/* Graphite polyhedral representation. Copyright (C) 2009-2014 Free Software Foundation, Inc. Contributed by Sebastian Pop and Tobias Grosser . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_GRAPHITE_POLY_H #define GCC_GRAPHITE_POLY_H typedef struct poly_dr *poly_dr_p; typedef struct poly_bb *poly_bb_p; typedef struct scop *scop_p; typedef unsigned graphite_dim_t; static inline graphite_dim_t pbb_dim_iter_domain (const struct poly_bb *); static inline graphite_dim_t pbb_nb_params (const struct poly_bb *); static inline graphite_dim_t scop_nb_params (scop_p); /* A data reference can write or read some memory or we just know it may write some memory. */ enum poly_dr_type { PDR_READ, /* PDR_MAY_READs are represented using PDR_READS. This does not limit the expressiveness. */ PDR_WRITE, PDR_MAY_WRITE }; struct poly_dr { /* An identifier for this PDR. */ int id; /* The number of data refs identical to this one in the PBB. */ int nb_refs; /* A pointer to compiler's data reference description. */ void *compiler_dr; /* A pointer to the PBB that contains this data reference. */ poly_bb_p pbb; enum poly_dr_type type; /* The access polyhedron contains the polyhedral space this data reference will access. The polyhedron contains these dimensions: - The alias set (a): Every memory access is classified in at least one alias set. - The subscripts (s_0, ..., s_n): The memory is accessed using zero or more subscript dimensions. - The iteration domain (variables and parameters) Do not hardcode the dimensions. Use the following accessor functions: - pdr_alias_set_dim - pdr_subscript_dim - pdr_iterator_dim - pdr_parameter_dim Example: | int A[1335][123]; | int *p = malloc (); | | k = ... | for i | { | if (unknown_function ()) | p = A; | ... = p[?][?]; | for j | A[i][j+k] = m; | } The data access A[i][j+k] in alias set "5" is described like this: | i j k a s0 s1 1 | 0 0 0 1 0 0 -5 = 0 |-1 0 0 0 1 0 0 = 0 | 0 -1 -1 0 0 1 0 = 0 | 0 0 0 0 1 0 0 >= 0 # The last four lines describe the | 0 0 0 0 0 1 0 >= 0 # array size. | 0 0 0 0 -1 0 1335 >= 0 | 0 0 0 0 0 -1 123 >= 0 The pointer "*p" in alias set "5" and "7" is described as a union of polyhedron: | i k a s0 1 | 0 0 1 0 -5 = 0 | 0 0 0 1 0 >= 0 "or" | i k a s0 1 | 0 0 1 0 -7 = 0 | 0 0 0 1 0 >= 0 "*p" accesses all of the object allocated with 'malloc'. The scalar data access "m" is represented as an array with zero subscript dimensions. | i j k a 1 | 0 0 0 -1 15 = 0 The difference between the graphite internal format for access data and the OpenSop format is in the order of columns. Instead of having: | i j k a s0 s1 1 | 0 0 0 1 0 0 -5 = 0 |-1 0 0 0 1 0 0 = 0 | 0 -1 -1 0 0 1 0 = 0 | 0 0 0 0 1 0 0 >= 0 # The last four lines describe the | 0 0 0 0 0 1 0 >= 0 # array size. | 0 0 0 0 -1 0 1335 >= 0 | 0 0 0 0 0 -1 123 >= 0 In OpenScop we have: | a s0 s1 i j k 1 | 1 0 0 0 0 0 -5 = 0 | 0 1 0 -1 0 0 0 = 0 | 0 0 1 0 -1 -1 0 = 0 | 0 1 0 0 0 0 0 >= 0 # The last four lines describe the | 0 0 1 0 0 0 0 >= 0 # array size. | 0 -1 0 0 0 0 1335 >= 0 | 0 0 -1 0 0 0 123 >= 0 The OpenScop access function is printed as follows: | 1 # The number of disjunct components in a union of access functions. | R C O I L P # Described bellow. | a s0 s1 i j k 1 | 1 0 0 0 0 0 -5 = 0 | 0 1 0 -1 0 0 0 = 0 | 0 0 1 0 -1 -1 0 = 0 | 0 1 0 0 0 0 0 >= 0 # The last four lines describe the | 0 0 1 0 0 0 0 >= 0 # array size. | 0 -1 0 0 0 0 1335 >= 0 | 0 0 -1 0 0 0 123 >= 0 Where: - R: Number of rows. - C: Number of columns. - O: Number of output dimensions = alias set + number of subscripts. - I: Number of input dimensions (iterators). - L: Number of local (existentially quantified) dimensions. - P: Number of parameters. In the example, the vector "R C O I L P" is "7 7 3 2 0 1". */ isl_map *accesses; isl_set *extent; /* Data reference's base object set number, we must assure 2 pdrs are in the same base object set before dependency checking. */ int dr_base_object_set; /* The number of subscripts. */ graphite_dim_t nb_subscripts; }; #define PDR_ID(PDR) (PDR->id) #define PDR_NB_REFS(PDR) (PDR->nb_refs) #define PDR_CDR(PDR) (PDR->compiler_dr) #define PDR_PBB(PDR) (PDR->pbb) #define PDR_TYPE(PDR) (PDR->type) #define PDR_ACCESSES(PDR) (NULL) #define PDR_BASE_OBJECT_SET(PDR) (PDR->dr_base_object_set) #define