl = QUAL_WFL (qual); name = EXPR_WFL_NODE (qual_wfl); this_found = 1; } /* If we have a SUPER, we set the context accordingly */ if (name == super_identifier_node) { current_class = CLASSTYPE_SUPER (ptr_type); /* Check that there is such a thing as a super class. If not, return. The error will be caught later on, during the resolution */ if (!current_class) { current_class = saved_current_class; return; } qual = TREE_CHAIN (qual); /* Do one more interation to set things up */ super_found = again = 1; } } while (again); /* If name appears within the scope of a location variable declaration or parameter declaration, then it is an expression name. We don't carry this test out if we're in the context of the use of SUPER or THIS */ if (!this_found && !super_found && (decl = IDENTIFIER_LOCAL_VALUE (name))) { RESOLVE_EXPRESSION_NAME_P (qual_wfl) = 1; QUAL_RESOLUTION (qual) = decl; } /* If within the class/interface NAME was found to be used there exists a (possibly inherited) field named NAME, then this is an expression name. */ else if ((decl = lookup_field_wrapper (ptr_type, name))) { RESOLVE_EXPRESSION_NAME_P (qual_wfl) = 1; QUAL_RESOLUTION (qual) = decl; } /* We reclassify NAME as a type name if: - NAME is a class/interface declared within the compilation unit containing NAME, - NAME is imported via a single-type-import declaration, - NAME is declared in an another compilation unit of the package of the compilation unit containing NAME, - NAME is declared by exactly on type-import-on-demand declaration of the compilation unit containing NAME. */ else if ((decl = resolve_and_layout (name, NULL_TREE))) { RESOLVE_TYPE_NAME_P (qual_wfl) = 1; QUAL_RESOLUTION (qual) = decl; } /* Method call are expression name */ else if (TREE_CODE (QUAL_WFL (qual)) == CALL_EXPR) RESOLVE_EXPRESSION_NAME_P (qual_wfl) = 1; /* Check here that NAME isn't declared by more than one type-import-on-demand declaration of the compilation unit containing NAME. FIXME */ /* Otherwise, NAME is reclassified as a package name */ else RESOLVE_PACKAGE_NAME_P (qual_wfl) = 1; /* Propagate the qualification accross other components of the qualified name */ for (qual = TREE_CHAIN (qual); qual; qual_wfl = QUAL_WFL (qual), qual = TREE_CHAIN (qual)) { if (RESOLVE_PACKAGE_NAME_P (qual_wfl)) RESOLVE_PACKAGE_NAME_P (QUAL_WFL (qual)) = 1; else RESOLVE_EXPRESSION_NAME_P (QUAL_WFL (qual)) = 1; } /* Store the global qualification for the ambiguous part of ID back into ID fields */ if (RESOLVE_EXPRESSION_NAME_P (qual_wfl)) RESOLVE_EXPRESSION_NAME_P (id) = 1; else if (RESOLVE_TYPE_NAME_P (qual_wfl)) RESOLVE_TYPE_NAME_P (id) = 1; else if (RESOLVE_PACKAGE_NAME_P (qual_wfl)) RESOLVE_PACKAGE_NAME_P (id) = 1; /* Restore the current class */ current_class = saved_current_class; } static int breakdown_qualified (left, right, source) tree *left, *right, source; { char *p = IDENTIFIER_POINTER (source), *base; int l = IDENTIFIER_LENGTH (source); /* Breakdown NAME into REMAINDER . IDENTIFIER */ base = p; p += (l-1); while (*p != '.' && p != base) p--; /* We didn't find a '.'. Return an error */ if (p == base) return 1; *p = '\0'; if (right) *right = get_identifier (p+1); *left = get_identifier (IDENTIFIER_POINTER (source)); *p = '.'; return 0; } /* Return 1 if N1 and N2 have identical sub-path. */ static int identical_subpath_p (n1, n2) tree n1, n2; { tree left1, left2; if (!QUALIFIED_P (n1) || !QUALIFIED_P (n2)) return n1 == n2; breakdown_qualified (&left1, NULL, n1); breakdown_qualified (&left2, NULL, n2); return left1 == left2; } static int not_initialized_as_it_should_p (decl) tree decl; { if (DECL_P (decl)) { if (TREE_CODE (decl) == FIELD_DECL && METHOD_STATIC (current_function_decl)) return 0; return DECL_P (decl) && !INITIALIZED_P (decl); } return 0; } /* Patch tree nodes in a function body. When a BLOCK is found, push local variable decls if present. */ static tree java_complete_tree (node) tree node; { tree nn, cn, wfl_op1, wfl_op2; int flag; /* CONVERT_EXPR always has its type set, even though it needs to be worked out. */ if (TREE_TYPE (node) && TREE_CODE (node) != CONVERT_EXPR) return node; /* The switch block implements cases processing container nodes first. Contained nodes are always written back. Leaves come next and return a value. */ switch (TREE_CODE (node)) { case BLOCK: /* 1- Block section. Set the local values on decl names so we can identify them faster when they're referenced. At that stage, identifiers are legal so we don't check for declaration errors. */ for (cn = BLOCK_EXPR_DECLS (node); cn; cn = TREE_CHAIN (cn)) { DECL_CONTEXT (cn) = current_function_decl; IDENTIFIER_LOCAL_VALUE (DECL_NAME (cn)) = cn; INITIALIZED_P (cn) = 0; } if (BLOCK_EXPR_BODY (node)) { BLOCK_EXPR_BODY (node) = java_complete_tree (BLOCK_EXPR_BODY (node)); if (BLOCK_EXPR_BODY (node) == error_mark_node) return error_mark_node; } /* Turn local bindings to null */ for (cn = BLOCK_EXPR_DECLS (node); cn; cn = TREE_CHAIN (cn)) IDENTIFIER_LOCAL_VALUE (DECL_NAME (cn)) = NULL_TREE; TREE_TYPE (node) = void_type_node; break; /* 2- They are expressions but ultimately deal with statements */ case THROW_EXPR: wfl_op1 = TREE_OPERAND (node, 0); COMPLETE_CHECK_OP_0 (node); return patch_throw_statement (node, wfl_op1); case SYNCHRONIZED_EXPR: wfl_op1 = TREE_OPERAND (node, 0); COMPLETE_CHECK_OP_0 (node); COMPLETE_CHECK_OP_1 (node); return patch_synchronized_statement (node, wfl_op1); case TRY_EXPR: return patch_try_statement (node); case LABELED_BLOCK_EXPR: PUSH_LABELED_BLOCK (node); if (LABELED_BLOCK_BODY (node)) COMPLETE_CHECK_OP_1 (node); TREE_TYPE (node) = void_type_node; POP_LABELED_BLOCK (); return node; case EXIT_BLOCK_EXPR: /* We don't complete operand 1, because it's the return value of the EXIT_BLOCK_EXPR which doesn't exist it Java */ return patch_bc_statement (node); case SWITCH_EXPR: case LOOP_EXPR: PUSH_LOOP (node); /* Check whether the loop was enclosed in a labeled statement. If not, create one, insert the loop in it and return the node */ nn = patch_loop_statement (node); /* Anyways, walk the body of the loop */ if (TREE_CODE (node) == LOOP_EXPR) TREE_OPERAND (node, 0) = java_complete_tree (TREE_OPERAND (node, 0)); /* Switch statement: walk the switch expression and the cases */ else node = patch_switch_statement (node); if (TREE_OPERAND (node, 0) == error_mark_node) return error_mark_node; TREE_TYPE (nn) = TREE_TYPE (node) = void_type_node; /* If we returned something different, that's because we inserted a label. Pop the label too. */ if (nn != node) POP_LABELED_BLOCK (); POP_LOOP (); return nn; case EXIT_EXPR: TREE_OPERAND (node, 0) = java_complete_tree (TREE_OPERAND (node, 0)); return patch_exit_expr (node); case COND_EXPR: /* Condition */ TREE_OPERAND (node, 0) = java_complete_tree (TREE_OPERAND (node, 0)); if (TREE_OPERAND (node, 0) == error_mark_node) return error_mark_node; /* then-else branches */ TREE_OPERAND (node, 1) = java_complete_tree (TREE_OPERAND (node, 1)); if (TREE_OPERAND (node, 1) == error_mark_node) return error_mark_node; TREE_OPERAND (node, 2) = java_complete_tree (TREE_OPERAND (node, 2)); if (TREE_OPERAND (node, 2) == error_mark_node) return error_mark_node; return patch_if_else_statement (node); break; /* 3- Expression section */ case COMPOUND_EXPR: TREE_OPERAND (node, 0) = java_complete_tree (TREE_OPERAND (node, 0)); TREE_OPERAND (node, 1) = java_complete_tree (TREE_OPERAND (node, 1)); if (TREE_OPERAND (node, 1) == error_mark_node) return error_mark_node; TREE_TYPE (node) = TREE_TYPE (TREE_OPERAND (node, 1)); break; case RETURN_EXPR: return patch_return (node); case EXPR_WITH_FILE_LOCATION: if (!EXPR_WFL_NODE (node) /* Or a PRIMARY flag ? */ || TREE_CODE (EXPR_WFL_NODE (node)) == IDENTIFIER_NODE) return resolve_expression_name (node); else { EXPR_WFL_NODE (node) = java_complete_tree (EXPR_WFL_NODE (node)); TREE_SIDE_EFFECTS (node) = 1; if (EXPR_WFL_NODE (node) == error_mark_node) { /* Its important for the evaluation of assignment that this mark on the TREE_TYPE is propagated. */ TREE_TYPE (node) = error_mark_node; return error_mark_node; } else TREE_TYPE (node) = TREE_TYPE (EXPR_WFL_NODE (node)); } break; case NEW_ARRAY_EXPR: /* Patch all the dimensions */ flag = 0; for (cn = TREE_OPERAND (node, 1); cn; cn = TREE_CHAIN (cn)) { int location = EXPR_WFL_LINECOL (TREE_VALUE (cn)); tree dim = java_complete_tree (TREE_VALUE (cn)); if (dim == error_mark_node) { flag = 1; continue; } else { TREE_VALUE (cn) = dim; /* Setup the location of the current dimension, for later error report. */ TREE_PURPOSE (cn) = build_expr_wfl (NULL_TREE, input_filename, 0, 0); EXPR_WFL_LINECOL (TREE_PURPOSE (cn)) = location; } } /* They complete the array creation expression, if no errors were found. */ return (flag ? error_mark_node : patch_newarray (node)); case NEW_CLASS_EXPR: case CALL_EXPR: /* Complete function's argument(s) first */ if (complete_function_arguments (node)) return error_mark_node; else { tree decl; node = patch_method_invocation_stmt (node, NULL_TREE, NULL_TREE, 0, &decl); if (node != error_mark_node) check_thrown_exceptions (EXPR_WFL_LINECOL (node), decl); return node; } case MODIFY_EXPR: /* Save potential wfls */ wfl_op1 = TREE_OPERAND (node, 0); wfl_op2 = TREE_OPERAND (node, 1); TREE_OPERAND (node, 0) = java_complete_tree (wfl_op1); if (TREE_OPERAND (node, 0) == error_mark_node) return error_mark_node; if (COMPOUND_ASSIGN_P (wfl_op2)) { tree lvalue; tree other = java_complete_tree (TREE_OPERAND (wfl_op2, 0)); /* Hand stablize the lhs on both places */ lvalue = stabilize_reference (other); TREE_OPERAND (node, 0) = lvalue; TREE_OPERAND (TREE_OPERAND (node, 1), 0) = lvalue; } /* There are cases where the type of RHS is fixed. In those cases, if the evaluation of the RHS fails, we further the evaluation of the assignment to detect more errors. */ nn = java_complete_tree (TREE_OPERAND (node, 1)); if (nn == error_mark_node) { /* It's hopeless, but we can further things on to discover an error during the assignment. In any cases, the assignment operation fails. */ if (TREE_CODE (TREE_OPERAND (node, 1)) != EXPR_WITH_FILE_LOCATION && TREE_TYPE (TREE_OPERAND (node, 1)) != error_mark_node) patch_assignment (node, wfl_op1, wfl_op2); /* Now, we still mark the lhs as initialized */ if (DECL_P (TREE_OPERAND (node, 0))) INITIALIZED_P (TREE_OPERAND (node, 0)) = 1; return error_mark_node; } TREE_OPERAND (node, 1) = nn; /* In case we're handling = with a String as a RHS, we need to produce a String out of the RHS (it might still be a STRING_CST or a StringBuffer at this stage */ if ((nn = patch_string (TREE_OPERAND (node, 1)))) TREE_OPERAND (node, 1) = nn; return patch_assignment (node, wfl_op1, wfl_op2); case MULT_EXPR: case PLUS_EXPR: case MINUS_EXPR: case LSHIFT_EXPR: case RSHIFT_EXPR: case URSHIFT_EXPR: case BIT_AND_EXPR: case BIT_XOR_EXPR: case BIT_IOR_EXPR: case TRUNC_MOD_EXPR: case RDIV_EXPR: case TRUTH_ANDIF_EXPR: case TRUTH_ORIF_EXPR: case EQ_EXPR: case NE_EXPR: case GT_EXPR: case GE_EXPR: case LT_EXPR: case LE_EXPR: /* Operands 0 and 1 are WFL in certain cases only. patch_binop knows how to handle those cases. */ wfl_op1 = TREE_OPERAND (node, 0); wfl_op2 = TREE_OPERAND (node, 1); /* Don't complete string nodes if dealing with the PLUS operand. */ if (TREE_CODE (node) != PLUS_EXPR || !JSTRING_P (wfl_op1)) { TREE_OPERAND (node, 0) = java_complete_tree (wfl_op1); if (TREE_OPERAND (node, 0) == error_mark_node) return error_mark_node; } if (TREE_CODE (node) != PLUS_EXPR || !JSTRING_P (wfl_op2)) { TREE_OPERAND (node, 1) = java_complete_tree (wfl_op2); if (TREE_OPERAND (node, 1) == error_mark_node) return error_mark_node; } return patch_binop (node, wfl_op1, wfl_op2); case UNARY_PLUS_EXPR: case NEGATE_EXPR: case TRUTH_NOT_EXPR: case BIT_NOT_EXPR: case PREDECREMENT_EXPR: case PREINCREMENT_EXPR: case POSTDECREMENT_EXPR: case POSTINCREMENT_EXPR: case CONVERT_EXPR: /* There are cases were wfl_op1 is a WFL. patch_unaryop knows how to handle those cases. */ wfl_op1 = TREE_OPERAND (node, 0); TREE_OPERAND (node, 0) = java_complete_tree (wfl_op1); if (TREE_OPERAND (node, 0) == error_mark_node) return error_mark_node; return patch_unaryop (node, wfl_op1); case ARRAY_REF: /* There are cases were wfl_op1 is a WFL. patch_array_ref knows how to handle those cases. */ wfl_op1 = TREE_OPERAND (node, 0); TREE_OPERAND (node, 0) = java_complete_tree (wfl_op1); if (TREE_OPERAND (node, 0) == error_mark_node) return error_mark_node; if (!flag_emit_class_files) TREE_OPERAND (node, 0) = save_expr (TREE_OPERAND (node, 0)); /* The same applies to wfl_op2 */ wfl_op2 = TREE_OPERAND (node, 1); TREE_OPERAND (node, 1) = java_complete_tree (wfl_op2); if (TREE_OPERAND (node, 1) == error_mark_node) return error_mark_node; TREE_OPERAND (node, 1) = save_expr (TREE_OPERAND (node, 1)); return patch_array_ref (node, wfl_op1, wfl_op2); case THIS_EXPR: /* Can't use THIS in a static environment */ if (!current_this) { EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); parse_error_context (wfl_operator, "Keyword `this' used outside " "allowed context"); TREE_TYPE (node) = error_mark_node; return error_mark_node; } return current_this; default: /* Ok: may be we have a STRING_CST or a crafted `StringBuffer' and it's time to turn it into the appropriate String object */ if ((node = patch_string (node))) return node; fatal ("No case for tree code `%s' - java_complete_tree\n", tree_code_name [TREE_CODE (node)]); } return node; } /* Complete function call's argument. Return a non zero value is an error was found. */ static int complete_function_arguments (node) tree node; { int flag = 0; tree cn; for (cn = TREE_OPERAND (node, 1); cn; cn = TREE_CHAIN (cn)) { tree wfl = TREE_VALUE (cn), parm, temp; parm = java_complete_tree (wfl); if (parm == error_mark_node) { flag = 1; continue; } /* If have a string literal that we haven't transformed yet or a crafted string buffer, as a result of use of the the String `+' operator. Build `parm.toString()' and expand it. */ if ((temp = patch_string (parm))) parm = temp; TREE_VALUE (cn) = parm; if (not_initialized_as_it_should_p (parm)) { ERROR_VARIABLE_NOT_INITIALIZED (wfl, EXPR_WFL_NODE (wfl)); INITIALIZED_P (parm) = 1; } } return flag; } /* Sometimes (for loops and variable initialized during their declaration), we want to wrap a statement around a WFL and turn it debugable. */ static tree build_debugable_stmt (location, stmt) int location; tree stmt; { if (TREE_CODE (stmt) != EXPR_WITH_FILE_LOCATION) { stmt = build_expr_wfl (stmt, input_filename, 0, 0); EXPR_WFL_LINECOL (stmt) = location; } JAVA_MAYBE_GENERATE_DEBUG_INFO (stmt); return stmt; } static tree build_expr_block (body, decls) tree body, decls; { tree node = make_node (BLOCK); BLOCK_EXPR_DECLS (node) = decls; BLOCK_EXPR_BODY (node) = body; if (body) TREE_TYPE (node) = TREE_TYPE (body); TREE_SIDE_EFFECTS (node) = 1; return node; } /* Create a new function block and link it approriately to current function block chain */ static tree enter_block () { return (enter_a_block (build_expr_block (NULL_TREE, NULL_TREE))); } /* Link block B supercontext to the previous block. The current function DECL is used as supercontext when enter_a_block is called for the first time for a given function. The current function body (DECL_FUNCTION_BODY) is set to be block B. */ static tree enter_a_block (b) tree b; { tree fndecl = current_function_decl; if (!DECL_FUNCTION_BODY (fndecl)) { BLOCK_SUPERCONTEXT (b) = fndecl; DECL_FUNCTION_BODY (fndecl) = b; } else { BLOCK_SUPERCONTEXT (b) = DECL_FUNCTION_BODY (fndecl); DECL_FUNCTION_BODY (fndecl) = b; } return b; } /* Exit a block by changing the current function body (DECL_FUNCTION_BODY) to the current block super context, only if the block being exited isn't the method's top level one. */ static tree exit_block () { tree b = DECL_FUNCTION_BODY (current_function_decl); if (BLOCK_SUPERCONTEXT (b) != current_function_decl) DECL_FUNCTION_BODY (current_function_decl) = BLOCK_SUPERCONTEXT (b); return b; } /* Lookup for NAME in the nested function's blocks, all the way up to the current toplevel one. It complies with Java's local variable scoping rules. */ static tree lookup_name_in_blocks (name) tree name; { tree b = DECL_FUNCTION_BODY (current_function_decl); while (b != current_function_decl) { tree current; /* Paranoid sanity check. To be removed */ if (TREE_CODE (b) != BLOCK) fatal ("non block expr function body - lookup_name_in_blocks"); for (current = BLOCK_EXPR_DECLS (b); current; current = TREE_CHAIN (current)) if (DECL_NAME (current) == name) return current; b = BLOCK_SUPERCONTEXT (b); } return NULL_TREE; } static void maybe_absorb_scoping_blocks () { while (BLOCK_EXPR_ORIGIN (DECL_FUNCTION_BODY (current_function_decl))) { tree b = exit_block (); java_method_add_stmt (current_function_decl, b); SOURCE_FRONTEND_DEBUG (("Absorbing scoping block at line %d", lineno)); } } /* This section of the source is reserved to build_* functions that are building incomplete tree nodes and the patch_* functions that are completing them. */ /* Build an incomplete CALL_EXPR node. */ static tree build_method_invocation (name, args) tree name; tree args; { tree call = build (CALL_EXPR, NULL_TREE, name, args, NULL_TREE); TREE_SIDE_EFFECTS (call) = 1; EXPR_WFL_LINECOL (call) = EXPR_WFL_LINECOL (name); return call; } /* Build an incomplete new xxx(...) node. */ static tree build_new_invocation (name, args) tree name, args; { tree call = build (NEW_CLASS_EXPR, NULL_TREE, name, args, NULL_TREE); TREE_SIDE_EFFECTS (call) = 1; EXPR_WFL_LINECOL (call) = EXPR_WFL_LINECOL (name); return call; } /* Build an incomplete assignment expression. */ static tree build_assignment (op, op_location, lhs, rhs) int op, op_location; tree lhs, rhs; { tree assignment; /* Build the corresponding binop if we deal with a Compound Assignment operator. Mark the binop sub-tree as part of a Compound Assignment expression */ if (op != ASSIGN_TK) { rhs = build_binop (BINOP_LOOKUP (op), op_location, lhs, rhs); COMPOUND_ASSIGN_P (rhs) = 1; } assignment = build (MODIFY_EXPR, NULL_TREE, lhs, rhs); TREE_SIDE_EFFECTS (assignment) = 1; EXPR_WFL_LINECOL (assignment) = op_location; return assignment; } /* Print an INTEGER_CST node in a static buffer, and return the buffer. */ static char * print_int_node (node) tree node; { static char buffer [80]; if (TREE_CONSTANT_OVERFLOW (node)) sprintf (buffer, ""); if (TREE_INT_CST_HIGH (node) == 0) sprintf (buffer, HOST_WIDE_INT_PRINT_UNSIGNED, TREE_INT_CST_LOW (node)); else if (TREE_INT_CST_HIGH (node) == -1 && TREE_INT_CST_LOW (node) != 0) { buffer [0] = '-'; sprintf (&buffer [1], HOST_WIDE_INT_PRINT_UNSIGNED, -TREE_INT_CST_LOW (node)); } else sprintf (buffer, HOST_WIDE_INT_PRINT_DOUBLE_HEX, TREE_INT_CST_HIGH (node), TREE_INT_CST_LOW (node)); return buffer; } /* 15.25 Assignment operators. */ static tree patch_assignment (node, wfl_op1, wfl_op2) tree node; tree wfl_op1; tree wfl_op2; { tree rhs = TREE_OPERAND (node, 1), temp; tree lvalue = TREE_OPERAND (node, 0); tree lhs_type, rhs_type, new_rhs = NULL_TREE; int all_primitive; int error_found = 0; int lvalue_from_array = 0; /* Can't assign to a final. */ if (DECL_P (lvalue) && FIELD_FINAL (lvalue)) { parse_error_context (wfl_op1, "Can't assign a value to the final variable `%s'", IDENTIFIER_POINTER (EXPR_WFL_NODE (wfl_op1))); error_found = 1; } EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); /* Lhs can be a named variable */ if (DECL_P (lvalue)) { INITIALIZED_P (lvalue) = 1; lhs_type = TREE_TYPE (lvalue); } /* Or Lhs can be a array acccess. Should that be lvalue ? FIXME + comment on reason why */ else if (TREE_CODE (wfl_op1) == ARRAY_REF) { lhs_type = TREE_TYPE (lvalue); lvalue_from_array = 1; } /* Or a field access */ else if (TREE_CODE (lvalue) == COMPONENT_REF) lhs_type = TREE_TYPE (lvalue); /* Or a function return slot */ else if (TREE_CODE (lvalue) == RESULT_DECL) lhs_type = TREE_TYPE (lvalue); /* Otherwise, this is an error */ else { parse_error_context (wfl_op1, "Invalid left hand side of assignment"); error_found = 1; } rhs_type = TREE_TYPE (rhs); /* 5.1 Try the assignment conversion for builtin type. */ if ((new_rhs = try_builtin_assignconv (wfl_op1, lhs_type, rhs))) ; /* 5.2 If it failed, try a reference conversion */ if (!new_rhs && (new_rhs = try_reference_assignconv (lhs_type, rhs))) lhs_type = promote_type (rhs_type); /* 15.25.2 If we have a compound assignment, convert RHS into the type of the LHS */ else if (COMPOUND_ASSIGN_P (TREE_OPERAND (node, 1))) new_rhs = convert (lhs_type, rhs); /* Explicit cast required. This is an error */ if (!new_rhs) { char *t1 = strdup ((char *)lang_printable_name (TREE_TYPE (rhs))); char *t2 = strdup ((char *)lang_printable_name (lhs_type)); tree wfl; char operation [32]; /* Max size known */ /* If the assignment is part of a declaration, we use the WFL of the declared variable to point out the error and call it a declaration problem. If the assignment is a genuine = operator, we call is a operator `=' problem, otherwise we call it an assignment problem. In both of these last cases, we use the WFL of the operator to indicate the error. */ if (MODIFY_EXPR_FROM_INITIALIZATION_P (node)) { wfl = wfl_op1; strcpy (operation, "declaration"); } else { wfl = wfl_operator; if (COMPOUND_ASSIGN_P (TREE_OPERAND (node, 1))) strcpy (operation, "assignment"); else if (TREE_CODE (TREE_OPERAND (node, 0)) == RESULT_DECL) strcpy (operation, "`return'"); else strcpy (operation, "`='"); } parse_error_context (wfl, (!valid_cast_to_p (rhs_type, lhs_type) ? "Incompatible type for %s. Can't convert `%s' to `%s'" : "Incompatible type for %s. Explicit cast " "needed to convert `%s' to `%s'"), operation, t1, t2); free (t1); free (t2); error_found = 1; } /* Before reporting type incompatibility errors, check that the rhs is initialized, if a variable */ if (not_initialized_as_it_should_p (rhs)) { ERROR_VARIABLE_NOT_INITIALIZED (wfl_op2, DECL_NAME (rhs)); INITIALIZED_P (rhs) = 1; } if (error_found) return error_mark_node; /* If we built a compound expression as the result of a reference assignment into an array element, return it here. */ if (TREE_CODE (node) == COMPOUND_EXPR) return node; TREE_OPERAND (node, 0) = lvalue; TREE_OPERAND (node, 1) = new_rhs; TREE_TYPE (node) = lhs_type; return node; } /* Check that type SOURCE can be cast into type DEST. If the cast can't occur at all, return 0 otherwise 1. This function is used to produce accurate error messages on the reasons why an assignment failed. */ static tree try_reference_assignconv (lhs_type, rhs) tree lhs_type, rhs; { tree new_rhs = NULL_TREE; tree rhs_type = TREE_TYPE (rhs); if (!JPRIMITIVE_TYPE_P (rhs_type) && JREFERENCE_TYPE_P (lhs_type)) { /* `null' may be assigned to any