/* Back-propagation of usage information to definitions. Copyright (C) 2015-2024 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ /* This pass propagates information that is common to all uses of an SSA name back up through the sequence of statements that generate it, simplifying the statements where possible. Sometimes this can expose fully or partially dead code, but the main focus is simplifying computations. At the moment the pass only handles one piece of information: whether the sign of a value matters, and therefore whether sign-changing operations can be skipped. The pass could be extended to more interesting information in future, such as which bits of an integer are significant. For example, take the function: double f (double *a, int n, double start) { double x = fabs (start); for (int i = 0; i < n; ++i) x *= a[i]; return __builtin_cos (x); } cos(x) == cos(-x), so the sign of the final x doesn't matter. That x is the result of a series of multiplications, and if the sign of the result of a multiplication doesn't matter, the signs of the inputs don't matter either. The pass would replace the incoming value of x (i.e. fabs(start)) with start. Since there are no other uses of the fabs result, the call would get deleted as dead. The algorithm is: (1) Do a post-order traversal of the blocks in the function, walking each block backwards. For each potentially-simplifiable statement that defines an SSA name X, examine all uses of X to see what information is actually significant. Record this as INFO_MAP[X]. Optimistically ignore for now any back-edge references to unprocessed phis. (An alternative would be to record each use when we visit its statement and take the intersection as we go along. However, this would lead to more SSA names being entered into INFO_MAP unnecessarily, only to be taken out again later. At the moment very few SSA names end up with useful information.) (2) Iteratively reduce the optimistic result of (1) until we reach a maximal fixed point (which at the moment would mean revisiting statements at most once). First push all SSA names that used an optimistic assumption about a backedge phi onto a worklist. While the worklist is nonempty, pick off an SSA name X and recompute INFO_MAP[X]. If the value changes, push all SSA names used in the definition of X onto the worklist. (3) Iterate over each SSA name X with info in INFO_MAP, in the opposite order to (1), i.e. a forward reverse-post-order walk. Try to optimize the definition of X using INFO_MAP[X] and fold the result. (This ensures that we fold definitions before uses.) (4) Iterate over each SSA name X with info in INFO_MAP, in the same order as (1), and delete any statements that are now dead. (This ensures that if a sequence of statements is dead, we delete the last statement first.) Note that this pass does not deal with direct redundancies, such as cos(-x)->cos(x). match.pd handles those cases instead. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "tree.h" #include "gimple.h" #include "gimple-iterator.h" #include "ssa.h" #include "fold-const.h" #include "tree-pass.h" #include "cfganal.h" #include "gimple-pretty-print.h" #include "tree-cfg.h" #include "tree-ssa.h" #include "tree-ssa-propagate.h" #include "gimple-fold.h" #include "alloc-pool.h" #include "tree-hash-traits.h" #include "case-cfn-macros.h" namespace { /* Information about a group of uses of an SSA name. */ class usage_info { public: usage_info () : flag_word (0) {} usage_info &operator &= (const usage_info &); usage_info operator & (const usage_info &) const; bool operator == (const usage_info &) const; bool operator != (const usage_info &) const; bool is_useful () const; static usage_info intersection_identity (); union { struct { /* True if the uses treat x and -x in the same way. */ unsigned int ignore_sign : 1; } flags; /* All the flag bits as a single int. */ unsigned int flag_word; }; }; /* Return an X such that X & Y == Y for all Y. This is the most optimistic assumption possible. */ usage_info usage_info::intersection_identity () { usage_info ret; ret.flag_word = -1; return ret; } /* Intersect *THIS with OTHER, so that *THIS describes