PDR_NB_SUBSCRIPTS(PDR) (PDR->nb_subscripts) void new_poly_dr (poly_bb_p, int, enum poly_dr_type, void *, graphite_dim_t, isl_map *, isl_set *); void free_poly_dr (poly_dr_p); void debug_pdr (poly_dr_p, int); void print_pdr (FILE *, poly_dr_p, int); static inline scop_p pdr_scop (poly_dr_p pdr); /* The dimension of the iteration domain of the scop of PDR. */ static inline graphite_dim_t pdr_dim_iter_domain (poly_dr_p pdr) { return pbb_dim_iter_domain (PDR_PBB (pdr)); } /* The number of parameters of the scop of PDR. */ static inline graphite_dim_t pdr_nb_params (poly_dr_p pdr) { return scop_nb_params (pdr_scop (pdr)); } /* The dimension of the alias set in PDR. */ static inline graphite_dim_t pdr_alias_set_dim (poly_dr_p pdr) { poly_bb_p pbb = PDR_PBB (pdr); return pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb); } /* The dimension in PDR containing subscript S. */ static inline graphite_dim_t pdr_subscript_dim (poly_dr_p pdr, graphite_dim_t s) { poly_bb_p pbb = PDR_PBB (pdr); return pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb) + 1 + s; } /* The dimension in PDR containing the loop iterator ITER. */ static inline graphite_dim_t pdr_iterator_dim (poly_dr_p pdr ATTRIBUTE_UNUSED, graphite_dim_t iter) { return iter; } /* The dimension in PDR containing parameter PARAM. */ static inline graphite_dim_t pdr_parameter_dim (poly_dr_p pdr, graphite_dim_t param) { poly_bb_p pbb = PDR_PBB (pdr); return pbb_dim_iter_domain (pbb) + param; } /* Returns true when PDR is a "read". */ static inline bool pdr_read_p (poly_dr_p pdr) { return PDR_TYPE (pdr) == PDR_READ; } /* Returns true when PDR is a "write". */ static inline bool pdr_write_p (poly_dr_p pdr) { return PDR_TYPE (pdr) == PDR_WRITE; } /* Returns true when PDR is a "may write". */ static inline bool pdr_may_write_p (poly_dr_p pdr) { return PDR_TYPE (pdr) == PDR_MAY_WRITE; } /* Return true when PDR1 and PDR2 are similar data accesses: they have the same base array, and the same access functions. */ static inline bool same_pdr_p (poly_dr_p pdr1, poly_dr_p pdr2) { return PDR_NB_SUBSCRIPTS (pdr1) == PDR_NB_SUBSCRIPTS (pdr2) && PDR_BASE_OBJECT_SET (pdr1) == PDR_BASE_OBJECT_SET (pdr2); } typedef struct poly_scattering *poly_scattering_p; struct poly_scattering { /* The number of local variables. */ int nb_local_variables; /* The number of scattering dimensions. */ int nb_scattering; }; /* POLY_BB represents a blackbox in the polyhedral model. */ struct poly_bb { /* Pointer to a basic block or a statement in the compiler. */ void *black_box; /* Pointer to the SCOP containing this PBB. */ scop_p scop; /* The iteration domain of this bb. The layout of this polyhedron is I|G with I the iteration domain, G the context parameters. Example: for (i = a - 7*b + 8; i <= 3*a + 13*b + 20; i++) for (j = 2; j <= 2*i + 5; j++) for (k = 0; k <= 5; k++) S (i,j,k) Loop iterators: i, j, k Parameters: a, b | i >= a - 7b + 8 | i <= 3a + 13b + 20 | j >= 2 | j <= 2i + 5 | k >= 0 | k <= 5 The number of variables in the DOMAIN may change and is not related to the number of loops in the original code. */ isl_set *domain; /* The data references we access. */ vec drs; /* The original scattering. */ poly_scattering_p _original; isl_map *schedule; /* The transformed scattering. */ poly_scattering_p _transformed; isl_map *transformed; /* A copy of the transformed scattering. */ poly_scattering_p _saved; isl_map *saved; /* For tiling, the map for computing the separating class. */ isl_map *map_sepclass; /* True when this PBB contains only a reduction statement. */ bool is_reduction; }; #define PBB_BLACK_BOX(PBB) ((gimple_bb_p) PBB->black_box) #define PBB_SCOP(PBB) (PBB->scop) #define PBB_DOMAIN(PBB) (NULL) #define PBB_DRS(PBB) (PBB->drs) #define PBB_ORIGINAL(PBB) (PBB->_original) #define PBB_ORIGINAL_SCATTERING(PBB) (NULL) #define PBB_TRANSFORMED(PBB) (PBB->_transformed) #define PBB_TRANSFORMED_SCATTERING(PBB) (NULL) #define PBB_SAVED(PBB) (PBB->_saved) /* XXX isl if we ever need local vars in the scatter, we can't use the out dimension of transformed to count the scatterting transform dimension. */ #define PBB_NB_LOCAL_VARIABLES(PBB) (0) #define PBB_NB_SCATTERING_TRANSFORM(PBB) (isl_map_n_out (PBB->transformed)) #define