/* GIMPLE store merging and byte swapping passes. Copyright (C) 2009-2019 Free Software Foundation, Inc. Contributed by ARM Ltd. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* The purpose of the store merging pass is to combine multiple memory stores of constant values, values loaded from memory, bitwise operations on those, or bit-field values, to consecutive locations, into fewer wider stores. For example, if we have a sequence peforming four byte stores to consecutive memory locations: [p ] := imm1; [p + 1B] := imm2; [p + 2B] := imm3; [p + 3B] := imm4; we can transform this into a single 4-byte store if the target supports it: [p] := imm1:imm2:imm3:imm4 concatenated according to endianness. Or: [p ] := [q ]; [p + 1B] := [q + 1B]; [p + 2B] := [q + 2B]; [p + 3B] := [q + 3B]; if there is no overlap can be transformed into a single 4-byte load followed by single 4-byte store. Or: [p ] := [q ] ^ imm1; [p + 1B] := [q + 1B] ^ imm2; [p + 2B] := [q + 2B] ^ imm3; [p + 3B] := [q + 3B] ^ imm4; if there is no overlap can be transformed into a single 4-byte load, xored with imm1:imm2:imm3:imm4 and stored using a single 4-byte store. Or: [p:1 ] := imm; [p:31] := val & 0x7FFFFFFF; we can transform this into a single 4-byte store if the target supports it: [p] := imm:(val & 0x7FFFFFFF) concatenated according to endianness. The algorithm is applied to each basic block in three phases: 1) Scan through the basic block and record assignments to destinations that can be expressed as a store to memory of a certain size at a certain bit offset from base expressions we can handle. For bit-fields we also record the surrounding bit region, i.e. bits that could be stored in a read-modify-write operation when storing the bit-field. Record store chains to different bases in a hash_map (m_stores) and make sure to terminate such chains when appropriate (for example when when the stored values get used subsequently). These stores can be a result of structure element initializers, array stores etc. A store_immediate_info object is recorded for every such store. Record as many such assignments to a single base as possible until a statement that interferes with the store sequence is encountered. Each store has up to 2 operands, which can be a either constant, a memory load or an SSA name, from which the value to be stored can be computed. At most one of the operands can be a constant. The operands are recorded in store_operand_info struct. 2) Analyze the chains of stores recorded in phase 1) (i.e. the vector of store_immediate_info objects) and coalesce contiguous stores into merged_store_group objects. For bit-field stores, we don't need to require the stores to be contiguous, just their surrounding bit regions have to be contiguous. If the expression being stored is different between adjacent stores, such as one store storing a constant and following storing a value loaded from memory, or if the loaded memory objects are not adjacent, a new merged_store_group is created as well. For example, given the stores: [p ] := 0; [p + 1B] := 1; [p + 3B] := 0; [p + 4B] := 1; [p + 5B] := 0; [p + 6B] := 0; This phase would produce two merged_store_group objects, one recording the two bytes stored in the memory region [p : p + 1] and another recording the four bytes stored in the memory region [p + 3 : p + 6]. 3) The merged_store_group objects produced in phase 2) are processed to generate the sequence of wider stores that set the contiguous memory regions to the sequence of bytes that correspond to it. This may emit multiple stores per store group to handle contiguous stores that are not of a size that is a power of 2. For example it can try to emit a 40-bit store as a 32-bit store followed by an 8-bit store. We try to emit as wide stores as we can while respecting STRICT_ALIGNMENT or TARGET_SLOW_UNALIGNED_ACCESS settings. Note on endianness and example: Consider 2 contiguous 16-bit stores followed by 2 contiguous 8-bit stores: [p ] := 0x1234; [p + 2B] := 0x5678; [p + 4B] := 0xab; [p + 5B] := 0xcd; The memory layout for little-endian (LE) and big-endian (BE) must be: p |LE|BE| --------- 0 |34|12| 1 |12|34| 2 |78|56| 3 |56|78| 4 |ab|ab| 5 |cd|cd| To merge these into a single 48-bit merged value 'val' in phase 2) on little-endian we insert stores to higher (consecutive) bitpositions into the most significant bits of the merged value. The final merged value would be: 0xcdab56781234 For big-endian we insert stores to higher bitpositions into the least significant bits of the merged value. The final merged value would be: 0x12345678abcd Then, in phase 3), we want to emit this 48-bit value as a 32-bit store followed by a 16-bit store. Again, we must consider endianness when breaking down the 48-bit value 'val' computed above. For little endian we emit: [p] (32-bit) := 0x56781234; // val & 0x0000ffffffff; [p + 4B] (16-bit) := 0xcdab; // (val & 0xffff00000000) >> 32; Whereas for big-endian we emit: [p] (32-bit) := 0x12345678; // (val & 0xffffffff0000) >> 16; [p + 4B] (16-bit) := 0xabcd; // val & 0x00000000ffff; */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "tree.h" #include "gimple.h" #include "builtins.h" #include "fold-const.h" #include "tree-pass.h" #include "ssa.h" #include "gimple-pretty-print.h" #include "alias.h" #include "fold-const.h" #include "params.h" #include "print-tree.h" #include "tree-hash-traits.h" #include "gimple-iterator.h" #include "gimplify.h" #include "gimple-fold.h" #include "stor-layout.h" #include "timevar.h" #include "tree-cfg.h" #include "tree-eh.h" #include "target.h" #include "gimplify-me.h" #include "rtl.h" #include "expr.h" /* For get_bit_range. */ #include "optabs-tree.h" #include "dbgcnt.h" #include "selftest.h" /* The maximum size (in bits) of the stores this pass should generate. */ #define MAX_STORE_BITSIZE (BITS_PER_WORD) #define MAX_STORE_BYTES (MAX_STORE_BITSIZE / BITS_PER_UNIT) /* Limit to bound the number of aliasing checks for loads with the same vuse as the corresponding store. */ #define MAX_STORE_ALIAS_CHECKS 64 namespace { struct bswap_stat { /* Number of hand-written 16-bit nop / bswaps found. */ int found_16bit; /* Number of hand-written 32-bit nop / bswaps found. */ int found_32bit; /* Number of hand-written 64-bit nop / bswaps found. */ int found_64bit; } nop_stats, bswap_stats; /* A symbolic number structure is used to detect byte permutation and selection patterns of a source. To achieve that, its field N contains an artificial number consisting of BITS_PER_MARKER sized markers tracking where does each byte come from in the source: 0 - target byte has the value 0 FF - target byte has an unknown value (eg. due to sign extension) 1..size - marker value is the byte index in the source (0 for lsb). To detect permutations on memory sources (arrays and structures), a symbolic number is also associated: - a base address BASE_ADDR and an OFFSET giving the address of the source; - a range which gives the difference between the highest and lowest accessed memory location to make such a symbolic number; - the address SRC of the source element of lowest address as a convenience to easily get BASE_ADDR + offset + lowest bytepos; - number of expressions N_OPS bitwise ored together to represent approximate cost of the computation. Note 1: the range is different from size as size reflects the size of the type of the current expression. For instance, for an array char a[], (short) a[0] | (short) a[3] would have a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would still have a size of 2 but this time a range of 1. Note 2: for non-memory sources, range holds the same value as size. Note 3: SRC points to the SSA_NAME in case of non-memory source. */ struct symbolic_number { uint64_t n; tree type; tree base_addr; tree offset; poly_int64_pod bytepos; tree src; tree alias_set; tree vuse; unsigned HOST_WIDE_INT range; int n_ops; }; #define BITS_PER_MARKER 8 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1) #define MARKER_BYTE_UNKNOWN MARKER_MASK #define HEAD_MARKER(n, size) \ ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER))) /* The number which the find_bswap_or_nop_1 result should match in order to have a nop. The number is masked according to the size of the symbolic number before using it. */ #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \ (uint64_t)0x08070605 << 32 | 0x04030201) /* The number which the find_bswap_or_nop_1 result should match in order to have a byte swap. The number is masked according to the size of the symbolic number before using it. */ #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \ (uint64_t)0x01020304 << 32 | 0x05060708) /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic number N. Return false if the requested operation is not permitted on a symbolic number. */ inline bool do_shift_rotate (enum tree_code code, struct symbolic_number *n, int count) { int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT; unsigned head_marker; if (count < 0 || count >= TYPE_PRECISION (n->type) || count % BITS_PER_UNIT != 0) return false; count = (count / BITS_PER_UNIT) * BITS_PER_MARKER; /* Zero out the extra bits of N in order to avoid them being shifted into the significant bits. */ if (size < 64 / BITS_PER_MARKER) n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1; switch (code) { case LSHIFT_EXPR: n->n <<= count; break; case RSHIFT_EXPR: head_marker = HEAD_MARKER (n->n, size); n->n >>= count; /* Arithmetic shift of signed type: result is dependent on the value. */ if (!TYPE_UNSIGNED (n->type) && head_marker) for (i = 0; i < count / BITS_PER_MARKER; i++) n->n |= (uint64_t) MARKER_BYTE_UNKNOWN << ((size - 1 - i) * BITS_PER_MARKER); break; case LROTATE_EXPR: n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count)); break; case RROTATE_EXPR: n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count)); break; default: return false; } /* Zero unused bits for size. */ if (size < 64 / BITS_PER_MARKER) n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1; return true; } /* Perform sanity checking for the symbolic number N and the gimple statement STMT. */ inline bool verify_symbolic_number_p (struct symbolic_number *n, gimple *stmt) { tree lhs_type; lhs_type = gimple_expr_type (stmt); if (TREE_CODE (lhs_type) != INTEGER_TYPE) return false; if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type)) return false; return true; } /* Initialize the symbolic number N for the bswap pass from the base element SRC manipulated by the bitwise OR expression. */ bool init_symbolic_number (struct symbolic_number *n, tree src) { int size; if (! INTEGRAL_TYPE_P (TREE_TYPE (src))) return false; n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE; n->src = src; /* Set up the symbolic number N by setting each byte to a value between 1 and the byte size of rhs1. The highest order byte is set to n->size and the lowest order byte to 1. */ n->type = TREE_TYPE (src); size = TYPE_PRECISION (n->type); if (size % BITS_PER_UNIT != 0) return false; size /= BITS_PER_UNIT; if (size > 64 / BITS_PER_MARKER) return false; n->range = size; n->n = CMPNOP; n->n_ops = 1; if (size < 64 / BITS_PER_MARKER) n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1; return true; } /* Check if STMT might be a byte swap or a nop from a memory source and returns the answer. If so, REF is that memory source and the base of the memory area accessed and the offset of the access from that base are recorded in N. */ bool find_bswap_or_nop_load (gimple *stmt, tree ref, struct symbolic_number *n) { /* Leaf node is an array or component ref. Memorize its base and offset from base to compare to other such leaf node. */ poly_int64 bitsize, bitpos, bytepos; machine_mode mode; int unsignedp, reversep, volatilep; tree offset, base_addr; /* Not prepared to handle PDP endian. */ if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN) return false; if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt)) return false; base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode, &unsignedp, &reversep, &volatilep); if (TREE_CODE (base_addr) == TARGET_MEM_REF) /* Do not rewrite TARGET_MEM_REF. */ return false; else if (TREE_CODE (base_addr) == MEM_REF) { poly_offset_int bit_offset = 0; tree off = TREE_OPERAND (base_addr, 1); if (!integer_zerop (off)) { poly_offset_int boff = mem_ref_offset (base_addr); boff <<= LOG2_BITS_PER_UNIT; bit_offset += boff; } base_addr = TREE_OPERAND (base_addr, 0); /* Avoid returning a negative bitpos as this may wreak havoc later. */ if (maybe_lt (bit_offset, 0)) { tree byte_offset = wide_int_to_tree (sizetype, bits_to_bytes_round_down (bit_offset)); bit_offset = num_trailing_bits (bit_offset); if (offset) offset = size_binop (PLUS_EXPR, offset, byte_offset); else offset = byte_offset; } bitpos += bit_offset.force_shwi (); } else base_addr = build_fold_addr_expr (base_addr); if (!multiple_p (bitpos, BITS_PER_UNIT, &bytepos)) return false; if (!multiple_p (bitsize, BITS_PER_UNIT)) return false; if (reversep) return false; if (!init_symbolic_number (n, ref)) return false; n->base_addr = base_addr; n->offset = offset; n->bytepos = bytepos; n->alias_set = reference_alias_ptr_type (ref); n->vuse = gimple_vuse (stmt); return true; } /* Compute the symbolic number N representing the result of a bitwise OR on 2 symbolic number N1 and N2 whose source statements are respectively SOURCE_STMT1 and SOURCE_STMT2. */ gimple * perform_symbolic_merge (gimple *source_stmt1, struct symbolic_number *n1, gimple *source_stmt2, struct symbolic_number *n2, struct symbolic_number *n) { int i, size; uint64_t mask; gimple *source_stmt; struct symbolic_number *n_start; tree rhs1 = gimple_assign_rhs1 (source_stmt1); if (TREE_CODE (rhs1) == BIT_FIELD_REF && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME) rhs1 = TREE_OPERAND (rhs1, 0); tree rhs2 = gimple_assign_rhs1 (source_stmt2); if (TREE_CODE (rhs2) == BIT_FIELD_REF && TREE_CODE (TREE_OPERAND (rhs2, 0)) == SSA_NAME) rhs2 = TREE_OPERAND (rhs2, 0); /* Sources are different, cancel bswap if they are not memory location with the same base (array, structure, ...). */ if (rhs1 != rhs2) { uint64_t inc; HOST_WIDE_INT start1, start2, start_sub, end_sub, end1, end2, end; struct symbolic_number *toinc_n_ptr, *n_end; basic_block bb1, bb2; if (!n1->base_addr || !n2->base_addr || !operand_equal_p (n1->base_addr, n2->base_addr, 0)) return NULL; if (!n1->offset != !n2->offset || (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0))) return NULL; start1 = 0; if (!