/* Internal functions.
Copyright (C) 2011-2017 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "predict.h"
#include "stringpool.h"
#include "tree-vrp.h"
#include "tree-ssanames.h"
#include "expmed.h"
#include "memmodel.h"
#include "optabs.h"
#include "emit-rtl.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "internal-fn.h"
#include "stor-layout.h"
#include "dojump.h"
#include "expr.h"
#include "stringpool.h"
#include "attribs.h"
#include "asan.h"
#include "ubsan.h"
#include "recog.h"
#include "builtins.h"
#include "optabs-tree.h"
/* The names of each internal function, indexed by function number. */
const char *const internal_fn_name_array[] = {
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) #CODE,
#include "internal-fn.def"
""
};
/* The ECF_* flags of each internal function, indexed by function number. */
const int internal_fn_flags_array[] = {
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) FLAGS,
#include "internal-fn.def"
0
};
/* Fnspec of each internal function, indexed by function number. */
const_tree internal_fn_fnspec_array[IFN_LAST + 1];
void
init_internal_fns ()
{
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \
if (FNSPEC) internal_fn_fnspec_array[IFN_##CODE] = \
build_string ((int) sizeof (FNSPEC), FNSPEC ? FNSPEC : "");
#include "internal-fn.def"
internal_fn_fnspec_array[IFN_LAST] = 0;
}
/* Create static initializers for the information returned by
direct_internal_fn. */
#define not_direct { -2, -2, false }
#define mask_load_direct { -1, 2, false }
#define load_lanes_direct { -1, -1, false }
#define mask_store_direct { 3, 2, false }
#define store_lanes_direct { 0, 0, false }
#define unary_direct { 0, 0, true }
#define binary_direct { 0, 0, true }
const direct_internal_fn_info direct_internal_fn_array[IFN_LAST + 1] = {
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) not_direct,
#define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) TYPE##_direct,
#include "internal-fn.def"
not_direct
};
/* ARRAY_TYPE is an array of vector modes. Return the associated insn
for load-lanes-style optab OPTAB, or CODE_FOR_nothing if none. */
static enum insn_code
get_multi_vector_move (tree array_type, convert_optab optab)
{
machine_mode imode;
machine_mode vmode;
gcc_assert (TREE_CODE (array_type) == ARRAY_TYPE);
imode = TYPE_MODE (array_type);
vmode = TYPE_MODE (TREE_TYPE (array_type));
return convert_optab_handler (optab, imode, vmode);
}
/* Expand LOAD_LANES call STMT using optab OPTAB. */
static void
expand_load_lanes_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
{
struct expand_operand ops[2];
tree type, lhs, rhs;
rtx target, mem;
lhs = gimple_call_lhs (stmt);
rhs = gimple_call_arg (stmt, 0);
type = TREE_TYPE (lhs);
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
mem = expand_normal (rhs);
gcc_assert (MEM_P (mem));
PUT_MODE (mem, TYPE_MODE (type));
create_output_operand (&ops[0], target, TYPE_MODE (type));
create_fixed_operand (&ops[1], mem);
expand_insn (get_multi_vector_move (type, optab), 2, ops);
}
/* Expand STORE_LANES call STMT using optab OPTAB. */
static void
expand_store_lanes_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
{
struct expand_operand ops[2];
tree type, lhs, rhs;
rtx target, reg;
lhs = gimple_call_lhs (stmt);
rhs = gimple_call_arg (stmt, 0);
type = TREE_TYPE (rhs);
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
reg = expand_normal (rhs);
gcc_assert (MEM_P (target));
PUT_MODE (target, TYPE_MODE (type));
create_fixed_operand (&ops[0], target);
create_input_operand (&ops[1], reg, TYPE_MODE (type));
expand_insn (get_multi_vector_move (type, optab), 2, ops);
}
static void
expand_ANNOTATE (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This should get expanded in omp_device_lower pass. */
static void
expand_GOMP_USE_SIMT (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This should get expanded in omp_device_lower pass. */
static void
expand_GOMP_SIMT_ENTER (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* Allocate per-lane storage and begin non-uniform execution region. */
static void
expand_GOMP_SIMT_ENTER_ALLOC (internal_fn, gcall *stmt)
{
rtx target;
tree lhs = gimple_call_lhs (stmt);
if (lhs)
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
else
target = gen_reg_rtx (Pmode);
rtx size = expand_normal (gimple_call_arg (stmt, 0));
rtx align = expand_normal (gimple_call_arg (stmt, 1));
struct expand_operand ops[3];
create_output_operand (&ops[0], target, Pmode);
create_input_operand (&ops[1], size, Pmode);
create_input_operand (&ops[2], align, Pmode);
gcc_assert (targetm.have_omp_simt_enter ());
expand_insn (targetm.code_for_omp_simt_enter, 3, ops);
}
/* Deallocate per-lane storage and leave non-uniform execution region. */
static void
expand_GOMP_SIMT_EXIT (internal_fn, gcall *stmt)
{
gcc_checking_assert (!gimple_call_lhs (stmt));
rtx arg = expand_normal (gimple_call_arg (stmt, 0));
struct expand_operand ops[1];
create_input_operand (&ops[0], arg, Pmode);
gcc_assert (targetm.have_omp_simt_exit ());
expand_insn (targetm.code_for_omp_simt_exit, 1, ops);
}
/* Lane index on SIMT targets: thread index in the warp on NVPTX. On targets
without SIMT execution this should be expanded in omp_device_lower pass. */
static void
expand_GOMP_SIMT_LANE (internal_fn, gcall *stmt)
{
tree lhs = gimple_call_lhs (stmt);
if (!lhs)
return;
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
gcc_assert (targetm.have_omp_simt_lane ());
emit_insn (targetm.gen_omp_simt_lane (target));
}
/* This should get expanded in omp_device_lower pass. */
static void
expand_GOMP_SIMT_VF (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* Lane index of the first SIMT lane that supplies a non-zero argument.
This is a SIMT counterpart to GOMP_SIMD_LAST_LANE, used to represent the
lane that executed the last iteration for handling OpenMP lastprivate. */
static void
expand_GOMP_SIMT_LAST_LANE (internal_fn, gcall *stmt)
{
tree lhs = gimple_call_lhs (stmt);
if (!lhs)
return;
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
rtx cond = expand_normal (gimple_call_arg (stmt, 0));
machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
struct expand_operand ops[2];
create_output_operand (&ops[0], target, mode);
create_input_operand (&ops[1], cond, mode);
gcc_assert (targetm.have_omp_simt_last_lane ());
expand_insn (targetm.code_for_omp_simt_last_lane, 2, ops);
}
/* Non-transparent predicate used in SIMT lowering of OpenMP "ordered". */
static void
expand_GOMP_SIMT_ORDERED_PRED (internal_fn, gcall *stmt)
{
tree lhs = gimple_call_lhs (stmt);
if (!lhs)
return;
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
rtx ctr = expand_normal (gimple_call_arg (stmt, 0));
machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
struct expand_operand ops[2];
create_output_operand (&ops[0], target, mode);
create_input_operand (&ops[1], ctr, mode);
gcc_assert (targetm.have_omp_simt_ordered ());
expand_insn (targetm.code_for_omp_simt_ordered, 2, ops);
}
/* "Or" boolean reduction across SIMT lanes: return non-zero in all lanes if
any lane supplies a non-zero argument. */
static void
expand_GOMP_SIMT_VOTE_ANY (internal_fn, gcall *stmt)
{
tree lhs = gimple_call_lhs (stmt);
if (!lhs)
return;
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
rtx cond = expand_normal (gimple_call_arg (stmt, 0));
machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
struct expand_operand ops[2];
create_output_operand (&ops[0], target, mode);
create_input_operand (&ops[1], cond, mode);
gcc_assert (targetm.have_omp_simt_vote_any ());
expand_insn (targetm.code_for_omp_simt_vote_any, 2, ops);
}
/* Exchange between SIMT lanes with a "butterfly" pattern: source lane index
is destination lane index XOR given offset. */
static void
expand_GOMP_SIMT_XCHG_BFLY (internal_fn, gcall *stmt)
{
tree lhs = gimple_call_lhs (stmt);
if (!lhs)
return;
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
rtx src = expand_normal (gimple_call_arg (stmt, 0));
rtx idx = expand_normal (gimple_call_arg (stmt, 1));
machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
struct expand_operand ops[3];
create_output_operand (&ops[0], target, mode);
create_input_operand (&ops[1], src, mode);
create_input_operand (&ops[2], idx, SImode);
gcc_assert (targetm.have_omp_simt_xchg_bfly ());
expand_insn (targetm.code_for_omp_simt_xchg_bfly, 3, ops);
}
/* Exchange between SIMT lanes according to given source lane index. */
static void
expand_GOMP_SIMT_XCHG_IDX (internal_fn, gcall *stmt)
{
tree lhs = gimple_call_lhs (stmt);
if (!lhs)
return;
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
rtx src = expand_normal (gimple_call_arg (stmt, 0));
rtx idx = expand_normal (gimple_call_arg (stmt, 1));
machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
struct expand_operand ops[3];
create_output_operand (&ops[0], target, mode);
create_input_operand (&ops[1], src, mode);
create_input_operand (&ops[2], idx, SImode);
gcc_assert (targetm.have_omp_simt_xchg_idx ());
expand_insn (targetm.code_for_omp_simt_xchg_idx, 3, ops);
}
/* This should get expanded in adjust_simduid_builtins. */
static void
expand_GOMP_SIMD_LANE (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This should get expanded in adjust_simduid_builtins. */
static void
expand_GOMP_SIMD_VF (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This should get expanded in adjust_simduid_builtins. */
static void
expand_GOMP_SIMD_LAST_LANE (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This should get expanded in adjust_simduid_builtins. */
static void
expand_GOMP_SIMD_ORDERED_START (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This should get expanded in adjust_simduid_builtins. */
static void
expand_GOMP_SIMD_ORDERED_END (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This should get expanded in the sanopt pass. */
static void
expand_UBSAN_NULL (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This should get expanded in the sanopt pass. */
static void
expand_UBSAN_BOUNDS (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This should get expanded in the sanopt pass. */
static void