PBB_IS_REDUCTION(PBB) (PBB->is_reduction) extern poly_bb_p new_poly_bb (scop_p, void *); extern void free_poly_bb (poly_bb_p); extern void debug_loop_vec (poly_bb_p); extern void schedule_to_scattering (poly_bb_p, int); extern void print_pbb_domain (FILE *, poly_bb_p, int); extern void print_pbb (FILE *, poly_bb_p, int); extern void print_scop_context (FILE *, scop_p, int); extern void print_scop (FILE *, scop_p, int); extern void debug_pbb_domain (poly_bb_p, int); extern void debug_pbb (poly_bb_p, int); extern void print_pdrs (FILE *, poly_bb_p, int); extern void debug_pdrs (poly_bb_p, int); extern void debug_scop_context (scop_p, int); extern void debug_scop (scop_p, int); extern void print_scop_params (FILE *, scop_p, int); extern void debug_scop_params (scop_p, int); extern void print_iteration_domain (FILE *, poly_bb_p, int); extern void print_iteration_domains (FILE *, scop_p, int); extern void debug_iteration_domain (poly_bb_p, int); extern void debug_iteration_domains (scop_p, int); extern void print_isl_set (FILE *, isl_set *); extern void print_isl_map (FILE *, isl_map *); extern void print_isl_aff (FILE *, isl_aff *); extern void print_isl_constraint (FILE *, isl_constraint *); extern void debug_isl_set (isl_set *); extern void debug_isl_map (isl_map *); extern void debug_isl_aff (isl_aff *); extern void debug_isl_constraint (isl_constraint *); extern int scop_do_interchange (scop_p); extern int scop_do_strip_mine (scop_p, int); extern bool scop_do_block (scop_p); extern bool flatten_all_loops (scop_p); extern bool optimize_isl (scop_p); extern void pbb_number_of_iterations_at_time (poly_bb_p, graphite_dim_t, mpz_t); extern void debug_gmp_value (mpz_t); /* Return the number of write data references in PBB. */ static inline int number_of_write_pdrs (poly_bb_p pbb) { int res = 0; int i; poly_dr_p pdr; for (i = 0; PBB_DRS (pbb).iterate (i, &pdr); i++) if (PDR_TYPE (pdr) == PDR_WRITE) res++; return res; } /* Returns a gimple_bb from BB. */ static inline gimple_bb_p gbb_from_bb (basic_block bb) { return (gimple_bb_p) bb->aux; } /* The poly_bb of the BB. */ static inline poly_bb_p pbb_from_bb (basic_block bb) { return GBB_PBB (gbb_from_bb (bb)); } /* The basic block of the PBB. */ static inline basic_block pbb_bb (poly_bb_p pbb) { return GBB_BB (PBB_BLACK_BOX (pbb)); } /* The index of the PBB. */ static inline int pbb_index (poly_bb_p pbb) { return pbb_bb (pbb)->index; } /* The loop of the PBB. */ static inline loop_p pbb_loop (poly_bb_p pbb) { return gbb_loop (PBB_BLACK_BOX (pbb)); } /* The scop that contains the PDR. */ static inline scop_p pdr_scop (poly_dr_p pdr) { return PBB_SCOP (PDR_PBB (pdr)); } /* Set black box of PBB to BLACKBOX. */ static inline void pbb_set_black_box (poly_bb_p pbb, void *black_box) { pbb->black_box = black_box; } /* The number of loops around PBB: the dimension of the iteration domain. */ static inline graphite_dim_t pbb_dim_iter_domain (const struct poly_bb *pbb) { return isl_set_dim (pbb->domain, isl_dim_set); } /* The number of params defined in PBB. */ static inline graphite_dim_t pbb_nb_params (const struct poly_bb *pbb) { scop_p scop = PBB_SCOP (pbb); return scop_nb_params (scop); } /* The number of scattering dimensions in the SCATTERING polyhedron of a PBB for a given SCOP. */ static inline graphite_dim_t pbb_nb_scattering_orig (const struct poly_bb *pbb) { return 2 * pbb_dim_iter_domain (pbb) + 1; } /* The number of scattering dimensions in PBB. */ static inline graphite_dim_t pbb_nb_scattering_transform (const struct poly_bb *pbb) { return PBB_NB_SCATTERING_TRANSFORM (pbb); } /* The number of dynamic scattering dimensions in PBB. */ static inline graphite_dim_t pbb_nb_dynamic_scattering_transform (const struct poly_bb *pbb) { /* This function requires the 2d + 1 scattering format to be invariant during all transformations. */ gcc_assert (PBB_NB_SCATTERING_TRANSFORM (pbb) % 2); return PBB_NB_SCATTERING_TRANSFORM (pbb) / 2; } /* Returns the number of local variables used in the transformed scattering polyhedron of PBB. */ static inline graphite_dim_t pbb_nb_local_vars (const struct poly_bb *pbb ATTRIBUTE_UNUSED) { /* For now we do not have any local variables, as we do not do strip mining for example. */ return PBB_NB_LOCAL_VARIABLES (pbb); } /* The dimension in the domain of PBB containing the iterator ITER. */ static inline graphite_dim_t pbb_iterator_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t iter) { return iter; } /* The dimension in the domain of PBB containing the iterator ITER. */ static inline graphite_dim_t pbb_parameter_dim (poly_bb_p pbb, graphite_dim_t param) { return param + pbb_dim_iter_domain (pbb); } /* The dimension in the original scattering polyhedron of PBB containing the scattering iterator SCATTER. */ static inline graphite_dim_t psco_scattering_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t scatter) { gcc_assert (scatter < pbb_nb_scattering_orig (pbb)); return scatter; } /* The dimension in the transformed scattering polyhedron of PBB containing the scattering iterator SCATTER. */ static inline graphite_dim_t psct_scattering_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t scatter) { gcc_assert (scatter <= pbb_nb_scattering_transform (pbb)); return scatter; } /* The dimension in the transformed scattering polyhedron of PBB of the local variable LV. */ static inline graphite_dim_t psct_local_var_dim (poly_bb_p pbb, graphite_dim_t lv) { gcc_assert (lv <= pbb_nb_local_vars (pbb)); return lv + pbb_nb_scattering_transform (pbb); } /* The dimension in the original scattering polyhedron of PBB containing the loop iterator ITER. */ static inline graphite_dim_t psco_iterator_dim (poly_bb_p pbb, graphite_dim_t iter) { gcc_assert (iter < pbb_dim_iter_domain (pbb)); return iter + pbb_nb_scattering_orig (pbb); } /* The dimension in the transformed scattering polyhedron of PBB containing the loop iterator ITER. */ static inline graphite_dim_t psct_iterator_dim (poly_bb_p pbb, graphite_dim_t iter) { gcc_assert (iter < pbb_dim_iter_domain (pbb)); return iter + pbb_nb_scattering_transform (pbb) + pbb_nb_local_vars (pbb); } /* The dimension in the original scattering polyhedron of PBB containing parameter PARAM. */ static inline graphite_dim_t psco_parameter_dim (poly_bb_p pbb, graphite_dim_t param) { gcc_assert (param < pbb_nb_params (pbb)); return param + pbb_nb_scattering_orig (pbb) + pbb_dim_iter_domain (pbb); } /* The dimension in the transformed scattering polyhedron of PBB containing parameter PARAM. */ static inline graphite_dim_t psct_parameter_dim (poly_bb_p pbb, graphite_dim_t param) { gcc_assert (param < pbb_nb_params (pbb)); return param + pbb_nb_scattering_transform (pbb) + pbb_nb_local_vars (pbb) + pbb_dim_iter_domain (pbb); } /* The scattering dimension of PBB corresponding to the dynamic level LEVEL. */ static inline graphite_dim_t psct_dynamic_dim (poly_bb_p pbb, graphite_dim_t level) { graphite_dim_t result = 1 + 2 * level; gcc_assert (result < pbb_nb_scattering_transform (pbb)); return result; } /* The scattering dimension of PBB corresponding to the static sequence of the loop level LEVEL. */ static inline graphite_dim_t psct_static_dim (poly_bb_p pbb, graphite_dim_t level) { graphite_dim_t result = 2 * level; gcc_assert (result < pbb_nb_scattering_transform (pbb)); return result; } /* Adds to the transformed scattering polyhedron of PBB a new local variable and returns its index. */ static inline graphite_dim_t psct_add_local_variable (poly_bb_p pbb ATTRIBUTE_UNUSED) { gcc_unreachable (); return 0; } typedef struct lst *lst_p; /* Loops and Statements Tree. */ struct lst { /* LOOP_P is true when an LST node is a loop. */ bool loop_p; /* A pointer to the loop that contains this node. */ lst_p loop_father; /* The sum of all the memory strides for an LST loop. */ mpz_t memory_strides; /* Loop nodes contain a sequence SEQ of LST nodes, statements contain a pointer to their polyhedral representation PBB. */ union { poly_bb_p pbb; vec seq; } node; }; #define LST_LOOP_P(LST) ((LST)->loop_p) #define LST_LOOP_FATHER(LST) ((LST)->loop_father) #define LST_PBB(LST) ((LST)->node.pbb) #define LST_SEQ(LST) ((LST)->node.seq) #define LST_LOOP_MEMORY_STRIDES(LST) ((LST)->memory_strides) void scop_to_lst (scop_p); void print_lst (FILE *, lst_p, int); void debug_lst (lst_p); void dot_lst (lst_p); /* Creates a new LST loop with SEQ. */ static inline lst_p new_lst_loop (vec seq) { lst_p lst = XNEW (struct lst); int i; lst_p