all uses covered by the original *THIS and OTHER. */ usage_info & usage_info::operator &= (const usage_info &other) { flag_word &= other.flag_word; return *this; } /* Return the intersection of *THIS and OTHER, i.e. a structure that describes all uses covered by *THIS and OTHER. */ usage_info usage_info::operator & (const usage_info &other) const { usage_info info (*this); info &= other; return info; } bool usage_info::operator == (const usage_info &other) const { return flag_word == other.flag_word; } bool usage_info::operator != (const usage_info &other) const { return !operator == (other); } /* Return true if *THIS is not simply the default, safe assumption. */ bool usage_info::is_useful () const { return flag_word != 0; } /* Start a dump line about SSA name VAR. */ static void dump_usage_prefix (FILE *file, tree var) { fprintf (file, " "); print_generic_expr (file, var); fprintf (file, ": "); } /* Print INFO to FILE. */ static void dump_usage_info (FILE *file, tree var, usage_info *info) { if (info->flags.ignore_sign) { dump_usage_prefix (file, var); fprintf (file, "sign bit not important\n"); } } /* Represents one execution of the pass. */ class backprop { public: backprop (function *); ~backprop (); void execute (); private: const usage_info *lookup_operand (tree); void push_to_worklist (tree); tree pop_from_worklist (); void process_builtin_call_use (gcall *, tree, usage_info *); void process_assign_use (gassign *, tree, usage_info *); void process_phi_use (gphi *, usage_info *); void process_use (gimple *, tree, usage_info *); bool intersect_uses (tree, usage_info *); void reprocess_inputs (gimple *); void process_var (tree); void process_block (basic_block); void prepare_change (tree); void complete_change (gimple *); void optimize_builtin_call (gcall *, tree, const usage_info *); void replace_assign_rhs (gassign *, tree, tree, tree, tree); void optimize_assign (gassign *, tree, const usage_info *); void optimize_phi (gphi *, tree, const usage_info *); typedef hash_map <tree_ssa_name_hash, usage_info *> info_map_type; typedef std::pair <tree, usage_info *> var_info_pair; /* The function we're optimizing. */ function *m_fn; /* Pool for allocating usage_info structures. */ object_allocator <usage_info> m_info_pool; /* Maps an SSA name to a description of all uses of that SSA name. All the usage_infos satisfy is_useful. We use a hash_map because the map is expected to be sparse (i.e. most SSA names won't have useful information attached to them). We could move to a directly-indexed array if that situation changes. */ info_map_type m_info_map; /* Post-ordered list of all potentially-interesting SSA names, along with information that describes all uses. */ auto_vec <var_info_pair, 128> m_vars; /* A bitmap of blocks that we have finished processing in the initial post-order walk. */ auto_sbitmap m_visited_blocks; /* A bitmap of phis that we have finished processing in the initial post-order walk, excluding those from blocks mentioned in M_VISITED_BLOCKS. */ auto_bitmap m_visited_phis; /* A worklist of SSA names whose definitions need to be reconsidered. */ auto_vec <tree, 64> m_worklist; /* The SSA names in M_WORKLIST, identified by their SSA_NAME_VERSION. We use a bitmap rather than an sbitmap because most SSA names are never added to the worklist. */ bitmap m_worklist_names; }; backprop::backprop (function *fn) : m_fn (fn), m_info_pool ("usage_info"), m_visited_blocks (last_basic_block_for_fn (m_fn)), m_worklist_names (BITMAP_ALLOC (NULL)) { bitmap_clear (m_visited_blocks); } backprop::~backprop () { BITMAP_FREE (m_worklist_names); m_info_pool.release (); } /* Return usage information for general operand OP, or null if none. */ const usage_info * backprop::lookup_operand (tree op) { if (op && TREE_CODE (op) == SSA_NAME) { usage_info **slot = m_info_map.get (op); if (slot) return *slot; } return NULL; } /* Add SSA name VAR to the worklist, if it isn't on the worklist already. */ void backprop::push_to_worklist (tree var) { if (!bitmap_set_bit (m_worklist_names, SSA_NAME_VERSION (var))) return; m_worklist.safe_push (var); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "[WORKLIST] Pushing "); print_generic_expr (dump_file, var); fprintf (dump_file, "\n"); } } /* Remove and return the next SSA name from the worklist. The worklist is known to be nonempty. */ tree backprop::pop_from_worklist () { tree var = m_worklist.pop (); bitmap_clear_bit (m_worklist_names, SSA_NAME_VERSION (var)); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "[WORKLIST] Popping "); print_generic_expr (dump_file, var); fprintf (dump_file, "\n"); } return var; } /* Make INFO describe all uses of RHS in CALL, which is a call to a built-in function. */ void backprop::process_builtin_call_use (gcall *call, tree rhs, usage_info *info) { combined_fn fn = gimple_call_combined_fn (call); tree lhs = gimple_call_lhs (call); switch (fn) { case CFN_LAST: break; CASE_CFN_COS: CASE_CFN_COS_FN: CASE_CFN_COSH: CASE_CFN_COSH_FN: CASE_CFN_CCOS: CASE_CFN_CCOS_FN: CASE_CFN_CCOSH: CASE_CFN_CCOSH_FN: CASE_CFN_HYPOT: CASE_CFN_HYPOT_FN: /* The signs of all inputs are ignored. */ info->flags.ignore_sign = true; break; CASE_CFN_COPYSIGN: CASE_CFN_COPYSIGN_FN: /* The sign of the first input is ignored. */ if (rhs != gimple_call_arg (call, 1)) info->flags.ignore_sign = true; break; CASE_CFN_POW: CASE_CFN_POW_FN: { /* The sign of the first input is ignored as long as the second input is an even real. */ tree power = gimple_call_arg (call, 1); HOST_WIDE_INT n; if (TREE_CODE (power) == REAL_CST && real_isinteger (&TREE_REAL_CST (power), &n) && (n & 1) == 0) info->flags.ignore_sign = true; break; } CASE_CFN_FMA: CASE_CFN_FMA_FN: case CFN_FMS: case CFN_FNMA: case CFN_FNMS: /* In X * X + Y, where Y is distinct from X, the sign of X doesn't matter. */ if (gimple_call_arg (call, 0) == rhs && gimple_call_arg (call, 1) == rhs && gimple_call_arg (call, 2) != rhs) info->flags.ignore_sign = true; break; default: if (negate_mathfn_p (fn)) { /* The sign of the (single) input doesn't matter provided that the sign of the output doesn't matter. */ const usage_info *lhs_info = lookup_operand (lhs); if (lhs_info) info->flags.ignore_sign = lhs_info->flags.ignore_sign; } break; } } /* Make INFO describe all uses of RHS in ASSIGN. */ void backprop::process_assign_use (gassign *assign, tree rhs, usage_info *info) { tree lhs = gimple_assign_lhs (assign); switch (gimple_assign_rhs_code (assign)) { case ABS_EXPR: case ABSU_EXPR: /* The sign of the input doesn't matter. */ info->flags.ignore_sign = true; break; case COND_EXPR: /* For A = B ? C : D, propagate information about all uses of A to C and D. */ if (rhs != gimple_assign_rhs1 (assign)) { const usage_info *lhs_info = lookup_operand (lhs); if (lhs_info) *info = *lhs_info; } break; case MULT_EXPR: /* In X * X, the sign of X doesn't matter. */ if (gimple_assign_rhs1 (assign) == rhs && gimple_assign_rhs2 (assign) == rhs) info->flags.ignore_sign = true; /* Fall through. */ case NEGATE_EXPR: case RDIV_EXPR: /* If the sign of the result doesn't matter, the sign of the inputs doesn't matter either. */ if (FLOAT_TYPE_P (TREE_TYPE (rhs))) { const usage_info *lhs_info = lookup_operand (lhs); if (lhs_info) info->flags.ignore_sign = lhs_info->flags.ignore_sign; } break; default: break; } } /* Make INFO describe the uses of PHI's result. */ void backprop::process_phi_use (gphi *phi, usage_info *info) { tree result = gimple_phi_result (phi); if (const usage_info *result_info = lookup_operand (result)) *info = *result_info; } /* Make INFO describe all uses of RHS in STMT. */ void backprop::process_use (gimple *stmt, tree rhs, usage_info *info) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "[USE] "); print_generic_expr (dump_file, rhs); fprintf (dump_file, " in "); print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); } if (gcall *call = dyn_cast <gcall *> (stmt)) process_builtin_call_use (call, rhs, info); else if (gassign *assign = dyn_cast <gassign *> (stmt)) process_assign_use (assign, rhs, info); else if (gphi *phi = dyn_cast <gphi *> (stmt)) process_phi_use (phi, info); if (dump_file && (dump_flags & TDF_DETAILS)) dump_usage_info (dump_file, rhs, info); } /* Make INFO describe all uses of VAR, returning true if the result is useful. If the uses include phis that haven't been processed