(n2->bytepos - n1->bytepos).is_constant (&start2)) return NULL; if (start1 < start2) { n_start = n1; start_sub = start2 - start1; } else { n_start = n2; start_sub = start1 - start2; } bb1 = gimple_bb (source_stmt1); bb2 = gimple_bb (source_stmt2); if (dominated_by_p (CDI_DOMINATORS, bb1, bb2)) source_stmt = source_stmt1; else source_stmt = source_stmt2; /* Find the highest address at which a load is performed and compute related info. */ end1 = start1 + (n1->range - 1); end2 = start2 + (n2->range - 1); if (end1 < end2) { end = end2; end_sub = end2 - end1; } else { end = end1; end_sub = end1 - end2; } n_end = (end2 > end1) ? n2 : n1; /* Find symbolic number whose lsb is the most significant. */ if (BYTES_BIG_ENDIAN) toinc_n_ptr = (n_end == n1) ? n2 : n1; else toinc_n_ptr = (n_start == n1) ? n2 : n1; n->range = end - MIN (start1, start2) + 1; /* Check that the range of memory covered can be represented by a symbolic number. */ if (n->range > 64 / BITS_PER_MARKER) return NULL; /* Reinterpret byte marks in symbolic number holding the value of bigger weight according to target endianness. */ inc = BYTES_BIG_ENDIAN ? end_sub : start_sub; size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT; for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER) { unsigned marker = (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK; if (marker && marker != MARKER_BYTE_UNKNOWN) toinc_n_ptr->n += inc; } } else { n->range = n1->range; n_start = n1; source_stmt = source_stmt1; } if (!n1->alias_set || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set)) n->alias_set = n1->alias_set; else n->alias_set = ptr_type_node; n->vuse = n_start->vuse; n->base_addr = n_start->base_addr; n->offset = n_start->offset; n->src = n_start->src; n->bytepos = n_start->bytepos; n->type = n_start->type; size = TYPE_PRECISION (n->type) / BITS_PER_UNIT; for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER) { uint64_t masked1, masked2; masked1 = n1->n & mask; masked2 = n2->n & mask; if (masked1 && masked2 && masked1 != masked2) return NULL; } n->n = n1->n | n2->n; n->n_ops = n1->n_ops + n2->n_ops; return source_stmt; } /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform the operation given by the rhs of STMT on the result. If the operation could successfully be executed the function returns a gimple stmt whose rhs's first tree is the expression of the source operand and NULL otherwise. */ gimple * find_bswap_or_nop_1 (gimple *stmt, struct symbolic_number *n, int limit) { enum tree_code code; tree rhs1, rhs2 = NULL; gimple *rhs1_stmt, *rhs2_stmt, *source_stmt1; enum gimple_rhs_class rhs_class; if (!limit || !is_gimple_assign (stmt)) return NULL; rhs1 = gimple_assign_rhs1 (stmt); if (find_bswap_or_nop_load (stmt, rhs1, n)) return stmt; /* Handle BIT_FIELD_REF. */ if (TREE_CODE (rhs1) == BIT_FIELD_REF && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME) { unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TREE_OPERAND (rhs1, 1)); unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (TREE_OPERAND (rhs1, 2)); if (bitpos % BITS_PER_UNIT == 0 && bitsize % BITS_PER_UNIT == 0 && init_symbolic_number (n, TREE_OPERAND (rhs1, 0))) { /* Handle big-endian bit numbering in BIT_FIELD_REF. */ if (BYTES_BIG_ENDIAN) bitpos = TYPE_PRECISION (n->type) - bitpos - bitsize; /* Shift. */ if (!do_shift_rotate (RSHIFT_EXPR, n, bitpos)) return NULL; /* Mask. */ uint64_t mask = 0; uint64_t tmp = (1 << BITS_PER_UNIT) - 1; for (unsigned i = 0; i < bitsize / BITS_PER_UNIT; i++, tmp <<= BITS_PER_UNIT) mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER); n->n &= mask; /* Convert. */ n->type = TREE_TYPE (rhs1); if (!n->base_addr) n->range = TYPE_PRECISION (n->type) / BITS_PER_UNIT; return verify_symbolic_number_p (n, stmt) ? stmt : NULL; } return NULL; } if (TREE_CODE (rhs1) != SSA_NAME) return NULL; code = gimple_assign_rhs_code (stmt); rhs_class = gimple_assign_rhs_class (stmt); rhs1_stmt = SSA_NAME_DEF_STMT (rhs1); if (rhs_class == GIMPLE_BINARY_RHS) rhs2 = gimple_assign_rhs2 (stmt); /* Handle unary rhs and binary rhs with integer constants as second operand. */ if (rhs_class == GIMPLE_UNARY_RHS || (rhs_class == GIMPLE_BINARY_RHS && TREE_CODE (rhs2) == INTEGER_CST)) { if (code != BIT_AND_EXPR && code != LSHIFT_EXPR && code != RSHIFT_EXPR && code != LROTATE_EXPR && code != RROTATE_EXPR && !CONVERT_EXPR_CODE_P (code)) return NULL; source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1); /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and we have to initialize the symbolic number. */ if (!source_stmt1) { if (gimple_assign_load_p (stmt) || !init_symbolic_number (n, rhs1)) return NULL; source_stmt1 = stmt; } switch (code) { case BIT_AND_EXPR: { int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT; uint64_t val = int_cst_value (rhs2), mask = 0; uint64_t tmp = (1 << BITS_PER_UNIT) - 1; /* Only constants masking full bytes are allowed. */ for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT) if ((val & tmp) != 0 && (val & tmp) != tmp) return NULL; else if (val & tmp) mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER); n->n &= mask; } break; case LSHIFT_EXPR: case RSHIFT_EXPR: case LROTATE_EXPR: case RROTATE_EXPR: if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2))) return NULL; break; CASE_CONVERT: { int i, type_size, old_type_size; tree type; type = gimple_expr_type (stmt); type_size = TYPE_PRECISION (type); if (type_size % BITS_PER_UNIT != 0) return NULL; type_size /= BITS_PER_UNIT; if (type_size > 64 / BITS_PER_MARKER) return NULL; /* Sign extension: result is dependent on the value. */ old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT; if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size && HEAD_MARKER (n->n, old_type_size)) for (i = 0; i < type_size - old_type_size; i++) n->n |= (uint64_t) MARKER_BYTE_UNKNOWN << ((type_size - 1 - i) * BITS_PER_MARKER); if (type_size < 64 / BITS_PER_MARKER) { /* If STMT casts to a smaller type mask out the bits not belonging to the target type. */ n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1; } n->type = type; if (!n->base_addr) n->range = type_size; } break; default: return NULL; }; return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL; } /* Handle binary rhs. */ if (rhs_class == GIMPLE_BINARY_RHS) { struct symbolic_number n1, n2; gimple *source_stmt, *source_stmt2; if (code != BIT_IOR_EXPR) return NULL; if (TREE_CODE (rhs2) != SSA_NAME) return NULL; rhs2_stmt = SSA_NAME_DEF_STMT (rhs2); switch (code) { case BIT_IOR_EXPR: source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1); if (!source_stmt1) return NULL; source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1); if (!source_stmt2) return NULL; if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type)) return NULL; if (n1.vuse != n2.vuse) return NULL; source_stmt = perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n); if (!source_stmt) return NULL; if (!verify_symbolic_number_p (n, stmt)) return NULL; break; default: return NULL; } return source_stmt; } return NULL; } /* Helper for find_bswap_or_nop and try_coalesce_bswap to compute *CMPXCHG, *CMPNOP and adjust *N. */ void find_bswap_or_nop_finalize (struct symbolic_number *n, uint64_t *cmpxchg, uint64_t *cmpnop) { unsigned rsize; uint64_t tmpn, mask; /* The number which the find_bswap_or_nop_1 result should match in order to have a full byte swap. The number is shifted to the right according to the size of the symbolic number before using it. */ *cmpxchg = CMPXCHG; *cmpnop = CMPNOP; /* Find real size of result (highest non-zero byte). */ if (n->base_addr) for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++); else rsize = n->range; /* Zero out the bits corresponding to untouched bytes in original gimple expression. */ if (n->range < (int) sizeof (int64_t)) { mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1; *cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER; *cmpnop &= mask; } /* Zero out the bits corresponding to unused bytes in the result of the gimple expression. */ if (rsize < n->range) { if (BYTES_BIG_ENDIAN) { mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1; *cmpxchg &= mask; *cmpnop >>= (n->range - rsize) * BITS_PER_MARKER; } else { mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1; *cmpxchg >>= (n->range - rsize) * BITS_PER_MARKER; *cmpnop &= mask; } n->range = rsize; } n->range *= BITS_PER_UNIT; } /* Check if STMT completes a bswap implementation or a read in a given endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP accordingly. It also sets N to represent the kind of operations performed: size of the resulting expression and whether it works on a memory source, and if so alias-set and vuse. At last, the function returns a stmt whose rhs's first tree is the source expression. */ gimple * find_bswap_or_nop (gimple *stmt, struct symbolic_number *n, bool *bswap) { /* The last parameter determines the depth search limit. It usually correlates directly to the number n of bytes to be touched. We increase that number by log2(n) + 1 here in order to also cover signed -> unsigned conversions of the src operand as can be seen in libgcc, and for initial shift/and operation of the src operand. */ int limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt))); limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit); gimple *ins_stmt = find_bswap_or_nop_1 (stmt, n, limit); if (!ins_stmt) return NULL; uint64_t cmpxchg, cmpnop; find_bswap_or_nop_finalize (n, &cmpxchg, &cmpnop); /* A complete byte swap should make the symbolic number to start with the largest digit in the highest order byte. Unchanged symbolic number indicates a read with same endianness as target architecture. */ if (n->n == cmpnop) *bswap = false; else if (n->n == cmpxchg) *bswap = true; else return NULL; /* Useless bit manipulation performed by code. */ if (!n->base_addr && n->n == cmpnop && n->n_ops == 1) return NULL; return ins_stmt; } const pass_data pass_data_optimize_bswap = { GIMPLE_PASS, /* type */ "bswap", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_optimize_bswap : public gimple_opt_pass { public: pass_optimize_bswap (gcc::context *ctxt) : gimple_opt_pass (pass_data_optimize_bswap, ctxt) {} /* opt_pass methods: */ virtual bool gate (function *) { return flag_expensive_optimizations && optimize && BITS_PER_UNIT == 8; } virtual unsigned int execute (function *); }; // class pass_optimize_bswap /* Perform the bswap optimization: replace the expression computed in the rhs of gsi_stmt (GSI) (or if NULL add instead of replace) by an equivalent bswap, load or load + bswap expression. Which of these alternatives replace the rhs is given by N->base_addr (non null if a load is needed) and BSWAP. The type, VUSE and set-alias of the load to perform are also given in N while the builtin bswap invoke is given in FNDEL. Finally, if a load is involved, INS_STMT refers to one of the load statements involved to construct the rhs in gsi_stmt (GSI) and N->range gives the size of the rhs expression for maintaining some statistics. Note that if the replacement involve a load and if gsi_stmt (GSI) is non-NULL, that stmt is moved just after INS_STMT to do the load with the same VUSE which can lead to gsi_stmt (GSI) changing of basic block. */ tree bswap_replace (gimple_stmt_iterator gsi, gimple *ins_stmt, tree fndecl, tree bswap_type, tree load_type, struct symbolic_number *n, bool bswap) { tree src, tmp, tgt = NULL_TREE; gimple *bswap_stmt; gimple *cur_stmt = gsi_stmt (gsi); src = n->src; if (cur_stmt) tgt = gimple_assign_lhs (cur_stmt); /* Need to load the value from memory first. */ if (n->base_addr) { gimple_stmt_iterator gsi_ins = gsi; if (ins_stmt) gsi_ins = gsi_for_stmt (ins_stmt); tree addr_expr, addr_tmp, val_expr, val_tmp; tree load_offset_ptr, aligned_load_type; gimple *load_stmt; unsigned align = get_object_alignment (src); poly_int64 load_offset = 0; if (cur_stmt) { basic_block ins_bb = gimple_bb (ins_stmt); basic_block cur_bb = gimple_bb (cur_stmt); if (!dominated_by_p (CDI_DOMINATORS, cur_bb, ins_bb)) return NULL_TREE; /* Move cur_stmt just before one of the load of the original to ensure it has the same VUSE. See PR61517 for what could go wrong. */ if (gimple_bb (cur_stmt) != gimple_bb (ins_stmt)) reset_flow_sensitive_info (gimple_assign_lhs (cur_stmt)); gsi_move_before (&gsi, &gsi_ins); gsi = gsi_for_stmt (cur_stmt); } else gsi = gsi_ins; /* Compute address to load from and cast according to the size of the load. */ addr_expr = build_fold_addr_expr (src); if (is_gimple_mem_ref_addr (addr_expr)) addr_tmp = unshare_expr (addr_expr); else { addr_tmp = unshare_expr (n->base_addr); if (!is_gimple_mem_ref_addr (addr_tmp)) addr_tmp = force_gimple_operand_gsi_1 (&gsi, addr_tmp, is_gimple_mem_ref_addr, NULL_TREE, true, GSI_SAME_STMT); load_offset = n->bytepos; if (n->offset) { tree off = force_gimple_operand_gsi (&gsi, unshare_expr (n->offset), true, NULL_TREE, true, GSI_SAME_STMT); gimple *stmt = gimple_build_assign (make_ssa_name (TREE_TYPE (addr_tmp)), POINTER_PLUS_EXPR, addr_tmp, off); gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); addr_tmp = gimple_assign_lhs (stmt); } } /* Perform the load. */ aligned_load_type = load_type; if (align < TYPE_ALIGN (load_type)) aligned_load_type = build_aligned_type (load_type, align); load_offset_ptr = build_int_cst (n->alias_set, load_offset); val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp, load_offset_ptr); if (!bswap) { if (n->range == 16) nop_stats.found_16bit++; else if (n->range == 32) nop_stats.found_32bit++; else { gcc_assert (n->range == 64); nop_stats.found_64bit++; } /* Convert the result of load if necessary. */ if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), load_type)) { val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst"); load_stmt = gimple_build_assign (val_tmp, val_expr); gimple_set_vuse (load_stmt, n->vuse); gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT); gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp); update_stmt (cur_stmt); } else if (cur_stmt) { gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr); gimple_set_vuse (cur_stmt, n->vuse); update_stmt (cur_stmt); } else { tgt = make_ssa_name (load_type); cur_stmt = gimple_build_assign (tgt, MEM_REF, val_expr); gimple_set_vuse (cur_stmt, n->vuse); gsi_insert_before (&gsi, cur_stmt, GSI_SAME_STMT); } if (dump_file) { fprintf (dump_file, "%d bit load in target endianness found at: ", (int) n->range); print_gimple_stmt (dump_file, cur_stmt, 0); } return tgt; } else { val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst"); load_stmt = gimple_build_assign (val_tmp, val_expr); gimple_set_vuse (load_stmt, n->vuse); gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT); } src = val_tmp; } else if (!bswap) { gimple *g = NULL; if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), TREE_TYPE (src))) { if (!is_gimple_val (src)) return NULL_TREE; g = gimple_build_assign (tgt, NOP_EXPR, src); } else if (cur_stmt) g = gimple_build_assign (tgt, src); else tgt = src; if (n->range == 16) nop_stats.found_16bit++; else if (n->range == 32) nop_stats.found_32bit++; else { gcc_assert (n->range == 64); nop_stats.found_64bit++; } if (dump_file) { fprintf (dump_file, "%d bit reshuffle in target endianness found at: ", (int) n->range); if (cur_stmt) print_gimple_stmt (dump_file, cur_stmt, 0); else { print_generic_expr (dump_file, tgt, TDF_NONE); fprintf (dump_file, "\n"); } } if (cur_stmt) gsi_replace (&gsi, g, true); return tgt; } else if (TREE_CODE (src) == BIT_FIELD_REF) src = TREE_OPERAND (src, 0); if (n->range == 16) bswap_stats.found_16bit++; else if (n->range == 32) bswap_stats.found_32bit++; else { gcc_assert (n->range == 64); bswap_stats.found_64bit++; } tmp = src; /* Convert the src expression if necessary. */ if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type)) { gimple *convert_stmt; tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc"); convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src); gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT); } /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values are considered as rotation of 2N bit values by N bits is generally not equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which gives 0x03040102 while a bswap for that value is 0x04030201. */ if (bswap && n->range == 16) { tree count = build_int_cst (NULL, BITS_PER_UNIT); src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count); bswap_stmt = gimple_build_assign (NULL, src); } else bswap_stmt = gimple_build_call (fndecl, 1, tmp); if (tgt == NULL_TREE) tgt = make_ssa_name (bswap_type); tmp = tgt; /* Convert the result if necessary. */ if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type)) { gimple *convert_stmt; tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst"); convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp); gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT); } gimple_set_lhs (bswap_stmt, tmp); if (dump_file) { fprintf (dump_file, "%d bit bswap implementation found at: ", (int) n->range); if (cur_stmt) print_gimple_stmt (dump_file, cur_stmt, 0); else { print_generic_expr (dump_file, tgt, TDF_NONE); fprintf (dump_file, "\n"); } } if (cur_stmt) { gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT); gsi_remove (&gsi, true); } else gsi_insert_before (&gsi, bswap_stmt, GSI_SAME_STMT); return tgt; } /* Find manual byte swap implementations as well as load in a given endianness. Byte swaps are turned into a bswap builtin invokation while endian loads are converted to bswap builtin invokation or simple load according to the target endianness. */ unsigned int pass_optimize_bswap::execute (function *fun) { basic_block bb; bool bswap32_p, bswap64_p; bool changed = false; tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE; bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32) && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing); bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64) && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing || (bswap32_p && word_mode == SImode))); /* Determine the argument type of the builtins. The code later on assumes that the return and argument type are the same. */ if (bswap32_p) { tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32); bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl))); } if (bswap64_p) { tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64); bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl))); } memset (&nop_stats, 0, sizeof (nop_stats)); memset (&bswap_stats, 0, sizeof (bswap_stats)); calculate_dominance_info (CDI_DOMINATORS); FOR_EACH_BB_FN (bb, fun) { gimple_stmt_iterator gsi; /* We do a reverse scan for bswap patterns to make sure we get the widest match. As bswap pattern matching doesn't handle previously inserted smaller bswap replacements as