l; LST_LOOP_P (lst) = true; LST_SEQ (lst) = seq; LST_LOOP_FATHER (lst) = NULL; mpz_init (LST_LOOP_MEMORY_STRIDES (lst)); mpz_set_si (LST_LOOP_MEMORY_STRIDES (lst), -1); for (i = 0; seq.iterate (i, &l); i++) LST_LOOP_FATHER (l) = lst; return lst; } /* Creates a new LST statement with PBB. */ static inline lst_p new_lst_stmt (poly_bb_p pbb) { lst_p lst = XNEW (struct lst); LST_LOOP_P (lst) = false; LST_PBB (lst) = pbb; LST_LOOP_FATHER (lst) = NULL; return lst; } /* Frees the memory used by LST. */ static inline void free_lst (lst_p lst) { if (!lst) return; if (LST_LOOP_P (lst)) { int i; lst_p l; for (i = 0; LST_SEQ (lst).iterate (i, &l); i++) free_lst (l); mpz_clear (LST_LOOP_MEMORY_STRIDES (lst)); LST_SEQ (lst).release (); } free (lst); } /* Returns a copy of LST. */ static inline lst_p copy_lst (lst_p lst) { if (!lst) return NULL; if (LST_LOOP_P (lst)) { int i; lst_p l; vec seq; seq.create (5); for (i = 0; LST_SEQ (lst).iterate (i, &l); i++) seq.safe_push (copy_lst (l)); return new_lst_loop (seq); } return new_lst_stmt (LST_PBB (lst)); } /* Adds a new loop under the loop LST. */ static inline void lst_add_loop_under_loop (lst_p lst) { vec seq; seq.create (1); lst_p l = new_lst_loop (LST_SEQ (lst)); gcc_assert (LST_LOOP_P (lst)); LST_LOOP_FATHER (l) = lst; seq.quick_push (l); LST_SEQ (lst) = seq; } /* Returns the loop depth of LST. */ static inline int lst_depth (lst_p lst) { if (!lst) return -2; /* The depth of the outermost "fake" loop is -1. This outermost loop does not have a loop father and it is just a container, as in the loop representation of GCC. */ if (!LST_LOOP_FATHER (lst)) return -1; return lst_depth (LST_LOOP_FATHER (lst)) + 1; } /* Returns the Dewey number for LST. */ static inline int lst_dewey_number (lst_p lst) { int i; lst_p l; if (!lst) return -1; if (!LST_LOOP_FATHER (lst)) return 0; FOR_EACH_VEC_ELT (LST_SEQ (LST_LOOP_FATHER (lst)), i, l) if (l == lst) return i; return -1; } /* Returns the Dewey number of LST at depth DEPTH. */ static inline int lst_dewey_number_at_depth (lst_p lst, int depth) { gcc_assert (lst && depth >= 0 && lst_depth (lst) <= depth); if (lst_depth (lst) == depth) return lst_dewey_number (lst); return lst_dewey_number_at_depth (LST_LOOP_FATHER (lst), depth); } /* Returns the predecessor of LST in the sequence of its loop father. Returns NULL if LST is the first statement in the sequence. */ static inline lst_p lst_pred (lst_p lst) { int dewey; lst_p father; if (!lst || !LST_LOOP_FATHER (lst)) return NULL; dewey = lst_dewey_number (lst); if (dewey == 0) return NULL; father = LST_LOOP_FATHER (lst); return LST_SEQ (father)[dewey - 1]; } /* Returns the successor of LST in the sequence of its loop father. Returns NULL if there is none. */ static inline lst_p lst_succ (lst_p lst) { int dewey; lst_p father; if (!lst || !LST_LOOP_FATHER (lst)) return NULL; dewey = lst_dewey_number (lst); father = LST_LOOP_FATHER (lst); if (LST_SEQ (father).length () == (unsigned) dewey + 1) return NULL; return LST_SEQ (father)[dewey + 1]; } /* Return the LST node corresponding to PBB. */ static inline lst_p lst_find_pbb (lst_p lst, poly_bb_p pbb) { int i; lst_p l; if (!lst) return NULL; if (!LST_LOOP_P (lst)) return (pbb == LST_PBB (lst)) ? lst : NULL; for (i = 0; LST_SEQ (lst).iterate (i, &l); i++) { lst_p res = lst_find_pbb (l, pbb); if (res) return res; } return NULL; } /* Return the LST node corresponding to the loop around STMT at depth LOOP_DEPTH. */ static inline lst_p find_lst_loop (lst_p stmt, int loop_depth) { lst_p loop = LST_LOOP_FATHER (stmt); gcc_assert (loop_depth >= 0); while (loop_depth < lst_depth (loop)) loop = LST_LOOP_FATHER (loop); return loop; } /* Return the first LST representing a PBB statement in LST. */ static inline lst_p lst_find_first_pbb (lst_p lst) { int i; lst_p l; if (!lst) return NULL; if (!LST_LOOP_P (lst)) return lst; for (i = 0; LST_SEQ (lst).iterate (i, &l); i++) { lst_p res = lst_find_first_pbb (l); if (res) return res; } return NULL; } /* Returns true when LST is a loop that does not contain statements. */ static inline bool lst_empty_p (lst_p lst) { return !lst_find_first_pbb (lst); } /* Return the last LST representing a PBB statement in LST. */ static inline lst_p lst_find_last_pbb (lst_p lst) { int i; lst_p