expand_UBSAN_VPTR (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This should get expanded in the sanopt pass. */
static void
expand_UBSAN_PTR (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This should get expanded in the sanopt pass. */
static void
expand_UBSAN_OBJECT_SIZE (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This should get expanded in the sanopt pass. */
static void
expand_ASAN_CHECK (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This should get expanded in the sanopt pass. */
static void
expand_ASAN_MARK (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This should get expanded in the sanopt pass. */
static void
expand_ASAN_POISON (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This should get expanded in the sanopt pass. */
static void
expand_ASAN_POISON_USE (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This should get expanded in the tsan pass. */
static void
expand_TSAN_FUNC_EXIT (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This should get expanded in the lower pass. */
static void
expand_FALLTHROUGH (internal_fn, gcall *call)
{
error_at (gimple_location (call),
"invalid use of attribute %");
}
/* Return minimum precision needed to represent all values
of ARG in SIGNed integral type. */
static int
get_min_precision (tree arg, signop sign)
{
int prec = TYPE_PRECISION (TREE_TYPE (arg));
int cnt = 0;
signop orig_sign = sign;
if (TREE_CODE (arg) == INTEGER_CST)
{
int p;
if (TYPE_SIGN (TREE_TYPE (arg)) != sign)
{
widest_int w = wi::to_widest (arg);
w = wi::ext (w, prec, sign);
p = wi::min_precision (w, sign);
}
else
p = wi::min_precision (arg, sign);
return MIN (p, prec);
}
while (CONVERT_EXPR_P (arg)
&& INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
&& TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
{
arg = TREE_OPERAND (arg, 0);
if (TYPE_PRECISION (TREE_TYPE (arg)) < prec)
{
if (TYPE_UNSIGNED (TREE_TYPE (arg)))
sign = UNSIGNED;
else if (sign == UNSIGNED && get_range_pos_neg (arg) != 1)
return prec + (orig_sign != sign);
prec = TYPE_PRECISION (TREE_TYPE (arg));
}
if (++cnt > 30)
return prec + (orig_sign != sign);
}
if (TREE_CODE (arg) != SSA_NAME)
return prec + (orig_sign != sign);
wide_int arg_min, arg_max;
while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
{
gimple *g = SSA_NAME_DEF_STMT (arg);
if (is_gimple_assign (g)
&& CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
{
tree t = gimple_assign_rhs1 (g);
if (INTEGRAL_TYPE_P (TREE_TYPE (t))
&& TYPE_PRECISION (TREE_TYPE (t)) <= prec)
{
arg = t;
if (TYPE_PRECISION (TREE_TYPE (arg)) < prec)
{
if (TYPE_UNSIGNED (TREE_TYPE (arg)))
sign = UNSIGNED;
else if (sign == UNSIGNED && get_range_pos_neg (arg) != 1)
return prec + (orig_sign != sign);
prec = TYPE_PRECISION (TREE_TYPE (arg));
}
if (++cnt > 30)
return prec + (orig_sign != sign);
continue;
}
}
return prec + (orig_sign != sign);
}
if (sign == TYPE_SIGN (TREE_TYPE (arg)))
{
int p1 = wi::min_precision (arg_min, sign);
int p2 = wi::min_precision (arg_max, sign);
p1 = MAX (p1, p2);
prec = MIN (prec, p1);
}
else if (sign == UNSIGNED && !wi::neg_p (arg_min, SIGNED))
{
int p = wi::min_precision (arg_max, UNSIGNED);
prec = MIN (prec, p);
}
return prec + (orig_sign != sign);
}
/* Helper for expand_*_overflow. Set the __imag__ part to true
(1 except for signed:1 type, in which case store -1). */
static void
expand_arith_set_overflow (tree lhs, rtx target)
{
if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (lhs))) == 1
&& !TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs))))
write_complex_part (target, constm1_rtx, true);
else
write_complex_part (target, const1_rtx, true);
}
/* Helper for expand_*_overflow. Store RES into the __real__ part
of TARGET. If RES has larger MODE than __real__ part of TARGET,
set the __imag__ part to 1 if RES doesn't fit into it. Similarly
if LHS has smaller precision than its mode. */
static void
expand_arith_overflow_result_store (tree lhs, rtx target,
scalar_int_mode mode, rtx res)
{
scalar_int_mode tgtmode
= as_a (GET_MODE_INNER (GET_MODE (target)));
rtx lres = res;
if (tgtmode != mode)
{
rtx_code_label *done_label = gen_label_rtx ();
int uns = TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs)));
lres = convert_modes (tgtmode, mode, res, uns);
gcc_assert (GET_MODE_PRECISION (tgtmode) < GET_MODE_PRECISION (mode));
do_compare_rtx_and_jump (res, convert_modes (mode, tgtmode, lres, uns),
EQ, true, mode, NULL_RTX, NULL, done_label,
profile_probability::very_likely ());
expand_arith_set_overflow (lhs, target);
emit_label (done_label);
}
int prec = TYPE_PRECISION (TREE_TYPE (TREE_TYPE (lhs)));
int tgtprec = GET_MODE_PRECISION (tgtmode);
if (prec < tgtprec)
{
rtx_code_label *done_label = gen_label_rtx ();
int uns = TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs)));
res = lres;
if (uns)
{
rtx mask
= immed_wide_int_const (wi::shifted_mask (0, prec, false, tgtprec),
tgtmode);
lres = expand_simple_binop (tgtmode, AND, res, mask, NULL_RTX,
true, OPTAB_LIB_WIDEN);
}
else
{
lres = expand_shift (LSHIFT_EXPR, tgtmode, res, tgtprec - prec,
NULL_RTX, 1);
lres = expand_shift (RSHIFT_EXPR, tgtmode, lres, tgtprec - prec,
NULL_RTX, 0);
}
do_compare_rtx_and_jump (res, lres,
EQ, true, tgtmode, NULL_RTX, NULL, done_label,
profile_probability::very_likely ());
expand_arith_set_overflow (lhs, target);
emit_label (done_label);
}
write_complex_part (target, lres, false);
}
/* Helper for expand_*_overflow. Store RES into TARGET. */
static void
expand_ubsan_result_store (rtx target, rtx res)
{
if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
/* If this is a scalar in a register that is stored in a wider mode
than the declared mode, compute the result into its declared mode
and then convert to the wider mode. Our value is the computed
expression. */
convert_move (SUBREG_REG (target), res, SUBREG_PROMOTED_SIGN (target));
else
emit_move_insn (target, res);
}
/* Add sub/add overflow checking to the statement STMT.
CODE says whether the operation is +, or -. */
static void
expand_addsub_overflow (location_t loc, tree_code code, tree lhs,
tree arg0, tree arg1, bool unsr_p, bool uns0_p,
bool uns1_p, bool is_ubsan, tree *datap)
{
rtx res, target = NULL_RTX;
tree fn;
rtx_code_label *done_label = gen_label_rtx ();
rtx_code_label *do_error = gen_label_rtx ();
do_pending_stack_adjust ();
rtx op0 = expand_normal (arg0);
rtx op1 = expand_normal (arg1);
scalar_int_mode mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg0));
int prec = GET_MODE_PRECISION (mode);
rtx sgn = immed_wide_int_const (wi::min_value (prec, SIGNED), mode);
bool do_xor = false;
if (is_ubsan)
gcc_assert (!unsr_p && !uns0_p && !uns1_p);
if (lhs)
{
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
if (!is_ubsan)
write_complex_part (target, const0_rtx, true);
}
/* We assume both operands and result have the same precision
here (GET_MODE_BITSIZE (mode)), S stands for signed type
with that precision, U for unsigned type with that precision,
sgn for unsigned most significant bit in that precision.
s1 is signed first operand, u1 is unsigned first operand,
s2 is signed second operand, u2 is unsigned second operand,
sr is signed result, ur is unsigned result and the following
rules say how to compute result (which is always result of
the operands as if both were unsigned, cast to the right
signedness) and how to compute whether operation overflowed.
s1 + s2 -> sr
res = (S) ((U) s1 + (U) s2)
ovf = s2 < 0 ? res > s1 : res < s1 (or jump on overflow)
s1 - s2 -> sr
res = (S) ((U) s1 - (U) s2)
ovf = s2 < 0 ? res < s1 : res > s2 (or jump on overflow)
u1 + u2 -> ur
res = u1 + u2
ovf = res < u1 (or jump on carry, but RTL opts will handle it)
u1 - u2 -> ur
res = u1 - u2
ovf = res > u1 (or jump on carry, but RTL opts will handle it)
s1 + u2 -> sr
res = (S) ((U) s1 + u2)
ovf = ((U) res ^ sgn) < u2
s1 + u2 -> ur
t1 = (S) (u2 ^ sgn)
t2 = s1 + t1
res = (U) t2 ^ sgn
ovf = t1 < 0 ? t2 > s1 : t2 < s1 (or jump on overflow)
s1 - u2 -> sr
res = (S) ((U) s1 - u2)
ovf = u2 > ((U) s1 ^ sgn)
s1 - u2 -> ur
res = (U) s1 - u2
ovf = s1 < 0 || u2 > (U) s1
u1 - s2 -> sr
res = u1 - (U) s2
ovf = u1 >= ((U) s2 ^ sgn)
u1 - s2 -> ur
t1 = u1 ^ sgn
t2 = t1 - (U) s2
res = t2 ^ sgn
ovf = s2 < 0 ? (S) t2 < (S) t1 : (S) t2 > (S) t1 (or jump on overflow)
s1 + s2 -> ur
res = (U) s1 + (U) s2
ovf = s2 < 0 ? (s1 | (S) res) < 0) : (s1 & (S) res) < 0)
u1 + u2 -> sr
res = (S) (u1 + u2)
ovf = (U) res < u2 || res < 0
u1 - u2 -> sr
res = (S) (u1 - u2)
ovf = u1 >= u2 ? res < 0 : res >= 0
s1 - s2 -> ur
res = (U) s1 - (U) s2
ovf = s2 >= 0 ? ((s1 | (S) res) < 0) : ((s1 & (S) res) < 0) */
if (code == PLUS_EXPR && uns0_p && !uns1_p)
{
/* PLUS_EXPR is commutative, if operand signedness differs,
canonicalize to the first operand being signed and second
unsigned to simplify following code. */
std::swap (op0, op1);
std::swap (arg0, arg1);
uns0_p = false;
uns1_p = true;
}
/* u1 +- u2 -> ur */
if (uns0_p && uns1_p && unsr_p)
{
insn_code icode = optab_handler (code == PLUS_EXPR ? uaddv4_optab
: usubv4_optab, mode);
if (icode != CODE_FOR_nothing)
{
struct expand_operand ops[4];
rtx_insn *last = get_last_insn ();
res = gen_reg_rtx (mode);
create_output_operand (&ops[0], res, mode);
create_input_operand (&ops[1], op0, mode);
create_input_operand (&ops[2], op1, mode);
create_fixed_operand (&ops[3], do_error);
if (maybe_expand_insn (icode, 4, ops))
{
last = get_last_insn ();
if (profile_status_for_fn (cfun) != PROFILE_ABSENT
&& JUMP_P (last)
&& any_condjump_p (last)
&& !find_reg_note (last, REG_BR_PROB, 0))
add_reg_br_prob_note (last,
profile_probability::very_unlikely ());
emit_jump (done_label);
goto do_error_label;
}
delete_insns_since (last);
}
/* Compute the operation. On RTL level, the addition is always
unsigned. */
res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
rtx tem = op0;
/* For PLUS_EXPR, the operation is commutative, so we can pick
operand to compare against. For prec <= BITS_PER_WORD, I think
preferring REG operand is better over CONST_INT, because
the CONST_INT might enlarge the instruction or CSE would need
to figure out we'd already loaded it into a register before.
