/* Language lexer for the GNU compiler for the Java(TM) language. Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. Contributed by Alexandre Petit-Bianco (apbianco@cygnus.com) This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. The Free Software Foundation is independent of Sun Microsystems, Inc. */ /* It defines java_lex (yylex) that reads a Java ASCII source file possibly containing Unicode escape sequence or utf8 encoded characters and returns a token for everything found but comments, white spaces and line terminators. When necessary, it also fills the java_lval (yylval) union. It's implemented to be called by a re-entrant parser generated by Bison. The lexical analysis conforms to the Java grammar described in "The Java(TM) Language Specification. J. Gosling, B. Joy, G. Steele. Addison Wesley 1996" (http://java.sun.com/docs/books/jls/html/3.doc.html) */ #include "keyword.h" #include "flags.h" #include "chartables.h" #ifndef JC1_LITE #include "timevar.h" #endif /* Function declarations. */ static char *java_sprint_unicode (struct java_line *, int); static void java_unicode_2_utf8 (unicode_t); static void java_lex_error (const char *, int); #ifndef JC1_LITE static int do_java_lex (YYSTYPE *); static int java_lex (YYSTYPE *); static int java_is_eol (FILE *, int); static tree build_wfl_node (tree); #endif static void java_store_unicode (struct java_line *, unicode_t, int); static int java_parse_escape_sequence (void); static int java_start_char_p (unicode_t); static int java_part_char_p (unicode_t); static int java_space_char_p (unicode_t); static void java_parse_doc_section (int); static void java_parse_end_comment (int); static int java_get_unicode (void); static int java_read_unicode (java_lexer *, int *); static int java_read_unicode_collapsing_terminators (java_lexer *, int *); static void java_store_unicode (struct java_line *, unicode_t, int); static int java_read_char (java_lexer *); static void java_allocate_new_line (void); static void java_unget_unicode (void); static unicode_t java_sneak_unicode (void); #ifndef JC1_LITE static int utf8_cmp (const unsigned char *, int, const char *); #endif java_lexer *java_new_lexer (FILE *, const char *); #ifndef JC1_LITE static void error_if_numeric_overflow (tree); #endif #ifdef HAVE_ICONV /* This is nonzero if we have initialized `need_byteswap'. */ static int byteswap_init = 0; /* Some versions of iconv() (e.g., glibc 2.1.3) will return UCS-2 in big-endian order -- not native endian order. We handle this by doing a conversion once at startup and seeing what happens. This flag holds the results of this determination. */ static int need_byteswap = 0; #endif void java_init_lex (FILE *finput, const char *encoding) { #ifndef JC1_LITE int java_lang_imported = 0; if (!java_lang_id) java_lang_id = get_identifier ("java.lang"); if (!inst_id) inst_id = get_identifier ("inst$"); if (!wpv_id) wpv_id = get_identifier ("write_parm_value$"); if (!java_lang_imported) { tree node = build_tree_list (build_expr_wfl (java_lang_id, NULL, 0, 0), NULL_TREE); read_import_dir (TREE_PURPOSE (node)); TREE_CHAIN (node) = ctxp->import_demand_list; ctxp->import_demand_list = node; java_lang_imported = 1; } if (!wfl_operator) wfl_operator = build_expr_wfl (NULL_TREE, ctxp->filename, 0, 0); if (!label_id) label_id = get_identifier ("$L"); if (!wfl_append) wfl_append = build_expr_wfl (get_identifier ("append"), NULL, 0, 0); if (!wfl_string_buffer) wfl_string_buffer = build_expr_wfl (get_identifier (flag_emit_class_files ? "java.lang.StringBuffer" : "gnu.gcj.runtime.StringBuffer"), NULL, 0, 0); if (!wfl_to_string) wfl_to_string = build_expr_wfl (get_identifier ("toString"), NULL, 0, 0); CPC_INITIALIZER_LIST (ctxp) = CPC_STATIC_INITIALIZER_LIST (ctxp) = CPC_INSTANCE_INITIALIZER_LIST (ctxp) = NULL_TREE; memset (ctxp->modifier_ctx, 0, sizeof (ctxp->modifier_ctx)); current_jcf = ggc_alloc_cleared (sizeof (JCF)); ctxp->current_parsed_class = NULL; ctxp->package = NULL_TREE; #endif ctxp->filename = input_filename; ctxp->lineno = input_line = 0; ctxp->p_line = NULL; ctxp->c_line = NULL; ctxp->java_error_flag = 0; ctxp->lexer = java_new_lexer (finput, encoding); } static char * java_sprint_unicode (struct java_line *line, int i) { static char buffer [10]; if (line->unicode_escape_p [i] || line->line [i] > 128) sprintf (buffer, "\\u%04x", line->line [i]); else { buffer [0] = line->line [i]; buffer [1] = '\0'; } return buffer; } static unicode_t java_sneak_unicode (void) { return (ctxp->c_line->line [ctxp->c_line->current]); } static void java_unget_unicode (void) { if (!ctxp->c_line->current) /* Can't unget unicode. */ abort (); ctxp->c_line->current--; ctxp->c_line->char_col -= JAVA_COLUMN_DELTA (0); } static void java_allocate_new_line (void) { unicode_t ahead = (ctxp->c_line ? ctxp->c_line->ahead[0] : '\0'); char ahead_escape_p = (ctxp->c_line ? ctxp->c_line->unicode_escape_ahead_p : 0); if (ctxp->c_line && !ctxp->c_line->white_space_only) { if (ctxp->p_line) { free (ctxp->p_line->unicode_escape_p); free (ctxp->p_line->line); free (ctxp->p_line); } ctxp->p_line = ctxp->c_line; ctxp->c_line = NULL; /* Reallocated. */ } if (!ctxp->c_line) { ctxp->c_line = xmalloc (sizeof (struct java_line)); ctxp->c_line->max = JAVA_LINE_MAX; ctxp->c_line->line = xmalloc (sizeof (unicode_t)*ctxp->c_line->max); ctxp->c_line->unicode_escape_p = xmalloc (sizeof (char)*ctxp->c_line->max); ctxp->c_line->white_space_only = 0; } ctxp->c_line->line [0] = ctxp->c_line->size = 0; ctxp->c_line->char_col = ctxp->c_line->current = 0; if (ahead) { ctxp->c_line->line [ctxp->c_line->size] = ahead; ctxp->c_line->unicode_escape_p [ctxp->c_line->size] = ahead_escape_p; ctxp->c_line->size++; } ctxp->c_line->ahead [0] = 0; ctxp->c_line->unicode_escape_ahead_p = 0; ctxp->c_line->lineno = ++input_line; ctxp->c_line->white_space_only = 1; } /* Create a new lexer object. */ java_lexer * java_new_lexer (FILE *finput, const char *encoding) { java_lexer *lex = xmalloc (sizeof (java_lexer)); int enc_error = 0; lex->finput = finput; lex->bs_count = 0; lex->unget_value = 0; lex->hit_eof = 0; lex->encoding = encoding; #ifdef HAVE_ICONV lex->handle = iconv_open ("UCS-2", encoding); if (lex->handle != (iconv_t) -1) { lex->first = -1; lex->last = -1; lex->out_first = -1; lex->out_last = -1; lex->read_anything = 0; lex->use_fallback = 0; /* Work around broken iconv() implementations by doing checking at runtime. We assume that if the UTF-8 => UCS-2 encoder is broken, then all UCS-2 encoders will be broken. Perhaps not a valid assumption. */ if (! byteswap_init) { iconv_t handle; byteswap_init = 1; handle = iconv_open ("UCS-2", "UTF-8"); if (handle != (iconv_t) -1) { unicode_t result; unsigned char in[3]; char *inp, *outp; size_t inc, outc, r; /* This is the UTF-8 encoding of \ufeff. */ in[0] = 0xef; in[1] = 0xbb; in[2] = 0xbf; inp = (char *) in; inc = 3; outp = (char *) &result; outc = 2; r = iconv (handle, (ICONV_CONST char **) &inp, &inc, &outp, &outc); iconv_close (handle); /* Conversion must be complete for us to use the result. */ if (r != (size_t) -1 && inc == 0 && outc == 0) need_byteswap = (result != 0xfeff); } } lex->byte_swap = need_byteswap; } else #endif /* HAVE_ICONV */ { /* If iconv failed, use the internal decoder if the default encoding was requested. This code is used on platforms where iconv exists but is insufficient for our needs. For instance, on Solaris 2.5 iconv cannot handle UTF-8 or UCS-2. On Solaris the default encoding, as returned by nl_langinfo(), is `646' (aka ASCII), but the Solaris iconv_open() doesn't understand that. We work around that by pretending `646' to be the same as UTF-8. */ if (strcmp (encoding, DEFAULT_ENCODING) && strcmp (encoding, "646")) enc_error = 1; #ifdef HAVE_ICONV else { lex->use_fallback = 1; lex->encoding = "UTF-8"; } #endif /* HAVE_ICONV */ } if (enc_error) fatal_error ("unknown encoding: `%s'\nThis might mean that your locale's encoding is not supported\nby your system's iconv(3) implementation. If you aren't trying\nto use a particular encoding for your input file, try the\n`--encoding=UTF-8' option", encoding); return lex; } void java_destroy_lexer (java_lexer *lex) { #ifdef HAVE_ICONV if (! lex->use_fallback) iconv_close (lex->handle); #endif free (lex); } static int java_read_char (java_lexer *lex) { if (lex->unget_value) { unicode_t r = lex->unget_value; lex->unget_value = 0; return r; } #ifdef HAVE_ICONV if (! lex->use_fallback) { size_t ir, inbytesleft, in_save, out_count, out_save; char *inp, *outp; unicode_t result; /* If there is data which has already been converted, use it. */ if (lex->out_first == -1 || lex->out_first >= lex->out_last) { lex->out_first = 0; lex->out_last = 0; while (1) { /* See if we need to read more data. If FIRST == 0 then the previous conversion attempt ended in the middle of a character at the end of the buffer. Otherwise we only have to read if the buffer is empty. */ if (lex->first == 0 || lex->first >= lex->last) { int r; if (lex->first >= lex->last) { lex->first = 0; lex->last = 0; } if (feof (lex->finput)) return UEOF; r = fread (&lex->buffer[lex->last], 1, sizeof (lex->buffer) - lex->last, lex->finput); lex->last += r; } inbytesleft = lex->last - lex->first; out_count = sizeof (lex->out_buffer) - lex->out_last; if (inbytesleft == 0) { /* We've tried to read and there is nothing left. */ return UEOF; } in_save = inbytesleft; out_save = out_count; inp = &lex->buffer[lex->first]; outp = (char *) &lex->out_buffer[lex->out_last]; ir = iconv (lex->handle, (ICONV_CONST char **) &inp, &inbytesleft, &outp, &out_count); /* If we haven't read any bytes, then look to see if we have read a BOM. */ if (! lex->read_anything && out_save - out_count >= 2) { unicode_t uc = * (unicode_t *) &lex->out_buffer[0]; if (uc == 0xfeff) { lex->byte_swap = 0; lex->out_first += 2; } else if (uc == 0xfffe) { lex->byte_swap = 1; lex->out_first += 2; } lex->read_anything = 1; } if (lex->byte_swap) { unsigned int i; for (i = 0; i < out_save - out_count; i += 2) { char t = lex->out_buffer[lex->out_last + i]; lex->out_buffer[lex->out_last + i] = lex->out_buffer[lex->out_last + i + 1]; lex->out_buffer[lex->out_last + i + 1] = t; } } lex->first += in_save - inbytesleft; lex->out_last += out_save - out_count; /* If we converted anything at all, move along. */ if (out_count != out_save) break; if (ir == (size_t) -1) { if (errno == EINVAL) { /* This is ok. This means that the end of our buffer is in the middle of a character sequence. We just move the valid part of the buffer to the beginning to force a read. */ memmove (&lex->buffer[0], &lex->buffer[lex->first], lex->last - lex->first); lex->last -= lex->first; lex->first = 0; } else { /* A more serious error. */ char