reference type */ if (rhs == null_pointer_node) new_rhs = null_pointer_node; /* Try the reference assignment conversion */ else if (valid_ref_assignconv_cast_p (rhs_type, lhs_type, 0)) new_rhs = rhs; /* This is a magic assignment that we process differently */ else if (rhs == soft_exceptioninfo_call_node) new_rhs = rhs; } return new_rhs; } /* Check that RHS can be converted into LHS_TYPE by the assignment conversion (5.2), for the cases of RHS being a builtin type. Return NULL_TREE if the conversion fails or if because RHS isn't of a builtin type. Return a converted RHS if the conversion is possible. */ static tree try_builtin_assignconv (wfl_op1, lhs_type, rhs) tree wfl_op1, lhs_type, rhs; { tree new_rhs = NULL_TREE; tree rhs_type = TREE_TYPE (rhs); /* 5.1.1 Try Identity Conversion, 5.1.2 Try Widening Primitive Conversion */ if (valid_builtin_assignconv_identity_widening_p (lhs_type, rhs_type)) new_rhs = convert (lhs_type, rhs); /* Try a narrowing primitive conversion (5.1.3): - expression is a constant expression of type int AND - variable is byte, short or char AND - The value of the expression is representable in the type of the variable */ else if (rhs_type == int_type_node && TREE_CONSTANT (rhs) && (lhs_type == byte_type_node || lhs_type == char_type_node || lhs_type == short_type_node)) { if (int_fits_type_p (rhs, lhs_type)) new_rhs = convert (lhs_type, rhs); else if (wfl_op1) /* Might be called with a NULL */ parse_warning_context (wfl_op1, "Constant expression `%s' to wide for narrowing " "primitive conversion to `%s'", print_int_node (rhs), lang_printable_name (lhs_type)); /* Reported a warning that will turn into an error further down, so we don't return */ } return new_rhs; } /* Return 1 if RHS_TYPE can be converted to LHS_TYPE by identity conversion (5.1.1) or widening primitve conversion (5.1.2). Return 0 is the conversion test fails. This implements parts the method invocation convertion (5.3). */ static int valid_builtin_assignconv_identity_widening_p (lhs_type, rhs_type) tree lhs_type, rhs_type; { int all_primitive = JPRIMITIVE_TYPE_P (lhs_type) && JPRIMITIVE_TYPE_P (rhs_type); if (!all_primitive) return 0; if (lhs_type == rhs_type) return 1; /* byte, even if it's smaller than a char can't be converted into a char. Short can't too, but the < test below takes care of that */ if (lhs_type == char_type_node && rhs_type == byte_type_node) return 0; if (JINTEGRAL_TYPE_P (rhs_type) && ((TYPE_PRECISION (rhs_type) < TYPE_PRECISION (lhs_type)) || (JFLOAT_TYPE_P (lhs_type) && TYPE_PRECISION (rhs_type) == TYPE_PRECISION (lhs_type)))) return 1; else if (JFLOAT_TYPE_P (rhs_type) && (TYPE_PRECISION (rhs_type) < TYPE_PRECISION (lhs_type))) return 1; return 0; } /* Check that something of SOURCE type can be assigned or cast to something of DEST type at runtime. Return 1 if the operation is valid, 0 otherwise. If CAST is set to 1, we're treating the case were SOURCE is cast into DEST, which borrows a lot of the assignment check. */ static int valid_ref_assignconv_cast_p (source, dest, cast) tree source; tree dest; int cast; { if (TREE_CODE (source) == POINTER_TYPE) source = TREE_TYPE (source); if (TREE_CODE (dest) == POINTER_TYPE) dest = TREE_TYPE (dest); /* Case where SOURCE is a class type */ if (TYPE_CLASS_P (source)) { if (TYPE_CLASS_P (dest)) return source == dest || inherits_from_p (source, dest) || cast && inherits_from_p (dest, source); if (TYPE_INTERFACE_P (dest)) { /* If doing a cast and SOURCE is final, the operation is always correct a compile time (because even if SOURCE does not implement DEST, a subclass of SOURCE might). */ if (cast && !CLASS_FINAL (TYPE_NAME (source))) return 1; /* Otherwise, SOURCE must implement DEST */ return interface_of_p (dest, source); } /* DEST is an array, cast permited if SOURCE is of Object type */ return (cast && source == object_type_node ? 1 : 0); } if (TYPE_INTERFACE_P (source)) { if (TYPE_CLASS_P (dest)) { /* If not casting, DEST must be the Object type */ if (!cast) return dest == object_type_node; /* We're doing a cast. The cast is always valid is class DEST is not final, otherwise, DEST must implement SOURCE */ else if (!CLASS_FINAL (TYPE_NAME (dest))) return 1; else return interface_of_p (source, dest); } if (TYPE_INTERFACE_P (dest)) { /* If doing a cast, then if SOURCE and DEST contain method with the same signature but different return type, then this is a (compile time) error */ if (cast) { tree method_source, method_dest; tree source_type; tree source_sig, dest_sig; tree source_name; for (method_source = TYPE_METHODS (source); method_source; method_source = TREE_CHAIN (method_source)) { source_sig = build_java_argument_signature (TREE_TYPE (method_source)); source_type = TREE_TYPE (TREE_TYPE (method_source)); source_name = DECL_NAME (method_source); for (method_dest = TYPE_METHODS (dest); method_dest; method_dest = TREE_CHAIN (method_dest)) if (source_sig == build_java_argument_signature (TREE_TYPE (method_dest)) && source_name == DECL_NAME (method_dest) && source_type != TREE_TYPE (TREE_TYPE (method_dest))) return 0; } return 1; } else return source == dest || interface_of_p (dest, source); } else /* Array */ return 0; } if (TYPE_ARRAY_P (source)) { if (TYPE_CLASS_P (dest)) return dest == object_type_node; if (TYPE_INTERFACE_P (dest)) return 0; /* Install test on Clonable. FIXME */ else /* Arrays */ { tree source_element_type = TYPE_ARRAY_ELEMENT (source); tree dest_element_type = TYPE_ARRAY_ELEMENT (dest); /* In case of severe errors, they turn out null */ if (!dest_element_type || !source_element_type) return 0; if (source_element_type == dest_element_type) return 1; return valid_ref_assignconv_cast_p (source_element_type, dest_element_type, cast); } return 0; } return 0; } static int valid_cast_to_p (source, dest) tree source; tree dest; { if (TREE_CODE (source) == POINTER_TYPE) source = TREE_TYPE (source); if (TREE_CODE (dest) == POINTER_TYPE) dest = TREE_TYPE (dest); if (TREE_CODE (source) == RECORD_TYPE && TREE_CODE (dest) == RECORD_TYPE) return valid_ref_assignconv_cast_p (source, dest, 1); else if (JNUMERIC_TYPE_P (source) && JNUMERIC_TYPE_P (dest)) return 1; return 0; } /* Method invocation conversion test. Return 1 if type SOURCE can be converted to type DEST through the methond invocation conversion process (5.3) */ static int valid_method_invocation_conversion_p (dest, source) tree dest, source; { return ((JPRIMITIVE_TYPE_P (source) && JPRIMITIVE_TYPE_P (dest) && valid_builtin_assignconv_identity_widening_p (dest, source)) || (JREFERENCE_TYPE_P (source) && JREFERENCE_TYPE_P (dest) && valid_ref_assignconv_cast_p (source, dest, 0))); } /* Build an incomplete binop expression. */ static tree build_binop (op, op_location, op1, op2) enum tree_code op; int op_location; tree op1, op2; { tree wfl, binop, merge; binop = build (op, NULL_TREE, op1, op2); TREE_SIDE_EFFECTS (binop) = 1; /* Store the location of the operator, for better error report. The string of the operator will be rebuild based on the OP value. */ EXPR_WFL_LINECOL (binop) = op_location; return binop; } /* Build the string of the operator retained by NODE. If NODE is part of a compound expression, add an '=' at the end of the string. This function is called when an error needs to be reported on an operator. The string is returned as a pointer to a static character buffer. */ static char * operator_string (node) tree node; { #define BUILD_OPERATOR_STRING(S) \ { \ sprintf (buffer, "%s%s", S, (COMPOUND_ASSIGN_P (node) ? "=" : "")); \ return buffer; \ } static char buffer [10]; switch (TREE_CODE (node)) { case MULT_EXPR: BUILD_OPERATOR_STRING ("*"); case RDIV_EXPR: BUILD_OPERATOR_STRING ("/"); case TRUNC_MOD_EXPR: BUILD_OPERATOR_STRING ("%"); case PLUS_EXPR: BUILD_OPERATOR_STRING ("+"); case MINUS_EXPR: BUILD_OPERATOR_STRING ("-"); case LSHIFT_EXPR: BUILD_OPERATOR_STRING ("<<"); case RSHIFT_EXPR: BUILD_OPERATOR_STRING (">>"); case URSHIFT_EXPR: BUILD_OPERATOR_STRING (">>>"); case BIT_AND_EXPR: BUILD_OPERATOR_STRING ("&"); case BIT_XOR_EXPR: BUILD_OPERATOR_STRING ("^"); case BIT_IOR_EXPR: BUILD_OPERATOR_STRING ("|"); case TRUTH_ANDIF_EXPR: BUILD_OPERATOR_STRING ("&&"); case TRUTH_ORIF_EXPR: BUILD_OPERATOR_STRING ("||"); case EQ_EXPR: BUILD_OPERATOR_STRING ("=="); case NE_EXPR: BUILD_OPERATOR_STRING ("!="); case GT_EXPR: BUILD_OPERATOR_STRING (">"); case GE_EXPR: BUILD_OPERATOR_STRING (">="); case LT_EXPR: BUILD_OPERATOR_STRING ("<"); case LE_EXPR: BUILD_OPERATOR_STRING ("<="); case UNARY_PLUS_EXPR: BUILD_OPERATOR_STRING ("+"); case NEGATE_EXPR: BUILD_OPERATOR_STRING ("-"); case TRUTH_NOT_EXPR: BUILD_OPERATOR_STRING ("!"); case BIT_NOT_EXPR: BUILD_OPERATOR_STRING ("~"); case PREINCREMENT_EXPR: /* Fall through */ case POSTINCREMENT_EXPR: BUILD_OPERATOR_STRING ("++"); case PREDECREMENT_EXPR: /* Fall through */ case POSTDECREMENT_EXPR: BUILD_OPERATOR_STRING ("--"); default: fatal ("unregistered operator %s - operator_string", tree_code_name [TREE_CODE (node)]); } return NULL; #undef BUILD_OPERATOR_STRING } /* Binary operators (15.16 up to 15.18). We return error_mark_node on errors but we modify NODE so that it contains the type computed according to the expression, when it's fixed. Otherwise, we write error_mark_node as the type. It allows us to further the analysis of remaining nodes and detects more errors in certain cases. */ static tree patch_binop (node, wfl_op1, wfl_op2) tree node; tree wfl_op1; tree wfl_op2; { tree op1 = TREE_OPERAND (node, 0); tree op2 = TREE_OPERAND (node, 1); tree op1_type = TREE_TYPE (op1); tree op2_type = TREE_TYPE (op2); tree prom_type; int code = TREE_CODE (node); /* If 1, tell the routine that we have to return error_mark_node after checking for the initialization of the RHS */ int error_found = 0; /* Figure what is going to be checked first for initialization prior its use. If NODE is part of a compound assignment, we check the second operand first, otherwise the first one first. We also initialize the matching WFL for the error report. `cfi' stands for Check For Initialization */ tree cfi = (COMPOUND_ASSIGN_P (node) ? op2 : op1); tree cfi_wfl = (COMPOUND_ASSIGN_P (node) ? wfl_op2 : wfl_op1); EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); /* Check initialization of LHS first. We then silence further error message if the variable wasn't initialized */ if (not_initialized_as_it_should_p (cfi)) { ERROR_VARIABLE_NOT_INITIALIZED (cfi_wfl, DECL_NAME (cfi)); INITIALIZED_P (op1) = 1; } switch (code) { /* 15.16 Multiplicative operators */ case MULT_EXPR: /* 15.16.1 Multiplication Operator * */ case RDIV_EXPR: /* 15.16.2 Division Operator / */ case TRUNC_MOD_EXPR: /* 15.16.3 Remainder operator % */ if (!JPRIMITIVE_TYPE_P (op1_type) || !JPRIMITIVE_TYPE_P (op2_type)) { if (!JPRIMITIVE_TYPE_P (op1_type)) ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op1_type); if (!JPRIMITIVE_TYPE_P (op2_type) && (op1_type != op2_type)) ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op2_type); TREE_TYPE (node) = error_mark_node; error_found = 1; break; } prom_type = binary_numeric_promotion (op1_type, op2_type, &op1, &op2); /* Change the division operator if necessary */ if (code == RDIV_EXPR && TREE_CODE (prom_type) == INTEGER_TYPE) TREE_SET_CODE (node, TRUNC_DIV_EXPR); /* This one is more complicated. FLOATs are processed by a function call to soft_fmod. */ if (code == TRUNC_MOD_EXPR) return build_java_binop (TRUNC_MOD_EXPR, prom_type, op1, op2); break; /* 15.17 Additive Operators */ case PLUS_EXPR: /* 15.17.1 String Concatenation Operator + */ /* Operation is valid if either one argument is a string constant, a String object or a StringBuffer crafted for the purpose of the a previous usage of the String concatenation operator */ if (TREE_CODE (op1) == STRING_CST || TREE_CODE (op2) == STRING_CST || JSTRING_TYPE_P (op1_type) || JSTRING_TYPE_P (op2_type) || IS_CRAFTED_STRING_BUFFER_P (op1) || IS_CRAFTED_STRING_BUFFER_P (op2)) return build_string_concatenation (op1, op2); case MINUS_EXPR: /* 15.17.2 Additive Operators (+ and -) for Numeric Types */ if (!JPRIMITIVE_TYPE_P (op1_type) || !JPRIMITIVE_TYPE_P (op2_type)) { if (!JPRIMITIVE_TYPE_P (op1_type)) ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op1_type); if (!JPRIMITIVE_TYPE_P (op2_type) && (op1_type != op2_type)) ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op2_type); TREE_TYPE (node) = error_mark_node; error_found = 1; break; } prom_type = binary_numeric_promotion (op1_type, op2_type, &op1, &op2); break; /* 15.18 Shift Operators */ case LSHIFT_EXPR: case RSHIFT_EXPR: case URSHIFT_EXPR: if (!JINTEGRAL_TYPE_P (op1_type) || !JINTEGRAL_TYPE_P (op2_type)) { if (!JINTEGRAL_TYPE_P (op1_type)) ERROR_CAST_NEEDED_TO_INTEGRAL (wfl_operator, node, op1_type); else parse_error_context (wfl_operator, (JPRIMITIVE_TYPE_P (op2_type) ? "Incompatible type for `%s'. Explicit cast needed to convert " "shift distance from `%s' to integral" : "Incompatible type for `%s'. Can't convert shift distance from " "`%s' to integral"), operator_string (node), lang_printable_name (op2_type)); TREE_TYPE (node) = error_mark_node; error_found = 1; break; } /* Unary numeric promotion (5.6.1) is performed on each operand separatly */ op1 = convert (promote_type (op1_type), op1); op2 = convert (promote_type (op2_type), op2); /* The type of the shift expression is the type of the promoted type of the left-hand operand */ prom_type = TREE_TYPE (op1); /* Shift int only up to 0x1f and long up to 0x3f */ if (prom_type == int_type_node) op2 = fold (build (BIT_AND_EXPR, int_type_node, op2, build_int_2 (0x1f, 0))); else op2 = fold (build (BIT_AND_EXPR, int_type_node, op2, build_int_2 (0x3f, 0))); /* The >>> operator is a >> operating on unsigned quantities */ if (code == URSHIFT_EXPR) { op1 = convert (unsigned_type (prom_type), op1); TREE_SET_CODE (node, RSHIFT_EXPR); } break; /* 15.21 Bitwise and Logical Operators */ case BIT_AND_EXPR: case BIT_XOR_EXPR: case BIT_IOR_EXPR: if (JINTEGRAL_TYPE_P (op1_type) && JINTEGRAL_TYPE_P (op2_type)) /* Binary numeric promotion is performed on both operand and the expression retain that type */ prom_type = binary_numeric_promotion (op1_type, op2_type, &op1, &op2); else if (TREE_CODE (op1_type) == BOOLEAN_TYPE && TREE_CODE (op1_type) == BOOLEAN_TYPE) /* The type of the bitwise operator expression is BOOLEAN */ prom_type = boolean_type_node; else { if (!JINTEGRAL_TYPE_P (op1_type)) ERROR_CAST_NEEDED_TO_INTEGRAL (wfl_operator, node, op1_type); if (!JINTEGRAL_TYPE_P (op2_type) && (op1_type != op2_type)) ERROR_CAST_NEEDED_TO_INTEGRAL (wfl_operator, node, op2_type); TREE_TYPE (node) = error_mark_node; error_found = 1; /* Insert a break here if adding thing before the switch's break for this case */ } break; /* 15.22 Conditional-And Operator */ case TRUTH_ANDIF_EXPR: /* 15.23 Conditional-Or Operator */ case TRUTH_ORIF_EXPR: /* Operands must be of BOOLEAN type */ if (TREE_CODE (op1_type) != BOOLEAN_TYPE || TREE_CODE (op2_type) != BOOLEAN_TYPE) { if (TREE_CODE (op1_type) != BOOLEAN_TYPE) ERROR_CANT_CONVERT_TO_BOOLEAN (wfl_operator, node, op1_type); if (TREE_CODE (op2_type) != BOOLEAN_TYPE && (op1_type != op2_type)) ERROR_CANT_CONVERT_TO_BOOLEAN (wfl_operator, node, op2_type); TREE_TYPE (node) = boolean_type_node; error_found = 1; break; } /* The type of the conditional operators is BOOLEAN */ prom_type = boolean_type_node; break; /* 15.19.1 Numerical Comparison Operators <, <=, >, >= */ case LT_EXPR: case GT_EXPR: case LE_EXPR: case GE_EXPR: /* The type of each of the operands must be a primitive numeric type */ if (!JNUMERIC_TYPE_P (op1_type) || ! JNUMERIC_TYPE_P (op2_type)) { if (!JNUMERIC_TYPE_P (op1_type)) ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op1_type); if (!JNUMERIC_TYPE_P (op2_type) && (op1_type != op2_type)) ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op2_type); TREE_TYPE (node) = boolean_type_node; error_found = 1; break; } /* Binary numeric promotion is performed on the operands */ binary_numeric_promotion (op1_type, op2_type, &op1, &op2); /* The type of the relation expression is always BOOLEAN */ prom_type = boolean_type_node; break; /* 15.20 Equality Operator */ case EQ_EXPR: case NE_EXPR: /* 15.20.1 Numerical Equality Operators == and != */ /* Binary numeric promotion is performed on the operands */ if (JPRIMITIVE_TYPE_P (op1_type) && JPRIMITIVE_TYPE_P (op2_type)) binary_numeric_promotion (op1_type, op2_type, &op1, &op2); /* 15.20.2 Boolean Equality Operators == and != */ else if (TREE_CODE (op1_type) == BOOLEAN_TYPE && TREE_CODE (op2_type) == BOOLEAN_TYPE) ; /* Nothing to do here */ /* 15.20.3 Reference Equality Operators == and != */ /* Types have to be either references or the null type */ else if (op1 == null_pointer_node || op2 == null_pointer_node || (JREFERENCE_TYPE_P (op1_type) && JREFERENCE_TYPE_P (op2_type) && ((op1_type == op2_type)))) ; /* Nothing to do here */ /* Else we have an error figure what can't be converted into what and report the error */ else { char *t1; t1 = strdup ((char *)lang_printable_name (op1_type)); parse_error_context (wfl_operator, "Incompatible type for `%s'. Can't convert `%s' " "to `%s'", operator_string (node), t1, lang_printable_name (op2_type)); free (t1); TREE_TYPE (node) = boolean_type_node; error_found = 1; break; } prom_type = boolean_type_node; break; } /* Then check the initialization of the RHS. We don't do that if we're dealing with a node that is part of a compound assignment. We then silence further error message if the variable wasn't initialized */ if (not_initialized_as_it_should_p (op2) && !COMPOUND_ASSIGN_P (node)) { ERROR_VARIABLE_NOT_INITIALIZED (wfl_op2, DECL_NAME (op2)); INITIALIZED_P (op2) = 1; } if (error_found) return error_mark_node; TREE_OPERAND (node, 0) = op1; TREE_OPERAND (node, 1) = op2; TREE_TYPE (node) = prom_type; return fold (node); } /* Concatenate the STRING_CST CSTE and STRING. When AFTER is a non zero value, the value of CSTE comes after the valude of STRING */ static tree do_merge_string_cste (cste, string, string_len, after) tree cste; char *string; int string_len, after; { int len = TREE_STRING_LENGTH (cste) + string_len; char *old = TREE_STRING_POINTER (cste); TREE_STRING_LENGTH (cste) = len; TREE_STRING_POINTER (cste) = obstack_alloc (expression_obstack, len+1); if (after) { strcpy (TREE_STRING_POINTER (cste), string); strcat (TREE_STRING_POINTER (cste), old); } else { strcpy (TREE_STRING_POINTER (cste), old); strcat (TREE_STRING_POINTER (cste), string); } return cste; } /* Tries to merge OP1 (a STRING_CST) and OP2 (if suitable). Return a new STRING_CST on success, NULL_TREE on failure */ static tree merge_string_cste (op1, op2, after) tree op1, op2; int after; { /* Handle two string constants right away */ if (TREE_CODE (op2) == STRING_CST) return do_merge_string_cste (op1, TREE_STRING_POINTER (op2), TREE_STRING_LENGTH (op2), after); /* Reasonable integer constant can be treated right away */ if (TREE_CODE (op2) == INTEGER_CST && !TREE_CONSTANT_OVERFLOW (op2)) { static char *boolean_true = "true"; static char *boolean_false = "false"; static char *null_pointer = "null"; char ch[3]; char *string; if (op2 == boolean_true_node) string = boolean_true; else if (op2 == boolean_false_node) string = boolean_false; else if (op2 == null_pointer_node) string = null_pointer; else if (TREE_TYPE (op2) == char_type_node) { ch[0] = (char )TREE_INT_CST_LOW (op2); ch[1] = '\0'; string = ch; } else string = print_int_node (op2); return do_merge_string_cste (op1, string, strlen (string), after); } return NULL_TREE; } /* Tries to statically concatenate OP1 and OP2 if possible. Either one has to be a STRING_CST and the other part must be a STRING_CST or a INTEGRAL constant. Return a new STRING_CST if the operation succeed, NULL_TREE otherwise. If the case we want to optimize for space, we might want to return NULL_TREE for each invocation of this routine. FIXME */ static tree string_constant_concatenation (op1, op2) tree op1, op2; { if (TREE_CODE (op1) == STRING_CST || (TREE_CODE (op2) == STRING_CST)) { tree string, rest, result; int invert; string = (TREE_CODE (op1) == STRING_CST ? op1 : op2); rest = (string == op1 ? op2 : op1); invert = (string == op1 ? 0 : 1 ); /* Walk REST, only if it looks reasonable */ if (TREE_CODE (rest) != STRING_CST && !IS_CRAFTED_STRING_BUFFER_P (rest) && !JSTRING_TYPE_P (TREE_TYPE (rest)) && TREE_CODE (rest) == EXPR_WITH_FILE_LOCATION) { rest = java_complete_tree (rest); if (rest == error_mark_node) return error_mark_node; rest = fold (rest); } return merge_string_cste (string, rest, invert); } return NULL_TREE; } /* Implement the `+' operator. Does static optimization if possible, otherwise create (if necessary) and append elements to a StringBuffer. The StringBuffer will be carried around until it is used for a function call or an assignment. Then toString() will be called on it to turn it into a String object. */ static tree build_string_concatenation (op1, op2) tree op1, op2; { tree result; /* Try to do some static optimization */ if ((result = string_constant_concatenation (op1, op2))) return result; /* If operands are string constant, turn then into object references */ if (TREE_CODE (op1) == STRING_CST) op1 = patch_string_cst (op1); if (TREE_CODE (op2) == STRING_CST) op2 = patch_string_cst (op2); /* If OP1 isn't already a StringBuffer, create and initialize a new one */ if (!IS_CRAFTED_STRING_BUFFER_P (op1)) { /* Two solutions here: 1) OP1 is a string reference, we call new StringBuffer(OP1) 2) Op2 is something else, we call new StringBuffer().append(OP1). */ if (JSTRING_TYPE_P (TREE_TYPE (op1))) op1 = BUILD_STRING_BUFFER (op1); else { tree aNew = BUILD_STRING_BUFFER (NULL_TREE); op1 = make_qualified_primary (aNew, BUILD_APPEND (op1), 0); } } /* No longer the last node holding a crafted StringBuffer */ IS_CRAFTED_STRING_BUFFER_P (op1) = 0; /* Create a node for `{new...,xxx}.append (op2)' */ op1 = make_qualified_primary (op1, BUILD_APPEND (op2), 0); /* Mark the last node holding a crafted StringBuffer */ IS_CRAFTED_STRING_BUFFER_P (op1) = 1; return op1; } /* Patch the string node NODE. NODE can be a STRING_CST of a crafted StringBuffer. If no string were found to be patched, return NULL. */ static tree patch_string (node) tree node; { if (TREE_CODE (node) == STRING_CST) return patch_string_cst (node); else if (IS_CRAFTED_STRING_BUFFER_P (node)) { tree invoke = build_method_invocation (wfl_to_string, NULL_TREE); return java_complete_tree (make_qualified_primary (node, invoke, 0)); } return NULL_TREE; } /* Build the internal representation of a string constant. */ static tree patch_string_cst (node) tree node; { int location; push_obstacks (&permanent_obstack, &permanent_obstack); node = get_identifier (TREE_STRING_POINTER (node)); location = alloc_name_constant (CONSTANT_String, node); node = build_ref_from_constant_pool (location); TREE_TYPE (node) = promote_type (string_type_node); TREE_CONSTANT (node) = 1; return node; } /* Build an incomplete unary operator expression. */ static tree build_unaryop (op_token, op_location, op1) int op_token, op_location; tree op1; { enum tree_code op; tree unaryop; switch (op_token) { case PLUS_TK: op = UNARY_PLUS_EXPR; break; case MINUS_TK: op = NEGATE_EXPR; break; case NEG_TK: op = TRUTH_NOT_EXPR; break; case NOT_TK: op = BIT_NOT_EXPR; break; default: fatal ("Unknown token `%d' for unary operator - build_unaryop", op_token); } unaryop = build1 (op, NULL_TREE, op1); TREE_SIDE_EFFECTS (unaryop) = 1; /* Store the location of the operator, for better error report. The string of the operator will be rebuild based on the OP value. */ EXPR_WFL_LINECOL (unaryop) = op_location; return unaryop; } /* Special case for the ++/-- operators, since they require an extra argument to build, which is set to NULL and patched later. IS_POST_P is 1 if the operator, 0 otherwise. */ static tree build_incdec (op_token, op_location, op1, is_post_p) int op_token, op_location; tree op1; int is_post_p; { static enum tree_code lookup [2][2] = { { PREDECREMENT_EXPR, PREINCREMENT_EXPR, }, { POSTDECREMENT_EXPR, POSTINCREMENT_EXPR, }, }; tree node = build (lookup [is_post_p][(op_token - DECR_TK)], NULL_TREE, op1, NULL_TREE); TREE_SIDE_EFFECTS (node) = 1; /* Store the location of the operator, for better error report. The string of the operator will be rebuild based on the OP value. */ EXPR_WFL_LINECOL (node) = op_location; return node; } /* Build an incomplete cast operator, based on the use of the CONVERT_EXPR. Note that TREE_TYPE of the constructed node is set. java_complete_tree is trained to walk a CONVERT_EXPR even though its type is already set. */ static tree build_cast (location, type, exp) int location; tree type, exp; { tree node = build1 (CONVERT_EXPR, type, exp); EXPR_WFL_LINECOL (node) = location; return node; } /* 15.14 Unary operators. We return error_mark_node in case of error, but preserve the type of NODE if the type is fixed. */ static tree patch_unaryop (node, wfl_op) tree node; tree wfl_op; { tree op = TREE_OPERAND (node, 0); tree op_type = TREE_TYPE (op); tree prom_type, value; int code = TREE_CODE (node); int error_found = 0; EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); switch (code) { /* 15.13.2 Postfix Increment Operator ++ */ case POSTINCREMENT_EXPR: /* 15.13.3 Postfix Increment Operator -- */ case POSTDECREMENT_EXPR: /* 15.14.1 Prefix Increment Operator ++ */ case PREINCREMENT_EXPR: /* 15.14.2 Prefix Decrement Operator -- */ case PREDECREMENT_EXPR: if (!DECL_P (op) && !(TREE_CODE (op) == INDIRECT_REF && JPRIMITIVE_TYPE_P (TREE_TYPE (op)))) { parse_error_context (wfl_operator, "Invalid argument to `%s'", operator_string (node)); TREE_TYPE (node) = error_mark_node; error_found = 1; } else if (FIELD_FINAL (op)) { parse_error_context (wfl_op, "Can't assign a value to the final variable `%s'", IDENTIFIER_POINTER (EXPR_WFL_NODE (wfl_op))); TREE_TYPE (node) = error_mark_node; error_found = 1; } /* From now on, we know that op if a variable and that it has a valid wfl. We use wfl_op to locate errors related to the ++/-- operand. */ else if (!JNUMERIC_TYPE_P (op_type)) { parse_error_context (wfl_op, "Invalid argument type `%s' to `%s'", lang_printable_name (op_type), operator_string (node)); TREE_TYPE (node) = error_mark_node; error_found = 1; } else { /* Before the addition, binary numeric promotion if performed on both operands */ value = integer_one_node; prom_type = binary_numeric_promotion (op_type, TREE_TYPE (value), &op, &value); /* And write the promoted increment back */ TREE_OPERAND (node, 1) = value; } break; /* 15.14.3 Unary Plus Operator + */ case UNARY_PLUS_EXPR: /* 15.14.4 Unary Minus Operator - */ case NEGATE_EXPR: if (!JNUMERIC_TYPE_P (op_type)) { ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op_type); TREE_TYPE (node) = error_mark_node; error_found = 1; } /* Unary numeric promotion is performed on operand */ else { prom_type = promote_type (op_type); op = convert (prom_type, op); if (code == UNARY_PLUS_EXPR) node = op; } break; /* 15.14.5 Bitwise Complement Operator ~ */ case BIT_NOT_EXPR: if (!JINTEGRAL_TYPE_P (op_type)) { ERROR_CAST_NEEDED_TO_INTEGRAL (wfl_operator, node, op_type); TREE_TYPE (node) = error_mark_node; error_found = 1; } else { prom_type = promote_type (op_type); op = convert (prom_type, op); } break; /* 15.14.6 Logical Complement Operator ! */ case TRUTH_NOT_EXPR: if (TREE_CODE (op_type) != BOOLEAN_TYPE) { ERROR_CANT_CONVERT_TO_BOOLEAN (wfl_operator, node, op_type); TREE_TYPE (node) = boolean_type_node; error_found = 1; } else prom_type = boolean_type_node; break; /* 15.15 Cast Expression */ case CONVERT_EXPR: value = patch_cast (node, wfl_op, wfl_operator); if (value == error_mark_node) { TREE_TYPE (node) = error_mark_node; error_found = 1; } else node = value; break; } /* Check variable initialization */ if (not_initialized_as_it_should_p (op)) { ERROR_VARIABLE_NOT_INITIALIZED (wfl_op, DECL_NAME (op)); INITIALIZED_P (op) = 1; } if (error_found) return error_mark_node; /* In the case of UNARY_PLUS_EXPR, we replaced NODE by a new one */ else if (code != UNARY_PLUS_EXPR && code != CONVERT_EXPR) { TREE_OPERAND (node, 0) = op; TREE_TYPE (node) = prom_type; } return fold (node); } /* Generic type resolution that sometimes takes place during node patching. Returned the resolved type or generate an error message. Return the resolved type or NULL_TREE. */ static tree resolve_type_during_patch (type) tree type; { if (unresolved_type_p (type, NULL)) { tree type_decl = resolve_no_layout (EXPR_WFL_NODE (type), NULL_TREE); if (!type_decl) { parse_error_context (type, "Class `%s' not found in type declaration", IDENTIFIER_POINTER (EXPR_WFL_NODE (type))); return NULL_TREE; } else return TREE_TYPE (type_decl); } return type; } /* 5.5 Casting Conversion. error_mark_node is returned if an error is found. Otherwise NODE or something meant to replace it is returned. */ static tree patch_cast (node, wfl_op, wfl_operator) tree node; tree wfl_op; tree wfl_operator; { tree op = TREE_OPERAND (node, 0); tree op_type = TREE_TYPE (op); tree cast_type = TREE_TYPE (node); char *t1; /* First resolve OP_TYPE if unresolved */ if (!(cast_type = resolve_type_during_patch (cast_type))) return error_mark_node; /* Check on cast that are proven correct at compile time */ if (JNUMERIC_TYPE_P (cast_type) && JNUMERIC_TYPE_P (op_type)) { static tree convert_narrow (); /* Same type */ if (cast_type == op_type) return node; /* Try widening/narowwing convertion. Potentially, things need to be worked out in gcc so we implement the extreme cases correctly. fold_convert() needs to be fixed. */ return convert (cast_type, op); } /* The remaining legal casts involve conversion between reference types. Check for their compile time correctness. */ if (JREFERENCE_TYPE_P (op_type) && JREFERENCE_TYPE_P (cast_type) && valid_ref_assignconv_cast_p (cast_type, op_type, 1)) { TREE_TYPE (node) = promote_type (cast_type); /* Now, the case can be determined correct at compile time if OP_TYPE can be converted into CAST_TYPE by assignment conversion (5.2) */ if (valid_ref_assignconv_cast_p (op_type, cast_type, 0)) return node; /* The cast requires a run-time check */ return build (CALL_EXPR, promote_type (cast_type), build_address_of (soft_checkcast_node), tree_cons (NULL_TREE, build_class_ref (cast_type), build_tree_list (NULL_TREE, op)), NULL_TREE); } /* Any other casts are proven incorrect at compile time */ t1 = strdup ((char *)lang_printable_name (op_type)); parse_error_context (wfl_operator, "Invalid cast from `%s' to `%s'", t1, lang_printable_name (cast_type)); free (t1); return error_mark_node; } /* Build an ARRAY_REF incomplete tree node. Note that operand 1 isn't a list of indices. */ static tree build_array_ref (location, array, index) int location; tree array, index; { tree node = build (ARRAY_REF, NULL_TREE, array, index); EXPR_WFL_LINECOL (node) = location; return node; } /* 15.12 Array Access Expression */ static tree patch_array_ref (node, wfl_array, wfl_index) tree node, wfl_array, wfl_index; { tree array = TREE_OPERAND (node, 0); tree array_type = TREE_TYPE (array); tree index = TREE_OPERAND (node, 1); tree index_type = TREE_TYPE (index); tree promoted_index_type; int error_found = 0; EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); if (not_initialized_as_it_should_p (array)) { ERROR_VARIABLE_NOT_INITIALIZED (wfl_array, DECL_NAME (array)); INITIALIZED_P (array) = 1; } if (TREE_CODE (array_type) == POINTER_TYPE) array_type = TREE_TYPE (array_type); /* The array reference must be an array */ if (!TYPE_ARRAY_P (array_type)) { parse_error_context (wfl_operator, "`[]' can only be applied to arrays. It can't be " "applied to `%s'", lang_printable_name (array_type)); TREE_TYPE (node) = error_mark_node; error_found = 1; } /* The array index underdoes unary numeric promotion. The promoted type must be int */ promoted_index_type = promote_type (index_type); if (promoted_index_type != int_type_node) { int could_cast = valid_cast_to_p (index_type, int_type_node); parse_error_context (wfl_operator, (could_cast ? "Incompatible type for `[]'. Explicit cast needed to " "convert `%s' to `int'" : "Incompatible type for `[]'. " "Can't convert `%s' to `int'"), lang_printable_name (index_type)); TREE_TYPE (node) = error_mark_node; error_found = 1; } /* Now if the index is a var/parm decl, check on its initialization */ if (not_initialized_as_it_should_p (index)) { ERROR_VARIABLE_NOT_INITIALIZED (wfl_index, DECL_NAME (index)); INITIALIZED_P (index) = 1; } if (error_found) return error_mark_node; index = convert (promoted_index_type, index); if (TREE_CODE (array_type) == RECORD_TYPE) array_type = promote_type (TYPE_ARRAY_ELEMENT (array_type)); if (flag_emit_class_files) { TREE_OPERAND (node, 0)= array; TREE_OPERAND (node, 1)= index; } else node = build_java_arrayaccess (array, array_type, index); TREE_TYPE (node) = array_type; return node; } /* 15.9 Array Creation Expressions */ static tree build_newarray_node (type, dims, extra_dims) tree type; tree dims; int extra_dims; { tree node = build (NEW_ARRAY_EXPR, NULL_TREE, type, nreverse (dims), build_int_2 (extra_dims, 0)); return node; } static tree patch_newarray (node) tree node; { tree type = TREE_OPERAND (node, 0); tree dims = TREE_OPERAND (node, 1); tree cdim, array_type; int error_found = 0; int ndims = 0; int xdims = TREE_INT_CST_LOW (TREE_OPERAND (node, 2)); int total_dims; /* Dimension types are verified. It's better for the types to be verified in order. */ for (cdim = dims, ndims = 0; cdim; cdim = TREE_CHAIN (cdim), ndims++ ) { int dim_error = 0; tree dim = TREE_VALUE (cdim); /* Dim might have been saved during its evaluation */ dim = (TREE_CODE (dim) == SAVE_EXPR ? dim = TREE_OPERAND (dim, 0) : dim); /* The type of each specified dimension must be an integral type. */ if (!JINTEGRAL_TYPE_P (TREE_TYPE (dim))) dim_error = 1; /* Each expression undergoes an unary numeric promotion (5.6.1) and the promoted type must be int. */ else { dim = convert (promote_type (TREE_TYPE (dim)), dim); if (TREE_TYPE (dim) != int_type_node) dim_error = 1; } /* Report errors on types here */ if (dim_error) { parse_error_context (TREE_PURPOSE (cdim), "Incompatible type for dimension in array creation expression. " "%s convert `%s' to `int'", (valid_cast_to_p (TREE_TYPE (dim), int_type_node) ? "Explicit cast needed to" : "Can't"), lang_printable_name (TREE_TYPE (dim))); error_found = 1; } /* Check for uninitialized variables */ if (not_initialized_as_it_should_p (dim)) { ERROR_VARIABLE_NOT_INITIALIZED (TREE_PURPOSE (cdim), DECL_NAME (dim)); INITIALIZED_P (dim) = 1; error_found = 1; } TREE_PURPOSE (cdim) = NULL_TREE; } /* Resolve array base type if unresolved */ if (!