For prec > BITS_PER_WORD, I think CONST_INT might be more beneficial,
as then the multi-word comparison can be perhaps simplified. */
if (code == PLUS_EXPR
&& (prec <= BITS_PER_WORD
? (CONST_SCALAR_INT_P (op0) && REG_P (op1))
: CONST_SCALAR_INT_P (op1)))
tem = op1;
do_compare_rtx_and_jump (res, tem, code == PLUS_EXPR ? GEU : LEU,
true, mode, NULL_RTX, NULL, done_label,
profile_probability::very_likely ());
goto do_error_label;
}
/* s1 +- u2 -> sr */
if (!uns0_p && uns1_p && !unsr_p)
{
/* Compute the operation. On RTL level, the addition is always
unsigned. */
res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
rtx tem = expand_binop (mode, add_optab,
code == PLUS_EXPR ? res : op0, sgn,
NULL_RTX, false, OPTAB_LIB_WIDEN);
do_compare_rtx_and_jump (tem, op1, GEU, true, mode, NULL_RTX, NULL,
done_label, profile_probability::very_likely ());
goto do_error_label;
}
/* s1 + u2 -> ur */
if (code == PLUS_EXPR && !uns0_p && uns1_p && unsr_p)
{
op1 = expand_binop (mode, add_optab, op1, sgn, NULL_RTX, false,
OPTAB_LIB_WIDEN);
/* As we've changed op1, we have to avoid using the value range
for the original argument. */
arg1 = error_mark_node;
do_xor = true;
goto do_signed;
}
/* u1 - s2 -> ur */
if (code == MINUS_EXPR && uns0_p && !uns1_p && unsr_p)
{
op0 = expand_binop (mode, add_optab, op0, sgn, NULL_RTX, false,
OPTAB_LIB_WIDEN);
/* As we've changed op0, we have to avoid using the value range
for the original argument. */
arg0 = error_mark_node;
do_xor = true;
goto do_signed;
}
/* s1 - u2 -> ur */
if (code == MINUS_EXPR && !uns0_p && uns1_p && unsr_p)
{
/* Compute the operation. On RTL level, the addition is always
unsigned. */
res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false,
OPTAB_LIB_WIDEN);
int pos_neg = get_range_pos_neg (arg0);
if (pos_neg == 2)
/* If ARG0 is known to be always negative, this is always overflow. */
emit_jump (do_error);
else if (pos_neg == 3)
/* If ARG0 is not known to be always positive, check at runtime. */
do_compare_rtx_and_jump (op0, const0_rtx, LT, false, mode, NULL_RTX,
NULL, do_error, profile_probability::very_unlikely ());
do_compare_rtx_and_jump (op1, op0, LEU, true, mode, NULL_RTX, NULL,
done_label, profile_probability::very_likely ());
goto do_error_label;
}
/* u1 - s2 -> sr */
if (code == MINUS_EXPR && uns0_p && !uns1_p && !unsr_p)
{
/* Compute the operation. On RTL level, the addition is always
unsigned. */
res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false,
OPTAB_LIB_WIDEN);
rtx tem = expand_binop (mode, add_optab, op1, sgn, NULL_RTX, false,
OPTAB_LIB_WIDEN);
do_compare_rtx_and_jump (op0, tem, LTU, true, mode, NULL_RTX, NULL,
done_label, profile_probability::very_likely ());
goto do_error_label;
}
/* u1 + u2 -> sr */
if (code == PLUS_EXPR && uns0_p && uns1_p && !unsr_p)
{
/* Compute the operation. On RTL level, the addition is always
unsigned. */
res = expand_binop (mode, add_optab, op0, op1, NULL_RTX, false,
OPTAB_LIB_WIDEN);
do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode, NULL_RTX,
NULL, do_error, profile_probability::very_unlikely ());
rtx tem = op1;
/* The operation is commutative, so we can pick operand to compare
against. For prec <= BITS_PER_WORD, I think preferring REG operand
is better over CONST_INT, because the CONST_INT might enlarge the
instruction or CSE would need to figure out we'd already loaded it
into a register before. For prec > BITS_PER_WORD, I think CONST_INT
might be more beneficial, as then the multi-word comparison can be
perhaps simplified. */
if (prec <= BITS_PER_WORD
? (CONST_SCALAR_INT_P (op1) && REG_P (op0))
: CONST_SCALAR_INT_P (op0))
tem = op0;
do_compare_rtx_and_jump (res, tem, GEU, true, mode, NULL_RTX, NULL,
done_label, profile_probability::very_likely ());
goto do_error_label;
}
/* s1 +- s2 -> ur */
if (!uns0_p && !uns1_p && unsr_p)
{
/* Compute the operation. On RTL level, the addition is always
unsigned. */
res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
int pos_neg = get_range_pos_neg (arg1);
if (code == PLUS_EXPR)
{
int pos_neg0 = get_range_pos_neg (arg0);
if (pos_neg0 != 3 && pos_neg == 3)
{
std::swap (op0, op1);
pos_neg = pos_neg0;
}
}
rtx tem;
if (pos_neg != 3)
{
tem = expand_binop (mode, ((pos_neg == 1) ^ (code == MINUS_EXPR))
? and_optab : ior_optab,
op0, res, NULL_RTX, false, OPTAB_LIB_WIDEN);
do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL,
NULL, done_label, profile_probability::very_likely ());
}
else
{
rtx_code_label *do_ior_label = gen_label_rtx ();
do_compare_rtx_and_jump (op1, const0_rtx,
code == MINUS_EXPR ? GE : LT, false, mode,
NULL_RTX, NULL, do_ior_label,
profile_probability::even ());
tem = expand_binop (mode, and_optab, op0, res, NULL_RTX, false,
OPTAB_LIB_WIDEN);
do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
NULL, done_label, profile_probability::very_likely ());
emit_jump (do_error);
emit_label (do_ior_label);
tem = expand_binop (mode, ior_optab, op0, res, NULL_RTX, false,
OPTAB_LIB_WIDEN);
do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
NULL, done_label, profile_probability::very_likely ());
}
goto do_error_label;
}
/* u1 - u2 -> sr */
if (code == MINUS_EXPR && uns0_p && uns1_p && !unsr_p)
{
/* Compute the operation. On RTL level, the addition is always
unsigned. */
res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false,
OPTAB_LIB_WIDEN);
rtx_code_label *op0_geu_op1 = gen_label_rtx ();
do_compare_rtx_and_jump (op0, op1, GEU, true, mode, NULL_RTX, NULL,
op0_geu_op1, profile_probability::even ());
do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode, NULL_RTX,
NULL, done_label, profile_probability::very_likely ());
emit_jump (do_error);
emit_label (op0_geu_op1);
do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX,
NULL, done_label, profile_probability::very_likely ());
goto do_error_label;
}
gcc_assert (!uns0_p && !uns1_p && !unsr_p);
/* s1 +- s2 -> sr */
do_signed:
{
insn_code icode = optab_handler (code == PLUS_EXPR ? addv4_optab
: subv4_optab, mode);
if (icode != CODE_FOR_nothing)
{
struct expand_operand ops[4];
rtx_insn *last = get_last_insn ();
res = gen_reg_rtx (mode);
create_output_operand (&ops[0], res, mode);
create_input_operand (&ops[1], op0, mode);
create_input_operand (&ops[2], op1, mode);
create_fixed_operand (&ops[3], do_error);
if (maybe_expand_insn (icode, 4, ops))
{
last = get_last_insn ();
if (profile_status_for_fn (cfun) != PROFILE_ABSENT
&& JUMP_P (last)
&& any_condjump_p (last)
&& !find_reg_note (last, REG_BR_PROB, 0))
add_reg_br_prob_note (last,
profile_probability::very_unlikely ());
emit_jump (done_label);
goto do_error_label;
}
delete_insns_since (last);
}
/* Compute the operation. On RTL level, the addition is always
unsigned. */
res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
/* If we can prove that one of the arguments (for MINUS_EXPR only
the second operand, as subtraction is not commutative) is always
non-negative or always negative, we can do just one comparison
and conditional jump. */
int pos_neg = get_range_pos_neg (arg1);
if (code == PLUS_EXPR)
{
int pos_neg0 = get_range_pos_neg (arg0);
if (pos_neg0 != 3 && pos_neg == 3)
{
std::swap (op0, op1);
pos_neg = pos_neg0;
}
}
/* Addition overflows if and only if the two operands have the same sign,
and the result has the opposite sign. Subtraction overflows if and
only if the two operands have opposite sign, and the subtrahend has
the same sign as the result. Here 0 is counted as positive. */
if (pos_neg == 3)
{
/* Compute op0 ^ op1 (operands have opposite sign). */
rtx op_xor = expand_binop (mode, xor_optab, op0, op1, NULL_RTX, false,
OPTAB_LIB_WIDEN);
/* Compute res ^ op1 (result and 2nd operand have opposite sign). */
rtx res_xor = expand_binop (mode, xor_optab, res, op1, NULL_RTX, false,
OPTAB_LIB_WIDEN);
rtx tem;
if (code == PLUS_EXPR)
{
/* Compute (res ^ op1) & ~(op0 ^ op1). */
tem = expand_unop (mode, one_cmpl_optab, op_xor, NULL_RTX, false);
tem = expand_binop (mode, and_optab, res_xor, tem, NULL_RTX, false,
OPTAB_LIB_WIDEN);
}
else
{
/* Compute (op0 ^ op1) & ~(res ^ op1). */
tem = expand_unop (mode, one_cmpl_optab, res_xor, NULL_RTX, false);
tem = expand_binop (mode, and_optab, op_xor, tem, NULL_RTX, false,
OPTAB_LIB_WIDEN);
}
/* No overflow if the result has bit sign cleared. */
do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
NULL, done_label, profile_probability::very_likely ());
}
/* Compare the result of the operation with the first operand.
No overflow for addition if second operand is positive and result
is larger or second operand is negative and result is smaller.
Likewise for subtraction with sign of second operand flipped. */
else
do_compare_rtx_and_jump (res, op0,
(pos_neg == 1) ^ (code == MINUS_EXPR) ? GE : LE,
false, mode, NULL_RTX, NULL, done_label,
profile_probability::very_likely ());
}
do_error_label:
emit_label (do_error);
if (is_ubsan)
{
/* Expand the ubsan builtin call. */
push_temp_slots ();
fn = ubsan_build_overflow_builtin (code, loc, TREE_TYPE (arg0),
arg0, arg1, datap);
expand_normal (fn);
pop_temp_slots ();
do_pending_stack_adjust ();
}
else if (lhs)
expand_arith_set_overflow (lhs, target);
/* We're done. */
emit_label (done_label);
if (lhs)
{
if (is_ubsan)
expand_ubsan_result_store (target, res);
else
{
if (do_xor)
res = expand_binop (mode, add_optab, res, sgn, NULL_RTX, false,
OPTAB_LIB_WIDEN);
expand_arith_overflow_result_store (lhs, target, mode, res);
}
}
}
/* Add negate overflow checking to the statement STMT. */
static void
expand_neg_overflow (location_t loc, tree lhs, tree arg1, bool is_ubsan,
tree *datap)
{
rtx res, op1;
tree fn;
rtx_code_label *done_label, *do_error;
rtx target = NULL_RTX;
done_label = gen_label_rtx ();
do_error = gen_label_rtx ();
do_pending_stack_adjust ();
op1 = expand_normal (arg1);
scalar_int_mode mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg1));
if (lhs)
{
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
if (!is_ubsan)
write_complex_part (target, const0_rtx, true);
}
enum insn_code icode = optab_handler (negv3_optab, mode);
if (icode != CODE_FOR_nothing)
{
struct expand_operand ops[3];
rtx_insn *last = get_last_insn ();
res = gen_reg_rtx (mode);
create_output_operand (&ops[0], res, mode);
create_input_operand (&ops[1], op1, mode);
create_fixed_operand (&ops[2], do_error);
if (maybe_expand_insn (icode, 3, ops))
{
last = get_last_insn ();
if (profile_status_for_fn (cfun) != PROFILE_ABSENT
&& JUMP_P (last)
&& any_condjump_p (last)
&& !find_reg_note (last, REG_BR_PROB, 0))
add_reg_br_prob_note (last,
profile_probability::very_unlikely ());
emit_jump (done_label);
}
else
{
delete_insns_since (last);
icode = CODE_FOR_nothing;
}
}
if (icode == CODE_FOR_nothing)
{
/* Compute the operation. On RTL level, the addition is always
unsigned. */
res = expand_unop (mode, neg_optab, op1, NULL_RTX, false);
/* Compare the operand with the most negative value. */
rtx minv = expand_normal (TYPE_MIN_VALUE (TREE_TYPE (arg1)));
do_compare_rtx_and_jump (op1, minv, NE, true, mode, NULL_RTX, NULL,
done_label, profile_probability::very_likely ());
}
emit_label (do_error);
if (is_ubsan)
{
/* Expand the ubsan builtin call. */
push_temp_slots ();
fn = ubsan_build_overflow_builtin (NEGATE_EXPR, loc, TREE_TYPE (arg1),
arg1, NULL_TREE, datap);
expand_normal (fn);
pop_temp_slots ();
do_pending_stack_adjust ();
}
else if (lhs)
expand_arith_set_overflow (lhs, target);
/* We're done. */
emit_label (done_label);
if (lhs)
{
if (is_ubsan)
expand_ubsan_result_store (target, res);
else
expand_arith_overflow_result_store (lhs, target, mode, res);
}
}
/* Add mul overflow checking to the statement STMT. */
static void
expand_mul_overflow (location_t loc, tree lhs, tree arg0, tree arg1,
bool unsr_p, bool uns0_p, bool uns1_p, bool is_ubsan,
tree *datap)
{
rtx res, op0, op1;
tree fn, type;
rtx_code_label *done_label, *do_error;
rtx target = NULL_RTX;
signop sign;
enum insn_code icode;
done_label = gen_label_rtx ();
do_error = gen_label_rtx ();
do_pending_stack_adjust ();
op0 = expand_normal (arg0);
op1 = expand_normal (arg1);
scalar_int_mode mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg0));
bool uns = unsr_p;
if (lhs)
{
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
if (!is_ubsan)
write_complex_part (target, const0_rtx, true);
}
if (is_ubsan)
gcc_assert (!unsr_p && !uns0_p && !uns1_p);
/* We assume both operands and result have the same precision
here (GET_MODE_BITSIZE (mode)), S stands for signed type
with that precision, U for unsigned type with that precision,
sgn for unsigned most significant bit in that precision.