buffer[128]; sprintf (buffer, "Unrecognized character for encoding '%s'", lex->encoding); java_lex_error (buffer, 0); return UEOF; } } } } if (lex->out_first == -1 || lex->out_first >= lex->out_last) { /* Don't have any data. */ return UEOF; } /* Success. */ result = * ((unicode_t *) &lex->out_buffer[lex->out_first]); lex->out_first += 2; return result; } else #endif /* HAVE_ICONV */ { int c, c1, c2; c = getc (lex->finput); if (c == EOF) return UEOF; if (c < 128) return (unicode_t) c; else { if ((c & 0xe0) == 0xc0) { c1 = getc (lex->finput); if ((c1 & 0xc0) == 0x80) { unicode_t r = (unicode_t)(((c & 0x1f) << 6) + (c1 & 0x3f)); /* Check for valid 2-byte characters. We explicitly allow \0 because this encoding is common in the Java world. */ if (r == 0 || (r >= 0x80 && r <= 0x7ff)) return r; } } else if ((c & 0xf0) == 0xe0) { c1 = getc (lex->finput); if ((c1 & 0xc0) == 0x80) { c2 = getc (lex->finput); if ((c2 & 0xc0) == 0x80) { unicode_t r = (unicode_t)(((c & 0xf) << 12) + (( c1 & 0x3f) << 6) + (c2 & 0x3f)); /* Check for valid 3-byte characters. Don't allow surrogate, \ufffe or \uffff. */ if (IN_RANGE (r, 0x800, 0xffff) && ! IN_RANGE (r, 0xd800, 0xdfff) && r != 0xfffe && r != 0xffff) return r; } } } /* We simply don't support invalid characters. We also don't support 4-, 5-, or 6-byte UTF-8 sequences, as these cannot be valid Java characters. */ java_lex_error ("malformed UTF-8 character", 0); } } /* We only get here on error. */ return UEOF; } static void java_store_unicode (struct java_line *l, unicode_t c, int unicode_escape_p) { if (l->size == l->max) { l->max += JAVA_LINE_MAX; l->line = xrealloc (l->line, sizeof (unicode_t)*l->max); l->unicode_escape_p = xrealloc (l->unicode_escape_p, sizeof (char)*l->max); } l->line [l->size] = c; l->unicode_escape_p [l->size++] = unicode_escape_p; } static int java_read_unicode (java_lexer *lex, int *unicode_escape_p) { int c; c = java_read_char (lex); *unicode_escape_p = 0; if (c != '\\') { lex->bs_count = 0; return c; } ++lex->bs_count; if ((lex->bs_count) % 2 == 1) { /* Odd number of \ seen. */ c = java_read_char (lex); if (c == 'u') { unicode_t unicode = 0; int shift = 12; /* Recognize any number of `u's in \u. */ while ((c = java_read_char (lex)) == 'u') ; shift = 12; do { if (c == UEOF) { java_lex_error ("prematurely terminated \\u sequence", 0); return UEOF; } if (hex_p (c)) unicode |= (unicode_t)(hex_value (c) << shift); else { java_lex_error ("non-hex digit in \\u sequence", 0); break; } c = java_read_char (lex); shift -= 4; } while (shift >= 0); if (c != UEOF) lex->unget_value = c; lex->bs_count = 0; *unicode_escape_p = 1; return unicode; } lex->unget_value = c; } return (unicode_t) '\\'; } static int java_read_unicode_collapsing_terminators (java_lexer *lex, int *unicode_escape_p) { int c = java_read_unicode (lex, unicode_escape_p); if (c == '\r') { /* We have to read ahead to see if we got \r\n. In that case we return a single line terminator. */ int dummy; c = java_read_unicode (lex, &dummy); if (c != '\n' && c != UEOF) lex->unget_value = c; /* In either case we must return a newline. */ c = '\n'; } return c; } static int java_get_unicode (void) { /* It's time to read a line when... */ if (!ctxp->c_line || ctxp->c_line->current == ctxp->c_line->size) { int c; int found_chars = 0; if (ctxp->lexer->hit_eof) return UEOF; java_allocate_new_line (); if (ctxp->c_line->line[0] != '\n') { for (;;) { int unicode_escape_p; c = java_read_unicode_collapsing_terminators (ctxp->lexer, &unicode_escape_p); if (c != UEOF) { found_chars = 1; java_store_unicode (ctxp->c_line, c, unicode_escape_p); if (ctxp->c_line->white_space_only && !JAVA_WHITE_SPACE_P (c) && c != '\n') ctxp->c_line->white_space_only = 0; } if ((c == '\n') || (c == UEOF)) break; } if (c == UEOF && ! found_chars) { ctxp->lexer->hit_eof = 1; return UEOF; } } } ctxp->c_line->char_col += JAVA_COLUMN_DELTA (0); JAVA_LEX_CHAR (ctxp->c_line->line [ctxp->c_line->current]); return ctxp->c_line->line [ctxp->c_line->current++]; } /* Parse the end of a C style comment. * C is the first character following the '/' and '*'. */ static void java_parse_end_comment (int c) { for ( ;; c = java_get_unicode ()) { switch (c) { case UEOF: java_lex_error ("Comment not terminated at end of input", 0); return; case '*': switch (c = java_get_unicode ()) { case UEOF: java_lex_error ("Comment not terminated at end of input", 0); return; case '/': return; case '*': /* Reparse only '*'. */ java_unget_unicode (); } } } } /* Parse the documentation section. Keywords must be at the beginning of a documentation comment line (ignoring white space and any `*' character). Parsed keyword(s): @DEPRECATED. */ static void java_parse_doc_section (int c) { int last_was_star; /* We reset this here, because only the most recent doc comment applies to the following declaration. */ ctxp->deprecated = 0; /* We loop over all the lines of the comment. We'll eventually exit if we hit EOF prematurely, or when we see the comment terminator. */ while (1) { /* These first steps need only be done if we're still looking for the deprecated tag. If we've already seen it, we might as well skip looking for it again. */ if (! ctxp->deprecated) { /* Skip whitespace and '*'s. We must also check for the end of the comment here. */ while (JAVA_WHITE_SPACE_P (c) || c == '*') { last_was_star = (c == '*'); c = java_get_unicode (); if (last_was_star && c == '/') { /* We just saw the comment terminator. */ return; } } if (c == UEOF) goto eof; if (c == '@') { const char *deprecated = "@deprecated"; int i; for (i = 0; deprecated[i]; ++i) { if (c != deprecated[i]) break; /* We write the code in this way, with the update at the end, so that after the loop we're left with the next character in C. */ c = java_get_unicode (); } if (c == UEOF) goto eof; /* @deprecated must be followed by a space or newline. We also allow a '*' in case it appears just before the end of a comment. In this position only we also must allow any Unicode space character. */ if (c == ' ' || c == '\n' || c == '*' || java_space_char_p (c)) { if (! deprecated[i]) ctxp->deprecated = 1; } } } /* We've examined the relevant content from this line. Now we skip the remaining characters and start over with the next line. We also check for end of comment here. */ while (c != '\n' && c != UEOF) { last_was_star = (c == '*'); c = java_get_unicode (); if (last_was_star && c == '/') return; } if (c == UEOF) goto eof; /* We have to advance past the \n. */ c = java_get_unicode (); if (c == UEOF) goto eof; } eof: java_lex_error ("Comment not terminated at end of input", 0); } /* Return true if C is a valid start character for a Java identifier. This is only called if C >= 128 -- smaller values are handled inline. However, this function handles all values anyway. */ static int java_start_char_p (unicode_t c) { unsigned int hi = c / 256; const char *const page = type_table[hi]; unsigned long val = (unsigned long) page; int flags; if ((val & ~ LETTER_MASK) != 0) flags = page[c & 255]; else flags = val; return flags & LETTER_START; } /* Return true if C is a valid part character for a Java identifier. This is only called if C >= 128 -- smaller values are handled inline. However, this function handles all values anyway. */ static int java_part_char_p (unicode_t c) { unsigned int hi = c / 256; const char *const page = type_table[hi]; unsigned long val = (unsigned long) page; int flags; if ((val & ~ LETTER_MASK) != 0) flags = page[c & 255]; else flags = val; return flags & LETTER_PART; } /* Return true if C is whitespace. */ static int java_space_char_p (unicode_t c) { unsigned int hi = c / 256; const char *const page = type_table[hi]; unsigned long val = (unsigned long) page; int flags; if ((val & ~ LETTER_MASK) != 0) flags = page[c & 255]; else flags = val; return flags & LETTER_SPACE; } static int java_parse_escape_sequence (void) { unicode_t char_lit; int c; switch (c = java_get_unicode ()) { case 'b': return (unicode_t)0x8; case 't': return (unicode_t)0x9; case 'n': return (unicode_t)0xa; case 'f': return (unicode_t)0xc; case 'r': return (unicode_t)0xd; case '"': return (unicode_t)0x22; case '\'': return (unicode_t)0x27; case '\\': return (unicode_t)0x5c; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': { int octal_escape[3]; int octal_escape_index = 0; int max = 3; int i, shift; for (; octal_escape_index < max && RANGE (c, '0', '7'); c = java_get_unicode ()) { if (octal_escape_index == 0 && c > '3') { /* According to the grammar, `\477' has a well-defined meaning -- it is `\47' followed by `7'. */ --max; } octal_escape [octal_escape_index++] = c; } java_unget_unicode (); for (char_lit=0, i = 0, shift = 3*(octal_escape_index-1); i < octal_escape_index; i++, shift -= 3) char_lit |= (octal_escape [i] - '0') << shift; return char_lit; } default: java_lex_error ("Invalid character in escape sequence", 0); return JAVA_CHAR_ERROR; } } #ifndef JC1_LITE #define IS_ZERO(X) REAL_VALUES_EQUAL (X, dconst0) /* Subroutine of java_lex: converts floating-point literals to tree nodes. LITERAL_TOKEN is the input literal, JAVA_LVAL is where to store the result. FFLAG indicates whether the literal was tagged with an 'f', indicating it is of type 'float'; NUMBER_BEGINNING is the line number on which to report any error. */ static void java_perform_atof (YYSTYPE *, char *, int, int); static void java_perform_atof (YYSTYPE *java_lval, char *literal_token, int fflag, int number_beginning) { REAL_VALUE_TYPE value; tree type = (fflag ? FLOAT_TYPE_NODE : DOUBLE_TYPE_NODE); SET_REAL_VALUE_ATOF (value, REAL_VALUE_ATOF (literal_token, TYPE_MODE (type))); if (REAL_VALUE_ISINF (value) || REAL_VALUE_ISNAN (value)) { JAVA_FLOAT_RANGE_ERROR (fflag ? "float" : "double"); value = DCONST0; } else if (IS_ZERO (value)) { /* We check to see if the value is really 0 or if we've found an underflow. We do this in the most primitive imaginable way. */ int really_zero = 1; char *p = literal_token; if (*p == '-') ++p; while (*p && *p != 'e' && *p != 'E') { if (*p != '0' && *p != '.') { really_zero = 0; break; } ++p; } if (! really_zero) { int i = ctxp->c_line->current; ctxp->c_line->current = number_beginning; java_lex_error ("Floating point literal underflow", 0); ctxp->c_line->current = i; } } SET_LVAL_NODE_TYPE (build_real (type, value), type); } #endif static int yylex (YYSTYPE *); static int #ifdef JC1_LITE yylex (YYSTYPE *java_lval) #else do_java_lex (YYSTYPE *java_lval) #endif { int c; unicode_t first_unicode; int ascii_index, all_ascii; char *string; /* Translation of the Unicode escape in the raw stream of Unicode characters. Takes care of line terminator. */ step1: /* Skip white spaces: SP, TAB and FF or ULT. */ for (c = java_get_unicode (); c == '\n' || JAVA_WHITE_SPACE_P (c); c = java_get_unicode ()) if (c == '\n') { ctxp->elc.line = ctxp->c_line->lineno; ctxp->elc.col = ctxp->c_line->char_col-2; } ctxp->elc.col = (ctxp->elc.col < 0 ? 