(type = resolve_type_during_patch (type))) error_found = 1; if (error_found) { /* We don't want further evaluation of this bogus array creation operation */ TREE_TYPE (node) = error_mark_node; return error_mark_node; } /* The node is transformed into a function call. Things are done differently according to the number of dimensions. If the number of dimension is equal to 1, then the nature of the base type (primitive or not) matters. */ total_dims = xdims + ndims; if (total_dims == 1) { if (JPRIMITIVE_TYPE_P (type)) { int type_code; if (type == boolean_type_node) type_code = 4; else if (type == char_type_node) type_code = 5; else if (type == float_type_node) type_code = 6; else if (type == double_type_node) type_code = 7; else if (type == byte_type_node) type_code = 8; else if (type == short_type_node) type_code = 9; else if (type == int_type_node) type_code = 10; else if (type == long_type_node) type_code = 11; else fatal ("Can't compute type code - patch_newarray"); return build_newarray (type_code, TREE_VALUE (dims)); } else return build_anewarray (type, TREE_VALUE (dims)); } /* Add extra dimensions as unknown dimensions */ while (xdims--) dims = chainon (dims, build_tree_list (NULL_TREE, integer_negative_one_node)); dims = chainon (dims, build_tree_list (NULL_TREE, integer_zero_node)); /* Can't reuse what's already written in expr.c because it uses the JVM stack representation. Provide a build_multianewarray. FIXME */ array_type = type; for (cdim = TREE_CHAIN (dims); cdim; cdim = TREE_CHAIN (cdim)) array_type = build_java_array_type (promote_type (array_type), TREE_CODE (cdim) == INTEGER_CST ? TREE_INT_CST_LOW (cdim) : -1); return build (CALL_EXPR, promote_type (array_type), build_address_of (soft_multianewarray_node), tree_cons (NULL_TREE, build_class_ref (array_type), tree_cons (NULL_TREE, build_int_2 (total_dims, 0), dims )), NULL_TREE); } static tree build_this (location) int location; { tree node = build_wfl_node (this_identifier_node, input_filename, 0, 0); TREE_SET_CODE (node, THIS_EXPR); EXPR_WFL_LINECOL (node) = location; return node; } /* 14.15 The return statement. It builds a modify expression that assigns the returned value to the RESULT_DECL that hold the value to be returned. */ static tree build_return (location, op) int location; tree op; { tree node = build1 (RETURN_EXPR, NULL_TREE, op); EXPR_WFL_LINECOL (node) = location; node = build_debugable_stmt (location, node); return node; } static tree patch_return (node) tree node; { tree return_exp = TREE_OPERAND (node, 0); tree meth = current_function_decl; tree mtype = TREE_TYPE (TREE_TYPE (current_function_decl)); tree modify; int error_found = 0; TREE_TYPE (node) = error_mark_node; EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); /* It's invalid to have a return value within a function that is declared with the keyword void or that is a constructor */ if (return_exp && (mtype == void_type_node || DECL_CONSTRUCTOR_P (meth))) error_found = 1; /* It's invalid to have a no return value within a function that isn't declared with the keyword `void' */ if (!return_exp && (mtype != void_type_node && !DECL_CONSTRUCTOR_P (meth))) error_found = 2; if (error_found) { char *t = strdup ((char *)lang_printable_name (mtype)); parse_error_context (wfl_operator, "`return' with%s value from `%s %s'", (error_found == 1 ? "" : "out"), t, lang_printable_name (meth)); free (t); return error_mark_node; } /* If we have a return_exp, build a modify expression and expand it */ if (return_exp) { modify = build (MODIFY_EXPR, NULL_TREE, DECL_RESULT (meth), return_exp); EXPR_WFL_LINECOL (modify) = EXPR_WFL_LINECOL (node); modify = java_complete_tree (modify); if (modify != error_mark_node) { TREE_SIDE_EFFECTS (modify) = 1; TREE_OPERAND (node, 0) = modify; } else return error_mark_node; } TREE_TYPE (node) = void_type_node; TREE_SIDE_EFFECTS (node) = 1; return node; } /* 14.8 The if Statement */ static tree build_if_else_statement (location, expression, if_body, else_body) int location; tree expression, if_body, else_body; { tree node; /* FIXME: make else body be a void node, where this function is called */ if (!else_body) else_body = build (COMPOUND_EXPR, void_type_node, NULL_TREE, NULL_TREE); node = build (COND_EXPR, NULL_TREE, expression, if_body, else_body); EXPR_WFL_LINECOL (node) = location; node = build_debugable_stmt (location, node); return node; } static tree patch_if_else_statement (node) tree node; { tree expression = TREE_OPERAND (node, 0); TREE_TYPE (node) = error_mark_node; EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); /* The type of expression must be boolean */ if (TREE_TYPE (expression) != boolean_type_node && TREE_TYPE (expression) != promoted_boolean_type_node) { parse_error_context (wfl_operator, "Incompatible type for `if'. Can't convert `%s' to `boolean'", lang_printable_name (TREE_TYPE (expression))); return error_mark_node; } TREE_TYPE (node) = void_type_node; TREE_SIDE_EFFECTS (node) = 1; return node; } /* 14.6 Labeled Statements */ /* Action taken when a lableled statement is parsed. a new LABELED_BLOCK_EXPR is created. No statement is attached to the label, yet. */ static tree build_labeled_block (location, label, wfl) int location; tree label, wfl; { tree label_name = merge_qualified_name (label_id, label); tree label_decl, node; /* Issue a warning if we try to reuse a label that was previously declared */ if (IDENTIFIER_LOCAL_VALUE (label_name)) { EXPR_WFL_LINECOL (wfl_operator) = location; parse_warning_context (wfl_operator, "Declaration of `%s' shadows " "a previous declaration", IDENTIFIER_POINTER (label)); EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (IDENTIFIER_LOCAL_VALUE (label_name)); parse_warning_context (wfl_operator, "This is the location of the " "previous declaration of label `%s'", IDENTIFIER_POINTER (label)); java_warning_count--; } label_decl = create_label_decl (label_name); node = build (LABELED_BLOCK_EXPR, NULL_TREE, label_decl, NULL_TREE); EXPR_WFL_LINECOL (node) = location; TREE_SIDE_EFFECTS (node) = 1; return node; } /* Generate a label crafting a unique name for it. This is used to implicitely label loops that aren't the body part of labeled statement. */ static tree generate_labeled_block () { return build_labeled_block (0, generate_name (), NULL_TREE); } /* A labeled statement LBE is attached a statement. */ static tree complete_labeled_statement (lbe, statement) tree lbe; /* Labeled block expr */ tree statement; { /* In anyways, tie the loop to its statement */ LABELED_BLOCK_BODY (lbe) = statement; /* Ok, if statement is a for loop, we have to attach the labeled statement to the block the for loop belongs to and return the block instead */ if (TREE_CODE (statement) == LOOP_EXPR && IS_FOR_LOOP_P (statement)) { java_method_add_stmt (current_function_decl, lbe); return exit_block (); } return lbe; } /* 14.10, 14.11, 14.12 Loop Statements */ /* Create an empty LOOP_EXPR and make it the last in the nested loop list. */ static tree build_new_loop (loop_body) tree loop_body; { tree loop = build (LOOP_EXPR, NULL_TREE, loop_body); TREE_SIDE_EFFECTS (loop) = 1; PUSH_LOOP (loop); return loop; } /* Create a loop body according to the following structure: COMPOUND_EXPR COMPOUND_EXPR (loop main body) EXIT_EXPR (this order is for while/for loops. LABELED_BLOCK_EXPR the order is reversed for do loops) LABEL_DECL (continue occurding here branche at the BODY end of this labeled block) INCREMENT (if any) REVERSED, if non zero, tells that the loop condition expr comes after the body, like in the do-while loop. To obtain a loop, the loop body structure described above is encapsulated within a LOOP_EXPR surrounded by a LABELED_BLOCK_EXPR: LABELED_BLOCK_EXPR LABEL_DECL (use this label to exit the loop) LOOP_EXPR */ static tree build_loop_body (location, condition, reversed) int location; tree condition; int reversed; { tree first, second, label, body; condition = build (EXIT_EXPR, NULL_TREE, condition); /* Force walk */ EXPR_WFL_LINECOL (condition) = location; /* For accurate error report */ condition = build_debugable_stmt (location, condition); TREE_SIDE_EFFECTS (condition) = 1; body = generate_labeled_block (); first = (reversed ? body : condition); second = (reversed ? condition : body); return build (COMPOUND_EXPR, NULL_TREE, build (COMPOUND_EXPR, NULL_TREE, first, second), size_zero_node); } /* Install CONDITION (if any) and loop BODY (using REVERSED to tell their order) on the current loop. Unlink the current loop from the loop list. */ static tree complete_loop_body (location, condition, body, reversed) int location; tree condition, body; int reversed; { tree to_return = ctxp->current_loop; tree loop_body = LOOP_EXPR_BODY (to_return); if (condition) { tree cnode = LOOP_EXPR_BODY_CONDITION_EXPR (loop_body, reversed); /* We wrapped the EXIT_EXPR around a WFL so we can debug it. The real EXIT_EXPR is one operand further. */ EXPR_WFL_LINECOL (cnode) = location; /* This one is for accurate error reports */ EXPR_WFL_LINECOL (TREE_OPERAND (cnode, 0)) = location; TREE_OPERAND (TREE_OPERAND (cnode, 0), 0) = condition; } LOOP_EXPR_BODY_BODY_EXPR (loop_body, reversed) = body; POP_LOOP (); return to_return; } /* Tailored version of complete_loop_body for FOR loops, when FOR loops feature the condition part */ static tree complete_for_loop (location, condition, update, body) int location; tree condition, update, body; { /* Put the condition and the loop body in place */ tree loop = complete_loop_body (location, condition, body, 0); /* LOOP is the current loop which has been now popped of the loop stack. Install the update block */ LOOP_EXPR_BODY_UPDATE_BLOCK (LOOP_EXPR_BODY (loop)) = update; return loop; } /* If the loop isn't surrounded by a labeled statement, create one and insert LOOP as it's body. */ static tree patch_loop_statement (loop) tree loop; { tree cbl, loop_label, to_return_as_loop; if (LOOP_HAS_LABEL_P (loop)) { loop_label = ctxp->current_labeled_block; to_return_as_loop = loop; } else { loop_label = generate_labeled_block (); LABELED_BLOCK_BODY (loop_label) = loop; PUSH_LABELED_BLOCK (loop_label); to_return_as_loop = loop_label; } TREE_TYPE (to_return_as_loop) = void_type_node; return to_return_as_loop; } /* 14.13, 14.14: break and continue Statements */ /* Build a break or a continue statement. a null NAME indicates an unlabeled break/continue statement. */ static tree build_bc_statement (location, is_break, name) int location, is_break; tree name; { tree break_continue, label_block_expr = NULL_TREE; if (name) { if (!