s1 is signed first operand, u1 is unsigned first operand,
s2 is signed second operand, u2 is unsigned second operand,
sr is signed result, ur is unsigned result and the following
rules say how to compute result (which is always result of
the operands as if both were unsigned, cast to the right
signedness) and how to compute whether operation overflowed.
main_ovf (false) stands for jump on signed multiplication
overflow or the main algorithm with uns == false.
main_ovf (true) stands for jump on unsigned multiplication
overflow or the main algorithm with uns == true.
s1 * s2 -> sr
res = (S) ((U) s1 * (U) s2)
ovf = main_ovf (false)
u1 * u2 -> ur
res = u1 * u2
ovf = main_ovf (true)
s1 * u2 -> ur
res = (U) s1 * u2
ovf = (s1 < 0 && u2) || main_ovf (true)
u1 * u2 -> sr
res = (S) (u1 * u2)
ovf = res < 0 || main_ovf (true)
s1 * u2 -> sr
res = (S) ((U) s1 * u2)
ovf = (S) u2 >= 0 ? main_ovf (false)
: (s1 != 0 && (s1 != -1 || u2 != (U) res))
s1 * s2 -> ur
t1 = (s1 & s2) < 0 ? (-(U) s1) : ((U) s1)
t2 = (s1 & s2) < 0 ? (-(U) s2) : ((U) s2)
res = t1 * t2
ovf = (s1 ^ s2) < 0 ? (s1 && s2) : main_ovf (true) */
if (uns0_p && !uns1_p)
{
/* Multiplication is commutative, if operand signedness differs,
canonicalize to the first operand being signed and second
unsigned to simplify following code. */
std::swap (op0, op1);
std::swap (arg0, arg1);
uns0_p = false;
uns1_p = true;
}
int pos_neg0 = get_range_pos_neg (arg0);
int pos_neg1 = get_range_pos_neg (arg1);
/* s1 * u2 -> ur */
if (!uns0_p && uns1_p && unsr_p)
{
switch (pos_neg0)
{
case 1:
/* If s1 is non-negative, just perform normal u1 * u2 -> ur. */
goto do_main;
case 2:
/* If s1 is negative, avoid the main code, just multiply and
signal overflow if op1 is not 0. */
struct separate_ops ops;
ops.code = MULT_EXPR;
ops.type = TREE_TYPE (arg1);
ops.op0 = make_tree (ops.type, op0);
ops.op1 = make_tree (ops.type, op1);
ops.op2 = NULL_TREE;
ops.location = loc;
res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX,
NULL, done_label, profile_probability::very_likely ());
goto do_error_label;
case 3:
rtx_code_label *do_main_label;
do_main_label = gen_label_rtx ();
do_compare_rtx_and_jump (op0, const0_rtx, GE, false, mode, NULL_RTX,
NULL, do_main_label, profile_probability::very_likely ());
do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX,
NULL, do_main_label, profile_probability::very_likely ());
expand_arith_set_overflow (lhs, target);
emit_label (do_main_label);
goto do_main;
default:
gcc_unreachable ();
}
}
/* u1 * u2 -> sr */
if (uns0_p && uns1_p && !unsr_p)
{
uns = true;
/* Rest of handling of this case after res is computed. */
goto do_main;
}
/* s1 * u2 -> sr */
if (!uns0_p && uns1_p && !unsr_p)
{
switch (pos_neg1)
{
case 1:
goto do_main;
case 2:
/* If (S) u2 is negative (i.e. u2 is larger than maximum of S,
avoid the main code, just multiply and signal overflow
unless 0 * u2 or -1 * ((U) Smin). */
struct separate_ops ops;
ops.code = MULT_EXPR;
ops.type = TREE_TYPE (arg1);
ops.op0 = make_tree (ops.type, op0);
ops.op1 = make_tree (ops.type, op1);
ops.op2 = NULL_TREE;
ops.location = loc;
res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX,
NULL, done_label, profile_probability::very_likely ());
do_compare_rtx_and_jump (op0, constm1_rtx, NE, true, mode, NULL_RTX,
NULL, do_error, profile_probability::very_unlikely ());
int prec;
prec = GET_MODE_PRECISION (mode);
rtx sgn;
sgn = immed_wide_int_const (wi::min_value (prec, SIGNED), mode);
do_compare_rtx_and_jump (op1, sgn, EQ, true, mode, NULL_RTX,
NULL, done_label, profile_probability::very_likely ());
goto do_error_label;
case 3:
/* Rest of handling of this case after res is computed. */
goto do_main;
default:
gcc_unreachable ();
}
}
/* s1 * s2 -> ur */
if (!uns0_p && !uns1_p && unsr_p)
{
rtx tem, tem2;
switch (pos_neg0 | pos_neg1)
{
case 1: /* Both operands known to be non-negative. */
goto do_main;
case 2: /* Both operands known to be negative. */
op0 = expand_unop (mode, neg_optab, op0, NULL_RTX, false);
op1 = expand_unop (mode, neg_optab, op1, NULL_RTX, false);
/* Avoid looking at arg0/arg1 ranges, as we've changed
the arguments. */
arg0 = error_mark_node;
arg1 = error_mark_node;
goto do_main;
case 3:
if ((pos_neg0 ^ pos_neg1) == 3)
{
/* If one operand is known to be negative and the other
non-negative, this overflows always, unless the non-negative
one is 0. Just do normal multiply and set overflow
unless one of the operands is 0. */
struct separate_ops ops;
ops.code = MULT_EXPR;
ops.type
= build_nonstandard_integer_type (GET_MODE_PRECISION (mode),
1);
ops.op0 = make_tree (ops.type, op0);
ops.op1 = make_tree (ops.type, op1);
ops.op2 = NULL_TREE;
ops.location = loc;
res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
tem = expand_binop (mode, and_optab, op0, op1, NULL_RTX, false,
OPTAB_LIB_WIDEN);
do_compare_rtx_and_jump (tem, const0_rtx, EQ, true, mode,
NULL_RTX, NULL, done_label,
profile_probability::very_likely ());
goto do_error_label;
}
/* The general case, do all the needed comparisons at runtime. */
rtx_code_label *do_main_label, *after_negate_label;
rtx rop0, rop1;
rop0 = gen_reg_rtx (mode);
rop1 = gen_reg_rtx (mode);
emit_move_insn (rop0, op0);
emit_move_insn (rop1, op1);
op0 = rop0;
op1 = rop1;
do_main_label = gen_label_rtx ();
after_negate_label = gen_label_rtx ();
tem = expand_binop (mode, and_optab, op0, op1, NULL_RTX, false,
OPTAB_LIB_WIDEN);
do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
NULL, after_negate_label, profile_probability::very_likely ());
/* Both arguments negative here, negate them and continue with
normal unsigned overflow checking multiplication. */
emit_move_insn (op0, expand_unop (mode, neg_optab, op0,
NULL_RTX, false));
emit_move_insn (op1, expand_unop (mode, neg_optab, op1,
NULL_RTX, false));
/* Avoid looking at arg0/arg1 ranges, as we might have changed
the arguments. */
arg0 = error_mark_node;
arg1 = error_mark_node;
emit_jump (do_main_label);
emit_label (after_negate_label);
tem2 = expand_binop (mode, xor_optab, op0, op1, NULL_RTX, false,
OPTAB_LIB_WIDEN);
do_compare_rtx_and_jump (tem2, const0_rtx, GE, false, mode, NULL_RTX,
NULL, do_main_label, profile_probability::very_likely ());
/* One argument is negative here, the other positive. This
overflows always, unless one of the arguments is 0. But
if e.g. s2 is 0, (U) s1 * 0 doesn't overflow, whatever s1
is, thus we can keep do_main code oring in overflow as is. */
do_compare_rtx_and_jump (tem, const0_rtx, EQ, true, mode, NULL_RTX,
NULL, do_main_label, profile_probability::very_likely ());
expand_arith_set_overflow (lhs, target);
emit_label (do_main_label);
goto do_main;
default:
gcc_unreachable ();
}
}
do_main:
type = build_nonstandard_integer_type (GET_MODE_PRECISION (mode), uns);
sign = uns ? UNSIGNED : SIGNED;
icode = optab_handler (uns ? umulv4_optab : mulv4_optab, mode);
if (icode != CODE_FOR_nothing)
{
struct expand_operand ops[4];
rtx_insn *last = get_last_insn ();
res = gen_reg_rtx (mode);
create_output_operand (&ops[0], res, mode);
create_input_operand (&ops[1], op0, mode);
create_input_operand (&ops[2], op1, mode);
create_fixed_operand (&ops[3], do_error);
if (maybe_expand_insn (icode, 4, ops))
{
last = get_last_insn ();
if (profile_status_for_fn (cfun) != PROFILE_ABSENT
&& JUMP_P (last)
&& any_condjump_p (last)
&& !find_reg_note (last, REG_BR_PROB, 0))
add_reg_br_prob_note (last,
profile_probability::very_unlikely ());
emit_jump (done_label);
}
else
{
delete_insns_since (last);
icode = CODE_FOR_nothing;
}
}
if (icode == CODE_FOR_nothing)
{
struct separate_ops ops;
int prec = GET_MODE_PRECISION (mode);
scalar_int_mode hmode, wmode;
ops.op0 = make_tree (type, op0);
ops.op1 = make_tree (type, op1);
ops.op2 = NULL_TREE;
ops.location = loc;
if (GET_MODE_2XWIDER_MODE (mode).exists (&wmode)
&& targetm.scalar_mode_supported_p (wmode))
{
ops.code = WIDEN_MULT_EXPR;
ops.type
= build_nonstandard_integer_type (GET_MODE_PRECISION (wmode), uns);
res = expand_expr_real_2 (&ops, NULL_RTX, wmode, EXPAND_NORMAL);
rtx hipart = expand_shift (RSHIFT_EXPR, wmode, res, prec,
NULL_RTX, uns);
hipart = convert_modes (mode, wmode, hipart, uns);
res = convert_modes (mode, wmode, res, uns);
if (uns)
/* For the unsigned multiplication, there was overflow if