0 : ctxp->elc.col); if (c == 0x1a) /* CTRL-Z. */ { if ((c = java_get_unicode ()) == UEOF) return 0; /* Ok here. */ else java_unget_unicode (); /* Caught later, at the end of the function. */ } /* Handle EOF here. */ if (c == UEOF) /* Should probably do something here... */ return 0; /* Take care of eventual comments. */ if (c == '/') { switch (c = java_get_unicode ()) { case '/': for (;;) { c = java_get_unicode (); if (c == UEOF) { /* It is ok to end a `//' comment with EOF, unless we're being pedantic. */ if (pedantic) java_lex_error ("Comment not terminated at end of input", 0); return 0; } if (c == '\n') /* ULT */ goto step1; } break; case '*': if ((c = java_get_unicode ()) == '*') { c = java_get_unicode (); if (c == '/') { /* Empty documentation comment. We have to reset the deprecation marker as only the most recent doc comment applies. */ ctxp->deprecated = 0; } else java_parse_doc_section (c); } else java_parse_end_comment ((c = java_get_unicode ())); goto step1; break; default: java_unget_unicode (); c = '/'; break; } } ctxp->elc.line = ctxp->c_line->lineno; ctxp->elc.prev_col = ctxp->elc.col; ctxp->elc.col = ctxp->c_line->char_col - JAVA_COLUMN_DELTA (-1); if (ctxp->elc.col < 0) abort (); /* Numeric literals. */ if (JAVA_ASCII_DIGIT (c) || (c == '.')) { /* This section of code is borrowed from gcc/c-lex.c. */ #define TOTAL_PARTS ((HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR) * 2 + 2) int parts[TOTAL_PARTS]; HOST_WIDE_INT high, low; /* End borrowed section. */ char literal_token [256]; int literal_index = 0, radix = 10, long_suffix = 0, overflow = 0, bytes; int found_hex_digits = 0, found_non_octal_digits = 0; int i; #ifndef JC1_LITE int number_beginning = ctxp->c_line->current; tree value; #endif /* We might have a . separator instead of a FP like .[0-9]*. */ if (c == '.') { unicode_t peep = java_sneak_unicode (); if (!JAVA_ASCII_DIGIT (peep)) { JAVA_LEX_SEP('.'); BUILD_OPERATOR (DOT_TK); } } for (i = 0; i < TOTAL_PARTS; i++) parts [i] = 0; if (c == '0') { c = java_get_unicode (); if (c == 'x' || c == 'X') { radix = 16; c = java_get_unicode (); } else if (JAVA_ASCII_DIGIT (c)) radix = 8; else if (c == '.' || c == 'e' || c =='E') { /* Push the '.', 'e', or 'E' back and prepare for a FP parsing... */ java_unget_unicode (); c = '0'; } else { /* We have a zero literal: 0, 0{l,L}, 0{f,F}, 0{d,D}. */ JAVA_LEX_LIT ("0", 10); switch (c) { case 'L': case 'l': SET_LVAL_NODE (long_zero_node); return (INT_LIT_TK); case 'f': case 'F': SET_LVAL_NODE (float_zero_node); return (FP_LIT_TK); case 'd': case 'D': SET_LVAL_NODE (double_zero_node); return (FP_LIT_TK); default: java_unget_unicode (); SET_LVAL_NODE (integer_zero_node); return (INT_LIT_TK); } } } /* Parse the first part of the literal, until we find something which is not a number. */ while ((radix == 16 && JAVA_ASCII_HEXDIGIT (c)) || JAVA_ASCII_DIGIT (c)) { /* We store in a string (in case it turns out to be a FP) and in PARTS if we have to process a integer literal. */ int numeric = hex_value (c); int count; /* Remember when we find a valid hexadecimal digit. */ if (radix == 16) found_hex_digits = 1; /* Remember when we find an invalid octal digit. */ else if (radix == 8 && !JAVA_ASCII_OCTDIGIT (c)) found_non_octal_digits = 1; literal_token [literal_index++] = c; /* This section of code if borrowed from gcc/c-lex.c. */ for (count = 0; count < TOTAL_PARTS; count++) { parts[count] *= radix; if (count) { parts[count] += (parts[count-1] >> HOST_BITS_PER_CHAR); parts[count-1] &= (1 << HOST_BITS_PER_CHAR) - 1; } else parts[0] += numeric; } if (parts [TOTAL_PARTS-1] != 0) overflow = 1; /* End borrowed section. */ c = java_get_unicode (); } /* If we have something from the FP char set but not a digit, parse a FP literal. */ if (JAVA_ASCII_FPCHAR (c) && !JAVA_ASCII_DIGIT (c)) { int stage = 0; int seen_digit = (literal_index ? 1 : 0); int seen_exponent = 0; int fflag = 0; /* 1 for {f,F}, 0 for {d,D}. FP literal are double unless specified. */ /* It is ok if the radix is 8 because this just means we've seen a leading `0'. However, radix==16 is invalid. */ if (radix == 16) java_lex_error ("Can't express non-decimal FP literal", 0); radix = 10; for (;;) { if (c == '.') { if (stage < 1) { stage = 1; literal_token [literal_index++ ] = c; c = java_get_unicode (); } else java_lex_error ("Invalid character in FP literal", 0); } if (c == 'e' || c == 'E') { if (stage < 2) { /* {E,e} must have seen at least a digit. */ if (!seen_digit) java_lex_error ("Invalid FP literal, mantissa must have digit", 0); seen_digit = 0; seen_exponent = 1; stage = 2; literal_token [literal_index++] = c; c = java_get_unicode (); } else java_lex_error ("Invalid character in FP literal", 0); } if ( c == 'f' || c == 'F' || c == 'd' || c == 'D') { fflag = ((c == 'd') || (c == 'D')) ? 0 : 1; stage = 4; /* So we fall through. */ } if ((c=='-' || c =='+') && stage == 2) { stage = 3; literal_token [literal_index++] = c; c = java_get_unicode (); } if ((stage == 0 && JAVA_ASCII_FPCHAR (c)) || (stage == 1 && JAVA_ASCII_FPCHAR (c) && !