(label_block_expr = IDENTIFIER_LOCAL_VALUE (merge_qualified_name (label_id, EXPR_WFL_NODE (name))))) /* Null means that we don't have a target for this named break/continue. In this case, we make the target to be the label name, so that the error can be reported accuratly in patch_bc_statement. */ label_block_expr = EXPR_WFL_NODE (name); } /* Unlabeled break/continue will be handled during the break/continue patch operation */ break_continue = build (EXIT_BLOCK_EXPR, NULL_TREE, label_block_expr, NULL_TREE); IS_BREAK_STMT_P (break_continue) = is_break; TREE_SIDE_EFFECTS (break_continue) = 1; EXPR_WFL_LINECOL (break_continue) = location; break_continue = build_debugable_stmt (location, break_continue); return break_continue; } /* Verification of a break/continue statement. */ static tree patch_bc_statement (node) tree node; { tree bc_label = EXIT_BLOCK_LABELED_BLOCK (node), target_stmt; int is_unlabeled = 0; EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); /* Not having a target means that the break/continue statement is unlabeled. We try to find a decent label for it */ if (!bc_label) { is_unlabeled = 1; /* There should be a loop/switch to branch to */ if (ctxp->current_loop) { if (TREE_CODE (ctxp->current_loop) == LOOP_EXPR) { /* At that stage, we're in the loop body, which is encapsulated around a LABELED_BLOCK_EXPR. So searching the current loop label requires us to consider the labeled block before the current one. */ if (!LOOP_HAS_LABEL_SKIP_P (ctxp->current_loop)) fatal ("unlabeled loop has no installed label -- " "patch_bc_statement"); bc_label = TREE_CHAIN (ctxp->current_labeled_block); } /* For a SWITCH statement, this is the current one */ else bc_label = ctxp->current_labeled_block; } /* Not having a loop to break/continue to is an error */ else { parse_error_context (wfl_operator, "`%s' must be in loop%s", (IS_BREAK_STMT_P (node) ? "break" : "continue"), (IS_BREAK_STMT_P (node) ? " or switch" : "")); return error_mark_node; } } /* Having an identifier here means that the target is unknown. */ else if (TREE_CODE (bc_label) == IDENTIFIER_NODE) { parse_error_context (wfl_operator, "No label definition found for `%s'", IDENTIFIER_POINTER (bc_label)); return error_mark_node; } /* Find the statement we're targeting. */ target_stmt = LABELED_BLOCK_BODY (bc_label); /* 14.13 The break Statement */ if (IS_BREAK_STMT_P (node)) { /* Named break are always fine, as far as they have a target (already verified). Anonymous break need to target while/do/for/switch */ if (is_unlabeled && !(TREE_CODE (target_stmt) == LOOP_EXPR /* do/while/for */ || TREE_CODE (target_stmt) == SWITCH_EXPR)) /* switch FIXME */ { parse_error_context (wfl_operator, "`break' must be in loop or switch"); return error_mark_node; } /* If previously unlabeled, install the new found label */ if (is_unlabeled) EXIT_BLOCK_LABELED_BLOCK (node) = bc_label; } /* 14.14 The continue Statement */ /* The continue statement must always target a loop */ else { if (TREE_CODE (target_stmt) != LOOP_EXPR) /* do/while/for */ { parse_error_context (wfl_operator, "`continue' must be in loop"); return error_mark_node; } /* Everything looks good. We can fix the `continue' jump to go at the place in the loop were the continue is. The continue is the current labeled block, by construction. */ EXIT_BLOCK_LABELED_BLOCK (node) = ctxp->current_labeled_block; } /* Our break/continue don't return values. */ TREE_TYPE (node) = void_type_node; /* Encapsulate the break within a compound statement so that it's expanded all the times by expand_expr (and not clobered sometimes, like after a if statement) */ node = add_stmt_to_compound (NULL_TREE, void_type_node, node); TREE_SIDE_EFFECTS (node) = 1; return node; } /* Process the exit expression belonging to a loop. Its type must be boolean. */ static tree patch_exit_expr (node) tree node; { tree expression = TREE_OPERAND (node, 0); TREE_TYPE (node) = error_mark_node; EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); /* The type of expression must be boolean */ if (TREE_TYPE (expression) != boolean_type_node) { parse_error_context (wfl_operator, "Incompatible type for loop conditional. Can't convert `%s' to " "`boolean'", lang_printable_name (TREE_TYPE (expression))); return error_mark_node; } /* Now we know things are allright, invert the condition, fold and return */ TREE_OPERAND (node, 0) = fold (build1 (TRUTH_NOT_EXPR, boolean_type_node, expression)); TREE_TYPE (node) = void_type_node; return node; } /* 14.9 Switch statement */ static tree patch_switch_statement (node) tree node; { int error_found = 0; tree se = TREE_OPERAND (node, 0), se_type, sb; tree default_found = NULL_TREE; /* Complete the switch expression */ se = TREE_OPERAND (node, 0) = java_complete_tree (se); se_type = TREE_TYPE (se); /* The type of the switch expression must be char, byte, short or int */ if (!JINTEGRAL_TYPE_P (se_type)) { EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node); parse_error_context (wfl_operator, "Incompatible type for `switch'. " "Can't convert `%s' to `int'", lang_printable_name (se_type)); /* This is what java_complete_tree will check */ TREE_OPERAND (node, 0) = error_mark_node; return error_mark_node; } /* Process the switch body. We should have a list of TREE_LIST. The PURPOSE of each node should be a list of case values, VALUE should be the associated block. We try to process all cases and defaults before returning, possibly finding errors. */ TREE_OPERAND (node, 1) = nreverse (TREE_OPERAND (node, 1)); for (sb = TREE_OPERAND (node, 1); sb; sb = TREE_CHAIN (sb)) { tree label; /* If we don't have a TREE_LIST here, we have a statement inside the switch that isn't tied to a label. This error is caught by the parser and we don't have to report it here. */ TREE_PURPOSE (sb) = nreverse (TREE_PURPOSE (sb)); for (label = TREE_PURPOSE (sb); label; label = TREE_CHAIN (label)) { tree case_expr; /* Verification of the default label */ if (TREE_CODE (label) == DEFAULT_EXPR) { /* Only one default label is allowed per switch statement */ if (default_found) { EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (label); parse_error_context (wfl_operator, "Duplicate case label: `default'"); error_found = 1; } else default_found = label; continue; } /* Verification of case labels */ else { case_expr = java_complete_tree (TREE_OPERAND (label, 0)); if (case_expr == error_mark_node) continue; /* First, the case expression must be constant */ case_expr = fold (case_expr); if (!TREE_CONSTANT (case_expr)) { EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (label); parse_error_context (label, "Constant expression required"); error_found = 1; break; } /* It must be assignable to the type of the switch expression. */ if (!try_builtin_assignconv (NULL_TREE, se_type, case_expr)) { EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (label); parse_error_context (wfl_operator, "Incompatible type for case. Can't convert `%s' to `int'", lang_printable_name (TREE_TYPE (case_expr))); error_found = 1; break; } /* Multiple instance of a case label bearing the same value is checked during code generation. The case expression is allright so far. */ TREE_OPERAND (label, 0) = case_expr; } } /* First TREE_VALUE should be the block tied to this list of cases. Check that this block exists and the walk it */ if (TREE_VALUE (sb)) { TREE_VALUE (sb) = java_complete_tree (TREE_VALUE (sb)); if (TREE_VALUE (sb) == error_mark_node) error_found = 1; } } /* Ready to return */ if (error_found) { TREE_TYPE (node) = error_mark_node; return error_mark_node; } TREE_TYPE (node) = void_type_node; TREE_SIDE_EFFECTS (node) = 1; return node; } /* Do the expansion of a Java switch. With Gcc, switches are front-end dependant things, but they rely on gcc routines. This function is placed here because it uses things defined locally in parse.y. */ static tree case_identity (t, v) tree t, v; { return v; } void java_expand_switch (exp) tree exp; { tree sb; expand_start_case (0, TREE_OPERAND (exp, 0), int_type_node, "switch"); for (sb = TREE_OPERAND (exp, 1); sb; sb = TREE_CHAIN (sb)) { /* We have a list of TREE_LIST. PURPOSE is the case value, and when it exists, VALUE is the associated block */ /* The first CASE element should contain the associated block, if any. All other should be case statements related to the same block */ tree label; for (label = TREE_PURPOSE (sb); label; label = TREE_CHAIN (label)) { tree label_decl = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); if (TREE_CODE (label) == CASE_EXPR) { tree duplicate; if (pushcase (TREE_OPERAND (label, 0), case_identity, label_decl, &duplicate) == 2) { EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (label); parse_error_context (wfl_operator, "Duplicate case label: `%s'", print_int_node (TREE_OPERAND (label, 0))); } } else pushcase (NULL_TREE, 0, label_decl, NULL); } /* Expand the associated block, if any */ if (TREE_VALUE (sb)) expand_expr_stmt (TREE_VALUE (sb)); } expand_end_case (TREE_OPERAND (exp, 0)); } /* 14.18 The try statement */ /* Wrap BLOCK around a LABELED_BLOCK, set DECL to the newly generated exit labeld and issue a jump to FINALLY_LABEL: LABELED_BLOCK BLOCK DECL = &LABEL_DECL GOTO_EXPR FINALLY_LABEL LABEL_DECL */ static tree build_jump_to_finally (block, decl, finally_label, type) tree block, decl, finally_label, type; { tree stmt; tree new_block = build (LABELED_BLOCK_EXPR, type, create_label_decl (generate_name ()), block); stmt = build (MODIFY_EXPR, void_type_node, decl, build_address_of (LABELED_BLOCK_LABEL (new_block))); TREE_SIDE_EFFECTS (stmt) = 1; add_stmt_to_block (block, type, stmt); stmt = build (GOTO_EXPR, void_type_node, finally_label); TREE_SIDE_EFFECTS (stmt) = 1; add_stmt_to_block (block, type, stmt); return new_block; } static tree build_try_statement (location, try_block, catches, finally) int location; tree try_block, catches, finally; { tree node, rff; if (finally) { /* This block defines a scope for the entire try[-catch]-finally sequence. It hold a local variable used to return from the finally using a computed goto. We call it return_from_finally (RFF). */ rff = build_decl_no_layout (VAR_DECL, generate_name (), return_address_type_node); /* Modification of the try block. */ try_block = build_jump_to_finally (try_block, rff, FINALLY_EXPR_LABEL (finally), NULL_TREE); /* To the finally block: add the computed goto */ add_stmt_to_block (FINALLY_EXPR_BLOCK (finally), NULL_TREE, build (GOTO_EXPR, void_type_node, rff)); /* Modification of each catch blocks, if any */ if (catches) { tree catch, catch_decl, catch_block, stmt; for (catch = catches; catch; catch = TREE_CHAIN (catch)) TREE_OPERAND (catch, 0) = build_jump_to_finally (TREE_OPERAND (catch, 0), rff, FINALLY_EXPR_LABEL (finally), NULL_TREE); /* Plus, at the end of the list, we add the catch clause that will catch an uncaught exception, call finally and rethrow it: BLOCK void *exception_parameter; (catch_decl) LABELED_BLOCK BLOCK exception_parameter = _Jv_exception_info (); RFF = &LABEL_DECL; goto finally; LABEL_DECL; CALL_EXPR Jv_ReThrow exception_parameter */ catch_decl = build_decl_no_layout (VAR_DECL, generate_name (), ptr_type_node); BUILD_ASSIGN_EXCEPTION_INFO (stmt, catch_decl); catch_block = build_expr_block (stmt, NULL_TREE); catch_block = build_jump_to_finally (catch_block, rff, FINALLY_EXPR_LABEL (finally), void_type_node); BUILD_THROW (stmt, catch_decl); catch_block = build_expr_block (catch_block, catch_decl); add_stmt_to_block (catch_block, void_type_node, stmt); /* Link the new handler to the existing list as the first entry. It will be the last one to be generated. */ catch = build1 (CATCH_EXPR, void_type_node, catch_block); TREE_CHAIN (catch) = catches; catches = catch; } } node = build (TRY_EXPR, NULL_TREE, try_block, catches, finally); EXPR_WFL_LINECOL (node) = location; /* If we have a finally, surround this whole thing by a block where the RFF local variable is defined. */ return (finally ? build_expr_block (node, rff) : node); } /* Get the catch clause block from an element of the catch clause list. If depends on whether a finally clause exists or node (in which case the original catch clause was surrounded by a LABELED_BLOCK_EXPR. */ tree java_get_catch_block (node, finally_present_p) tree node; int finally_present_p; { return (CATCH_EXPR_GET_EXPR (TREE_OPERAND (node, 0), finally_present_p)); } static tree patch_try_statement (node) tree node; { int error_found = 0; tree try = TREE_OPERAND (node, 0); /* Exception handlers are considered in left to right order */ tree catch = nreverse (TREE_OPERAND (node, 1)); tree finally = TREE_OPERAND (node, 2); int finally_p = (finally ? 