HIPART is non-zero. */
do_compare_rtx_and_jump (hipart, const0_rtx, EQ, true, mode,
NULL_RTX, NULL, done_label,
profile_probability::very_likely ());
else
{
rtx signbit = expand_shift (RSHIFT_EXPR, mode, res, prec - 1,
NULL_RTX, 0);
/* RES is low half of the double width result, HIPART
the high half. There was overflow if
HIPART is different from RES < 0 ? -1 : 0. */
do_compare_rtx_and_jump (signbit, hipart, EQ, true, mode,
NULL_RTX, NULL, done_label,
profile_probability::very_likely ());
}
}
else if (int_mode_for_size (prec / 2, 1).exists (&hmode)
&& 2 * GET_MODE_PRECISION (hmode) == prec)
{
rtx_code_label *large_op0 = gen_label_rtx ();
rtx_code_label *small_op0_large_op1 = gen_label_rtx ();
rtx_code_label *one_small_one_large = gen_label_rtx ();
rtx_code_label *both_ops_large = gen_label_rtx ();
rtx_code_label *after_hipart_neg = uns ? NULL : gen_label_rtx ();
rtx_code_label *after_lopart_neg = uns ? NULL : gen_label_rtx ();
rtx_code_label *do_overflow = gen_label_rtx ();
rtx_code_label *hipart_different = uns ? NULL : gen_label_rtx ();
unsigned int hprec = GET_MODE_PRECISION (hmode);
rtx hipart0 = expand_shift (RSHIFT_EXPR, mode, op0, hprec,
NULL_RTX, uns);
hipart0 = convert_modes (hmode, mode, hipart0, uns);
rtx lopart0 = convert_modes (hmode, mode, op0, uns);
rtx signbit0 = const0_rtx;
if (!uns)
signbit0 = expand_shift (RSHIFT_EXPR, hmode, lopart0, hprec - 1,
NULL_RTX, 0);
rtx hipart1 = expand_shift (RSHIFT_EXPR, mode, op1, hprec,
NULL_RTX, uns);
hipart1 = convert_modes (hmode, mode, hipart1, uns);
rtx lopart1 = convert_modes (hmode, mode, op1, uns);
rtx signbit1 = const0_rtx;
if (!uns)
signbit1 = expand_shift (RSHIFT_EXPR, hmode, lopart1, hprec - 1,
NULL_RTX, 0);
res = gen_reg_rtx (mode);
/* True if op0 resp. op1 are known to be in the range of
halfstype. */
bool op0_small_p = false;
bool op1_small_p = false;
/* True if op0 resp. op1 are known to have all zeros or all ones
in the upper half of bits, but are not known to be
op{0,1}_small_p. */
bool op0_medium_p = false;
bool op1_medium_p = false;
/* -1 if op{0,1} is known to be negative, 0 if it is known to be
nonnegative, 1 if unknown. */
int op0_sign = 1;
int op1_sign = 1;
if (pos_neg0 == 1)
op0_sign = 0;
else if (pos_neg0 == 2)
op0_sign = -1;
if (pos_neg1 == 1)
op1_sign = 0;
else if (pos_neg1 == 2)
op1_sign = -1;
unsigned int mprec0 = prec;
if (arg0 != error_mark_node)
mprec0 = get_min_precision (arg0, sign);
if (mprec0 <= hprec)
op0_small_p = true;
else if (!uns && mprec0 <= hprec + 1)
op0_medium_p = true;
unsigned int mprec1 = prec;
if (arg1 != error_mark_node)
mprec1 = get_min_precision (arg1, sign);
if (mprec1 <= hprec)
op1_small_p = true;
else if (!uns && mprec1 <= hprec + 1)
op1_medium_p = true;
int smaller_sign = 1;
int larger_sign = 1;
if (op0_small_p)
{
smaller_sign = op0_sign;
larger_sign = op1_sign;
}
else if (op1_small_p)
{
smaller_sign = op1_sign;
larger_sign = op0_sign;
}
else if (op0_sign == op1_sign)
{
smaller_sign = op0_sign;
larger_sign = op0_sign;
}
if (!op0_small_p)
do_compare_rtx_and_jump (signbit0, hipart0, NE, true, hmode,
NULL_RTX, NULL, large_op0,
profile_probability::unlikely ());
if (!op1_small_p)
do_compare_rtx_and_jump (signbit1, hipart1, NE, true, hmode,
NULL_RTX, NULL, small_op0_large_op1,
profile_probability::unlikely ());
/* If both op0 and op1 are sign (!uns) or zero (uns) extended from
hmode to mode, the multiplication will never overflow. We can
do just one hmode x hmode => mode widening multiplication. */
rtx lopart0s = lopart0, lopart1s = lopart1;
if (GET_CODE (lopart0) == SUBREG)
{
lopart0s = shallow_copy_rtx (lopart0);
SUBREG_PROMOTED_VAR_P (lopart0s) = 1;
SUBREG_PROMOTED_SET (lopart0s, uns ? SRP_UNSIGNED : SRP_SIGNED);
}
if (GET_CODE (lopart1) == SUBREG)
{
lopart1s = shallow_copy_rtx (lopart1);
SUBREG_PROMOTED_VAR_P (lopart1s) = 1;
SUBREG_PROMOTED_SET (lopart1s, uns ? SRP_UNSIGNED : SRP_SIGNED);
}
tree halfstype = build_nonstandard_integer_type (hprec, uns);
ops.op0 = make_tree (halfstype, lopart0s);
ops.op1 = make_tree (halfstype, lopart1s);
ops.code = WIDEN_MULT_EXPR;
ops.type = type;
rtx thisres
= expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
emit_move_insn (res, thisres);
emit_jump (done_label);
emit_label (small_op0_large_op1);
/* If op0 is sign (!uns) or zero (uns) extended from hmode to mode,
but op1 is not, just swap the arguments and handle it as op1
sign/zero extended, op0 not. */
rtx larger = gen_reg_rtx (mode);
rtx hipart = gen_reg_rtx (hmode);
rtx lopart = gen_reg_rtx (hmode);
emit_move_insn (larger, op1);
emit_move_insn (hipart, hipart1);
emit_move_insn (lopart, lopart0);
emit_jump (one_small_one_large);
emit_label (large_op0);
if (!op1_small_p)
do_compare_rtx_and_jump (signbit1, hipart1, NE, true, hmode,
NULL_RTX, NULL, both_ops_large,
profile_probability::unlikely ());
/* If op1 is sign (!uns) or zero (uns) extended from hmode to mode,
but op0 is not, prepare larger, hipart and lopart pseudos and
handle it together with small_op0_large_op1. */
emit_move_insn (larger, op0);
emit_move_insn (hipart, hipart0);
emit_move_insn (lopart, lopart1);
emit_label (one_small_one_large);
/* lopart is the low part of the operand that is sign extended
to mode, larger is the other operand, hipart is the
high part of larger and lopart0 and lopart1 are the low parts
of both operands.
We perform lopart0 * lopart1 and lopart * hipart widening
multiplications. */
tree halfutype = build_nonstandard_integer_type (hprec, 1);
ops.op0 = make_tree (halfutype, lopart0);
ops.op1 = make_tree (halfutype, lopart1);
rtx lo0xlo1
= expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
ops.op0 = make_tree (halfutype, lopart);
ops.op1 = make_tree (halfutype, hipart);
rtx loxhi = gen_reg_rtx (mode);
rtx tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
emit_move_insn (loxhi, tem);
if (!uns)
{
/* if (hipart < 0) loxhi -= lopart << (bitsize / 2); */
if (larger_sign == 0)
emit_jump (after_hipart_neg);
else if (larger_sign != -1)
do_compare_rtx_and_jump (hipart, const0_rtx, GE, false, hmode,
NULL_RTX, NULL, after_hipart_neg,
profile_probability::even ());
tem = convert_modes (mode, hmode, lopart, 1);
tem = expand_shift (LSHIFT_EXPR, mode, tem, hprec, NULL_RTX, 1);
tem = expand_simple_binop (mode, MINUS, loxhi, tem, NULL_RTX,
1, OPTAB_DIRECT);
emit_move_insn (loxhi, tem);
emit_label (after_hipart_neg);
/* if (lopart < 0) loxhi -= larger; */
if (smaller_sign == 0)
emit_jump (after_lopart_neg);
else if (smaller_sign != -1)
do_compare_rtx_and_jump (lopart, const0_rtx, GE, false, hmode,
NULL_RTX, NULL, after_lopart_neg,
profile_probability::even ());
tem = expand_simple_binop (mode, MINUS, loxhi, larger, NULL_RTX,
1, OPTAB_DIRECT);
emit_move_insn (loxhi, tem);
emit_label (after_lopart_neg);
}
/* loxhi += (uns) lo0xlo1 >> (bitsize / 2); */
tem = expand_shift (RSHIFT_EXPR, mode, lo0xlo1, hprec, NULL_RTX, 1);
tem = expand_simple_binop (mode, PLUS, loxhi, tem, NULL_RTX,
1, OPTAB_DIRECT);
emit_move_insn (loxhi, tem);
/* if (loxhi >> (bitsize / 2)
== (hmode) loxhi >> (bitsize / 2 - 1)) (if !uns)
if (loxhi >> (bitsize / 2) == 0 (if uns). */
rtx hipartloxhi = expand_shift (RSHIFT_EXPR, mode, loxhi, hprec,
NULL_RTX, 0);
hipartloxhi = convert_modes (hmode, mode, hipartloxhi, 0);
rtx signbitloxhi = const0_rtx;
if (!uns)
signbitloxhi = expand_shift (RSHIFT_EXPR, hmode,
convert_modes (hmode, mode,
loxhi, 0),
hprec - 1, NULL_RTX, 0);
do_compare_rtx_and_jump (signbitloxhi, hipartloxhi, NE, true, hmode,
NULL_RTX, NULL, do_overflow,
profile_probability::very_unlikely ());
/* res = (loxhi << (bitsize / 2)) | (hmode) lo0xlo1; */
rtx loxhishifted = expand_shift (LSHIFT_EXPR, mode, loxhi, hprec,
NULL_RTX, 1);
tem = convert_modes (mode, hmode,
convert_modes (hmode, mode, lo0xlo1, 1), 1);
tem = expand_simple_binop (mode, IOR, loxhishifted, tem, res,
1, OPTAB_DIRECT);
if (tem != res)
emit_move_insn (res, tem);
emit_jump (done_label);
emit_label (both_ops_large);
/* If both operands are large (not sign (!uns) or zero (uns)
extended from hmode), then perform the full multiplication
which will be the result of the operation.
The only cases which don't overflow are for signed multiplication
some cases where both hipart0 and highpart1 are 0 or -1.