(c == '.')) || (stage == 2 && (JAVA_ASCII_DIGIT (c) || JAVA_FP_PM (c))) || (stage == 3 && JAVA_ASCII_DIGIT (c))) { if (JAVA_ASCII_DIGIT (c)) seen_digit = 1; if (stage == 2) stage = 3; literal_token [literal_index++ ] = c; c = java_get_unicode (); } else { if (stage != 4) /* Don't push back fF/dD. */ java_unget_unicode (); /* An exponent (if any) must have seen a digit. */ if (seen_exponent && !seen_digit) java_lex_error ("Invalid FP literal, exponent must have digit", 0); literal_token [literal_index] = '\0'; JAVA_LEX_LIT (literal_token, radix); #ifndef JC1_LITE java_perform_atof (java_lval, literal_token, fflag, number_beginning); #endif return FP_LIT_TK; } } } /* JAVA_ASCII_FPCHAR (c) */ /* Here we get back to converting the integral literal. */ if (radix == 16 && ! found_hex_digits) java_lex_error ("0x must be followed by at least one hexadecimal digit", 0); else if (radix == 8 && found_non_octal_digits) java_lex_error ("Octal literal contains digit out of range", 0); else if (c == 'L' || c == 'l') long_suffix = 1; else java_unget_unicode (); #ifdef JAVA_LEX_DEBUG literal_token [literal_index] = '\0'; /* So JAVA_LEX_LIT is safe. */ JAVA_LEX_LIT (literal_token, radix); #endif /* This section of code is borrowed from gcc/c-lex.c. */ if (!overflow) { bytes = GET_TYPE_PRECISION (long_type_node); for (i = bytes; i < TOTAL_PARTS; i++) if (parts [i]) { overflow = 1; break; } } high = low = 0; for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR; i++) { high |= ((HOST_WIDE_INT) parts[i + (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR)] << (i * HOST_BITS_PER_CHAR)); low |= (HOST_WIDE_INT) parts[i] << (i * HOST_BITS_PER_CHAR); } /* End borrowed section. */ #ifndef JC1_LITE /* Range checking. */ value = build_int_2 (low, high); /* Temporarily set type to unsigned. */ SET_LVAL_NODE_TYPE (value, (long_suffix ? unsigned_long_type_node : unsigned_int_type_node)); /* For base 10 numbers, only values up to the highest value (plus one) can be written. For instance, only ints up to 2147483648 can be written. The special case of the largest negative value is handled elsewhere. For other bases, any number can be represented. */ if (overflow || (radix == 10 && tree_int_cst_lt (long_suffix ? decimal_long_max : decimal_int_max, value))) { if (long_suffix) JAVA_INTEGRAL_RANGE_ERROR ("Numeric overflow for `long' literal"); else JAVA_INTEGRAL_RANGE_ERROR ("Numeric overflow for `int' literal"); } /* Sign extend the value. */ SET_LVAL_NODE_TYPE (value, (long_suffix ? long_type_node : int_type_node)); force_fit_type (value, 0); JAVA_RADIX10_FLAG (value) = radix == 10; #else SET_LVAL_NODE_TYPE (build_int_2 (low, high), long_suffix ? long_type_node : int_type_node); #endif return INT_LIT_TK; } /* Character literals. */ if (c == '\'') { int char_lit; if ((c = java_get_unicode ()) == '\\') char_lit = java_parse_escape_sequence (); else { if (c == '\n' || c == '\'') java_lex_error ("Invalid character literal", 0); char_lit = c; } c = java_get_unicode (); if ((c == '\n') || (c == UEOF)) java_lex_error ("Character literal not terminated at end of line", 0); if (c != '\'') java_lex_error ("Syntax error in character literal", 0); if (char_lit == JAVA_CHAR_ERROR) char_lit = 0; /* We silently convert it to zero. */ JAVA_LEX_CHAR_LIT (char_lit); SET_LVAL_NODE_TYPE (build_int_2 (char_lit, 0), char_type_node); return CHAR_LIT_TK; } /* String literals. */ if (c == '"') { int no_error; char *string; for (no_error = 1, c = java_get_unicode (); c != UEOF && c != '"' && c != '\n'; c = java_get_unicode ()) { if (c == '\\') c = java_parse_escape_sequence (); if (c == JAVA_CHAR_ERROR) { no_error = 0; c = 0; /* We silently convert it to zero. */ } java_unicode_2_utf8 (c); } if (c == '\n' || c == UEOF) /* ULT. */ { input_line--; /* Refer to the line where the terminator was seen. */ java_lex_error ("String not terminated at end of line", 0); input_line++; } obstack_1grow (&temporary_obstack, '\0'); string = obstack_finish (&temporary_obstack); #ifndef JC1_LITE if (!no_error || (c != '"')) java_lval->node = error_mark_node; /* FIXME: Requires further testing. */ else java_lval->node = build_string (strlen (string), string); #endif obstack_free (&temporary_obstack, string); return STRING_LIT_TK; } /* Separator. */ switch (c) { case '(': JAVA_LEX_SEP (c); BUILD_OPERATOR (OP_TK); case ')': JAVA_LEX_SEP (c); return CP_TK; case '{': JAVA_LEX_SEP (c); if (ctxp->ccb_indent == 1) ctxp->first_ccb_indent1 = input_line; ctxp->ccb_indent++; BUILD_OPERATOR (OCB_TK); case '}': JAVA_LEX_SEP (c); ctxp->ccb_indent--; if (ctxp->ccb_indent == 1) ctxp->last_ccb_indent1 = input_line; BUILD_OPERATOR (CCB_TK); case '[': JAVA_LEX_SEP (c); BUILD_OPERATOR (OSB_TK); case ']': JAVA_LEX_SEP (c); return CSB_TK; case ';': JAVA_LEX_SEP (c); return SC_TK; case ',': JAVA_LEX_SEP (c); return C_TK; case '.': JAVA_LEX_SEP (c); BUILD_OPERATOR (DOT_TK); /* return DOT_TK; */ } /* Operators. */ switch (c) { case '=': if ((c = java_get_unicode ()) == '=') { BUILD_OPERATOR (EQ_TK); } else { /* Equals is used in two different locations. In the variable_declarator: rule, it has to be seen as '=' as opposed to being seen as an ordinary assignment operator in assignment_operators: rule. */ java_unget_unicode (); BUILD_OPERATOR (ASSIGN_TK); } case '>': switch ((c = java_get_unicode ())) { case '=': BUILD_OPERATOR (GTE_TK); case '>': switch ((c = java_get_unicode ())) { case '>': if ((c = java_get_unicode ()) == '=') { BUILD_OPERATOR2 (ZRS_ASSIGN_TK); } else { java_unget_unicode (); BUILD_OPERATOR (ZRS_TK); } case '=': BUILD_OPERATOR2 (SRS_ASSIGN_TK); default: java_unget_unicode (); BUILD_OPERATOR (SRS_TK); } default: java_unget_unicode (); BUILD_OPERATOR (GT_TK); } case '<': switch ((c = java_get_unicode ())) { case '=': BUILD_OPERATOR (LTE_TK); case '<': if ((c = java_get_unicode ()) == '=') { BUILD_OPERATOR2 (LS_ASSIGN_TK); } else { java_unget_unicode (); BUILD_OPERATOR (LS_TK); } default: java_unget_unicode (); BUILD_OPERATOR (LT_TK); } case '&': switch ((c = java_get_unicode ())) { case '&': BUILD_OPERATOR (BOOL_AND_TK); case '=': BUILD_OPERATOR2 (AND_ASSIGN_TK); default: java_unget_unicode (); BUILD_OPERATOR (AND_TK); } case '|': switch ((c = java_get_unicode ())) { case '|': BUILD_OPERATOR (BOOL_OR_TK); case '=': BUILD_OPERATOR2 (OR_ASSIGN_TK); default: java_unget_unicode (); BUILD_OPERATOR (OR_TK); } case '+': switch ((c = java_get_unicode ())) { case '+': BUILD_OPERATOR (INCR_TK); case '=': BUILD_OPERATOR2 (PLUS_ASSIGN_TK); default: java_unget_unicode (); BUILD_OPERATOR (PLUS_TK); } case '-': switch ((c = java_get_unicode ())) { case '-': BUILD_OPERATOR (DECR_TK); case '=': BUILD_OPERATOR2 (MINUS_ASSIGN_TK); default: java_unget_unicode (); BUILD_OPERATOR (MINUS_TK); } case '*': if ((c = java_get_unicode ()) == '=') { BUILD_OPERATOR2 (MULT_ASSIGN_TK); } else { java_unget_unicode (); BUILD_OPERATOR (MULT_TK); } case '/': if ((c = java_get_unicode ()) == '=') { BUILD_OPERATOR2 (DIV_ASSIGN_TK); } else { java_unget_unicode (); BUILD_OPERATOR (DIV_TK); } case '^': if ((c = java_get_unicode ()) == '=') { BUILD_OPERATOR2 (XOR_ASSIGN_TK); } else { java_unget_unicode (); BUILD_OPERATOR (XOR_TK); } case '%': if ((c = java_get_unicode ()) == '=') { BUILD_OPERATOR2 (REM_ASSIGN_TK); } else { java_unget_unicode (); BUILD_OPERATOR (REM_TK); } case '!': if ((c = java_get_unicode()) == '=') { BUILD_OPERATOR (NEQ_TK); } else { java_unget_unicode (); BUILD_OPERATOR (NEG_TK); } case '?': JAVA_LEX_OP ("?"); BUILD_OPERATOR (REL_QM_TK); case ':': JAVA_LEX_OP (":"); BUILD_OPERATOR (REL_CL_TK); case '~': BUILD_OPERATOR (NOT_TK); } /* Keyword, boolean literal or null literal. */ for (first_unicode = c, all_ascii = 1, ascii_index = 0; c != UEOF && JAVA_PART_CHAR_P (c); c = java_get_unicode ()) { java_unicode_2_utf8 (c); if (all_ascii && c >= 128) all_ascii = 0; ascii_index++; } obstack_1grow (&temporary_obstack, '\0'); string = obstack_finish (&temporary_obstack); if (c != UEOF) java_unget_unicode (); /* If we have something all ascii, we consider a keyword, a boolean literal, a null literal or an all ASCII identifier. Otherwise, this is an identifier (possibly not respecting formation rule). */ if (all_ascii) { const struct java_keyword *kw; if ((kw=java_keyword (string, ascii_index))) { JAVA_LEX_KW (string); switch (kw->token) { case PUBLIC_TK: case PROTECTED_TK: case STATIC_TK: case ABSTRACT_TK: case FINAL_TK: case NATIVE_TK: case SYNCHRONIZED_TK: case TRANSIENT_TK: case VOLATILE_TK: case PRIVATE_TK: case STRICT_TK: SET_MODIFIER_CTX (kw->token); return MODIFIER_TK; case FLOAT_TK: SET_LVAL_NODE (float_type_node); return FP_TK; case DOUBLE_TK: SET_LVAL_NODE (double_type_node); return FP_TK; case BOOLEAN_TK: SET_LVAL_NODE (boolean_type_node); return BOOLEAN_TK; case BYTE_TK: SET_LVAL_NODE (byte_type_node); return INTEGRAL_TK; case SHORT_TK: SET_LVAL_NODE (short_type_node); return INTEGRAL_TK; case INT_TK: SET_LVAL_NODE (int_type_node); return INTEGRAL_TK; case LONG_TK: SET_LVAL_NODE (long_type_node); return INTEGRAL_TK; case CHAR_TK: SET_LVAL_NODE (char_type_node); return INTEGRAL_TK; /* Keyword based literals. */ case TRUE_TK: case FALSE_TK: SET_LVAL_NODE ((kw->token == TRUE_TK ? boolean_true_node : boolean_false_node)); return BOOL_LIT_TK; case NULL_TK: SET_LVAL_NODE (null_pointer_node); return NULL_TK; case ASSERT_TK: if (flag_assert) { BUILD_OPERATOR (kw->token); return kw->token; } else break; /* Some keyword we want to retain information on the location they where found. */ case CASE_TK: case DEFAULT_TK: case SUPER_TK: case THIS_TK: case RETURN_TK: case BREAK_TK: case CONTINUE_TK: case TRY_TK: case CATCH_TK: case THROW_TK: case INSTANCEOF_TK: BUILD_OPERATOR (kw->token); default: return kw->token; } } } /* We may have an ID here. */ if (JAVA_START_CHAR_P (first_unicode)) { JAVA_LEX_ID (string); java_lval->node = BUILD_ID_WFL (GET_IDENTIFIER (string)); return ID_TK; } /* Everything else is an invalid character in the input. */ { char lex_error_buffer [128]; sprintf (lex_error_buffer, "Invalid character `%s' in input", java_sprint_unicode (ctxp->c_line, ctxp->c_line->current)); java_lex_error (lex_error_buffer, 1); } return 0; } #ifndef JC1_LITE /* The exported interface to the lexer. */ static int java_lex (YYSTYPE *java_lval) { int r; timevar_push (TV_LEX); r = do_java_lex (java_lval); timevar_pop (TV_LEX); return r; } /* This is called by the parser to see if an error should be generated due to numeric overflow. This function only handles the particular case of the largest negative value, and is only called in the case where this value is not preceded by `-'. */ static void error_if_numeric_overflow (tree value) { if (TREE_CODE (value) == INTEGER_CST && JAVA_RADIX10_FLAG (value) && tree_int_cst_sgn (value) < 0) { if (TREE_TYPE (value) == long_type_node) java_lex_error ("Numeric overflow for `long' literal", 