sub-patterns, the wider variant wouldn't be detected. */ for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);) { gimple *ins_stmt, *cur_stmt = gsi_stmt (gsi); tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type; enum tree_code code; struct symbolic_number n; bool bswap; /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt might be moved to a different basic block by bswap_replace and gsi must not points to it if that's the case. Moving the gsi_prev there make sure that gsi points to the statement previous to cur_stmt while still making sure that all statements are considered in this basic block. */ gsi_prev (&gsi); if (!is_gimple_assign (cur_stmt)) continue; code = gimple_assign_rhs_code (cur_stmt); switch (code) { case LROTATE_EXPR: case RROTATE_EXPR: if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt)) || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt)) % BITS_PER_UNIT) continue; /* Fall through. */ case BIT_IOR_EXPR: break; default: continue; } ins_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap); if (!ins_stmt) continue; switch (n.range) { case 16: /* Already in canonical form, nothing to do. */ if (code == LROTATE_EXPR || code == RROTATE_EXPR) continue; load_type = bswap_type = uint16_type_node; break; case 32: load_type = uint32_type_node; if (bswap32_p) { fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32); bswap_type = bswap32_type; } break; case 64: load_type = uint64_type_node; if (bswap64_p) { fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64); bswap_type = bswap64_type; } break; default: continue; } if (bswap && !fndecl && n.range != 16) continue; if (bswap_replace (gsi_for_stmt (cur_stmt), ins_stmt, fndecl, bswap_type, load_type, &n, bswap)) changed = true; } } statistics_counter_event (fun, "16-bit nop implementations found", nop_stats.found_16bit); statistics_counter_event (fun, "32-bit nop implementations found", nop_stats.found_32bit); statistics_counter_event (fun, "64-bit nop implementations found", nop_stats.found_64bit); statistics_counter_event (fun, "16-bit bswap implementations found", bswap_stats.found_16bit); statistics_counter_event (fun, "32-bit bswap implementations found", bswap_stats.found_32bit); statistics_counter_event (fun, "64-bit bswap implementations found", bswap_stats.found_64bit); return (changed ? TODO_update_ssa : 0); } } // anon namespace gimple_opt_pass * make_pass_optimize_bswap (gcc::context *ctxt) { return new pass_optimize_bswap (ctxt); } namespace { /* Struct recording one operand for the store, which is either a constant, then VAL represents the constant and all the other fields are zero, or a memory load, then VAL represents the reference, BASE_ADDR is non-NULL and the other fields also reflect the memory load, or an SSA name, then VAL represents the SSA name and all the other fields are zero, */ class store_operand_info { public: tree val; tree base_addr; poly_uint64 bitsize; poly_uint64 bitpos; poly_uint64 bitregion_start; poly_uint64 bitregion_end; gimple *stmt; bool bit_not_p; store_operand_info (); }; store_operand_info::store_operand_info () : val (NULL_TREE), base_addr (NULL_TREE), bitsize (0), bitpos (0), bitregion_start (0), bitregion_end (0), stmt (NULL), bit_not_p (false) { } /* Struct recording the information about a single store of an immediate to memory. These are created in the first phase and coalesced into merged_store_group objects in the second phase. */ class store_immediate_info { public: unsigned HOST_WIDE_INT bitsize; unsigned HOST_WIDE_INT bitpos; unsigned HOST_WIDE_INT bitregion_start; /* This is one past the last bit of the bit region. */ unsigned HOST_WIDE_INT bitregion_end; gimple *stmt; unsigned int order; /* INTEGER_CST for constant stores, MEM_REF for memory copy, BIT_*_EXPR for logical bitwise operation, BIT_INSERT_EXPR for bit insertion. LROTATE_EXPR if it can be only bswap optimized and ops are not really meaningful. NOP_EXPR if bswap optimization detected identity, ops are not meaningful. */ enum tree_code rhs_code; /* Two fields for bswap optimization purposes. */ struct symbolic_number n; gimple *ins_stmt; /* True if BIT_{AND,IOR,XOR}_EXPR result is inverted before storing. */ bool bit_not_p; /* True if ops have been swapped and thus ops[1] represents rhs1 of BIT_{AND,IOR,XOR}_EXPR and ops[0] represents rhs2. */ bool ops_swapped_p; /* Operands. For BIT_*_EXPR rhs_code both operands are used, otherwise just the first one. */ store_operand_info ops[2]; store_immediate_info (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT, gimple *, unsigned int, enum tree_code, struct symbolic_number &, gimple *, bool, const store_operand_info &, const store_operand_info &); }; store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs, unsigned HOST_WIDE_INT bp, unsigned HOST_WIDE_INT brs, unsigned HOST_WIDE_INT bre, gimple *st, unsigned int ord, enum tree_code rhscode, struct symbolic_number &nr, gimple *ins_stmtp, bool bitnotp, const store_operand_info &op0r, const store_operand_info &op1r) : bitsize (bs), bitpos (bp), bitregion_start (brs), bitregion_end (bre), stmt (st), order (ord), rhs_code (rhscode), n (nr), ins_stmt (ins_stmtp), bit_not_p (bitnotp), ops_swapped_p (false) #if __cplusplus >= 201103L , ops { op0r, op1r } { } #else { ops[0] = op0r; ops[1] = op1r; } #endif /* Struct representing a group of stores to contiguous memory locations. These are produced by the second phase (coalescing) and consumed in the third phase that outputs the widened stores. */ class merged_store_group { public: unsigned HOST_WIDE_INT start; unsigned HOST_WIDE_INT width; unsigned HOST_WIDE_INT bitregion_start; unsigned HOST_WIDE_INT bitregion_end; /* The size of the allocated memory for val and mask. */ unsigned HOST_WIDE_INT buf_size; unsigned HOST_WIDE_INT align_base; poly_uint64 load_align_base[2]; unsigned int align; unsigned int load_align[2]; unsigned int first_order; unsigned int last_order; bool bit_insertion; bool only_constants; unsigned int first_nonmergeable_order; auto_vec stores; /* We record the first and last original statements in the sequence because we'll need their vuse/vdef and replacement position. It's easier to keep track of them separately as 'stores' is reordered by apply_stores. */ gimple *last_stmt; gimple *first_stmt; unsigned char *val; unsigned char *mask; merged_store_group (store_immediate_info *); ~merged_store_group (); bool can_be_merged_into (store_immediate_info *); void merge_into (store_immediate_info *); void merge_overlapping (store_immediate_info *); bool apply_stores (); private: void do_merge (store_immediate_info *); }; /* Debug helper. Dump LEN elements of byte array PTR to FD in hex. */ static void dump_char_array (FILE *fd, unsigned char *ptr, unsigned int len) { if (!fd) return; for (unsigned int i = 0; i < len; i++) fprintf (fd, "%02x ", ptr[i]); fprintf (fd, "\n"); } /* Shift left the bytes in PTR of SZ elements by AMNT bits, carrying over the bits between adjacent elements. AMNT should be within [0, BITS_PER_UNIT). Example, AMNT = 2: 00011111|11100000 << 2 = 01111111|10000000 PTR[1] | PTR[0] PTR[1] | PTR[0]. */ static void shift_bytes_in_array (unsigned char *ptr, unsigned int sz, unsigned int amnt) { if (amnt == 0) return; unsigned char carry_over = 0U; unsigned char carry_mask = (~0U) << (unsigned char) (BITS_PER_UNIT - amnt); unsigned char clear_mask = (~0U) << amnt; for (unsigned int i = 0; i < sz; i++) { unsigned prev_carry_over = carry_over; carry_over = (ptr[i] & carry_mask) >> (BITS_PER_UNIT - amnt); ptr[i] <<= amnt; if (i != 0) { ptr[i] &= clear_mask; ptr[i] |= prev_carry_over; } } } /* Like shift_bytes_in_array but for big-endian. Shift right the bytes in PTR of SZ elements by AMNT bits, carrying over the bits between adjacent elements. AMNT should be within [0, BITS_PER_UNIT). Example, AMNT = 2: 00011111|11100000 >> 2 = 00000111|11111000 PTR[0] | PTR[1] PTR[0] | PTR[1]. */ static void shift_bytes_in_array_right (unsigned char *ptr, unsigned int sz, unsigned int amnt) { if (amnt == 0) return; unsigned char carry_over = 0U; unsigned char carry_mask = ~(~0U << amnt); for (unsigned int i = 0; i < sz; i++) { unsigned prev_carry_over = carry_over; carry_over = ptr[i] & carry_mask; carry_over <<= (unsigned char) BITS_PER_UNIT - amnt; ptr[i] >>= amnt; ptr[i] |= prev_carry_over; } } /* Clear out LEN bits starting from bit START in the byte array PTR. This clears the bits to the *right* from START. START must be within [0, BITS_PER_UNIT) and counts starting from the least significant bit. */ static void clear_bit_region_be (unsigned char *ptr, unsigned int start, unsigned int len) { if (len == 0) return; /* Clear len bits to the right of start. */ else if (len <= start + 1) { unsigned char mask = (~(~0U << len)); mask = mask << (start + 1U - len); ptr[0] &= ~mask; } else if (start != BITS_PER_UNIT - 1) { clear_bit_region_be (ptr, start, (start % BITS_PER_UNIT) + 1); clear_bit_region_be (ptr + 1, BITS_PER_UNIT - 1, len - (start % BITS_PER_UNIT) - 1); } else if (start == BITS_PER_UNIT - 1 && len > BITS_PER_UNIT) { unsigned int nbytes = len / BITS_PER_UNIT; memset (ptr, 0, nbytes); if (len % BITS_PER_UNIT != 0) clear_bit_region_be (ptr + nbytes, BITS_PER_UNIT - 1, len % BITS_PER_UNIT); } else gcc_unreachable (); } /* In the byte array PTR clear the bit region starting at bit START and is LEN bits wide. For regions spanning multiple bytes do this recursively until we reach zero LEN or a region contained within a single byte. */ static void clear_bit_region (unsigned char *ptr, unsigned int start, unsigned int len) { /* Degenerate base case. */ if (len == 0) return; else if (start >= BITS_PER_UNIT) clear_bit_region (ptr + 1, start - BITS_PER_UNIT, len); /* Second base case. */ else if ((start + len) <= BITS_PER_UNIT) { unsigned char mask = (~0U) << (unsigned char) (BITS_PER_UNIT - len); mask >>= BITS_PER_UNIT - (start + len); ptr[0] &= ~mask; return; } /* Clear most significant bits in a byte and proceed with the next byte. */ else if (start != 0) { clear_bit_region (ptr, start, BITS_PER_UNIT - start); clear_bit_region (ptr + 1, 0, len - (BITS_PER_UNIT - start)); } /* Whole bytes need to be cleared. */ else if (start == 0 && len > BITS_PER_UNIT) { unsigned int nbytes = len / BITS_PER_UNIT; /* We could recurse on each byte but we clear whole bytes, so a simple memset will do. */ memset (ptr, '\0', nbytes); /* Clear the remaining sub-byte region if there is one. */ if (len % BITS_PER_UNIT != 0) clear_bit_region (ptr + nbytes, 0, len % BITS_PER_UNIT); } else gcc_unreachable (); } /* Write BITLEN bits of EXPR to the byte array PTR at bit position BITPOS. PTR should contain TOTAL_BYTES elements. Return true if the operation succeeded. */ static bool encode_tree_to_bitpos (tree expr, unsigned char *ptr, int bitlen, int bitpos, unsigned int total_bytes) { unsigned int first_byte = bitpos / BITS_PER_UNIT; bool sub_byte_op_p = ((bitlen % BITS_PER_UNIT) || (bitpos % BITS_PER_UNIT) || !int_mode_for_size (bitlen, 0).exists ()); bool empty_ctor_p = (TREE_CODE (expr) == CONSTRUCTOR && CONSTRUCTOR_NELTS (expr) == 0 && TYPE_SIZE_UNIT (TREE_TYPE (expr)) && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (expr)))); if (!sub_byte_op_p) { if (first_byte >= total_bytes) return false; total_bytes -= first_byte; if (empty_ctor_p) { unsigned HOST_WIDE_INT rhs_bytes = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (expr))); if (rhs_bytes > total_bytes) return false; memset (ptr + first_byte, '\0', rhs_bytes); return true; } return native_encode_expr (expr, ptr + first_byte, total_bytes) != 0; } /* LITTLE-ENDIAN We are writing a non byte-sized quantity or at a position that is not at a byte boundary. |--------|--------|--------| ptr + first_byte ^ ^ xxx xxxxxxxx xxx< bp> |______EXPR____| First native_encode_expr EXPR into a temporary buffer and shift each byte in the buffer by 'bp' (carrying the bits over as necessary). |00000000|00xxxxxx|xxxxxxxx| << bp = |000xxxxx|xxxxxxxx|xxx00000| <------bitlen---->< bp> Then we clear the destination bits: |---00000|00000000|000-----| ptr + first_byte <-------bitlen--->< bp> Finally we ORR the bytes of the shifted EXPR into the cleared region: |---xxxxx||xxxxxxxx||xxx-----| ptr + first_byte. BIG-ENDIAN We are writing a non byte-sized quantity or at a position that is not at a byte boundary. ptr + first_byte |--------|--------|--------| ^ ^ xxx xxxxxxxx xxx |_____EXPR_____| First native_encode_expr EXPR into a temporary buffer and shift each byte in the buffer to the right by (carrying the bits over as necessary). We shift by as much as needed to align the most significant bit of EXPR with bitpos: |00xxxxxx|xxxxxxxx| >> 3 = |00000xxx|xxxxxxxx|xxxxx000| <---bitlen----> <-----bitlen-----> Then we clear the destination bits: ptr + first_byte |-----000||00000000||00000---| <-------bitlen-----> Finally we ORR the bytes of the shifted EXPR into the cleared region: ptr + first_byte |---xxxxx||xxxxxxxx||xxx-----|. The awkwardness comes from the fact that bitpos is counted from the most significant bit of a byte. */ /* We must be dealing with fixed-size data at this point, since the total size is also fixed. */ unsigned int byte_size; if (empty_ctor_p) { unsigned HOST_WIDE_INT rhs_bytes = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (expr))); if (rhs_bytes > total_bytes) return false; byte_size = rhs_bytes; } else { fixed_size_mode mode = as_a (TYPE_MODE (TREE_TYPE (expr))); byte_size = GET_MODE_SIZE (mode); } /* Allocate an extra byte so that we have space to shift into. */ byte_size++; unsigned char *tmpbuf = XALLOCAVEC (unsigned char, byte_size); memset (tmpbuf, '\0', byte_size); /* The store detection code should only have allowed constants that are accepted by native_encode_expr or empty ctors. */ if (!empty_ctor_p && native_encode_expr (expr, tmpbuf, byte_size - 1) == 0) gcc_unreachable (); /* The native_encode_expr machinery uses TYPE_MODE to determine how many bytes to write. This means it can write more than ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT bytes (for example write 8 bytes for a bitlen of 40). Skip the bytes that are not within bitlen and zero out the bits that are not relevant as well (that may contain a sign bit due to sign-extension). */ unsigned int padding = byte_size - ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT - 1; /* On big-endian the padding is at the 'front' so just skip the initial bytes. */ if (BYTES_BIG_ENDIAN) tmpbuf += padding; byte_size -= padding; if (bitlen % BITS_PER_UNIT != 0) { if (BYTES_BIG_ENDIAN) clear_bit_region_be (tmpbuf, BITS_PER_UNIT - 1, BITS_PER_UNIT - (bitlen % BITS_PER_UNIT)); else clear_bit_region (tmpbuf, bitlen, byte_size * BITS_PER_UNIT - bitlen); } /* Left shifting relies on the last byte being clear if bitlen is a multiple of BITS_PER_UNIT, which might not be clear if there are padding bytes. */ else if (!BYTES_BIG_ENDIAN) tmpbuf[byte_size - 1] = '\0'; /* Clear the bit region in PTR where the bits from TMPBUF will be inserted into. */ if (BYTES_BIG_ENDIAN) clear_bit_region_be (ptr + first_byte, BITS_PER_UNIT - 1 - (bitpos % BITS_PER_UNIT), bitlen); else clear_bit_region (ptr + first_byte, bitpos % BITS_PER_UNIT, bitlen); int shift_amnt; int bitlen_mod = bitlen % BITS_PER_UNIT; int bitpos_mod = bitpos % BITS_PER_UNIT; bool skip_byte = false; if (BYTES_BIG_ENDIAN) { /* BITPOS and BITLEN are exactly aligned and no shifting is necessary. */ if (bitpos_mod + bitlen_mod == BITS_PER_UNIT || (bitpos_mod == 0 && bitlen_mod == 0)) shift_amnt = 0; /* |. . . . . . . .| . We always shift right for BYTES_BIG_ENDIAN so shift the beginning of the value until it aligns with 'bp' in the next byte over. */ else if (bitpos_mod + bitlen_mod < BITS_PER_UNIT) { shift_amnt = bitlen_mod + bitpos_mod; skip_byte = bitlen_mod != 0; } /* |. . . . . . . .