For unsigned multiplication when high parts are both non-zero
this overflows always. */
ops.code = MULT_EXPR;
ops.op0 = make_tree (type, op0);
ops.op1 = make_tree (type, op1);
tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
emit_move_insn (res, tem);
if (!uns)
{
if (!op0_medium_p)
{
tem = expand_simple_binop (hmode, PLUS, hipart0, const1_rtx,
NULL_RTX, 1, OPTAB_DIRECT);
do_compare_rtx_and_jump (tem, const1_rtx, GTU, true, hmode,
NULL_RTX, NULL, do_error,
profile_probability::very_unlikely ());
}
if (!op1_medium_p)
{
tem = expand_simple_binop (hmode, PLUS, hipart1, const1_rtx,
NULL_RTX, 1, OPTAB_DIRECT);
do_compare_rtx_and_jump (tem, const1_rtx, GTU, true, hmode,
NULL_RTX, NULL, do_error,
profile_probability::very_unlikely ());
}
/* At this point hipart{0,1} are both in [-1, 0]. If they are
the same, overflow happened if res is negative, if they are
different, overflow happened if res is positive. */
if (op0_sign != 1 && op1_sign != 1 && op0_sign != op1_sign)
emit_jump (hipart_different);
else if (op0_sign == 1 || op1_sign == 1)
do_compare_rtx_and_jump (hipart0, hipart1, NE, true, hmode,
NULL_RTX, NULL, hipart_different,
profile_probability::even ());
do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode,
NULL_RTX, NULL, do_error,
profile_probability::very_unlikely ());
emit_jump (done_label);
emit_label (hipart_different);
do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode,
NULL_RTX, NULL, do_error,
profile_probability::very_unlikely ());
emit_jump (done_label);
}
emit_label (do_overflow);
/* Overflow, do full multiplication and fallthru into do_error. */
ops.op0 = make_tree (type, op0);
ops.op1 = make_tree (type, op1);
tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
emit_move_insn (res, tem);
}
else
{
gcc_assert (!is_ubsan);
ops.code = MULT_EXPR;
ops.type = type;
res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
emit_jump (done_label);
}
}
do_error_label:
emit_label (do_error);
if (is_ubsan)
{
/* Expand the ubsan builtin call. */
push_temp_slots ();
fn = ubsan_build_overflow_builtin (MULT_EXPR, loc, TREE_TYPE (arg0),
arg0, arg1, datap);
expand_normal (fn);
pop_temp_slots ();
do_pending_stack_adjust ();
}
else if (lhs)
expand_arith_set_overflow (lhs, target);
/* We're done. */
emit_label (done_label);
/* u1 * u2 -> sr */
if (uns0_p && uns1_p && !unsr_p)
{
rtx_code_label *all_done_label = gen_label_rtx ();
do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX,
NULL, all_done_label, profile_probability::very_likely ());
expand_arith_set_overflow (lhs, target);
emit_label (all_done_label);
}
/* s1 * u2 -> sr */
if (!uns0_p && uns1_p && !unsr_p && pos_neg1 == 3)
{
rtx_code_label *all_done_label = gen_label_rtx ();
rtx_code_label *set_noovf = gen_label_rtx ();
do_compare_rtx_and_jump (op1, const0_rtx, GE, false, mode, NULL_RTX,
NULL, all_done_label, profile_probability::very_likely ());
expand_arith_set_overflow (lhs, target);
do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX,
NULL, set_noovf, profile_probability::very_likely ());
do_compare_rtx_and_jump (op0, constm1_rtx, NE, true, mode, NULL_RTX,
NULL, all_done_label, profile_probability::very_unlikely ());
do_compare_rtx_and_jump (op1, res, NE, true, mode, NULL_RTX, NULL,
all_done_label, profile_probability::very_unlikely ());
emit_label (set_noovf);
write_complex_part (target, const0_rtx, true);
emit_label (all_done_label);
}
if (lhs)
{
if (is_ubsan)
expand_ubsan_result_store (target, res);
else
expand_arith_overflow_result_store (lhs, target, mode, res);
}
}
/* Expand UBSAN_CHECK_* internal function if it has vector operands. */
static void
expand_vector_ubsan_overflow (location_t loc, enum tree_code code, tree lhs,
tree arg0, tree arg1)
{
int cnt = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
rtx_code_label *loop_lab = NULL;
rtx cntvar = NULL_RTX;
tree cntv = NULL_TREE;
tree eltype = TREE_TYPE (TREE_TYPE (arg0));
tree sz = TYPE_SIZE (eltype);
tree data = NULL_TREE;
tree resv = NULL_TREE;
rtx lhsr = NULL_RTX;
rtx resvr = NULL_RTX;
if (lhs)
{
optab op;
lhsr = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
if (!VECTOR_MODE_P (GET_MODE (lhsr))
|| (op = optab_for_tree_code (code, TREE_TYPE (arg0),
optab_default)) == unknown_optab
|| (optab_handler (op, TYPE_MODE (TREE_TYPE (arg0)))
== CODE_FOR_nothing))
{
if (MEM_P (lhsr))
resv = make_tree (TREE_TYPE (lhs), lhsr);
else
{
resvr = assign_temp (TREE_TYPE (lhs), 1, 1);
resv = make_tree (TREE_TYPE (lhs), resvr);
}
}
}
if (cnt > 4)
{
do_pending_stack_adjust ();
loop_lab = gen_label_rtx ();
cntvar = gen_reg_rtx (TYPE_MODE (sizetype));
cntv = make_tree (sizetype, cntvar);
emit_move_insn (cntvar, const0_rtx);
emit_label (loop_lab);
}
if (TREE_CODE (arg0) != VECTOR_CST)
{
rtx arg0r = expand_normal (arg0);
arg0 = make_tree (TREE_TYPE (arg0), arg0r);
}
if (TREE_CODE (arg1) != VECTOR_CST)
{
rtx arg1r = expand_normal (arg1);
arg1 = make_tree (TREE_TYPE (arg1), arg1r);
}
for (int i = 0; i < (cnt > 4 ? 1 : cnt); i++)
{
tree op0, op1, res = NULL_TREE;
if (cnt > 4)
{
tree atype = build_array_type_nelts (eltype, cnt);
op0 = uniform_vector_p (arg0);
if (op0 == NULL_TREE)
{
op0 = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, arg0);
op0 = build4_loc (loc, ARRAY_REF, eltype, op0, cntv,
NULL_TREE, NULL_TREE);
}
op1 = uniform_vector_p (arg1);
if (op1 == NULL_TREE)
{
op1 = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, arg1);
op1 = build4_loc (loc, ARRAY_REF, eltype, op1, cntv,
NULL_TREE, NULL_TREE);
}
if (resv)
{
res = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, resv);
res = build4_loc (loc, ARRAY_REF, eltype, res, cntv,
NULL_TREE, NULL_TREE);
}
}
else
{
tree bitpos = bitsize_int (tree_to_uhwi (sz) * i);
op0 = fold_build3_loc (loc, BIT_FIELD_REF, eltype, arg0, sz, bitpos);
op1 = fold_build3_loc (loc, BIT_FIELD_REF, eltype, arg1, sz, bitpos);
if (resv)
res = fold_build3_loc (loc, BIT_FIELD_REF, eltype, resv, sz,
bitpos);
}
switch (code)
{
case PLUS_EXPR:
expand_addsub_overflow (loc, PLUS_EXPR, res, op0, op1,
false, false, false, true, &data);
break;
case MINUS_EXPR:
if (cnt > 4 ? integer_zerop (arg0) : integer_zerop (op0))
expand_neg_overflow (loc, res, op1, true, &data);
else
expand_addsub_overflow (loc, MINUS_EXPR, res, op0, op1,
false, false, false, true, &data);
break;
case MULT_EXPR:
expand_mul_overflow (loc, res, op0, op1, false, false, false,
true, &data);
break;
default:
gcc_unreachable ();
}
}
if (cnt > 4)
{
struct separate_ops ops;
ops.code = PLUS_EXPR;
ops.type = TREE_TYPE (cntv);
ops.op0 = cntv;
ops.op1 = build_int_cst (TREE_TYPE (cntv), 1);
ops.op2 = NULL_TREE;
ops.location = loc;
rtx ret = expand_expr_real_2 (&ops, cntvar, TYPE_MODE (sizetype),
EXPAND_NORMAL);
if (ret != cntvar)
emit_move_insn (cntvar, ret);
do_compare_rtx_and_jump (cntvar, GEN_INT (cnt), NE, false,
TYPE_MODE (sizetype), NULL_RTX, NULL, loop_lab,
profile_probability::very_likely ());
}
if (lhs && resv == NULL_TREE)
{
struct separate_ops ops;
ops.code = code;
ops.type = TREE_TYPE (arg0);
ops.op0 = arg0;
ops.op1 = arg1;
ops.op2 = NULL_TREE;
ops.location = loc;
rtx ret = expand_expr_real_2 (&ops, lhsr, TYPE_MODE (TREE_TYPE (arg0)),
EXPAND_NORMAL);
if (ret != lhsr)
emit_move_insn (lhsr, ret);
}
else if (resvr)
emit_move_insn (lhsr, resvr);
}
/* Expand UBSAN_CHECK_ADD call STMT. */
static void
expand_UBSAN_CHECK_ADD (internal_fn, gcall *stmt)
{
location_t loc = gimple_location (stmt);
tree lhs = gimple_call_lhs (stmt);
tree arg0 = gimple_call_arg (stmt, 0);
tree arg1 = gimple_call_arg (stmt, 1);
if (VECTOR_TYPE_P (TREE_TYPE (arg0)))
expand_vector_ubsan_overflow (loc, PLUS_EXPR, lhs, arg0, arg1);
else
expand_addsub_overflow (loc, PLUS_EXPR, lhs, arg0, arg1,
false, false, false, true, NULL);
}
/* Expand UBSAN_CHECK_SUB call STMT. */
static void
expand_UBSAN_CHECK_SUB (internal_fn, gcall *stmt)
{
location_t loc = gimple_location (stmt);
tree lhs = gimple_call_lhs (stmt);
tree arg0 = gimple_call_arg (stmt, 0);
tree arg1 = gimple_call_arg (stmt, 1);
if (VECTOR_TYPE_P (TREE_TYPE (arg0)))
expand_vector_ubsan_overflow (loc, MINUS_EXPR, lhs, arg0, arg1);
else if (integer_zerop (arg0))
expand_neg_overflow (loc, lhs, arg1, true, NULL);
else
expand_addsub_overflow (loc, MINUS_EXPR, lhs, arg0, arg1,
false, false, false, true, NULL);
}
/* Expand UBSAN_CHECK_MUL call STMT. */
static void
expand_UBSAN_CHECK_MUL (internal_fn, gcall *stmt)
{
location_t loc = gimple_location (stmt);
tree lhs = gimple_call_lhs (stmt);
tree arg0 = gimple_call_arg (stmt, 0);
tree arg1 = gimple_call_arg (stmt, 1);
if (VECTOR_TYPE_P (TREE_TYPE (arg0)))
expand_vector_ubsan_overflow (loc, MULT_EXPR, lhs, arg0, arg1);
else
expand_mul_overflow (loc, lhs, arg0, arg1, false, false, false, true,
NULL);
}
/* Helper function for {ADD,SUB,MUL}_OVERFLOW call stmt expansion. */
static void
expand_arith_overflow (enum tree_code code, gimple *stmt)
{
tree lhs = gimple_call_lhs (stmt);
if (lhs == NULL_TREE)
return;
tree arg0 = gimple_call_arg (stmt, 0);
tree arg1 = gimple_call_arg (stmt, 1);
tree type = TREE_TYPE (TREE_TYPE (lhs));
int uns0_p = TYPE_UNSIGNED (TREE_TYPE (arg0));
int uns1_p = TYPE_UNSIGNED (TREE_TYPE (arg1));
int unsr_p = TYPE_UNSIGNED (type);
int prec0 = TYPE_PRECISION (TREE_TYPE (arg0));
int prec1 = TYPE_PRECISION (TREE_TYPE (arg1));
int precres = TYPE_PRECISION (type);
location_t loc = gimple_location (stmt);
if (!uns0_p && get_range_pos_neg (arg0) == 1)
uns0_p = true;
if (!uns1_p && get_range_pos_neg (arg1) == 1)
uns1_p = true;
int pr = get_min_precision (arg0, uns0_p ? UNSIGNED : SIGNED);
prec0 = MIN (prec0, pr);
pr = get_min_precision (arg1, uns1_p ? UNSIGNED : SIGNED);
prec1 = MIN (prec1, pr);
/* If uns0_p && uns1_p, precop is minimum needed precision
of unsigned type to hold the exact result, otherwise
precop is minimum needed precision of signed type to
hold the exact result. */
int precop;
if (code == MULT_EXPR)
precop = prec0 + prec1 + (uns0_p != uns1_p);
else
{
if (uns0_p == uns1_p)
precop = MAX (prec0, prec1) + 1;
else if (uns0_p)
precop = MAX (prec0 + 1, prec1) + 1;
else
precop = MAX (prec0, prec1 + 1) + 1;
}
int orig_precres = precres;
do
{
if ((uns0_p && uns1_p)
? ((precop + !unsr_p) <= precres