0); else java_lex_error ("Numeric overflow for `int' literal", 0); } } #endif /* JC1_LITE */ static void java_unicode_2_utf8 (unicode_t unicode) { if (RANGE (unicode, 0x01, 0x7f)) obstack_1grow (&temporary_obstack, (char)unicode); else if (RANGE (unicode, 0x80, 0x7ff) || unicode == 0) { obstack_1grow (&temporary_obstack, (unsigned char)(0xc0 | ((0x7c0 & unicode) >> 6))); obstack_1grow (&temporary_obstack, (unsigned char)(0x80 | (unicode & 0x3f))); } else /* Range 0x800-0xffff. */ { obstack_1grow (&temporary_obstack, (unsigned char)(0xe0 | (unicode & 0xf000) >> 12)); obstack_1grow (&temporary_obstack, (unsigned char)(0x80 | (unicode & 0x0fc0) >> 6)); obstack_1grow (&temporary_obstack, (unsigned char)(0x80 | (unicode & 0x003f))); } } #ifndef JC1_LITE static tree build_wfl_node (tree node) { node = build_expr_wfl (node, ctxp->filename, ctxp->elc.line, ctxp->elc.col); /* Prevent java_complete_lhs from short-circuiting node (if constant). */ TREE_TYPE (node) = NULL_TREE; return node; } #endif static void java_lex_error (const char *msg ATTRIBUTE_UNUSED, int forward ATTRIBUTE_UNUSED) { #ifndef JC1_LITE ctxp->elc.line = ctxp->c_line->lineno; ctxp->elc.col = ctxp->c_line->char_col-1+forward; /* Might be caught in the middle of some error report. */ ctxp->java_error_flag = 0; java_error (NULL); java_error (msg); #endif } #ifndef JC1_LITE static int java_is_eol (FILE *fp, int c) { int next; switch (c) { case '\r': next = getc (fp); if (next != '\n' && next != EOF) ungetc (next, fp); return 1; case '\n': return 1; default: return 0; } } #endif char * java_get_line_col (const char *filename ATTRIBUTE_UNUSED, int line ATTRIBUTE_UNUSED, int col ATTRIBUTE_UNUSED) { #ifdef JC1_LITE return 0; #else /* Dumb implementation. Doesn't try to cache or optimize things. */ /* First line of the file is line 1, first column is 1. */ /* COL == -1 means, at the CR/LF in LINE. */ /* COL == -2 means, at the first non space char in LINE. */ FILE *fp; int c, ccol, cline = 1; int current_line_col = 0; int first_non_space = 0; char *base; if (!(fp = fopen (filename, "r"))) fatal_error ("can't open %s: %m", filename); while (cline != line) { c = getc (fp); if (c == EOF) { static const char msg[] = "<>"; obstack_grow (&temporary_obstack, msg, sizeof(msg)-1); goto have_line; } if (java_is_eol (fp, c)) cline++; } /* Gather the chars of the current line in a buffer. */ for (;;) { c = getc (fp); if (c < 0 || java_is_eol (fp, c)) break; if (!first_non_space && !JAVA_WHITE_SPACE_P (c)) first_non_space = current_line_col; obstack_1grow (&temporary_obstack, c); current_line_col++; } have_line: obstack_1grow (&temporary_obstack, '\n'); if (col == -1) { col = current_line_col; first_non_space = 0; } else if (col == -2) col = first_non_space; else first_non_space = 0; /* Place the '^' a the right position. */ base = obstack_base (&temporary_obstack); for (ccol = 1; ccol <= col+3; ccol++) { /* Compute \t when reaching first_non_space. */ char c = (first_non_space ? (base [ccol-1] == '\t' ? '\t' : ' ') : ' '); obstack_1grow (&temporary_obstack, c); } obstack_grow0 (&temporary_obstack, "^", 1); fclose (fp); return obstack_finish (&temporary_obstack); #endif } #ifndef JC1_LITE static int utf8_cmp (const unsigned char *str, int length, const char *name) { const unsigned char *limit = str + length; int i; for (i = 0; name[i]; ++i) { int ch = UTF8_GET (str, limit); if (ch != name[i]) return ch - name[i]; } return str == limit ? 0 : 1; } /* A sorted list of all C++ keywords. */ static const char *const cxx_keywords[] = { "_Complex", "__alignof", "__alignof__", "__asm", "__asm__", "__attribute", "__attribute__", "__builtin_va_arg", "__complex", "__complex__", "__const", "__const__", "__extension__", "__imag", "__imag__", "__inline", "__inline__", "__label__", "__null", "__real", "__real__", "__restrict", "__restrict__", "__signed", "__signed__", "__typeof", "__typeof__", "__volatile", "__volatile__", "and", "and_eq", "asm", "auto", "bitand", "bitor", "bool", "break", "case", "catch", "char", "class", "compl", "const", "const_cast", "continue", "default", "delete", "do", "double", "dynamic_cast", "else", "enum", "explicit", "export", "extern", "false", "float", "for", "friend", "goto", "if", "inline", "int", "long", "mutable", "namespace", "new", "not", "not_eq", "operator", "or", "or_eq", "private", "protected", "public", "register", "reinterpret_cast", "return", "short", "signed", "sizeof", "static", "static_cast", "struct", "switch", "template", "this", "throw", "true", "try", "typedef", "typeid", "typename", "typeof", "union", "unsigned", "using", "virtual", "void", "volatile", "wchar_t", "while", "xor", "xor_eq" }; /* Return true if NAME is a C++ keyword. */ int cxx_keyword_p (const char *name, int length) { int last = ARRAY_SIZE (cxx_keywords); int first = 0; int mid = (last + first) / 2; int old = -1; for (mid = (last + first) / 2; mid != old; old = mid, mid = (last + first) / 2) { int kwl = strlen (cxx_keywords[mid]); int min_length = kwl > length ? length : kwl; int r = utf8_cmp ((const unsigned char *) name, min_length, cxx_keywords[mid]); if (r == 0) { int i; /* We've found a match if all the remaining characters are `$'. */ for (i = min_length; i < length && name[i] == '$'; ++i) ; if (i == length) return 1; r = 1; } if (r < 0) last = mid; else first = mid; } return 0; } #endif /* JC1_LITE */