1 : 0); tree current, caught_type_list = NULL_TREE; /* Check catch clauses, if any. Every time we find an error, we try to process the next catch clause. We process the catch clause before the try block so that when processing the try block we can check thrown exceptions againts the caught type list. */ for (current = catch; current; current = TREE_CHAIN (current)) { tree carg_decl, carg_type; tree sub_current, catch_block, catch_clause; int unreachable; /* Always detect the last catch clause if a finally is present. This is the catch-all handler and it just needs to be walked. */ if (!TREE_CHAIN (current) && finally) { TREE_OPERAND (current, 0) = java_complete_tree (TREE_OPERAND (current, 0)); continue; } /* At this point, the structure of the catch clause is LABELED_BLOCK_EXPR (if we have a finally) CATCH_EXPR (catch node) BLOCK (with the decl of the parameter) COMPOUND_EXPR MODIFIY_EXPR (assignemnt of the catch parameter) BLOCK (catch clause block) LABEL_DECL (where to return after finally (if any)) Since the structure of the catch clause depends on the presence of a finally, we use a function call to get to the cath clause */ catch_clause = java_get_catch_block (current, finally_p); carg_decl = BLOCK_EXPR_DECLS (catch_clause); carg_type = TREE_TYPE (TREE_TYPE (carg_decl)); /* Catch clauses can't have more than one parameter declared, but it's already enforced by the grammar. Make sure that the only parameter of the clause statement in of class Throwable or a subclass of Throwable, but that was done earlier. The catch clause parameter type has also been resolved. */ /* Just make sure that the catch clause parameter type inherits from java.lang.Throwable */ if (!inherits_from_p (carg_type, throwable_type_node)) { EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (current); parse_error_context (wfl_operator, "Can't catch class `%s'. Catch clause " "parameter type must be a subclass of " "class `java.lang.Throwable'", lang_printable_name (carg_type)); error_found = 1; continue; } /* Partial check for unreachable catch statement: The catch clause is reachable iff is no earlier catch block A in the try statement such that the type of the catch clause's parameter is the same as or a subclass of the type of A's parameter */ unreachable = 0; for (sub_current = catch; sub_current != current; sub_current = TREE_CHAIN (sub_current)) { tree sub_catch_clause, decl; sub_catch_clause = java_get_catch_block (sub_current, finally_p); decl = BLOCK_EXPR_DECLS (sub_catch_clause); if (inherits_from_p (carg_type, TREE_TYPE (TREE_TYPE (decl)))) { EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (current); parse_error_context (wfl_operator, "`catch' not reached because of the catch " "clause at line %d", EXPR_WFL_LINENO (sub_current)); unreachable = error_found = 1; break; } } if (unreachable) continue; /* Things to do here: the exception must be thrown */ /* Link this type to the caught type list */ caught_type_list = tree_cons (NULL_TREE, carg_type, caught_type_list); /* Complete the catch clause block */ catch_block = java_complete_tree (TREE_OPERAND (current, 0)); if (catch_block == error_mark_node) { error_found = 1; continue; } TREE_OPERAND (current, 0) = catch_block; } PUSH_EXCEPTIONS (caught_type_list); if ((try = java_complete_tree (try)) == error_mark_node) error_found = 1; POP_EXCEPTIONS (); /* Process finally */ if (finally) { FINALLY_EXPR_BLOCK (finally) = java_complete_tree (FINALLY_EXPR_BLOCK (finally)); if (FINALLY_EXPR_BLOCK (finally) == error_mark_node) error_found = 1; } /* Verification ends here */ if (error_found) return error_mark_node; TREE_OPERAND (node, 0) = try; TREE_OPERAND (node, 1) = catch; TREE_OPERAND (node, 2) = finally; TREE_TYPE (node) = void_type_node; return node; } /* 14.17 The synchronized Statement */ static tree patch_synchronized_statement (node, wfl_op1) tree node, wfl_op1; { tree expr = TREE_OPERAND (node, 0); tree block = TREE_OPERAND (node, 1); tree try_block, catch_all, stmt, compound, decl; /* The TYPE of expr must be a reference type */ if (!JREFERENCE_TYPE_P (TREE_TYPE (TREE_OPERAND (node, 0)))) { SET_WFL_OPERATOR (wfl_operator, node, wfl_op1); parse_error_context (wfl_operator, "Incompatible type for `synchronized'" ". Can't convert `%s' to `java.lang.Object'", lang_printable_name (TREE_TYPE (expr))); return error_mark_node; } /* Generate a try-finally for the synchronized statement, except that the handler that catches all throw exception calls _Jv_MonitorExit and then rethrow the exception. The synchronized statement is then implemented as: TRY { _Jv_MonitorEnter (expression) synchronized_block _Jv_MonitorExit (expression) } CATCH_ALL { e = _Jv_exception_info (); _Jv_MonitorExit (expression) Throw (e); } */ /* TRY block */ BUILD_MONITOR_ENTER (stmt, expr); compound = add_stmt_to_compound (NULL_TREE, int_type_node, stmt); compound = add_stmt_to_compound (compound, void_type_node, block); BUILD_MONITOR_EXIT (stmt, expr); compound = add_stmt_to_compound (compound, int_type_node, stmt); try_block = build_expr_block (compound, NULL_TREE); /* CATCH_ALL block */ decl = build_decl_no_layout (VAR_DECL, generate_name (), ptr_type_node); BUILD_ASSIGN_EXCEPTION_INFO (stmt, decl); compound = add_stmt_to_compound (NULL_TREE, void_type_node, stmt); BUILD_MONITOR_EXIT (stmt, expr); compound = add_stmt_to_compound (compound, int_type_node, stmt); BUILD_THROW (stmt, decl); compound = add_stmt_to_compound (compound, void_type_node, stmt); catch_all = build_expr_block (compound, decl); catch_all = build_expr_block (catch_all, NULL_TREE); catch_all = build1 (CATCH_EXPR, void_type_node, catch_all); /* TRY-CATCH statement */ return build (TRY_EXPR, void_type_node, try_block, catch_all, NULL_TREE); } /* 14.16 The throw Statement */ static tree patch_throw_statement (node, wfl_op1) tree node, wfl_op1; { tree expr = TREE_OPERAND (node, 0); tree type = TREE_TYPE (expr); int unchecked_ok = 0, tryblock_throws_ok = 0; /* Thrown expression must be assignable to java.lang.Throwable */ if (!try_reference_assignconv (throwable_type_node, expr)) { SET_WFL_OPERATOR (wfl_operator, node, wfl_op1); parse_error_context (wfl_operator, "Can't throw `%s'; it must be a " "subclass of class `java.lang.Throwable'", lang_printable_name (type)); /* If the thrown expression was a reference, we further the compile-time check. */ if (!JREFERENCE_TYPE_P (type)) return error_mark_node; } /* At least one of the following must be true */ /* The type of the throw expression is a not checked exception, i.e. is a unchecked expression. */ unchecked_ok = IS_UNCHECKED_EXPRESSION_P (TREE_TYPE (type)); /* Throw is contained in a try statement and at least one catch clause can receive the thrown expression or the current method is declared to throw such an exception. Or, the throw statement is contained in a method or constructor declaration and the type of the Expression is assignable to at least one type listed in the throws clause the declaration. */ SET_WFL_OPERATOR (wfl_operator, node, wfl_op1); if (!unchecked_ok) tryblock_throws_ok = check_thrown_exceptions_do (EXPR_WFL_LINECOL (wfl_operator), TREE_TYPE (expr)); if (!(unchecked_ok || tryblock_throws_ok)) { /* If there is a surrounding try block that has no matching clatch clause, report it first. A surrounding try block exits only if there is something after the list of checked exception thrown by the current function (if any). */ if (IN_TRY_BLOCK_P ()) parse_error_context (wfl_operator, "Checked exception `%s' can't be " "caught by any of the catch clause(s) " "of the surrounding `try' block", lang_printable_name (type)); /* If we have no surrounding try statement and the method doesn't have any throws, report it now. FIXME */ else if (!EXCEPTIONS_P (currently_caught_type_list) && !tryblock_throws_ok) parse_error_context (wfl_operator, "Checked exception `%s' isn't " "thrown from a `try' block", lang_printable_name (type)); /* Otherwise, the current method doesn't have the appropriate throws declaration */ else parse_error_context (wfl_operator, "Checked exception `%s' doesn't " "match any of current method's `throws' " "declaration(s)", lang_printable_name (type)); return error_mark_node; } /* If a throw statement is contained in a static initializer, then a compile-time check ensures that either its value is always an unchecked exception or its value is always caught by some try statement that contains it. FIXME, static initializer. */ BUILD_THROW (node, expr); return node; } /* Check that exception said to be thrown by method DECL can be effectively caught from where DECL is invoked. */ static void check_thrown_exceptions (location, decl) int location; tree decl; { tree throws; /* For all the unchecked exceptions thrown by DECL */ for (throws = DECL_FUNCTION_THROWS (decl); throws; throws = TREE_CHAIN (throws)) if (!check_thrown_exceptions_do (location, TREE_VALUE (throws))) { EXPR_WFL_LINECOL (wfl_operator) = location; parse_error_context (wfl_operator, "Exception `%s' must be caught, or it must be " "declared in the `throws' clause of `%s'", lang_printable_name (TREE_VALUE (throws)), IDENTIFIER_POINTER (DECL_NAME (current_function_decl))); } } /* Return 1 if EXCEPTION is caught at the current nesting level of try-catch blocks, OR is listed in the `throws' clause of the current method. */ static int check_thrown_exceptions_do (location, exception) int location; tree exception; { tree list = currently_caught_type_list; /* First, all the nested try-catch-finally at that stage. The last element contains `throws' clause exceptions, if any. */ while (list) { tree caught; for (caught = TREE_VALUE (list); caught; caught = TREE_CHAIN (caught)) if (valid_ref_assignconv_cast_p (exception, TREE_VALUE (caught), 0)) return 1; list = TREE_CHAIN (list); } return 0; } static void purge_unchecked_exceptions (mdecl) tree mdecl; { tree throws = DECL_FUNCTION_THROWS (mdecl); tree new = NULL_TREE; while (throws) { tree next = TREE_CHAIN (throws); if (!IS_UNCHECKED_EXPRESSION_P (TREE_VALUE (throws))) { TREE_CHAIN (throws) = new; new = throws; } throws = next; } /* List is inverted here, but it doesn't matter */ DECL_FUNCTION_THROWS (mdecl) = new; }