/* u1 - u2 -> ur can overflow, no matter what precision
the result has. */
&& (code != MINUS_EXPR || !unsr_p))
: (!unsr_p && precop <= precres))
{
/* The infinity precision result will always fit into result. */
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
write_complex_part (target, const0_rtx, true);
scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
struct separate_ops ops;
ops.code = code;
ops.type = type;
ops.op0 = fold_convert_loc (loc, type, arg0);
ops.op1 = fold_convert_loc (loc, type, arg1);
ops.op2 = NULL_TREE;
ops.location = loc;
rtx tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
expand_arith_overflow_result_store (lhs, target, mode, tem);
return;
}
/* For operations with low precision, if target doesn't have them, start
with precres widening right away, otherwise do it only if the most
simple cases can't be used. */
const int min_precision = targetm.min_arithmetic_precision ();
if (orig_precres == precres && precres < min_precision)
;
else if ((uns0_p && uns1_p && unsr_p && prec0 <= precres
&& prec1 <= precres)
|| ((!uns0_p || !uns1_p) && !unsr_p
&& prec0 + uns0_p <= precres
&& prec1 + uns1_p <= precres))
{
arg0 = fold_convert_loc (loc, type, arg0);
arg1 = fold_convert_loc (loc, type, arg1);
switch (code)
{
case MINUS_EXPR:
if (integer_zerop (arg0) && !unsr_p)
{
expand_neg_overflow (loc, lhs, arg1, false, NULL);
return;
}
/* FALLTHRU */
case PLUS_EXPR:
expand_addsub_overflow (loc, code, lhs, arg0, arg1, unsr_p,
unsr_p, unsr_p, false, NULL);
return;
case MULT_EXPR:
expand_mul_overflow (loc, lhs, arg0, arg1, unsr_p,
unsr_p, unsr_p, false, NULL);
return;
default:
gcc_unreachable ();
}
}
/* For sub-word operations, retry with a wider type first. */
if (orig_precres == precres && precop <= BITS_PER_WORD)
{
int p = MAX (min_precision, precop);
scalar_int_mode m = smallest_int_mode_for_size (p);
tree optype = build_nonstandard_integer_type (GET_MODE_PRECISION (m),
uns0_p && uns1_p
&& unsr_p);
p = TYPE_PRECISION (optype);
if (p > precres)
{
precres = p;
unsr_p = TYPE_UNSIGNED (optype);
type = optype;
continue;
}
}
if (prec0 <= precres && prec1 <= precres)
{
tree types[2];
if (unsr_p)
{
types[0] = build_nonstandard_integer_type (precres, 0);
types[1] = type;
}
else
{
types[0] = type;
types[1] = build_nonstandard_integer_type (precres, 1);
}
arg0 = fold_convert_loc (loc, types[uns0_p], arg0);
arg1 = fold_convert_loc (loc, types[uns1_p], arg1);
if (code != MULT_EXPR)
expand_addsub_overflow (loc, code, lhs, arg0, arg1, unsr_p,
uns0_p, uns1_p, false, NULL);
else
expand_mul_overflow (loc, lhs, arg0, arg1, unsr_p,
uns0_p, uns1_p, false, NULL);
return;
}
/* Retry with a wider type. */
if (orig_precres == precres)
{
int p = MAX (prec0, prec1);
scalar_int_mode m = smallest_int_mode_for_size (p);
tree optype = build_nonstandard_integer_type (GET_MODE_PRECISION (m),
uns0_p && uns1_p
&& unsr_p);
p = TYPE_PRECISION (optype);
if (p > precres)
{
precres = p;
unsr_p = TYPE_UNSIGNED (optype);
type = optype;
continue;
}
}
gcc_unreachable ();
}
while (1);
}
/* Expand ADD_OVERFLOW STMT. */
static void
expand_ADD_OVERFLOW (internal_fn, gcall *stmt)
{
expand_arith_overflow (PLUS_EXPR, stmt);
}
/* Expand SUB_OVERFLOW STMT. */
static void
expand_SUB_OVERFLOW (internal_fn, gcall *stmt)
{
expand_arith_overflow (MINUS_EXPR, stmt);
}
/* Expand MUL_OVERFLOW STMT. */
static void
expand_MUL_OVERFLOW (internal_fn, gcall *stmt)
{
expand_arith_overflow (MULT_EXPR, stmt);
}
/* This should get folded in tree-vectorizer.c. */
static void
expand_LOOP_VECTORIZED (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This should get folded in tree-vectorizer.c. */
static void
expand_LOOP_DIST_ALIAS (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* Expand MASK_LOAD call STMT using optab OPTAB. */
static void
expand_mask_load_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
{
struct expand_operand ops[3];
tree type, lhs, rhs, maskt, ptr;
rtx mem, target, mask;
unsigned align;
maskt = gimple_call_arg (stmt, 2);
lhs = gimple_call_lhs (stmt);
if (lhs == NULL_TREE)
return;
type = TREE_TYPE (lhs);
ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)), 0);
align = tree_to_shwi (gimple_call_arg (stmt, 1));
if (TYPE_ALIGN (type) != align)
type = build_aligned_type (type, align);
rhs = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0), ptr);
mem = expand_expr (rhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
gcc_assert (MEM_P (mem));
mask = expand_normal (maskt);
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
create_output_operand (&ops[0], target, TYPE_MODE (type));
create_fixed_operand (&ops[1], mem);
create_input_operand (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt)));
expand_insn (convert_optab_handler (optab, TYPE_MODE (type),
TYPE_MODE (TREE_TYPE (maskt))),
3, ops);
}
/* Expand MASK_STORE call STMT using optab OPTAB. */
static void
expand_mask_store_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
{
struct expand_operand ops[3];
tree type, lhs, rhs, maskt, ptr;
rtx mem, reg, mask;
unsigned align;
maskt = gimple_call_arg (stmt, 2);
rhs = gimple_call_arg (stmt, 3);
type = TREE_TYPE (rhs);
ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)), 0);
align = tree_to_shwi (gimple_call_arg (stmt, 1));
if (TYPE_ALIGN (type) != align)
type = build_aligned_type (type, align);
lhs = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0), ptr);
mem = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
gcc_assert (MEM_P (mem));
mask = expand_normal (maskt);
reg = expand_normal (rhs);
create_fixed_operand (&ops[0], mem);
create_input_operand (&ops[1], reg, TYPE_MODE (type));
create_input_operand (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt)));
expand_insn (convert_optab_handler (optab, TYPE_MODE (type),
TYPE_MODE (TREE_TYPE (maskt))),
3, ops);
}
static void
expand_ABNORMAL_DISPATCHER (internal_fn, gcall *)
{
}
static void
expand_BUILTIN_EXPECT (internal_fn, gcall *stmt)
{
/* When guessing was done, the hints should be already stripped away. */
gcc_assert (!flag_guess_branch_prob || optimize == 0 || seen_error ());
rtx target;
tree lhs = gimple_call_lhs (stmt);
if (lhs)
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
else
target = const0_rtx;
rtx val = expand_expr (gimple_call_arg (stmt, 0), target, VOIDmode, EXPAND_NORMAL);
if (lhs && val != target)
emit_move_insn (target, val);
}
/* IFN_VA_ARG is supposed to be expanded at pass_stdarg. So this dummy function
should never be called. */
static void
expand_VA_ARG (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* Expand the IFN_UNIQUE function according to its first argument. */
static void
expand_UNIQUE (internal_fn, gcall *stmt)
{
rtx pattern = NULL_RTX;
enum ifn_unique_kind kind
= (enum ifn_unique_kind) TREE_INT_CST_LOW (gimple_call_arg (stmt, 0));
switch (kind)
{
default:
gcc_unreachable ();
case IFN_UNIQUE_UNSPEC:
if (targetm.have_unique ())
pattern = targetm.gen_unique ();
break;
case IFN_UNIQUE_OACC_FORK:
case IFN_UNIQUE_OACC_JOIN:
if (targetm.have_oacc_fork () && targetm.have_oacc_join ())
{
tree lhs = gimple_call_lhs (stmt);
rtx target = const0_rtx;
if (lhs)
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
rtx data_dep = expand_normal (gimple_call_arg (stmt, 1));
rtx axis = expand_normal (gimple_call_arg (stmt, 2));
if (kind == IFN_UNIQUE_OACC_FORK)
pattern = targetm.gen_oacc_fork (target, data_dep, axis);
else
pattern = targetm.gen_oacc_join (target, data_dep, axis);
}
else
gcc_unreachable ();
break;
}
if (pattern)
emit_insn (pattern);
}
/* The size of an OpenACC compute dimension. */
static void
expand_GOACC_DIM_SIZE (internal_fn, gcall *stmt)
{
tree lhs = gimple_call_lhs (stmt);
if (!lhs)
return;
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
if (targetm.have_oacc_dim_size ())
{
rtx dim = expand_expr (gimple_call_arg (stmt, 0), NULL_RTX,
VOIDmode, EXPAND_NORMAL);
emit_insn (targetm.gen_oacc_dim_size (target, dim));
}
else
emit_move_insn (target, GEN_INT (1));
}
/* The position of an OpenACC execution engine along one compute axis. */
static void
expand_GOACC_DIM_POS (internal_fn, gcall *stmt)
{
tree lhs = gimple_call_lhs (stmt);
if (!lhs)
return;
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
if (targetm.have_oacc_dim_pos ())
{
rtx dim = expand_expr (gimple_call_arg (stmt, 0), NULL_RTX,
VOIDmode, EXPAND_NORMAL);
emit_insn (targetm.gen_oacc_dim_pos (target, dim));
}
else
emit_move_insn (target, const0_rtx);
}
/* This is expanded by oacc_device_lower pass. */
static void
expand_GOACC_LOOP (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This is expanded by oacc_device_lower pass. */
static void
expand_GOACC_REDUCTION (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* This is expanded by oacc_device_lower pass. */
static void
expand_GOACC_TILE (internal_fn, gcall *)
{
gcc_unreachable ();
}
/* Set errno to EDOM. */
static void
expand_SET_EDOM (internal_fn, gcall *)
{
#ifdef TARGET_EDOM
#ifdef GEN_ERRNO_RTX
rtx errno_rtx = GEN_ERRNO_RTX;
#else
rtx errno_rtx = gen_rtx_MEM (word_mode, gen_rtx_SYMBOL_REF (Pmode, "errno"));
#endif
emit_move_insn (errno_rtx,
gen_int_mode (TARGET_EDOM, GET_MODE (errno_rtx)));
#else
gcc_unreachable ();
#endif
}
/* Expand atomic bit test and set. */
static void
expand_ATOMIC_BIT_TEST_AND_SET (internal_fn, gcall *call)
{
expand_ifn_atomic_bit_test_and (call);
}
/* Expand atomic bit test and complement. */
static void
expand_ATOMIC_BIT_TEST_AND_COMPLEMENT (internal_fn, gcall *call)
{
expand_ifn_atomic_bit_test_and (call);
}
/* Expand atomic bit test and reset. */
static void
expand_ATOMIC_BIT_TEST_AND_RESET (internal_fn, gcall *call)
{
expand_ifn_atomic_bit_test_and (call);
}
/* Expand atomic bit test and set. */
static void
expand_ATOMIC_COMPARE_EXCHANGE (internal_fn, gcall *call)
{
expand_ifn_atomic_compare_exchange (call);
}
/* Expand LAUNDER to assignment, lhs = arg0. */
static void
expand_LAUNDER (internal_fn, gcall *call)
{
tree lhs = gimple_call_lhs (call);
if (!lhs)
return;
expand_assignment (lhs, gimple_call_arg (call, 0), false);
}
/* Expand DIVMOD() using:
a) optab handler for udivmod/sdivmod if it is available.