| <----bp---> <---blen---->. Shift the value right within the same byte so it aligns with 'bp'. */ else shift_amnt = bitlen_mod + bitpos_mod - BITS_PER_UNIT; } else shift_amnt = bitpos % BITS_PER_UNIT; /* Create the shifted version of EXPR. */ if (!BYTES_BIG_ENDIAN) { shift_bytes_in_array (tmpbuf, byte_size, shift_amnt); if (shift_amnt == 0) byte_size--; } else { gcc_assert (BYTES_BIG_ENDIAN); shift_bytes_in_array_right (tmpbuf, byte_size, shift_amnt); /* If shifting right forced us to move into the next byte skip the now empty byte. */ if (skip_byte) { tmpbuf++; byte_size--; } } /* Insert the bits from TMPBUF. */ for (unsigned int i = 0; i < byte_size; i++) ptr[first_byte + i] |= tmpbuf[i]; return true; } /* Sorting function for store_immediate_info objects. Sorts them by bitposition. */ static int sort_by_bitpos (const void *x, const void *y) { store_immediate_info *const *tmp = (store_immediate_info * const *) x; store_immediate_info *const *tmp2 = (store_immediate_info * const *) y; if ((*tmp)->bitpos < (*tmp2)->bitpos) return -1; else if ((*tmp)->bitpos > (*tmp2)->bitpos) return 1; else /* If they are the same let's use the order which is guaranteed to be different. */ return (*tmp)->order - (*tmp2)->order; } /* Sorting function for store_immediate_info objects. Sorts them by the order field. */ static int sort_by_order (const void *x, const void *y) { store_immediate_info *const *tmp = (store_immediate_info * const *) x; store_immediate_info *const *tmp2 = (store_immediate_info * const *) y; if ((*tmp)->order < (*tmp2)->order) return -1; else if ((*tmp)->order > (*tmp2)->order) return 1; gcc_unreachable (); } /* Initialize a merged_store_group object from a store_immediate_info object. */ merged_store_group::merged_store_group (store_immediate_info *info) { start = info->bitpos; width = info->bitsize; bitregion_start = info->bitregion_start; bitregion_end = info->bitregion_end; /* VAL has memory allocated for it in apply_stores once the group width has been finalized. */ val = NULL; mask = NULL; bit_insertion = false; only_constants = info->rhs_code == INTEGER_CST; first_nonmergeable_order = ~0U; unsigned HOST_WIDE_INT align_bitpos = 0; get_object_alignment_1 (gimple_assign_lhs (info->stmt), &align, &align_bitpos); align_base = start - align_bitpos; for (int i = 0; i < 2; ++i) { store_operand_info &op = info->ops[i]; if (op.base_addr == NULL_TREE) { load_align[i] = 0; load_align_base[i] = 0; } else { get_object_alignment_1 (op.val, &load_align[i], &align_bitpos); load_align_base[i] = op.bitpos - align_bitpos; } } stores.create (1); stores.safe_push (info); last_stmt = info->stmt; last_order = info->order; first_stmt = last_stmt; first_order = last_order; buf_size = 0; } merged_store_group::~merged_store_group () { if (val) XDELETEVEC (val); } /* Return true if the store described by INFO can be merged into the group. */ bool merged_store_group::can_be_merged_into (store_immediate_info *info) { /* Do not merge bswap patterns. */ if (info->rhs_code == LROTATE_EXPR) return false; /* The canonical case. */ if (info->rhs_code == stores[0]->rhs_code) return true; /* BIT_INSERT_EXPR is compatible with INTEGER_CST. */ if (info->rhs_code == BIT_INSERT_EXPR && stores[0]->rhs_code == INTEGER_CST) return true; if (stores[0]->rhs_code == BIT_INSERT_EXPR && info->rhs_code == INTEGER_CST) return true; /* We can turn MEM_REF into BIT_INSERT_EXPR for bit-field stores. */ if (info->rhs_code == MEM_REF && (stores[0]->rhs_code == INTEGER_CST || stores[0]->rhs_code == BIT_INSERT_EXPR) && info->bitregion_start == stores[0]->bitregion_start && info->bitregion_end == stores[0]->bitregion_end) return true; if (stores[0]->rhs_code == MEM_REF && (info->rhs_code == INTEGER_CST || info->rhs_code == BIT_INSERT_EXPR) && info->bitregion_start == stores[0]->bitregion_start && info->bitregion_end == stores[0]->bitregion_end) return true; return false; } /* Helper method for merge_into and merge_overlapping to do the common part. */ void merged_store_group::do_merge (store_immediate_info *info) { bitregion_start = MIN (bitregion_start, info->bitregion_start); bitregion_end = MAX (bitregion_end, info->bitregion_end); unsigned int this_align; unsigned HOST_WIDE_INT align_bitpos = 0; get_object_alignment_1 (gimple_assign_lhs (info->stmt), &this_align, &align_bitpos); if (this_align > align) { align = this_align; align_base = info->bitpos - align_bitpos; } for (int i = 0; i < 2; ++i) { store_operand_info &op = info->ops[i]; if (!op.base_addr) continue; get_object_alignment_1 (op.val, &this_align, &align_bitpos); if (this_align > load_align[i]) { load_align[i] = this_align; load_align_base[i] = op.bitpos - align_bitpos; } } gimple *stmt = info->stmt; stores.safe_push (info); if (info->order > last_order) { last_order = info->order; last_stmt = stmt; } else if (info->order < first_order) { first_order = info->order; first_stmt = stmt; } if (info->rhs_code != INTEGER_CST) only_constants = false; } /* Merge a store recorded by INFO into this merged store. The store is not overlapping with the existing recorded stores. */ void merged_store_group::merge_into (store_immediate_info *info) { /* Make sure we're inserting in the position we think we're inserting. */ gcc_assert (info->bitpos >= start + width && info->bitregion_start <= bitregion_end); width = info->bitpos + info->bitsize - start; do_merge (info); } /* Merge a store described by INFO into this merged store. INFO overlaps in some way with the current store (i.e. it's not contiguous which is handled by merged_store_group::merge_into). */ void merged_store_group::merge_overlapping (store_immediate_info *info) { /* If the store extends the size of the group, extend the width. */ if (info->bitpos + info->bitsize > start + width) width = info->bitpos + info->bitsize - start; do_merge (info); } /* Go through all the recorded stores in this group in program order and apply their values to the VAL byte array to create the final merged value. Return true if the operation succeeded. */ bool merged_store_group::apply_stores () { /* Make sure we have more than one store in the group, otherwise we cannot merge anything. */ if (bitregion_start % BITS_PER_UNIT != 0 || bitregion_end % BITS_PER_UNIT != 0 || stores.length () == 1) return false; stores.qsort (sort_by_order); store_immediate_info *info; unsigned int i; /* Create a power-of-2-sized buffer for native_encode_expr. */ buf_size = 1 << ceil_log2 ((bitregion_end - bitregion_start) / BITS_PER_UNIT); val = XNEWVEC (unsigned char, 2 * buf_size); mask = val + buf_size; memset (val, 0, buf_size); memset (mask, ~0U, buf_size); FOR_EACH_VEC_ELT (stores, i, info) { unsigned int pos_in_buffer = info->bitpos - bitregion_start; tree cst; if (info->ops[0].val && info->ops[0].base_addr == NULL_TREE) cst = info->ops[0].val; else if (info->ops[1].val && info->ops[1].base_addr == NULL_TREE) cst = info->ops[1].val; else cst = NULL_TREE; bool ret = true; if (cst) { if (info->rhs_code == BIT_INSERT_EXPR) bit_insertion = true; else ret = encode_tree_to_bitpos (cst, val, info->bitsize, pos_in_buffer, buf_size); } unsigned char *m = mask + (pos_in_buffer / BITS_PER_UNIT); if (BYTES_BIG_ENDIAN) clear_bit_region_be (m, (BITS_PER_UNIT - 1 - (pos_in_buffer % BITS_PER_UNIT)), info->bitsize); else clear_bit_region (m, pos_in_buffer % BITS_PER_UNIT, info->bitsize); if (cst && dump_file && (dump_flags & TDF_DETAILS)) { if (ret) { fputs ("After writing ", dump_file); print_generic_expr (dump_file, cst, TDF_NONE); fprintf (dump_file, " of size " HOST_WIDE_INT_PRINT_DEC " at position %d\n", info->bitsize, pos_in_buffer); fputs (" the merged value contains ", dump_file); dump_char_array (dump_file, val, buf_size); fputs (" the merged mask contains ", dump_file); dump_char_array (dump_file, mask, buf_size); if (bit_insertion) fputs (" bit insertion is required\n", dump_file); } else fprintf (dump_file, "Failed to merge stores\n"); } if (!ret) return false; } stores.qsort (sort_by_bitpos); return true; } /* Structure describing the store chain. */ class imm_store_chain_info { public: /* Doubly-linked list that imposes an order on chain processing. PNXP (prev's next pointer) points to the head of a list, or to the next field in the previous chain in the list. See pass_store_merging::m_stores_head for more rationale. */ imm_store_chain_info *next, **pnxp; tree base_addr; auto_vec m_store_info; auto_vec m_merged_store_groups; imm_store_chain_info (imm_store_chain_info *&inspt, tree b_a) : next (inspt), pnxp (&inspt), base_addr (b_a) { inspt = this; if (next) { gcc_checking_assert (pnxp == next->pnxp); next->pnxp = &next; } } ~imm_store_chain_info () { *pnxp = next; if (next) { gcc_checking_assert (&next == next->pnxp); next->pnxp = pnxp; } } bool terminate_and_process_chain (); bool try_coalesce_bswap (merged_store_group *, unsigned int, unsigned int); bool coalesce_immediate_stores (); bool output_merged_store (merged_store_group *); bool output_merged_stores (); }; const pass_data pass_data_tree_store_merging = { GIMPLE_PASS, /* type */ "store-merging", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_GIMPLE_STORE_MERGING, /* tv_id */ PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_update_ssa, /* todo_flags_finish */ }; class pass_store_merging : public gimple_opt_pass { public: pass_store_merging (gcc::context *ctxt) : gimple_opt_pass (pass_data_tree_store_merging, ctxt), m_stores_head () { } /* Pass not supported for PDP-endian, nor for insane hosts or target character sizes where native_{encode,interpret}_expr doesn't work properly. */ virtual bool gate (function *) { return flag_store_merging && BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN && CHAR_BIT == 8 && BITS_PER_UNIT == 8; } virtual unsigned int execute (function *); private: hash_map m_stores; /* Form a doubly-linked stack of the elements of m_stores, so that we can iterate over them in a predictable way. Using this order avoids extraneous differences in the compiler output just because of tree pointer variations (e.g. different chains end up in different positions of m_stores, so they are handled in different orders, so they allocate or release SSA names in different orders, and when they get reused, subsequent passes end up getting different SSA names, which may ultimately change decisions when going out of SSA). */ imm_store_chain_info *m_stores_head; void process_store (gimple *); bool terminate_and_process_all_chains (); bool terminate_all_aliasing_chains (imm_store_chain_info **, gimple *); bool terminate_and_release_chain (imm_store_chain_info *); }; // class pass_store_merging /* Terminate and process all recorded chains. Return true if any changes were made. */ bool pass_store_merging::terminate_and_process_all_chains () { bool ret = false; while (m_stores_head) ret |= terminate_and_release_chain (m_stores_head); gcc_assert (m_stores.is_empty ()); gcc_assert (m_stores_head == NULL); return ret; } /* Terminate all chains that are affected by the statement STMT. CHAIN_INFO is the chain we should ignore from the checks if non-NULL. */ bool pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info **chain_info, gimple *stmt) { bool ret = false; /* If the statement doesn't touch memory it can't alias. */ if (!gimple_vuse (stmt)) return false; tree store_lhs = gimple_store_p (stmt) ? gimple_get_lhs (stmt) : NULL_TREE; for (imm_store_chain_info *next = m_stores_head, *cur = next; cur; cur = next) { next = cur->next; /* We already checked all the stores in chain_info and terminated the chain if necessary. Skip it here. */ if (chain_info && *chain_info == cur) continue; store_immediate_info *info; unsigned int i; FOR_EACH_VEC_ELT (cur->m_store_info, i, info) { tree lhs = gimple_assign_lhs (info->stmt); if (ref_maybe_used_by_stmt_p (stmt, lhs) || stmt_may_clobber_ref_p (stmt, lhs) || (store_lhs && refs_output_dependent_p (store_lhs, lhs))) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "stmt causes chain termination:\n"); print_gimple_stmt (dump_file, stmt, 0); } terminate_and_release_chain (cur); ret = true; break; } } } return ret; } /* Helper function. Terminate the recorded chain storing to base object BASE. Return true if the merging and output was successful. The m_stores entry is removed after the processing in any case. */ bool pass_store_merging::terminate_and_release_chain (imm_store_chain_info *chain_info) { bool ret = chain_info->terminate_and_process_chain (); m_stores.remove (chain_info->base_addr); delete chain_info; return ret; } /* Return true if stmts in between FIRST (inclusive) and LAST (exclusive) may clobber REF. FIRST and LAST must be in the same basic block and have non-NULL vdef. We want to be able to sink load of REF across stores between FIRST and LAST, up to right before LAST. */ bool stmts_may_clobber_ref_p (gimple *first, gimple *last, tree ref) { ao_ref r; ao_ref_init (&r, ref); unsigned int count = 0; tree vop = gimple_vdef (last); gimple *stmt; gcc_checking_assert (gimple_bb (first) == gimple_bb (last)); do { stmt = SSA_NAME_DEF_STMT (vop); if (stmt_may_clobber_ref_p_1 (stmt, &r)) return true; if (gimple_store_p (stmt) && refs_anti_dependent_p (ref, gimple_get_lhs (stmt))) return true; /* Avoid quadratic compile time by bounding the number of checks we perform. */ if (++count > MAX_STORE_ALIAS_CHECKS) return true; vop = gimple_vuse (stmt); } while (stmt != first); return false; } /* Return true if INFO->ops[IDX] is mergeable with the corresponding loads already in MERGED_STORE group. BASE_ADDR is the base address of the whole store group. */ bool compatible_load_p (merged_store_group *merged_store, store_immediate_info *info, tree base_addr, int idx) { store_immediate_info *infof = merged_store->stores[0]; if (!info->ops[idx].base_addr || maybe_ne (info->ops[idx].bitpos - infof->ops[idx].bitpos, info->bitpos - infof->bitpos) || !operand_equal_p (info->ops[idx].base_addr, infof->ops[idx].base_addr, 0)) return false; store_immediate_info *infol = merged_store->stores.last (); tree load_vuse = gimple_vuse (info->ops[idx].stmt); /* In this case all vuses should be the same, e.g. _1 = s.a; _2 = s.b; _3 = _1 | 1; t.a = _3; _4 = _2 | 2; t.b = _4; or _1 = s.a; _2 = s.b; t.a = _1; t.b = _2; and we can emit the coalesced load next to any of those loads. */ if (gimple_vuse (infof->ops[idx].stmt) == load_vuse && gimple_vuse (infol->ops[idx].stmt) == load_vuse) return true; /* Otherwise, at least for now require that the load has the same vuse as the store. See following examples. */ if (gimple_vuse (info->stmt) != load_vuse) return false; if (gimple_vuse (infof->stmt) != gimple_vuse (infof->ops[idx].stmt) || (infof != infol && gimple_vuse (infol->stmt) != gimple_vuse (infol->ops[idx].stmt))) return false; /* If the load is from the same location as the store, already the construction of the immediate chain info guarantees no intervening stores, so no further checks are needed. Example: _1 = s.a; _2 = _1 & -7; s.a = _2; _3 = s.b; _4 = _3 & -7; s.b = _4; */ if (known_eq (info->ops[idx].bitpos, info->bitpos) && operand_equal_p (info->ops[idx].base_addr, base_addr, 0)) return true; /* Otherwise, we need to punt if any of the loads can be clobbered by any of the stores in the group, or any other stores in between those. Previous calls to compatible_load_p ensured that for all the merged_store->stores IDX loads, no stmts starting with merged_store->first_stmt and ending right before merged_store->last_stmt clobbers those loads. */ gimple *first = merged_store->first_stmt; gimple *last = merged_store->last_stmt; unsigned int i; store_immediate_info *infoc; /* The stores are sorted by increasing store bitpos, so if info->stmt store comes before the so far first load, we'll be changing merged_store->first_stmt. In that case we need to give up if any of the earlier processed loads clobber with the stmts in the new range. */ if (info->order < merged_store->first_order) { FOR_EACH_VEC_ELT (merged_store->stores, i, infoc) if (stmts_may_clobber_ref_p (info->stmt, first, infoc->ops[idx].val)) return false; first = info->stmt; } /* Similarly, we could change merged_store->last_stmt, so ensure in that case no stmts in the new range clobber any of the earlier processed loads. */ else if (info->order > merged_store->last_order) { FOR_EACH_VEC_ELT (merged_store->stores, i, infoc) if (stmts_may_clobber_ref_p (last, info->stmt, infoc->ops[idx].val)) return false; last = info->stmt; } /* And finally, we'd be adding a new load to the set, ensure it isn't clobbered in the new range. */ if (stmts_may_clobber_ref_p (first, last, info->ops[idx].val)) return false; /* Otherwise, we are looking for: _1 = s.a; _2 = _1 ^ 15; t.a = _2; _3 = s.b; _4 = _3 ^ 15; t.b = _4; or _1 = s.a; t.a = _1; _2 = s.b; t.b = _2; */ return true; } /* Add all refs loaded to compute VAL to REFS vector. */ void gather_bswap_load_refs (vec *refs, tree val) { if (TREE_CODE (val) != SSA_NAME) return; gimple *stmt = SSA_NAME_DEF_STMT (val); if (!is_gimple_assign (stmt)) return; if (gimple_assign_load_p (stmt)) { refs->safe_push (gimple_assign_rhs1 (stmt)); return; } switch (gimple_assign_rhs_class (stmt)) { case GIMPLE_BINARY_RHS: gather_bswap_load_refs (refs, gimple_assign_rhs2 (stmt)); /* FALLTHRU */ case GIMPLE_UNARY_RHS: gather_bswap_load_refs (refs, gimple_assign_rhs1 (stmt)); break; default: gcc_unreachable (); } } /* Check if there are any stores in M_STORE_INFO after index I (where M_STORE_INFO must be sorted by sort_by_bitpos) that overlap a potential group ending with END that have their order smaller than LAST_ORDER. RHS_CODE