l, res = NULL; if (!lst) return NULL; if (!LST_LOOP_P (lst)) return lst; for (i = 0; LST_SEQ (lst).iterate (i, &l); i++) { lst_p last = lst_find_last_pbb (l); if (last) res = last; } gcc_assert (res); return res; } /* Returns true if LOOP contains LST, in other words, if LST is nested in LOOP. */ static inline bool lst_contains_p (lst_p loop, lst_p lst) { if (!loop || !lst || !LST_LOOP_P (loop)) return false; if (loop == lst) return true; return lst_contains_p (loop, LST_LOOP_FATHER (lst)); } /* Returns true if LOOP contains PBB, in other words, if PBB is nested in LOOP. */ static inline bool lst_contains_pbb (lst_p loop, poly_bb_p pbb) { return lst_find_pbb (loop, pbb) ? true : false; } /* Creates a loop nest of depth NB_LOOPS containing LST. */ static inline lst_p lst_create_nest (int nb_loops, lst_p lst) { lst_p res, loop; vec seq; if (nb_loops == 0) return lst; seq.create (1); loop = lst_create_nest (nb_loops - 1, lst); seq.quick_push (loop); res = new_lst_loop (seq); LST_LOOP_FATHER (loop) = res; return res; } /* Removes LST from the sequence of statements of its loop father. */ static inline void lst_remove_from_sequence (lst_p lst) { lst_p father = LST_LOOP_FATHER (lst); int dewey = lst_dewey_number (lst); gcc_assert (lst && father && dewey >= 0); LST_SEQ (father).ordered_remove (dewey); LST_LOOP_FATHER (lst) = NULL; } /* Removes the loop LST and inline its body in the father loop. */ static inline void lst_remove_loop_and_inline_stmts_in_loop_father (lst_p lst) { lst_p l, father = LST_LOOP_FATHER (lst); int i, dewey = lst_dewey_number (lst); gcc_assert (lst && father && dewey >= 0); LST_SEQ (father).ordered_remove (dewey); LST_LOOP_FATHER (lst) = NULL; FOR_EACH_VEC_ELT (LST_SEQ (lst), i, l) { LST_SEQ (father).safe_insert (dewey + i, l); LST_LOOP_FATHER (l) = father; } } /* Sets NITER to the upper bound approximation of the number of iterations of loop LST. */ static inline void lst_niter_for_loop (lst_p lst, mpz_t niter) { int depth = lst_depth (lst); poly_bb_p pbb = LST_PBB (lst_find_first_pbb (lst)); gcc_assert (LST_LOOP_P (lst)); pbb_number_of_iterations_at_time (pbb, psct_dynamic_dim (pbb, depth), niter); } /* Updates the scattering of PBB to be at the DEWEY number in the loop at depth LEVEL. */ static inline void pbb_update_scattering (poly_bb_p pbb, graphite_dim_t level, int dewey) { graphite_dim_t sched = psct_static_dim (pbb, level); isl_space *d = isl_map_get_space (pbb->transformed); isl_space *d1 = isl_space_range (d); unsigned i, n = isl_space_dim (d1, isl_dim_out); isl_space *d2 = isl_space_add_dims (d1, isl_dim_in, n); isl_map *x = isl_map_universe (d2); x = isl_map_fix_si (x, isl_dim_out, sched, dewey); for (i = 0; i < n; i++) if (i != sched) x = isl_map_equate (x, isl_dim_in, i, isl_dim_out, i); pbb->transformed = isl_map_apply_range (pbb->transformed, x); } /* Updates the scattering of all the PBBs under LST to be at the DEWEY number in the loop at depth LEVEL. */ static inline void lst_update_scattering_under (lst_p lst, int level, int dewey) { int i; lst_p l; gcc_assert (lst && level >= 0 && dewey >= 0); if (LST_LOOP_P (lst)) for (i = 0; LST_SEQ (lst).iterate (i, &l); i++) lst_update_scattering_under (l, level, dewey); else pbb_update_scattering (LST_PBB (lst), level, dewey); } /* Updates the all the scattering levels of all the PBBs under LST. */ static inline void lst_update_scattering (lst_p lst) { int i; lst_p l; if (!lst) return; if (LST_LOOP_FATHER (lst)) { lst_p father = LST_LOOP_FATHER (lst); int dewey = lst_dewey_number (lst); int level = lst_depth (lst); gcc_assert (lst && father && dewey >= 0 && level >= 0); for (i = dewey; LST_SEQ (father).iterate (i, &l); i++) lst_update_scattering_under (l, level, i); } if (LST_LOOP_P (lst)) for (i = 0; LST_SEQ (lst).iterate (i, &l); i++) lst_update_scattering (l); } /* Inserts LST1 before LST2 if BEFORE is true; inserts LST1 after LST2 if BEFORE is false. */ static inline void lst_insert_in_sequence (lst_p lst1, lst_p lst2, bool before) { lst_p father; int dewey; /* Do not insert empty loops. */ if (!lst1 || lst_empty_p (lst1)) return; father = LST_LOOP_FATHER (lst2); dewey = lst_dewey_number (lst2); gcc_assert (lst2 && father && dewey >= 0); LST_SEQ (father).safe_insert (before ? dewey : dewey + 1, lst1); LST_LOOP_FATHER (lst1) = father; } /* Replaces LST1 with LST2. */ static inline void lst_replace (lst_p lst1, lst_p lst2) { lst_p father; int dewey; if (!lst2 || lst_empty_p (lst2)) return; father = LST_LOOP_FATHER (lst1); dewey = lst_dewey_number (lst1); LST_LOOP_FATHER (lst2) = father; LST_SEQ (father)[dewey] = lst2; } /* Returns a copy of ROOT where LST has been replaced by a copy of the LSTs A B C in this sequence. */ static inline lst_p lst_substitute_3 (lst_p root, lst_p lst, lst_p a, lst_p b, lst_p c) { int i; lst_p l; vec seq; if (!root) return NULL; gcc_assert (lst && root != lst); if (!LST_LOOP_P (root)) return new_lst_stmt (LST_PBB (root)); seq.create (5); for (i = 0; LST_SEQ (root).iterate (i, &l); i++) if (l != lst) seq.safe_push (lst_substitute_3 (l, lst, a, b, c)); else { if (!lst_empty_p (a)) seq.safe_push (copy_lst (a)); if (!lst_empty_p (b)) seq.safe_push (copy_lst (b)); if (!lst_empty_p (c)) seq.safe_push (copy_lst (c)); } return new_lst_loop (seq); } /* Moves LST before LOOP if BEFORE is true, and after the LOOP if BEFORE is false. */ static inline void lst_distribute_lst (lst_p loop, lst_p lst, bool before) { int loop_depth = lst_depth (loop); int depth = lst_depth (lst); int nb_loops = depth - loop_depth; gcc_assert (lst && loop && LST_LOOP_P (loop) && nb_loops > 0); lst_remove_from_sequence (lst); lst_insert_in_sequence (lst_create_nest (nb_loops, lst), loop, before); } /* Removes from LOOP all the statements before/after and including PBB if BEFORE is true/false. Returns the negation of BEFORE when the statement PBB has been found. */ static inline bool lst_remove_all_before_including_pbb (lst_p loop, poly_bb_p pbb, bool before) { int i; lst_p l; if (!loop || !LST_LOOP_P (loop)) return before; for (i = 0; LST_SEQ (loop).iterate (i, &l);) if (LST_LOOP_P (l)) { before = lst_remove_all_before_including_pbb (l, pbb, before); if (LST_SEQ (l).length () == 0) { LST_SEQ (loop).ordered_remove (i); free_lst (l); } else i++; } else { if (before) { if (LST_PBB (l) == pbb) before = false; LST_SEQ (loop).ordered_remove (i); free_lst (l); } else if (LST_PBB (l) == pbb) { before = true; LST_SEQ (loop).ordered_remove (i); free_lst (l); } else i++; } return before; } /* Removes from LOOP all the statements before/after and excluding PBB if BEFORE is true/false; Returns the negation of BEFORE when the statement PBB has been found. */ static inline bool lst_remove_all_before_excluding_pbb (lst_p loop, poly_bb_p pbb, bool before) { int i; lst_p l; if (!loop || !LST_LOOP_P (loop)) return before; for (i = 0; LST_SEQ (loop).iterate (i, &l);) if (LST_LOOP_P (l)) { before = lst_remove_all_before_excluding_pbb (l, pbb, before); if (LST_SEQ (l).length () == 0) { LST_SEQ (loop).ordered_remove (i); free_lst (l); continue; } i++; } else { if (before && LST_PBB (l) != pbb) { LST_SEQ (loop).ordered_remove (i); free_lst (l); continue; } i++; if (LST_PBB (l) == pbb) before = before ? false : true; } return before; } /* A SCOP is a Static Control Part of the program, simple enough to be represented in polyhedral form. */ struct scop { /* A SCOP is defined as a SESE region. */ void *region; /* Number of parameters in SCoP. */ graphite_dim_t nb_params; /* All the basic blocks in this scop that contain memory references and that will be represented as statements in the polyhedral representation. */ vec bbs; /* Original, transformed and saved schedules. */ lst_p original_schedule, transformed_schedule, saved_schedule; /* The context describes known restrictions concerning the parameters and relations in between the parameters. void f (int8_t a, uint_16_t b) { c = 2 a + b; ... } Here we can add these restrictions to the context: -128 >= a >= 127 0 >= b >= 65,535 c = 2a + b */ isl_set *context; /* The context used internally by ISL. */ isl_ctx *ctx; /* The original dependence relations: RAW are read after write dependences, WAR are write after read dependences, WAW are write after write dependences. */ isl_union_map *must_raw, *may_raw, *must_raw_no_source, *may_raw_no_source, *must_war, *may_war, *must_war_no_source, *may_war_no_source, *must_waw, *may_waw, *must_waw_no_source, *may_waw_no_source; /* True when the scop has been converted to its