b) If optab_handler doesn't exist, generate call to
target-specific divmod libfunc. */
static void
expand_DIVMOD (internal_fn, gcall *call_stmt)
{
tree lhs = gimple_call_lhs (call_stmt);
tree arg0 = gimple_call_arg (call_stmt, 0);
tree arg1 = gimple_call_arg (call_stmt, 1);
gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
tree type = TREE_TYPE (TREE_TYPE (lhs));
machine_mode mode = TYPE_MODE (type);
bool unsignedp = TYPE_UNSIGNED (type);
optab tab = (unsignedp) ? udivmod_optab : sdivmod_optab;
rtx op0 = expand_normal (arg0);
rtx op1 = expand_normal (arg1);
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
rtx quotient, remainder, libfunc;
/* Check if optab_handler exists for divmod_optab for given mode. */
if (optab_handler (tab, mode) != CODE_FOR_nothing)
{
quotient = gen_reg_rtx (mode);
remainder = gen_reg_rtx (mode);
expand_twoval_binop (tab, op0, op1, quotient, remainder, unsignedp);
}
/* Generate call to divmod libfunc if it exists. */
else if ((libfunc = optab_libfunc (tab, mode)) != NULL_RTX)
targetm.expand_divmod_libfunc (libfunc, mode, op0, op1,
"ient, &remainder);
else
gcc_unreachable ();
/* Wrap the return value (quotient, remainder) within COMPLEX_EXPR. */
expand_expr (build2 (COMPLEX_EXPR, TREE_TYPE (lhs),
make_tree (TREE_TYPE (arg0), quotient),
make_tree (TREE_TYPE (arg1), remainder)),
target, VOIDmode, EXPAND_NORMAL);
}
/* Expand a call to FN using the operands in STMT. FN has a single
output operand and NARGS input operands. */
static void
expand_direct_optab_fn (internal_fn fn, gcall *stmt, direct_optab optab,
unsigned int nargs)
{
expand_operand *ops = XALLOCAVEC (expand_operand, nargs + 1);
tree_pair types = direct_internal_fn_types (fn, stmt);
insn_code icode = direct_optab_handler (optab, TYPE_MODE (types.first));
tree lhs = gimple_call_lhs (stmt);
tree lhs_type = TREE_TYPE (lhs);
rtx lhs_rtx = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
create_output_operand (&ops[0], lhs_rtx, insn_data[icode].operand[0].mode);
for (unsigned int i = 0; i < nargs; ++i)
{
tree rhs = gimple_call_arg (stmt, i);
tree rhs_type = TREE_TYPE (rhs);
rtx rhs_rtx = expand_normal (rhs);
if (INTEGRAL_TYPE_P (rhs_type))
create_convert_operand_from (&ops[i + 1], rhs_rtx,
TYPE_MODE (rhs_type),
TYPE_UNSIGNED (rhs_type));
else
create_input_operand (&ops[i + 1], rhs_rtx, TYPE_MODE (rhs_type));
}
expand_insn (icode, nargs + 1, ops);
if (!rtx_equal_p (lhs_rtx, ops[0].value))
{
/* If the return value has an integral type, convert the instruction
result to that type. This is useful for things that return an
int regardless of the size of the input. If the instruction result
is smaller than required, assume that it is signed.
If the return value has a nonintegral type, its mode must match
the instruction result. */
if (GET_CODE (lhs_rtx) == SUBREG && SUBREG_PROMOTED_VAR_P (lhs_rtx))
{
/* If this is a scalar in a register that is stored in a wider
mode than the declared mode, compute the result into its
declared mode and then convert to the wider mode. */
gcc_checking_assert (INTEGRAL_TYPE_P (lhs_type));
rtx tmp = convert_to_mode (GET_MODE (lhs_rtx), ops[0].value, 0);
convert_move (SUBREG_REG (lhs_rtx), tmp,
SUBREG_PROMOTED_SIGN (lhs_rtx));
}
else if (GET_MODE (lhs_rtx) == GET_MODE (ops[0].value))
emit_move_insn (lhs_rtx, ops[0].value);
else
{
gcc_checking_assert (INTEGRAL_TYPE_P (lhs_type));
convert_move (lhs_rtx, ops[0].value, 0);
}
}
}
/* Expanders for optabs that can use expand_direct_optab_fn. */
#define expand_unary_optab_fn(FN, STMT, OPTAB) \
expand_direct_optab_fn (FN, STMT, OPTAB, 1)
#define expand_binary_optab_fn(FN, STMT, OPTAB) \
expand_direct_optab_fn (FN, STMT, OPTAB, 2)
/* RETURN_TYPE and ARGS are a return type and argument list that are
in principle compatible with FN (which satisfies direct_internal_fn_p).
Return the types that should be used to determine whether the
target supports FN. */
tree_pair
direct_internal_fn_types (internal_fn fn, tree return_type, tree *args)
{
const direct_internal_fn_info &info = direct_internal_fn (fn);
tree type0 = (info.type0 < 0 ? return_type : TREE_TYPE (args[info.type0]));
tree type1 = (info.type1 < 0 ? return_type : TREE_TYPE (args[info.type1]));
return tree_pair (type0, type1);
}
/* CALL is a call whose return type and arguments are in principle
compatible with FN (which satisfies direct_internal_fn_p). Return the
types that should be used to determine whether the target supports FN. */
tree_pair
direct_internal_fn_types (internal_fn fn, gcall *call)
{
const direct_internal_fn_info &info = direct_internal_fn (fn);
tree op0 = (info.type0 < 0
? gimple_call_lhs (call)
: gimple_call_arg (call, info.type0));
tree op1 = (info.type1 < 0
? gimple_call_lhs (call)
: gimple_call_arg (call, info.type1));
return tree_pair (TREE_TYPE (op0), TREE_TYPE (op1));
}
/* Return true if OPTAB is supported for TYPES (whose modes should be
the same) when the optimization type is OPT_TYPE. Used for simple
direct optabs. */
static bool
direct_optab_supported_p (direct_optab optab, tree_pair types,
optimization_type opt_type)
{
machine_mode mode = TYPE_MODE (types.first);
gcc_checking_assert (mode == TYPE_MODE (types.second));
return direct_optab_handler (optab, mode, opt_type) != CODE_FOR_nothing;
}
/* Return true if load/store lanes optab OPTAB is supported for
array type TYPES.first when the optimization type is OPT_TYPE. */
static bool
multi_vector_optab_supported_p (convert_optab optab, tree_pair types,
optimization_type opt_type)
{
gcc_assert (TREE_CODE (types.first) == ARRAY_TYPE);
machine_mode imode = TYPE_MODE (types.first);
machine_mode vmode = TYPE_MODE (TREE_TYPE (types.first));
return (convert_optab_handler (optab, imode, vmode, opt_type)
!= CODE_FOR_nothing);
}
#define direct_unary_optab_supported_p direct_optab_supported_p
#define direct_binary_optab_supported_p direct_optab_supported_p
#define direct_mask_load_optab_supported_p direct_optab_supported_p
#define direct_load_lanes_optab_supported_p multi_vector_optab_supported_p
#define direct_mask_store_optab_supported_p direct_optab_supported_p
#define direct_store_lanes_optab_supported_p multi_vector_optab_supported_p
/* Return true if FN is supported for the types in TYPES when the
optimization type is OPT_TYPE. The types are those associated with
the "type0" and "type1" fields of FN's direct_internal_fn_info
structure. */
bool
direct_internal_fn_supported_p (internal_fn fn, tree_pair types,
optimization_type opt_type)
{
switch (fn)
{
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \
case IFN_##CODE: break;
#define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \
case IFN_##CODE: \
return direct_##TYPE##_optab_supported_p (OPTAB##_optab, types, \
opt_type);
#include "internal-fn.def"
case IFN_LAST:
break;
}
gcc_unreachable ();
}
/* Return true if FN is supported for type TYPE when the optimization
type is OPT_TYPE. The caller knows that the "type0" and "type1"
fields of FN's direct_internal_fn_info structure are the same. */
bool
direct_internal_fn_supported_p (internal_fn fn, tree type,
optimization_type opt_type)
{
const direct_internal_fn_info &info = direct_internal_fn (fn);
gcc_checking_assert (info.type0 == info.type1);
return direct_internal_fn_supported_p (fn, tree_pair (type, type), opt_type);
}
/* Return true if IFN_SET_EDOM is supported. */
bool
set_edom_supported_p (void)
{
#ifdef TARGET_EDOM
return true;
#else
return false;
#endif
}
#define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \
static void \
expand_##CODE (internal_fn fn, gcall *stmt) \
{ \
expand_##TYPE##_optab_fn (fn, stmt, OPTAB##_optab); \
}
#include "internal-fn.def"
/* Routines to expand each internal function, indexed by function number.
Each routine has the prototype:
expand_ (gcall *stmt)
where STMT is the statement that performs the call. */
static void (*const internal_fn_expanders[]) (internal_fn, gcall *) = {
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) expand_##CODE,
#include "internal-fn.def"
0
};
/* Expand STMT as though it were a call to internal function FN. */
void
expand_internal_call (internal_fn fn, gcall *stmt)
{
internal_fn_expanders[fn] (fn, stmt);
}
/* Expand STMT, which is a call to internal function FN. */
void
expand_internal_call (gcall *stmt)
{
expand_internal_call (gimple_call_internal_fn (stmt), stmt);
}
void
expand_PHI (internal_fn, gcall *)
{
gcc_unreachable ();
}