is the kind of store in the group. Return true if there are no such stores. Consider: MEM[(long long int *)p_28] = 0; MEM[(long long int *)p_28 + 8B] = 0; MEM[(long long int *)p_28 + 16B] = 0; MEM[(long long int *)p_28 + 24B] = 0; _129 = (int) _130; MEM[(int *)p_28 + 8B] = _129; MEM[(int *)p_28].a = -1; We already have MEM[(long long int *)p_28] = 0; MEM[(int *)p_28].a = -1; stmts in the current group and need to consider if it is safe to add MEM[(long long int *)p_28 + 8B] = 0; store into the same group. There is an overlap between that store and the MEM[(int *)p_28 + 8B] = _129; store though, so if we add the MEM[(long long int *)p_28 + 8B] = 0; into the group and merging of those 3 stores is successful, merged stmts will be emitted at the latest store from that group, i.e. LAST_ORDER, which is the MEM[(int *)p_28].a = -1; store. The MEM[(int *)p_28 + 8B] = _129; store that originally follows the MEM[(long long int *)p_28 + 8B] = 0; would now be before it, so we need to refuse merging MEM[(long long int *)p_28 + 8B] = 0; into the group. That way it will be its own store group and will not be touched. If RHS_CODE is INTEGER_CST and there are overlapping INTEGER_CST stores, those are mergeable using merge_overlapping, so don't return false for those. */ static bool check_no_overlap (vec m_store_info, unsigned int i, enum tree_code rhs_code, unsigned int last_order, unsigned HOST_WIDE_INT end) { unsigned int len = m_store_info.length (); for (++i; i < len; ++i) { store_immediate_info *info = m_store_info[i]; if (info->bitpos >= end) break; if (info->order < last_order && (rhs_code != INTEGER_CST || info->rhs_code != INTEGER_CST)) return false; } return true; } /* Return true if m_store_info[first] and at least one following store form a group which store try_size bitsize value which is byte swapped from a memory load or some value, or identity from some value. This uses the bswap pass APIs. */ bool imm_store_chain_info::try_coalesce_bswap (merged_store_group *merged_store, unsigned int first, unsigned int try_size) { unsigned int len = m_store_info.length (), last = first; unsigned HOST_WIDE_INT width = m_store_info[first]->bitsize; if (width >= try_size) return false; for (unsigned int i = first + 1; i < len; ++i) { if (m_store_info[i]->bitpos != m_store_info[first]->bitpos + width || m_store_info[i]->ins_stmt == NULL) return false; width += m_store_info[i]->bitsize; if (width >= try_size) { last = i; break; } } if (width != try_size) return false; bool allow_unaligned = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED); /* Punt if the combined store would not be aligned and we need alignment. */ if (!allow_unaligned) { unsigned int align = merged_store->align; unsigned HOST_WIDE_INT align_base = merged_store->align_base; for (unsigned int i = first + 1; i <= last; ++i) { unsigned int this_align; unsigned HOST_WIDE_INT align_bitpos = 0; get_object_alignment_1 (gimple_assign_lhs (m_store_info[i]->stmt), &this_align, &align_bitpos); if (this_align > align) { align = this_align; align_base = m_store_info[i]->bitpos - align_bitpos; } } unsigned HOST_WIDE_INT align_bitpos = (m_store_info[first]->bitpos - align_base) & (align - 1); if (align_bitpos) align = least_bit_hwi (align_bitpos); if (align < try_size) return false; } tree type; switch (try_size) { case 16: type = uint16_type_node; break; case 32: type = uint32_type_node; break; case 64: type = uint64_type_node; break; default: gcc_unreachable (); } struct symbolic_number n; gimple *ins_stmt = NULL; int vuse_store = -1; unsigned int first_order = merged_store->first_order; unsigned int last_order = merged_store->last_order; gimple *first_stmt = merged_store->first_stmt; gimple *last_stmt = merged_store->last_stmt; unsigned HOST_WIDE_INT end = merged_store->start + merged_store->width; store_immediate_info *infof = m_store_info[first]; for (unsigned int i = first; i <= last; ++i) { store_immediate_info *info = m_store_info[i]; struct symbolic_number this_n = info->n; this_n.type = type; if (!this_n.base_addr) this_n.range = try_size / BITS_PER_UNIT; else /* Update vuse in case it has changed by output_merged_stores. */ this_n.vuse = gimple_vuse (info->ins_stmt); unsigned int bitpos = info->bitpos - infof->bitpos; if (!do_shift_rotate (LSHIFT_EXPR, &this_n, BYTES_BIG_ENDIAN ? try_size - info->bitsize - bitpos : bitpos)) return false; if (this_n.base_addr && vuse_store) { unsigned int j; for (j = first; j <= last; ++j) if (this_n.vuse == gimple_vuse (m_store_info[j]->stmt)) break; if (j > last) { if (vuse_store == 1) return false; vuse_store = 0; } } if (i == first) { n = this_n; ins_stmt = info->ins_stmt; } else { if (n.base_addr && n.vuse != this_n.vuse) { if (vuse_store == 0) return false; vuse_store = 1; } if (info->order > last_order) { last_order = info->order; last_stmt = info->stmt; } else if (info->order < first_order) { first_order = info->order; first_stmt = info->stmt; } end = MAX (end, info->bitpos + info->bitsize); ins_stmt = perform_symbolic_merge (ins_stmt, &n, info->ins_stmt, &this_n, &n); if (ins_stmt == NULL) return false; } } uint64_t cmpxchg, cmpnop; find_bswap_or_nop_finalize (&n, &cmpxchg, &cmpnop); /* A complete byte swap should make the symbolic number to start with the largest digit in the highest order byte. Unchanged symbolic number indicates a read with same endianness as target architecture. */ if (n.n != cmpnop && n.n != cmpxchg) return false; if (n.base_addr == NULL_TREE && !is_gimple_val (n.src)) return false; if (!check_no_overlap (m_store_info, last, LROTATE_EXPR, last_order, end)) return false; /* Don't handle memory copy this way if normal non-bswap processing would handle it too. */ if (n.n == cmpnop && (unsigned) n.n_ops == last - first + 1) { unsigned int i; for (i = first; i <= last; ++i) if (m_store_info[i]->rhs_code != MEM_REF) break; if (i == last + 1) return false; } if (n.n == cmpxchg) switch (try_size) { case 16: /* Will emit LROTATE_EXPR. */ break; case 32: if (builtin_decl_explicit_p (BUILT_IN_BSWAP32) && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing) break; return false; case 64: if (builtin_decl_explicit_p (BUILT_IN_BSWAP64) && optab_handler (bswap_optab, DImode) != CODE_FOR_nothing) break; return false; default: gcc_unreachable (); } if (!allow_unaligned && n.base_addr) { unsigned int align = get_object_alignment (n.src); if (align < try_size) return false; } /* If each load has vuse of the corresponding store, need to verify the loads can be sunk right before the last store. */ if (vuse_store == 1) { auto_vec refs; for (unsigned int i = first; i <= last; ++i) gather_bswap_load_refs (&refs, gimple_assign_rhs1 (m_store_info[i]->stmt)); unsigned int i; tree ref; FOR_EACH_VEC_ELT (refs, i, ref) if (stmts_may_clobber_ref_p (first_stmt, last_stmt, ref)) return false; n.vuse = NULL_TREE; } infof->n = n; infof->ins_stmt = ins_stmt; for (unsigned int i = first; i <= last; ++i) { m_store_info[i]->rhs_code = n.n == cmpxchg ? LROTATE_EXPR : NOP_EXPR; m_store_info[i]->ops[0].base_addr = NULL_TREE; m_store_info[i]->ops[1].base_addr = NULL_TREE; if (i != first) merged_store->merge_into (m_store_info[i]); } return true; } /* Go through the candidate stores recorded in m_store_info and merge them into merged_store_group objects recorded into m_merged_store_groups representing the widened stores. Return true if coalescing was successful and the number of widened stores is fewer than the original number of stores. */ bool imm_store_chain_info::coalesce_immediate_stores () { /* Anything less can't be processed. */ if (m_store_info.length () < 2) return false; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Attempting to coalesce %u stores in chain\n", m_store_info.length ()); store_immediate_info *info; unsigned int i, ignore = 0; /* Order the stores by the bitposition they write to. */ m_store_info.qsort (sort_by_bitpos); info = m_store_info[0]; merged_store_group *merged_store = new merged_store_group (info); if (dump_file && (dump_flags & TDF_DETAILS)) fputs ("New store group\n", dump_file); FOR_EACH_VEC_ELT (m_store_info, i, info) { unsigned HOST_WIDE_INT new_bitregion_start, new_bitregion_end; if (i <= ignore) goto done; /* First try to handle group of stores like: p[0] = data >> 24; p[1] = data >> 16; p[2] = data >> 8; p[3] = data; using the bswap framework. */ if (info->bitpos == merged_store->start + merged_store->width && merged_store->stores.length () == 1 && merged_store->stores[0]->ins_stmt != NULL && info->ins_stmt != NULL) { unsigned int try_size; for (try_size = 64; try_size >= 16; try_size >>= 1) if (try_coalesce_bswap (merged_store, i - 1, try_size)) break; if (try_size >= 16) { ignore = i + merged_store->stores.length () - 1; m_merged_store_groups.safe_push (merged_store); if (ignore < m_store_info.length ()) merged_store = new merged_store_group (m_store_info[ignore]); else merged_store = NULL; goto done; } } new_bitregion_start = MIN (merged_store->bitregion_start, info->bitregion_start); new_bitregion_end = MAX (merged_store->bitregion_end, info->bitregion_end); if (info->order >= merged_store->first_nonmergeable_order || (((new_bitregion_end - new_bitregion_start + 1) / BITS_PER_UNIT) > (unsigned) PARAM_VALUE (PARAM_STORE_MERGING_MAX_SIZE))) ; /* |---store 1---| |---store 2---| Overlapping stores. */ else if (IN_RANGE (info->bitpos, merged_store->start, merged_store->start + merged_store->width - 1)) { /* Only allow overlapping stores of constants. */ if (info->rhs_code == INTEGER_CST && merged_store->only_constants) { unsigned int last_order = MAX (merged_store->last_order, info->order); unsigned HOST_WIDE_INT end = MAX (merged_store->start + merged_store->width, info->bitpos + info->bitsize); if (check_no_overlap (m_store_info, i, INTEGER_CST, last_order, end)) { /* check_no_overlap call above made sure there are no overlapping stores with non-INTEGER_CST rhs_code in between the first and last of the stores we've just merged. If there are any INTEGER_CST rhs_code stores in between, we need to merge_overlapping them even if in the sort_by_bitpos order there are other overlapping stores in between. Keep those stores as is. Example: MEM[(int *)p_28] = 0; MEM[(char *)p_28 + 3B] = 1; MEM[(char *)p_28 + 1B] = 2; MEM[(char *)p_28 + 2B] = MEM[(char *)p_28 + 6B]; We can't merge the zero store with the store of two and not merge anything else, because the store of one is in the original order in between those two, but in store_by_bitpos order it comes after the last store that we can't merge with them. We can merge the first 3 stores and keep the last store as is though. */ unsigned int len = m_store_info.length (); unsigned int try_order = last_order; unsigned int first_nonmergeable_order; unsigned int k; bool last_iter = false; int attempts = 0; do { unsigned int max_order = 0; unsigned first_nonmergeable_int_order = ~0U; unsigned HOST_WIDE_INT this_end = end; k = i; first_nonmergeable_order = ~0U; for (unsigned int j = i + 1; j < len; ++j) { store_immediate_info *info2 = m_store_info[j]; if (info2->bitpos >= this_end) break; if (info2->order < try_order) { if (info2->rhs_code != INTEGER_CST) { /* Normally check_no_overlap makes sure this doesn't happen, but if end grows below, then we need to process more stores than check_no_overlap verified. Example: MEM[(int *)p_5] = 0; MEM[(short *)p_5 + 3B] = 1; MEM[(char *)p_5 + 4B] = _9; MEM[(char *)p_5 + 2B] = 2; */ k = 0; break; } k = j; this_end = MAX (this_end, info2->bitpos + info2->bitsize); } else if (info2->rhs_code == INTEGER_CST && !last_iter) { max_order = MAX (max_order, info2->order + 1); first_nonmergeable_int_order = MIN (first_nonmergeable_int_order, info2->order); } else first_nonmergeable_order = MIN (first_nonmergeable_order, info2->order); } if (k == 0) { if (last_order == try_order) break; /* If this failed, but only because we grew try_order, retry with the last working one, so that we merge at least something. */ try_order = last_order; last_iter = true; continue; } last_order = try_order; /* Retry with a larger try_order to see if we could merge some further INTEGER_CST stores. */ if (max_order && (first_nonmergeable_int_order < first_nonmergeable_order)) { try_order = MIN (max_order, first_nonmergeable_order); try_order = MIN (try_order, merged_store->first_nonmergeable_order); if (try_order > last_order && ++attempts < 16) continue; } first_nonmergeable_order = MIN (first_nonmergeable_order, first_nonmergeable_int_order); end = this_end; break; } while (1); if (k != 0) { merged_store->merge_overlapping (info); merged_store->first_nonmergeable_order = MIN (merged_store->first_nonmergeable_order, first_nonmergeable_order); for (unsigned int j = i + 1; j <= k; j++) { store_immediate_info *info2 = m_store_info[j]; gcc_assert (info2->bitpos < end); if (info2->order < last_order) { gcc_assert (info2->rhs_code == INTEGER_CST); if (info != info2) merged_store->merge_overlapping (info2); } /* Other stores are kept and not merged in any way. */ } ignore = k; goto done; } } } } /* |---store 1---||---store 2---| This store is consecutive to the previous one. Merge it into the current store group. There can be gaps in between the stores, but there can't be gaps in between bitregions. */ else if (info->bitregion_start <= merged_store->bitregion_end && merged_store->can_be_merged_into (info)) { store_immediate_info *infof = merged_store->stores[0]; /* All the rhs_code ops that take 2 operands are commutative, swap the operands if it could make the operands compatible. */ if (infof->ops[0].base_addr && infof->ops[1].base_addr && info->ops[0].base_addr && info->ops[1].base_addr && known_eq (info->ops[1].bitpos - infof->ops[0].bitpos, info->bitpos - infof->bitpos) && operand_equal_p (info->ops[1].base_addr, infof->ops[0].base_addr, 0)) { std::swap (info->ops[0], info->ops[1]); info->ops_swapped_p = true; } if (check_no_overlap (m_store_info, i, info->rhs_code, MAX (merged_store->last_order, info->order), MAX (merged_store->start + merged_store->width, info->bitpos + info->bitsize))) { /* Turn MEM_REF into BIT_INSERT_EXPR for bit-field stores. */ if (info->rhs_code == MEM_REF && infof->rhs_code != MEM_REF) { info->rhs_code = BIT_INSERT_EXPR; info->ops[0].val = gimple_assign_rhs1 (info->stmt); info->ops[0].base_addr = NULL_TREE; } else if (infof->rhs_code == MEM_REF && info->rhs_code != MEM_REF) { store_immediate_info *infoj; unsigned int j; FOR_EACH_VEC_ELT (merged_store->stores, j, infoj) { infoj->rhs_code = BIT_INSERT_EXPR; infoj->ops[0].val = gimple_assign_rhs1 (infoj->stmt); infoj->ops[0].base_addr = NULL_TREE; } } if ((infof->ops[0].base_addr ? compatible_load_p (merged_store, info, base_addr, 0) : !info->ops[0].base_addr) && (infof->ops[1].base_addr ? compatible_load_p (merged_store, info, base_addr, 1) : !info->ops[1].base_addr)) { merged_store->merge_into (info); goto done; } } } /* |---store 1---| |---store 2---|. Gap between stores or the rhs not compatible. Start a new group. */ /* Try to apply all the stores recorded for the group to determine the bitpattern they write and discard it if that fails. This will also reject single-store groups. */ if (merged_store->apply_stores ()) m_merged_store_groups.safe_push (merged_store); else delete merged_store; merged_store = new merged_store_group (info); if (dump_file && (dump_flags & TDF_DETAILS)) fputs ("New store group\n", dump_file); done: if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Store %u:\nbitsize:" HOST_WIDE_INT_PRINT_DEC " bitpos:" HOST_WIDE_INT_PRINT_DEC " val:", i, info->bitsize, info->bitpos); print_generic_expr (dump_file, gimple_assign_rhs1 (info->stmt)); fputc ('\n', dump_file); } } /* Record or discard the last store group. */ if (merged_store) { if (merged_store->apply_stores ()) m_merged_store_groups.safe_push (merged_store); else delete merged_store; } gcc_assert (m_merged_store_groups.length () <= m_store_info.length ()); bool success = !m_merged_store_groups.is_empty () && m_merged_store_groups.length () < m_store_info.length (); if (success && dump_file) fprintf (dump_file, "Coalescing successful!