polyhedral representation. */ bool poly_scop_p; }; #define SCOP_BBS(S) (S->bbs) #define SCOP_REGION(S) ((sese) S->region) #define SCOP_CONTEXT(S) (NULL) #define SCOP_ORIGINAL_SCHEDULE(S) (S->original_schedule) #define SCOP_TRANSFORMED_SCHEDULE(S) (S->transformed_schedule) #define SCOP_SAVED_SCHEDULE(S) (S->saved_schedule) #define POLY_SCOP_P(S) (S->poly_scop_p) extern scop_p new_scop (void *); extern void free_scop (scop_p); extern void free_scops (vec ); extern void print_generated_program (FILE *, scop_p); extern void debug_generated_program (scop_p); extern void print_scattering_function (FILE *, poly_bb_p, int); extern void print_scattering_functions (FILE *, scop_p, int); extern void debug_scattering_function (poly_bb_p, int); extern void debug_scattering_functions (scop_p, int); extern int scop_max_loop_depth (scop_p); extern int unify_scattering_dimensions (scop_p); extern bool apply_poly_transforms (scop_p); extern bool graphite_legal_transform (scop_p); /* Set the region of SCOP to REGION. */ static inline void scop_set_region (scop_p scop, void *region) { scop->region = region; } /* Returns the number of parameters for SCOP. */ static inline graphite_dim_t scop_nb_params (scop_p scop) { return scop->nb_params; } /* Set the number of params of SCOP to NB_PARAMS. */ static inline void scop_set_nb_params (scop_p scop, graphite_dim_t nb_params) { scop->nb_params = nb_params; } /* Allocates a new empty poly_scattering structure. */ static inline poly_scattering_p poly_scattering_new (void) { poly_scattering_p res = XNEW (struct poly_scattering); res->nb_local_variables = 0; res->nb_scattering = 0; return res; } /* Free a poly_scattering structure. */ static inline void poly_scattering_free (poly_scattering_p s) { free (s); } /* Copies S and return a new scattering. */ static inline poly_scattering_p poly_scattering_copy (poly_scattering_p s) { poly_scattering_p res = poly_scattering_new (); res->nb_local_variables = s->nb_local_variables; res->nb_scattering = s->nb_scattering; return res; } /* Saves the transformed scattering of PBB. */ static inline void store_scattering_pbb (poly_bb_p pbb) { isl_map_free (pbb->saved); pbb->saved = isl_map_copy (pbb->transformed); } /* Stores the SCOP_TRANSFORMED_SCHEDULE to SCOP_SAVED_SCHEDULE. */ static inline void store_lst_schedule (scop_p scop) { if (SCOP_SAVED_SCHEDULE (scop)) free_lst (SCOP_SAVED_SCHEDULE (scop)); SCOP_SAVED_SCHEDULE (scop) = copy_lst (SCOP_TRANSFORMED_SCHEDULE (scop)); } /* Restores the SCOP_TRANSFORMED_SCHEDULE from SCOP_SAVED_SCHEDULE. */ static inline void restore_lst_schedule (scop_p scop) { if (SCOP_TRANSFORMED_SCHEDULE (scop)) free_lst (SCOP_TRANSFORMED_SCHEDULE (scop)); SCOP_TRANSFORMED_SCHEDULE (scop) = copy_lst (SCOP_SAVED_SCHEDULE (scop)); } /* Saves the scattering for all the pbbs in the SCOP. */ static inline void store_scattering (scop_p scop) { int i; poly_bb_p pbb; for (i = 0; SCOP_BBS (scop).iterate (i, &pbb); i++) store_scattering_pbb (pbb); store_lst_schedule (scop); } /* Restores the scattering of PBB. */ static inline void restore_scattering_pbb (poly_bb_p pbb) { gcc_assert (pbb->saved); isl_map_free (pbb->transformed); pbb->transformed = isl_map_copy (pbb->saved); } /* Restores the scattering for all the pbbs in the SCOP. */ static inline void restore_scattering (scop_p scop) { int i; poly_bb_p pbb; for (i = 0; SCOP_BBS (scop).iterate (i, &pbb); i++) restore_scattering_pbb (pbb); restore_lst_schedule (scop); } bool graphite_legal_transform (scop_p); isl_map *reverse_loop_at_level (poly_bb_p, int); isl_union_map *reverse_loop_for_pbbs (scop_p, vec , int); __isl_give isl_union_map *extend_schedule (__isl_take isl_union_map *); void compute_deps (scop_p scop, vec pbbs, isl_union_map **must_raw, isl_union_map **may_raw, isl_union_map **must_raw_no_source, isl_union_map **may_raw_no_source, isl_union_map **must_war, isl_union_map **may_war, isl_union_map **must_war_no_source, isl_union_map **may_war_no_source, isl_union_map **must_waw, isl_union_map **may_waw, isl_union_map **must_waw_no_source, isl_union_map **may_waw_no_source); isl_union_map * scop_get_dependences (scop_p scop); bool carries_deps (__isl_keep isl_union_map *schedule, __isl_keep isl_union_map *deps, int depth); #endif