\nMerged into %u stores\n", m_merged_store_groups.length ()); return success; } /* Return the type to use for the merged stores or loads described by STMTS. This is needed to get the alias sets right. If IS_LOAD, look for rhs, otherwise lhs. Additionally set *CLIQUEP and *BASEP to MR_DEPENDENCE_* of the MEM_REFs if any. */ static tree get_alias_type_for_stmts (vec &stmts, bool is_load, unsigned short *cliquep, unsigned short *basep) { gimple *stmt; unsigned int i; tree type = NULL_TREE; tree ret = NULL_TREE; *cliquep = 0; *basep = 0; FOR_EACH_VEC_ELT (stmts, i, stmt) { tree ref = is_load ? gimple_assign_rhs1 (stmt) : gimple_assign_lhs (stmt); tree type1 = reference_alias_ptr_type (ref); tree base = get_base_address (ref); if (i == 0) { if (TREE_CODE (base) == MEM_REF) { *cliquep = MR_DEPENDENCE_CLIQUE (base); *basep = MR_DEPENDENCE_BASE (base); } ret = type = type1; continue; } if (!alias_ptr_types_compatible_p (type, type1)) ret = ptr_type_node; if (TREE_CODE (base) != MEM_REF || *cliquep != MR_DEPENDENCE_CLIQUE (base) || *basep != MR_DEPENDENCE_BASE (base)) { *cliquep = 0; *basep = 0; } } return ret; } /* Return the location_t information we can find among the statements in STMTS. */ static location_t get_location_for_stmts (vec &stmts) { gimple *stmt; unsigned int i; FOR_EACH_VEC_ELT (stmts, i, stmt) if (gimple_has_location (stmt)) return gimple_location (stmt); return UNKNOWN_LOCATION; } /* Used to decribe a store resulting from splitting a wide store in smaller regularly-sized stores in split_group. */ class split_store { public: unsigned HOST_WIDE_INT bytepos; unsigned HOST_WIDE_INT size; unsigned HOST_WIDE_INT align; auto_vec orig_stores; /* True if there is a single orig stmt covering the whole split store. */ bool orig; split_store (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT); }; /* Simple constructor. */ split_store::split_store (unsigned HOST_WIDE_INT bp, unsigned HOST_WIDE_INT sz, unsigned HOST_WIDE_INT al) : bytepos (bp), size (sz), align (al), orig (false) { orig_stores.create (0); } /* Record all stores in GROUP that write to the region starting at BITPOS and is of size BITSIZE. Record infos for such statements in STORES if non-NULL. The stores in GROUP must be sorted by bitposition. Return INFO if there is exactly one original store in the range. */ static store_immediate_info * find_constituent_stores (class merged_store_group *group, vec *stores, unsigned int *first, unsigned HOST_WIDE_INT bitpos, unsigned HOST_WIDE_INT bitsize) { store_immediate_info *info, *ret = NULL; unsigned int i; bool second = false; bool update_first = true; unsigned HOST_WIDE_INT end = bitpos + bitsize; for (i = *first; group->stores.iterate (i, &info); ++i) { unsigned HOST_WIDE_INT stmt_start = info->bitpos; unsigned HOST_WIDE_INT stmt_end = stmt_start + info->bitsize; if (stmt_end <= bitpos) { /* BITPOS passed to this function never decreases from within the same split_group call, so optimize and don't scan info records which are known to end before or at BITPOS next time. Only do it if all stores before this one also pass this. */ if (update_first) *first = i + 1; continue; } else update_first = false; /* The stores in GROUP are ordered by bitposition so if we're past the region for this group return early. */ if (stmt_start >= end) return ret; if (stores) { stores->safe_push (info); if (ret) { ret = NULL; second = true; } } else if (ret) return NULL; if (!second) ret = info; } return ret; } /* Return how many SSA_NAMEs used to compute value to store in the INFO store have multiple uses. If any SSA_NAME has multiple uses, also count statements needed to compute it. */ static unsigned count_multiple_uses (store_immediate_info *info) { gimple *stmt = info->stmt; unsigned ret = 0; switch (info->rhs_code) { case INTEGER_CST: return 0; case BIT_AND_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: if (info->bit_not_p) { if (!has_single_use (gimple_assign_rhs1 (stmt))) ret = 1; /* Fall through below to return the BIT_NOT_EXPR stmt and then BIT_{AND,IOR,XOR}_EXPR and anything it uses. */ else /* stmt is after this the BIT_NOT_EXPR. */ stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt)); } if (!has_single_use (gimple_assign_rhs1 (stmt))) { ret += 1 + info->ops[0].bit_not_p; if (info->ops[1].base_addr) ret += 1 + info->ops[1].bit_not_p; return ret + 1; } stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt)); /* stmt is now the BIT_*_EXPR. */ if (!has_single_use (gimple_assign_rhs1 (stmt))) ret += 1 + info->ops[info->ops_swapped_p].bit_not_p; else if (info->ops[info->ops_swapped_p].bit_not_p) { gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt)); if (!has_single_use (gimple_assign_rhs1 (stmt2))) ++ret; } if (info->ops[1].base_addr == NULL_TREE) { gcc_checking_assert (!info->ops_swapped_p); return ret; } if (!has_single_use (gimple_assign_rhs2 (stmt))) ret += 1 + info->ops[1 - info->ops_swapped_p].bit_not_p; else if (info->ops[1 - info->ops_swapped_p].bit_not_p) { gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt)); if (!has_single_use (gimple_assign_rhs1 (stmt2))) ++ret; } return ret; case MEM_REF: if (!has_single_use (gimple_assign_rhs1 (stmt))) return 1 + info->ops[0].bit_not_p; else if (info->ops[0].bit_not_p) { stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt)); if (!has_single_use (gimple_assign_rhs1 (stmt))) return 1; } return 0; case BIT_INSERT_EXPR: return has_single_use (gimple_assign_rhs1 (stmt)) ? 0 : 1; default: gcc_unreachable (); } } /* Split a merged store described by GROUP by populating the SPLIT_STORES vector (if non-NULL) with split_store structs describing the byte offset (from the base), the bit size and alignment of each store as well as the original statements involved in each such split group. This is to separate the splitting strategy from the statement building/emission/linking done in output_merged_store. Return number of new stores. If ALLOW_UNALIGNED_STORE is false, then all stores must be aligned. If ALLOW_UNALIGNED_LOAD is false, then all loads must be aligned. BZERO_FIRST may be true only when the first store covers the whole group and clears it; if BZERO_FIRST is true, keep that first store in the set unmodified and emit further stores for the overrides only. If SPLIT_STORES is NULL, it is just a dry run to count number of new stores. */ static unsigned int split_group (merged_store_group *group, bool allow_unaligned_store, bool allow_unaligned_load, bool bzero_first, vec *split_stores, unsigned *total_orig, unsigned *total_new) { unsigned HOST_WIDE_INT pos = group->bitregion_start; unsigned HOST_WIDE_INT size = group->bitregion_end - pos; unsigned HOST_WIDE_INT bytepos = pos / BITS_PER_UNIT; unsigned HOST_WIDE_INT group_align = group->align; unsigned HOST_WIDE_INT align_base = group->align_base; unsigned HOST_WIDE_INT group_load_align = group_align; bool any_orig = false; gcc_assert ((size % BITS_PER_UNIT == 0) && (pos % BITS_PER_UNIT == 0)); if (group->stores[0]->rhs_code == LROTATE_EXPR || group->stores[0]->rhs_code == NOP_EXPR) { gcc_assert (!bzero_first); /* For bswap framework using sets of stores, all the checking has been done earlier in try_coalesce_bswap and needs to be emitted as a single store. */ if (total_orig) { /* Avoid the old/new stmt count heuristics. It should be always beneficial. */ total_new[0] = 1; total_orig[0] = 2; } if (split_stores) { unsigned HOST_WIDE_INT align_bitpos = (group->start - align_base) & (group_align - 1); unsigned HOST_WIDE_INT align = group_align; if (align_bitpos) align = least_bit_hwi (align_bitpos); bytepos = group->start / BITS_PER_UNIT; split_store *store = new split_store (bytepos, group->width, align); unsigned int first = 0; find_constituent_stores (group, &store->orig_stores, &first, group->start, group->width); split_stores->safe_push (store); } return 1; } unsigned int ret = 0, first = 0; unsigned HOST_WIDE_INT try_pos = bytepos; if (total_orig) { unsigned int i; store_immediate_info *info = group->stores[0]; total_new[0] = 0; total_orig[0] = 1; /* The orig store. */ info = group->stores[0]; if (info->ops[0].base_addr) total_orig[0]++; if (info->ops[1].base_addr) total_orig[0]++; switch (info->rhs_code) { case BIT_AND_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: total_orig[0]++; /* The orig BIT_*_EXPR stmt. */ break; default: break; } total_orig[0] *= group->stores.length (); FOR_EACH_VEC_ELT (group->stores, i, info) { total_new[0] += count_multiple_uses (info); total_orig[0] += (info->bit_not_p + info->ops[0].bit_not_p + info->ops[1].bit_not_p); } } if (!allow_unaligned_load) for (int i = 0; i < 2; ++i) if (group->load_align[i]) group_load_align = MIN (group_load_align, group->load_align[i]); if (bzero_first) { first = 1; ret = 1; if (split_stores) { split_store *store = new split_store (bytepos, group->stores[0]->bitsize, align_base); store->orig_stores.safe_push (group->stores[0]); store->orig = true; any_orig = true; split_stores->safe_push (store); } } while (size > 0) { if ((allow_unaligned_store || group_align <= BITS_PER_UNIT) && (group->mask[try_pos - bytepos] == (unsigned char) ~0U || (bzero_first && group->val[try_pos - bytepos] == 0))) { /* Skip padding bytes. */ ++try_pos; size -= BITS_PER_UNIT; continue; } unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT; unsigned int try_size = MAX_STORE_BITSIZE, nonmasked; unsigned HOST_WIDE_INT align_bitpos = (try_bitpos - align_base) & (group_align - 1); unsigned HOST_WIDE_INT align = group_align; if (align_bitpos) align = least_bit_hwi (align_bitpos); if (!allow_unaligned_store) try_size = MIN (try_size, align); if (!allow_unaligned_load) { /* If we can't do or don't want to do unaligned stores as well as loads, we need to take the loads into account as well. */ unsigned HOST_WIDE_INT load_align = group_load_align; align_bitpos = (try_bitpos - align_base) & (load_align - 1); if (align_bitpos) load_align = least_bit_hwi (align_bitpos); for (int i = 0; i < 2; ++i) if (group->load_align[i]) { align_bitpos = known_alignment (try_bitpos - group->stores[0]->bitpos + group->stores[0]->ops[i].bitpos - group->load_align_base[i]); if (align_bitpos & (group_load_align - 1)) { unsigned HOST_WIDE_INT a = least_bit_hwi (align_bitpos); load_align = MIN (load_align, a); } } try_size = MIN (try_size, load_align); } store_immediate_info *info = find_constituent_stores (group, NULL, &first, try_bitpos, try_size); if (info) { /* If there is just one original statement for the range, see if we can just reuse the original store which could be even larger than try_size. */ unsigned HOST_WIDE_INT stmt_end = ROUND_UP (info->bitpos + info->bitsize, BITS_PER_UNIT); info = find_constituent_stores (group, NULL, &first, try_bitpos, stmt_end - try_bitpos); if (info && info->bitpos >= try_bitpos) { try_size = stmt_end - try_bitpos; goto found; } } /* Approximate store bitsize for the case when there are no padding bits. */ while (try_size > size) try_size /= 2; /* Now look for whole padding bytes at the end of that bitsize. */ for (nonmasked = try_size / BITS_PER_UNIT; nonmasked > 0; --nonmasked) if (group->mask[try_pos - bytepos + nonmasked - 1] != (unsigned char) ~0U && (!bzero_first || group->val[try_pos - bytepos + nonmasked - 1] != 0)) break; if (nonmasked == 0) { /* If entire try_size range is padding, skip it. */ try_pos += try_size / BITS_PER_UNIT; size -= try_size; continue; } /* Otherwise try to decrease try_size if second half, last 3 quarters etc. are padding. */ nonmasked *= BITS_PER_UNIT; while (nonmasked <= try_size / 2) try_size /= 2; if (!allow_unaligned_store && group_align > BITS_PER_UNIT) { /* Now look for whole padding bytes at the start of that bitsize. */ unsigned int try_bytesize = try_size / BITS_PER_UNIT, masked; for (masked = 0; masked < try_bytesize; ++masked) if (group->mask[try_pos - bytepos + masked] != (unsigned char) ~0U && (!bzero_first || group->val[try_pos - bytepos + masked] != 0)) break; masked *= BITS_PER_UNIT; gcc_assert (masked < try_size); if (masked >= try_size / 2) { while (masked >= try_size / 2) { try_size /= 2; try_pos += try_size / BITS_PER_UNIT; size -= try_size; masked -= try_size; } /* Need to recompute the alignment, so just retry at the new position. */ continue; } } found: ++ret; if (split_stores) { split_store *store = new split_store (try_pos, try_size, align); info = find_constituent_stores (group, &store->orig_stores, &first, try_bitpos, try_size); if (info && info->bitpos >= try_bitpos && info->bitpos + info->bitsize <= try_bitpos + try_size) { store->orig = true; any_orig = true; } split_stores->safe_push (store); } try_pos += try_size / BITS_PER_UNIT; size -= try_size; } if (total_orig) { unsigned int i; split_store *store; /* If we are reusing some original stores and any of the original SSA_NAMEs had multiple uses, we need to subtract those now before we add the new ones. */ if (total_new[0] && any_orig) { FOR_EACH_VEC_ELT (*split_stores, i, store) if (store->orig) total_new[0] -= count_multiple_uses (store->orig_stores[0]); } total_new[0] += ret; /* The new store. */ store_immediate_info *info = group->stores[0]; if (info->ops[0].base_addr) total_new[0] += ret; if (info->ops[1].base_addr) total_new[0] += ret; switch (info->rhs_code) { case BIT_AND_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: total_new[0] += ret; /* The new BIT_*_EXPR stmt. */ break; default: break; } FOR_EACH_VEC_ELT (*split_stores, i, store) { unsigned int j; bool bit_not_p[3] = { false, false, false }; /* If all orig_stores have certain bit_not_p set, then we'd use a BIT_NOT_EXPR stmt and need to account for it. If some orig_stores have certain bit_not_p set, then we'd use a BIT_XOR_EXPR with a mask and need to account for it. */ FOR_EACH_VEC_ELT (store->orig_stores, j, info) { if (info->ops[0].bit_not_p) bit_not_p[0] = true; if (info->ops[1].bit_not_p) bit_not_p[1] = true; if (info->bit_not_p) bit_not_p[2] = true; } total_new[0] += bit_not_p[0] + bit_not_p[1] + bit_not_p[2]; } } return ret; } /* Return the operation through which the operand IDX (if < 2) or result (IDX == 2) should be inverted. If NOP_EXPR, no inversion is done, if BIT_NOT_EXPR, all bits are inverted, if BIT_XOR_EXPR, the bits should be xored with mask. */ static enum tree_code invert_op (split_store *split_store, int idx, tree int_type, tree &mask) { unsigned int i; store_immediate_info *info; unsigned int cnt = 0; bool any_paddings = false; FOR_EACH_VEC_ELT (split_store->orig_stores, i, info) { bool bit_not_p = idx < 2 ? info->ops[idx].bit_not_p : info->bit_not_p; if (bit_not_p) { ++cnt; tree lhs = gimple_assign_lhs (info->stmt); if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)) && TYPE_PRECISION (TREE_TYPE (lhs)) < info->bitsize) any_paddings = true; } } mask = NULL_TREE; if (cnt == 0) return NOP_EXPR; if (cnt == split_store->orig_stores.length () && !any_paddings) return BIT_NOT_EXPR; unsigned HOST_WIDE_INT try_bitpos = split_store->bytepos * BITS_PER_UNIT; unsigned buf_size = split_store->size / BITS_PER_UNIT; unsigned char *buf = XALLOCAVEC (unsigned char, buf_size); memset (buf, ~0U, buf_size); FOR_EACH_VEC_ELT (split_store->orig_stores, i, info) { bool bit_not_p = idx < 2 ? info->ops[idx].bit_not_p : info->bit_not_p; if (!bit_not_p) continue; /* Clear regions with bit_not_p and invert afterwards, rather than clear regions with !bit_not_p, so that gaps in between stores aren't set in the mask. */ unsigned HOST_WIDE_INT bitsize = info->bitsize; unsigned HOST_WIDE_INT prec = bitsize; unsigned int pos_in_buffer = 0; if (any_paddings) { tree lhs = gimple_assign_lhs (info->stmt); if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)) && TYPE_PRECISION (TREE_TYPE (lhs)) < bitsize) prec = TYPE_PRECISION (TREE_TYPE (lhs)); } if (info->bitpos < try_bitpos) { gcc_assert (info->bitpos + bitsize > try_bitpos); if (!BYTES_BIG_ENDIAN) { if (prec <= try_bitpos - info->bitpos) continue; prec -= try_bitpos - info->bitpos; } bitsize -= try_bitpos - info->bitpos; if (BYTES_BIG_ENDIAN && prec > bitsize) prec = bitsize; } else pos_in_buffer = info->bitpos - try_bitpos; if (prec < bitsize) { /* If this is a bool inversion, invert just the least significant prec bits rather than all bits of it. */ if (BYTES_BIG_ENDIAN) { pos_in_buffer += bitsize - prec; if (pos_in_buffer >= split_store->size) continue; } bitsize = prec; } if (pos_in_buffer + bitsize > split_store->size) bitsize = split_store->size - pos_in_buffer; unsigned char *p = buf + (pos_in_buffer / BITS_PER_UNIT); if (BYTES_BIG_ENDIAN) clear_bit_region_be (p, (BITS_PER_UNIT - 1 - (pos_in_buffer % BITS_PER_UNIT)), bitsize); else clear_bit_region (p, pos_in_buffer % BITS_PER_UNIT, bitsize); } for (unsigned int i = 0; i < buf_size; ++i) buf[i] = ~buf[i]; mask = native_interpret_expr (int_type, buf, buf_size); return BIT_XOR_EXPR; } /* Given a merged store group GROUP output the widened version of it. The store chain is against the base object BASE. Try store sizes of at most MAX_STORE_BITSIZE bits wide and don't output unaligned stores for STRICT_ALIGNMENT targets or if it's too expensive. Make sure that the number of statements output is less than the number of original statements. If a better sequence is possible emit it and return true. */ bool imm_store_chain_info::output_merged_store (merged_store_group *group) { split_store *split_store; unsigned int i; unsigned HOST_WIDE_INT start_byte_pos = group->bitregion_start / BITS_PER_UNIT; unsigned int orig_num_stmts = group->stores.length (); if (orig_num_stmts < 2) return false; auto_vec split_stores; bool allow_unaligned_store = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED); bool allow_unaligned_load = allow_unaligned_store; bool bzero_first = false; if (group->stores[0]->rhs_code == INTEGER_CST && TREE_CODE (gimple_assign_rhs1 (group->stores[0]->stmt)) == CONSTRUCTOR && CONSTRUCTOR_NELTS (gimple_assign_rhs1 (group->stores[0]->stmt)) == 0 && group->start == group->stores[0]->bitpos && group->width == group->stores[0]->bitsize && (group->start % BITS_PER_UNIT) == 0 && (group->width % BITS_PER_UNIT) == 0) bzero_first = true; if (allow_unaligned_store || bzero_first) { /* If unaligned stores are allowed, see how many stores we'd emit for unaligned and how many stores we'd emit for aligned stores. Only use unaligned stores if it allows fewer stores than aligned. Similarly, if there is a whole region clear first, prefer expanding it together compared to expanding clear first followed by merged further stores. */ unsigned cnt[4] = { ~0, ~0, ~0, ~0 }; int pass_min = 0; for (int pass = 0; pass < 4; ++pass) { if (!allow_unaligned_store && (pass & 1) != 0) continue; if (!bzero_first && (pass & 2) != 0) continue; cnt[pass] = split_group (group, (pass & 1) != 0, allow_unaligned_load, (pass & 2) != 0, NULL, NULL, NULL); if (cnt[pass] < cnt[pass_min]) pass_min = pass; } if ((pass_min & 1) == 0) allow_unaligned_store = false; if ((pass_min & 2) == 0) bzero_first = false; } unsigned total_orig, total_new; split_group (group, allow_unaligned_store, allow_unaligned_load, bzero_first, &split_stores, &total_orig, &total_new); if (split_stores.length () >= orig_num_stmts) { /* We didn't manage to reduce the number of statements. Bail out. */ if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Exceeded original number of stmts (%u)." " Not profitable to emit new sequence.\n", orig_num_stmts); FOR_EACH_VEC_ELT (split_stores, i, split_store) delete split_store; return false; } if (total_orig <= total_new) { /* If number of estimated new statements is above estimated original statements, bail out too. */ if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Estimated number of original stmts (%u)" " not larger than estimated number of new" " stmts (%u).\n", total_orig, total_new); FOR_EACH_VEC_ELT (split_stores, i, split_store) delete split_store; return false; } gimple_stmt_iterator last_gsi = gsi_for_stmt (group->last_stmt); gimple_seq seq = NULL; tree last_vdef, new_vuse; last_vdef = gimple_vdef (group->last_stmt); new_vuse = gimple_vuse (group->last_stmt); tree bswap_res = NULL_TREE; if (group->stores[0]->rhs_code == LROTATE_EXPR || group->stores[0]->rhs_code == NOP_EXPR) { tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type; gimple *ins_stmt = group->stores[0]->ins_stmt; struct symbolic_number *n = &group->stores[0]->n; bool bswap = group->stores[0]->rhs_code == LROTATE_EXPR; switch (n->range) { case 16: load_type = bswap_type = uint16_type_node; break; case 32: load_type = uint32_type_node; if (bswap) { fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32); bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl))); } break; case 64: load_type = uint64_type_node; if (bswap) { fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64); bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl))); } break; default: gcc_unreachable (); } /* If the loads have each vuse of the corresponding store, we've checked the aliasing already in try_coalesce_bswap and we want to sink the need load into seq. So need to use new_vuse on the load. */ if (n->base_addr) { if (n->vuse == NULL) { n->vuse = new_vuse; ins_stmt = NULL; } else /* Update vuse in case it has changed by output_merged_stores. */ n->vuse = gimple_vuse (ins_stmt); } bswap_res = bswap_replace (gsi_start (seq), ins_stmt, fndecl, bswap_type, load_type, n, bswap); gcc_assert (bswap_res); } gimple *stmt = NULL; auto_vec orig_stmts; gimple_seq this_seq; tree addr = force_gimple_operand_1 (unshare_expr (base_addr), &this_seq, is_gimple_mem_ref_addr, NULL_TREE); gimple_seq_add_seq_without_update (&seq, this_seq); tree load_addr[2] = { NULL_TREE, NULL_TREE }; gimple_seq load_seq[2] = { NULL, NULL }; gimple_stmt_iterator load_gsi[2] = { gsi_none (), gsi_none () }; for (int j = 0; j < 2; ++j) { store_operand_info &op = group->stores[0]->ops[j]; if (op.base_addr == NULL_TREE) continue; store_immediate_info *infol = group->stores.last (); if (gimple_vuse (op.stmt) == gimple_vuse (infol->ops[j].stmt)) { /* We can't pick the location randomly; while we've verified all the loads have the same vuse, they can be still in different basic blocks and we need to pick the one from the last bb: int x = q[0]; if (x == N) return; int y = q[1]; p[0] = x; p[1] = y; otherwise if we put the wider load at the q[0] load, we might segfault if q[1] is not mapped. */ basic_block bb = gimple_bb (op.stmt); gimple *ostmt = op.stmt; store_immediate_info *info; FOR_EACH_VEC_ELT (group->stores, i, info) { gimple *tstmt = info->ops[j].stmt; basic_block tbb = gimple_bb (tstmt); if (dominated_by_p (CDI_DOMINATORS, tbb, bb)) { ostmt = tstmt; bb = tbb; } } load_gsi[j] = gsi_for_stmt (ostmt); load_addr[j] = force_gimple_operand_1 (unshare_expr (op.base_addr), &load_seq[j], is_gimple_mem_ref_addr, NULL_TREE); } else if (operand_equal_p (base_addr, op.base_addr, 0)) load_addr[j] = addr; else { load_addr[j] = force_gimple_operand_1 (unshare_expr (op.base_addr), &this_seq, is_gimple_mem_ref_addr, NULL_TREE); gimple_seq_add_seq_without_update (&seq, this_seq); } } FOR_EACH_VEC_ELT (split_stores, i, split_store) { unsigned HOST_WIDE_INT try_size = split_store->size; unsigned HOST_WIDE_INT try_pos = split_store->bytepos; unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT; unsigned HOST_WIDE_INT align = split_store->align; tree dest, src; location_t loc; if (split_store->orig) { /* If there is just a single constituent store which covers the whole area, just reuse the lhs and rhs. */ gimple *orig_stmt = split_store->orig_stores[0]->stmt; dest = gimple_assign_lhs (orig_stmt); src = gimple_assign_rhs1 (orig_stmt); loc = gimple_location (orig_stmt); } else { store_immediate_info *info; unsigned short clique, base; unsigned int k; FOR_EACH_VEC_ELT (split_store->orig_stores, k, info) orig_stmts.safe_push (info->stmt); tree offset_type = get_alias_type_for_stmts (orig_stmts, false, &clique, &base); loc = get_location_for_stmts (orig_stmts); orig_stmts.truncate (0); tree int_type = build_nonstandard_integer_type (try_size, UNSIGNED); int_type = build_aligned_type (int_type, align); dest = fold_build2 (MEM_REF, int_type, addr, build_int_cst (offset_type, try_pos)); if (TREE_CODE (dest) == MEM_REF) { MR_DEPENDENCE_CLIQUE (dest) = clique; MR_DEPENDENCE_BASE (dest) = base; } tree mask; if (bswap_res) mask = integer_zero_node; else mask = native_interpret_expr (int_type, group->mask + try_pos - start_byte_pos, group->buf_size); tree ops[2]; for (int j = 0; j < 1 + (split_store->orig_stores[0]->ops[1].val != NULL_TREE); ++j) { store_operand_info &op = split_store->orig_stores[0]->ops[j]; if (bswap_res) ops[j] = bswap_res; else if (op.base_addr) { FOR_EACH_VEC_ELT (split_store->orig_stores, k, info) orig_stmts.safe_push (info->ops[j].stmt); offset_type = get_alias_type_for_stmts (orig_stmts, true, &clique, &base); location_t load_loc = get_location_for_stmts (orig_stmts); orig_stmts.truncate (0); unsigned HOST_WIDE_INT load_align = group->load_align[j]; unsigned HOST_WIDE_INT align_bitpos = known_alignment (try_bitpos - split_store->orig_stores[0]->bitpos + op.bitpos); if (align_bitpos & (load_align - 1)) load_align = least_bit_hwi (align_bitpos); tree load_int_type = build_nonstandard_integer_type (try_size, UNSIGNED); load_int_type = build_aligned_type (load_int_type, load_align); poly_uint64 load_pos = exact_div (try_bitpos - split_store->orig_stores[0]->bitpos + op.bitpos, BITS_PER_UNIT); ops[j] = fold_build2 (MEM_REF, load_int_type, load_addr[j], build_int_cst (offset_type, load_pos)); if (TREE_CODE (ops[j]) == MEM_REF) { MR_DEPENDENCE_CLIQUE (ops[j]) = clique; MR_DEPENDENCE_BASE (ops[j]) = base; } if (!integer_zerop (mask)) /* The load might load some bits (that will be masked off later on) uninitialized, avoid -W*uninitialized warnings in that case. */ TREE_NO_WARNING (ops[j]) = 1; stmt = gimple_build_assign (make_ssa_name (int_type), ops[j]); gimple_set_location (stmt, load_loc); if (gsi_bb (load_gsi[j])) { gimple_set_vuse (stmt, gimple_vuse (op.stmt)); gimple_seq_add_stmt_without_update (&load_seq[j], stmt); } else { gimple_set_vuse (stmt, new_vuse); gimple_seq_add_stmt_without_update (&seq, stmt); } ops[j] = gimple_assign_lhs (stmt); tree xor_mask; enum tree_code inv_op = invert_op (split_store, j, int_type, xor_mask); if (inv_op != NOP_EXPR) { stmt = gimple_build_assign (make_ssa_name (int_type), inv_op, ops[j], xor_mask); gimple_set_location (stmt, load_loc); ops[j] = gimple_assign_lhs (stmt); if (gsi_bb (load_gsi[j])) gimple_seq_add_stmt_without_update (&load_seq[j], stmt); else gimple_seq_add_stmt_without_update (&seq, stmt); } } else ops[j] = native_interpret_expr (int_type, group->val + try_pos - start_byte_pos, group->buf_size); } switch (split_store->orig_stores[0]->rhs_code) { case BIT_AND_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: FOR_EACH_VEC_ELT (split_store->orig_stores, k, info) { tree rhs1 = gimple_assign_rhs1 (info->stmt); orig_stmts.safe_push (SSA_NAME_DEF_STMT (rhs1)); } location_t bit_loc; bit_loc = get_location_for_stmts (orig_stmts); orig_stmts.truncate (0); stmt = gimple_build_assign (make_ssa_name (int_type), split_store->orig_stores[0]->rhs_code, ops[0], ops[1]); gimple_set_location (stmt, bit_loc); /* If there is just one load and there is a separate load_seq[0], emit the bitwise op right after it. */ if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0])) gimple_seq_add_stmt_without_update (&load_seq[0], stmt); /* Otherwise, if at least one load is in seq, we need to emit the bitwise op right before the store. If there are two loads and are emitted somewhere else, it would be better to emit the bitwise op as early as possible; we don't track where that would be possible right now though. */ else gimple_seq_add_stmt_without_update (&seq, stmt); src = gimple_assign_lhs (stmt); tree xor_mask; enum tree_code inv_op; inv_op = invert_op (split_store, 2, int_type, xor_mask); if (inv_op != NOP_EXPR) { stmt = gimple_build_assign (make_ssa_name (int_type), inv_op, src, xor_mask); gimple_set_location (stmt, bit_loc); if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0])) gimple_seq_add_stmt_without_update (&load_seq[0], stmt); else gimple_seq_add_stmt_without_update (&seq, stmt); src = gimple_assign_lhs (stmt); } break; case LROTATE_EXPR: case NOP_EXPR: src = ops[0]; if (!is_gimple_val (src)) { stmt = gimple_build_assign (make_ssa_name (TREE_TYPE (src)), src); gimple_seq_add_stmt_without_update (&seq, stmt); src = gimple_assign_lhs (stmt); } if (!useless_type_conversion_p (int_type, TREE_TYPE (src))) { stmt = gimple_build_assign (make_ssa_name (int_type), NOP_EXPR, src); gimple_seq_add_stmt_without_update (&seq, stmt); src = gimple_assign_lhs (stmt); } inv_op = invert_op (split_store, 2, int_type, xor_mask); if (inv_op != NOP_EXPR) { stmt = gimple_build_assign (make_ssa_name (int_type), inv_op, src, xor_mask); gimple_set_location (stmt, loc); gimple_seq_add_stmt_without_update (&seq, stmt); src = gimple_assign_lhs (stmt); } break; default: src = ops[0]; break; } /* If bit insertion is required, we use the source as an accumulator into which the successive bit-field values are manually inserted. FIXME: perhaps use BIT_INSERT_EXPR instead in some cases? */ if (group->bit_insertion) FOR_EACH_VEC_ELT (split_store->orig_stores, k, info) if (info->rhs_code == BIT_INSERT_EXPR && info->bitpos < try_bitpos + try_size && info->bitpos + info->bitsize > try_bitpos) { /* Mask, truncate, convert to final type, shift and ior into the accumulator. Note that every step can be a no-op. */ const HOST_WIDE_INT start_gap = info->bitpos - try_bitpos; const HOST_WIDE_INT end_gap = (try_bitpos + try_size) - (info->bitpos + info->bitsize); tree tem = info->ops[0].val; if (TYPE_PRECISION (TREE_TYPE (tem)) <= info->bitsize) { tree bitfield_type = build_nonstandard_integer_type (info->bitsize, UNSIGNED); tem = gimple_convert (&seq, loc, bitfield_type, tem); } else if ((BYTES_BIG_ENDIAN ? start_gap : end_gap) > 0) { const unsigned HOST_WIDE_INT imask = (HOST_WIDE_INT_1U << info->bitsize) - 1; tem = gimple_build (&seq, loc, BIT_AND_EXPR, TREE_TYPE (tem), tem, build_int_cst (TREE_TYPE (tem), imask)); } const HOST_WIDE_INT shift = (BYTES_BIG_ENDIAN ? end_gap : start_gap); if (shift < 0) tem = gimple_build (&seq, loc, RSHIFT_EXPR, TREE_TYPE (tem), tem, build_int_cst (NULL_TREE, -shift)); tem = gimple_convert (&seq, loc, int_type, tem); if (shift > 0) tem = gimple_build (&seq, loc, LSHIFT_EXPR, int_type, tem, build_int_cst (NULL_TREE, shift)); src = gimple_build (&seq, loc, BIT_IOR_EXPR, int_type, tem, src); } if (!integer_zerop (mask)) { tree tem = make_ssa_name (int_type); tree load_src = unshare_expr (dest); /* The load might load some or all bits uninitialized, avoid -W*uninitialized warnings in that case. As optimization, it would be nice if all the bits are provably uninitialized (no stores at all yet or previous store a CLOBBER) we'd optimize away the load and replace it e.g. with 0. */ TREE_NO_WARNING (load_src) = 1; stmt = gimple_build_assign (tem, load_src); gimple_set_location (stmt, loc); gimple_set_vuse (stmt, new_vuse); gimple_seq_add_stmt_without_update (&seq, stmt); /* FIXME: If there is a single chunk of zero bits in mask, perhaps use BIT_INSERT_EXPR instead? */ stmt = gimple_build_assign (make_ssa_name (int_type), BIT_AND_EXPR, tem, mask); gimple_set_location (stmt, loc); gimple_seq_add_stmt_without_update (&seq, stmt); tem = gimple_assign_lhs (stmt); if (TREE_CODE (src) == INTEGER_CST) src = wide_int_to_tree (int_type, wi::bit_and_not (wi::to_wide (src), wi::to_wide (mask))); else { tree nmask = wide_int_to_tree (int_type, wi::bit_not (wi::to_wide (mask))); stmt = gimple_build_assign (make_ssa_name (int_type), BIT_AND_EXPR, src, nmask); gimple_set_location (stmt, loc); gimple_seq_add_stmt_without_update (&seq, stmt); src = gimple_assign_lhs (stmt); } stmt = gimple_build_assign (make_ssa_name (int_type), BIT_IOR_EXPR, tem, src); gimple_set_location (stmt, loc); gimple_seq_add_stmt_without_update (&seq, stmt); src = gimple_assign_lhs (stmt); } } stmt = gimple_build_assign (dest, src); gimple_set_location (stmt, loc); gimple_set_vuse (stmt, new_vuse); gimple_seq_add_stmt_without_update (&seq, stmt); tree new_vdef; if (i < split_stores.length () - 1) new_vdef = make_ssa_name (gimple_vop (cfun), stmt); else new_vdef = last_vdef; gimple_set_vdef (stmt, new_vdef); SSA_NAME_DEF_STMT (new_vdef) = stmt; new_vuse = new_vdef; } FOR_EACH_VEC_ELT (split_stores, i, split_store) delete split_store; gcc_assert (seq); if (dump_file) { fprintf (dump_file, "New sequence of %u stores to replace old one of %u stores\n", split_stores.length (), orig_num_stmts); if (dump_flags & TDF_DETAILS) print_gimple_seq (dump_file, seq, 0, TDF_VOPS | TDF_MEMSYMS); } gsi_insert_seq_after (&last_gsi, seq, GSI_SAME_STMT); for (int j = 0; j < 2; ++j) if (load_seq[j]) gsi_insert_seq_after (&load_gsi[j], load_seq[j], GSI_SAME_STMT); return true; } /* Process the merged_store_group objects created in the coalescing phase. The stores are all against the base object BASE. Try to output the widened stores and delete the original statements if successful. Return true iff any changes were made. */ bool imm_store_chain_info::output_merged_stores () { unsigned int i; merged_store_group *merged_store; bool ret = false; FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_store) { if (dbg_cnt (store_merging) && output_merged_store (merged_store)) { unsigned int j; store_immediate_info *store; FOR_EACH_VEC_ELT (merged_store->stores, j, store) { gimple *stmt = store->stmt; gimple_stmt_iterator gsi = gsi_for_stmt (stmt); gsi_remove (&gsi, true); if (stmt != merged_store->last_stmt) { unlink_stmt_vdef (stmt); release_defs (stmt); } } ret = true; } } if (ret && dump_file) fprintf (dump_file, "Merging successful!\n"); return ret; } /* Coalesce the store_immediate_info objects recorded against the base object BASE in the first phase and output them. Delete the allocated structures. Return true if any changes were made. */ bool imm_store_chain_info::terminate_and_process_chain () { /* Process store chain. */ bool ret = false; if (m_store_info.length () > 1) { ret = coalesce_immediate_stores (); if (ret) ret = output_merged_stores (); } /* Delete all the entries we allocated ourselves. */ store_immediate_info *info; unsigned int i; FOR_EACH_VEC_ELT (m_store_info, i, info) delete info; merged_store_group *merged_info; FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_info) delete merged_info; return ret; } /* Return true iff LHS is a destination potentially interesting for store merging. In practice these are the codes that get_inner_reference can process. */ static bool lhs_valid_for_store_merging_p (tree lhs) { tree_code code = TREE_CODE (lhs); if (code == ARRAY_REF || code == ARRAY_RANGE_REF || code == MEM_REF || code == COMPONENT_REF || code == BIT_FIELD_REF || DECL_P (lhs)) return true; return false; } /* Return true if the tree RHS is a constant we want to consider during store merging. In practice accept all codes that native_encode_expr accepts. */ static bool rhs_valid_for_store_merging_p (tree rhs) { unsigned HOST_WIDE_INT size; if (TREE_CODE (rhs) == CONSTRUCTOR && !TREE_CLOBBER_P (rhs) && CONSTRUCTOR_NELTS (rhs) == 0 && TYPE_SIZE_UNIT (TREE_TYPE (rhs)) && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (rhs)))) return true; return (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (rhs))).is_constant (&size) && native_encode_expr (rhs, NULL, size) != 0); } /* If MEM is a memory reference usable for store merging (either as store destination or for loads), return the non-NULL base_addr and set *PBITSIZE, *PBITPOS, *PBITREGION_START and *PBITREGION_END. Otherwise return NULL, *PBITPOS should be still valid even for that case. */ static tree mem_valid_for_store_merging (tree mem, poly_uint64 *pbitsize, poly_uint64 *pbitpos, poly_uint64 *pbitregion_start, poly_uint64 *pbitregion_end) { poly_int64 bitsize, bitpos; poly_uint64 bitregion_start = 0, bitregion_end = 0; machine_mode mode; int unsignedp = 0, reversep = 0, volatilep = 0; tree offset; tree base_addr = get_inner_reference (mem, &bitsize, &bitpos, &offset, &mode, &unsignedp, &reversep, &volatilep); *pbitsize = bitsize; if (known_eq (bitsize, 0)) return NULL_TREE; if (TREE_CODE (mem) == COMPONENT_REF && DECL_BIT_FIELD_TYPE (TREE_OPERAND (mem, 1))) { get_bit_range (&bitregion_start, &bitregion_end, mem, &bitpos, &offset); if (maybe_ne (bitregion_end, 0U)) bitregion_end += 1; } if (reversep) return NULL_TREE; /* We do not want to rewrite TARGET_MEM_REFs. */ if (TREE_CODE (base_addr) == TARGET_MEM_REF) return NULL_TREE; /* In some cases get_inner_reference may return a MEM_REF [ptr + byteoffset]. For the purposes of this pass canonicalize the base_addr to MEM_REF [ptr] and take byteoffset into account in the bitpos. This occurs in PR 23684 and this way we can catch more chains. */ else if (TREE_CODE (base_addr) == MEM_REF) { poly_offset_int byte_off = mem_ref_offset (base_addr); poly_offset_int bit_off = byte_off << LOG2_BITS_PER_UNIT; bit_off += bitpos; if (known_ge (bit_off, 0) && bit_off.to_shwi (&bitpos)) { if (maybe_ne (bitregion_end, 0U)) { bit_off = byte_off << LOG2_BITS_PER_UNIT; bit_off += bitregion_start; if (bit_off.to_uhwi (&bitregion_start)) { bit_off = byte_off << LOG2_BITS_PER_UNIT; bit_off += bitregion_end; if (!bit_off.to_uhwi (&bitregion_end)) bitregion_end = 0; } else bitregion_end = 0; } } else return NULL_TREE; base_addr = TREE_OPERAND (base_addr, 0); } /* get_inner_reference returns the base object, get at its address now. */ else { if (maybe_lt (bitpos, 0)) return NULL_TREE; base_addr = build_fold_addr_expr (base_addr); } if (known_eq (bitregion_end, 0U)) { bitregion_start = round_down_to_byte_boundary (bitpos); bitregion_end = bitpos; bitregion_end = round_up_to_byte_boundary (bitregion_end + bitsize); } if (offset != NULL_TREE) { /* If the access is variable offset then a base decl has to be address-taken to be able to emit pointer-based stores to it. ??? We might be able to get away with re-using the original base up to the first variable part and then wrapping that inside a BIT_FIELD_REF. */ tree base = get_base_address (base_addr); if (! base || (DECL_P (base) && ! TREE_ADDRESSABLE (base))) return NULL_TREE; base_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (base_addr), base_addr, offset); } *pbitsize = bitsize; *pbitpos = bitpos; *pbitregion_start = bitregion_start; *pbitregion_end = bitregion_end; return base_addr; } /* Return true if STMT is a load that can be used for store merging. In that case fill in *OP. BITSIZE, BITPOS, BITREGION_START and BITREGION_END are properties of the corresponding store. */ static bool handled_load (gimple *stmt, store_operand_info *op, poly_uint64 bitsize, poly_uint64 bitpos, poly_uint64 bitregion_start, poly_uint64 bitregion_end) { if (!is_gimple_assign (stmt)) return false; if (gimple_assign_rhs_code (stmt) == BIT_NOT_EXPR) { tree rhs1 = gimple_assign_rhs1 (stmt); if (TREE_CODE (rhs1) == SSA_NAME && handled_load (SSA_NAME_DEF_STMT (rhs1), op, bitsize, bitpos, bitregion_start, bitregion_end)) { /* Don't allow _1 = load; _2 = ~1; _3 = ~_2; which should have been optimized earlier, but if allowed here, would confuse the multiple uses counting. */ if (op->bit_not_p) return false; op->bit_not_p = !op->bit_not_p; return true; } return false; } if (gimple_vuse (stmt) && gimple_assign_load_p (stmt) && !stmt_can_throw_internal (cfun, stmt) && !gimple_has_volatile_ops (stmt)) { tree mem = gimple_assign_rhs1 (stmt); op->base_addr = mem_valid_for_store_merging (mem, &op->bitsize, &op->bitpos, &op->bitregion_start, &op->bitregion_end); if (op->base_addr != NULL_TREE && known_eq (op->bitsize, bitsize) && multiple_p (op->bitpos - bitpos, BITS_PER_UNIT) && known_ge (op->bitpos - op->bitregion_start, bitpos - bitregion_start) && known_ge (op->bitregion_end - op->bitpos, bitregion_end - bitpos)) { op->stmt = stmt; op->val = mem; op->bit_not_p = false; return true; } } return false; } /* Record the store STMT for store merging optimization if it can be optimized. */ void pass_store_merging::process_store (gimple *stmt) { tree lhs = gimple_assign_lhs (stmt); tree rhs = gimple_assign_rhs1 (stmt); poly_uint64 bitsize, bitpos; poly_uint64 bitregion_start, bitregion_end; tree base_addr = mem_valid_for_store_merging (lhs, &bitsize, &bitpos, &bitregion_start, &bitregion_end); if (known_eq (bitsize, 0U)) return; bool invalid = (base_addr == NULL_TREE || (maybe_gt (bitsize, (unsigned int) MAX_BITSIZE_MODE_ANY_INT) && TREE_CODE (rhs) != INTEGER_CST && (TREE_CODE (rhs) != CONSTRUCTOR || CONSTRUCTOR_NELTS (rhs) != 0))); enum tree_code rhs_code = ERROR_MARK; bool bit_not_p = false; struct symbolic_number n; gimple *ins_stmt = NULL; store_operand_info ops[2]; if (invalid) ; else if (rhs_valid_for_store_merging_p (rhs)) { rhs_code = INTEGER_CST; ops[0].val = rhs; } else if (TREE_CODE (rhs) != SSA_NAME) invalid = true; else { gimple *def_stmt = SSA_NAME_DEF_STMT (rhs), *def_stmt1, *def_stmt2; if (!is_gimple_assign (def_stmt)) invalid = true; else if (handled_load (def_stmt, &ops[0], bitsize, bitpos, bitregion_start, bitregion_end)) rhs_code = MEM_REF; else if (gimple_assign_rhs_code (def_stmt) == BIT_NOT_EXPR) { tree rhs1 = gimple_assign_rhs1 (def_stmt); if (TREE_CODE (rhs1) == SSA_NAME && is_gimple_assign (SSA_NAME_DEF_STMT (rhs1))) { bit_not_p = true; def_stmt = SSA_NAME_DEF_STMT (rhs1); } } if (rhs_code == ERROR_MARK && !invalid) switch ((rhs_code = gimple_assign_rhs_code (def_stmt))) { case BIT_AND_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: tree rhs1, rhs2; rhs1 = gimple_assign_rhs1 (def_stmt); rhs2 = gimple_assign_rhs2 (def_stmt); invalid = true; if (TREE_CODE (rhs1) != SSA_NAME) break; def_stmt1 = SSA_NAME_DEF_STMT (rhs1); if (!is_gimple_assign (def_stmt1) || !handled_load (def_stmt1, &ops[0], bitsize, bitpos, bitregion_start, bitregion_end)) break; if (rhs_valid_for_store_merging_p (rhs2)) ops[1].val = rhs2; else if (TREE_CODE (rhs2) != SSA_NAME) break; else { def_stmt2 = SSA_NAME_DEF_STMT (rhs2); if (!is_gimple_assign (def_stmt2)) break; else if (!handled_load (def_stmt2, &ops[1], bitsize, bitpos, bitregion_start, bitregion_end)) break; } invalid = false; break; default: invalid = true; break; } unsigned HOST_WIDE_INT const_bitsize; if (bitsize.is_constant (&const_bitsize) && (const_bitsize % BITS_PER_UNIT) == 0 && const_bitsize <= 64 && multiple_p (bitpos, BITS_PER_UNIT)) { ins_stmt = find_bswap_or_nop_1 (def_stmt, &n, 12); if (ins_stmt) { uint64_t nn = n.n; for (unsigned HOST_WIDE_INT i = 0; i < const_bitsize; i += BITS_PER_UNIT, nn >>= BITS_PER_MARKER) if ((nn & MARKER_MASK) == 0 || (nn & MARKER_MASK) == MARKER_BYTE_UNKNOWN) { ins_stmt = NULL; break; } if (ins_stmt) { if (invalid) { rhs_code = LROTATE_EXPR; ops[0].base_addr = NULL_TREE; ops[1].base_addr = NULL_TREE; } invalid = false; } } } if (invalid && bitsize.is_constant (&const_bitsize) && ((const_bitsize % BITS_PER_UNIT) != 0 || !multiple_p (bitpos, BITS_PER_UNIT)) && const_bitsize <= 64) { /* Bypass a conversion to the bit-field type. */ if (!bit_not_p && is_gimple_assign (def_stmt) && CONVERT_EXPR_CODE_P (rhs_code)) { tree rhs1 = gimple_assign_rhs1 (def_stmt); if (TREE_CODE (rhs1) == SSA_NAME && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) rhs = rhs1; } rhs_code = BIT_INSERT_EXPR; bit_not_p = false; ops[0].val = rhs; ops[0].base_addr = NULL_TREE; ops[1].base_addr = NULL_TREE; invalid = false; } } unsigned HOST_WIDE_INT const_bitsize, const_bitpos; unsigned HOST_WIDE_INT const_bitregion_start, const_bitregion_end; if (invalid || !bitsize.is_constant (&const_bitsize) || !bitpos.is_constant (&const_bitpos) || !bitregion_start.is_constant (&const_bitregion_start) || !bitregion_end.is_constant (&const_bitregion_end)) { terminate_all_aliasing_chains (NULL, stmt); return; } if (!ins_stmt) memset (&n, 0, sizeof (n)); class imm_store_chain_info **chain_info = NULL; if (base_addr) chain_info = m_stores.get (base_addr); store_immediate_info *info; if (chain_info) { unsigned int ord = (*chain_info)->m_store_info.length (); info = new store_immediate_info (const_bitsize, const_bitpos, const_bitregion_start, const_bitregion_end, stmt, ord, rhs_code, n, ins_stmt, bit_not_p, ops[0], ops[1]); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Recording immediate store from stmt:\n"); print_gimple_stmt (dump_file, stmt, 0); } (*chain_info)->m_store_info.safe_push (info); terminate_all_aliasing_chains (chain_info, stmt); /* If we reach the limit of stores to merge in a chain terminate and process the chain now. */ if ((*chain_info)->m_store_info.length () == (unsigned int) PARAM_VALUE (PARAM_MAX_STORES_TO_MERGE)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Reached maximum number of statements to merge:\n"); terminate_and_release_chain (*chain_info); } return; } /* Store aliases any existing chain? */ terminate_all_aliasing_chains (NULL, stmt); /* Start a new chain. */ class imm_store_chain_info *new_chain = new imm_store_chain_info (m_stores_head, base_addr); info = new store_immediate_info (const_bitsize, const_bitpos, const_bitregion_start, const_bitregion_end, stmt, 0, rhs_code, n, ins_stmt, bit_not_p, ops[0], ops[1]); new_chain->m_store_info.safe_push (info); m_stores.put (base_addr, new_chain); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Starting new chain with statement:\n"); print_gimple_stmt (dump_file, stmt, 0); fprintf (dump_file, "The base object is:\n"); print_generic_expr (dump_file, base_addr); fprintf (dump_file, "\n"); } } /* Entry point for the pass. Go over each basic block recording chains of immediate stores. Upon encountering a terminating statement (as defined by stmt_terminates_chain_p) process the recorded stores and emit the widened variants. */ unsigned int pass_store_merging::execute (function *fun) { basic_block bb; hash_set orig_stmts; calculate_dominance_info (CDI_DOMINATORS); FOR_EACH_BB_FN (bb, fun) { gimple_stmt_iterator gsi; unsigned HOST_WIDE_INT num_statements = 0; /* Record the original statements so that we can keep track of statements emitted in this pass and not re-process new statements. */ for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { if (is_gimple_debug (gsi_stmt (gsi))) continue; if (++num_statements >= 2) break; } if (num_statements < 2) continue; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Processing basic block <%d>:\n", bb->index); for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); if (is_gimple_debug (stmt)) continue; if (gimple_has_volatile_ops (stmt)) { /* Terminate all chains. */ if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Volatile access terminates " "all chains\n"); terminate_and_process_all_chains (); continue; } if (gimple_assign_single_p (stmt) && gimple_vdef (stmt) && !stmt_can_throw_internal (cfun, stmt) && lhs_valid_for_store_merging_p (gimple_assign_lhs (stmt))) process_store (stmt); else terminate_all_aliasing_chains (NULL, stmt); } terminate_and_process_all_chains (); } return 0; } } // anon namespace /* Construct and return a store merging pass object. */ gimple_opt_pass * make_pass_store_merging (gcc::context *ctxt) { return new pass_store_merging (ctxt); } #if CHECKING_P namespace selftest { /* Selftests for store merging helpers. */ /* Assert that all elements of the byte arrays X and Y, both of length N are equal. */ static void verify_array_eq (unsigned char *x, unsigned char *y, unsigned int n) { for (unsigned int i = 0; i < n; i++) { if (x[i] != y[i]) { fprintf (stderr, "Arrays do not match. X:\n"); dump_char_array (stderr, x, n); fprintf (stderr, "Y:\n"); dump_char_array (stderr, y, n); } ASSERT_EQ (x[i], y[i]); } } /* Test shift_bytes_in_array and that it carries bits across between bytes correctly. */ static void verify_shift_bytes_in_array (void) { /* byte 1 | byte 0 00011111 | 11100000. */ unsigned char orig[2] = { 0xe0, 0x1f }; unsigned char in[2]; memcpy (in, orig, sizeof orig); unsigned char expected[2] = { 0x80, 0x7f }; shift_bytes_in_array (in, sizeof (in), 2); verify_array_eq (in, expected, sizeof (in)); memcpy (in, orig, sizeof orig); memcpy (expected, orig, sizeof orig); /* Check that shifting by zero doesn't change anything. */ shift_bytes_in_array (in, sizeof (in), 0); verify_array_eq (in, expected, sizeof (in)); } /* Test shift_bytes_in_array_right and that it carries bits across between bytes correctly. */ static void verify_shift_bytes_in_array_right (void) { /* byte 1 | byte 0 00011111 | 11100000. */ unsigned char orig[2] = { 0x1f, 0xe0}; unsigned char in[2]; memcpy (in, orig, sizeof orig); unsigned char expected[2] = { 0x07, 0xf8}; shift_bytes_in_array_right (in, sizeof (in), 2); verify_array_eq (in, expected, sizeof (in)); memcpy (in, orig, sizeof orig); memcpy (expected, orig, sizeof orig); /* Check that shifting by zero doesn't change anything. */ shift_bytes_in_array_right (in, sizeof (in), 0); verify_array_eq (in, expected, sizeof (in)); } /* Test clear_bit_region that it clears exactly the bits asked and nothing more. */ static void verify_clear_bit_region (void) { /* Start with all bits set and test clearing various patterns in them. */ unsigned char orig[3] = { 0xff, 0xff, 0xff}; unsigned char in[3]; unsigned char expected[3]; memcpy (in, orig, sizeof in); /* Check zeroing out all the bits. */ clear_bit_region (in, 0, 3 * BITS_PER_UNIT); expected[0] = expected[1] = expected[2] = 0; verify_array_eq (in, expected, sizeof in); memcpy (in, orig, sizeof in); /* Leave the first and last bits intact. */ clear_bit_region (in, 1, 3 * BITS_PER_UNIT - 2); expected[0] = 0x1; expected[1] = 0; expected[2] = 0x80; verify_array_eq (in, expected, sizeof in); } /* Test verify_clear_bit_region_be that it clears exactly the bits asked and nothing more. */ static void verify_clear_bit_region_be (void) { /* Start with all bits set and test clearing various patterns in them. */ unsigned char orig[3] = { 0xff, 0xff, 0xff}; unsigned char in[3]; unsigned char expected[3]; memcpy (in, orig, sizeof in); /* Check zeroing out all the bits. */ clear_bit_region_be (in, BITS_PER_UNIT - 1, 3 * BITS_PER_UNIT); expected[0] = expected[1] = expected[2] = 0; verify_array_eq (in, expected, sizeof in); memcpy (in, orig, sizeof in); /* Leave the first and last bits intact. */ clear_bit_region_be (in, BITS_PER_UNIT - 2, 3 * BITS_PER_UNIT - 2); expected[0] = 0x80; expected[1] = 0; expected[2] = 0x1; verify_array_eq (in, expected, sizeof in); } /* Run all of the selftests within this file. */ void store_merging_c_tests (void) { verify_shift_bytes_in_array (); verify_shift_bytes_in_array_right (); verify_clear_bit_region (); verify_clear_bit_region_be (); } } // namespace selftest #endif /* CHECKING_P. */