yet, make the most optimistic assumption possible, so that we aim for a maximum rather than a minimum fixed point. */ bool backprop::intersect_uses (tree var, usage_info *info) { imm_use_iterator iter; use_operand_p use_p; *info = usage_info::intersection_identity (); FOR_EACH_IMM_USE_FAST (use_p, iter, var) { gimple *stmt = USE_STMT (use_p); if (is_gimple_debug (stmt)) continue; gphi *phi = dyn_cast <gphi *> (stmt); if (phi && !bitmap_bit_p (m_visited_blocks, gimple_bb (phi)->index) && !bitmap_bit_p (m_visited_phis, SSA_NAME_VERSION (gimple_phi_result (phi)))) { /* Skip unprocessed phis. */ if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "[BACKEDGE] "); print_generic_expr (dump_file, var); fprintf (dump_file, " in "); print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); } } else { usage_info subinfo; process_use (stmt, var, &subinfo); *info &= subinfo; if (!info->is_useful ()) return false; } } return true; } /* Queue for reconsideration any input of STMT that has information associated with it. This is used if that information might be too optimistic. */ void backprop::reprocess_inputs (gimple *stmt) { use_operand_p use_p; ssa_op_iter oi; FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE) { tree var = get_use_from_ptr (use_p); if (lookup_operand (var)) push_to_worklist (var); } } /* Say that we're recording INFO for SSA name VAR, or that we're deleting existing information if INFO is null. INTRO describes the change. */ static void dump_var_info (tree var, usage_info *info, const char *intro) { fprintf (dump_file, "[DEF] %s for ", intro); print_gimple_stmt (dump_file, SSA_NAME_DEF_STMT (var), 0, TDF_SLIM); if (info) dump_usage_info (dump_file, var, info); } /* Process all uses of VAR and record or update the result in M_INFO_MAP and M_VARS. */ void backprop::process_var (tree var) { if (has_zero_uses (var)) return; usage_info info; intersect_uses (var, &info); gimple *stmt = SSA_NAME_DEF_STMT (var); if (info.is_useful ()) { bool existed; usage_info *&map_info = m_info_map.get_or_insert (var, &existed); if (!existed) { /* Recording information about VAR for the first time. */ map_info = m_info_pool.allocate (); *map_info = info; m_vars.safe_push (var_info_pair (var, map_info)); if (dump_file && (dump_flags & TDF_DETAILS)) dump_var_info (var, map_info, "Recording new information"); /* If STMT is a phi, reprocess any backedge uses. This is a no-op for other uses, which won't have any information associated with them. */ if (is_a <gphi *> (stmt)) reprocess_inputs (stmt); } else if (info != *map_info) { /* Recording information that is less optimistic than before. */ gcc_checking_assert ((info & *map_info) == info); *map_info = info; if (dump_file && (dump_flags & TDF_DETAILS)) dump_var_info (var, map_info, "Updating information"); reprocess_inputs (stmt); } } else { if (usage_info **slot = m_info_map.get (var)) { /* Removing previously-recorded information. */ **slot = info; m_info_map.remove (var); if (dump_file && (dump_flags & TDF_DETAILS)) dump_var_info (var, NULL, "Deleting information"); reprocess_inputs (stmt); } else { /* If STMT is a phi, remove any information recorded for its arguments. */ if (is_a <gphi *> (stmt)) reprocess_inputs (stmt); } } } /* Process all statements and phis in BB, during the first post-order walk. */ void backprop::process_block (basic_block bb) { for (gimple_stmt_iterator gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi)) { tree lhs = gimple_get_lhs (gsi_stmt (gsi)); if (lhs && TREE_CODE (lhs) == SSA_NAME) process_var (lhs); } for (gphi_iterator gpi = gsi_start_phis (bb); !gsi_end_p (gpi); gsi_next (&gpi)) { tree result = gimple_phi_result (gpi.phi ()); process_var (result); bitmap_set_bit (m_visited_phis, SSA_NAME_VERSION (result)); } bitmap_clear (m_visited_phis); } /* Delete the definition of VAR, which has no uses. */ static void remove_unused_var (tree var) { gimple *stmt = SSA_NAME_DEF_STMT (var); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Deleting "); print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); } gimple_stmt_iterator gsi = gsi_for_stmt (stmt); if (gimple_code (stmt) == GIMPLE_PHI) remove_phi_node (&gsi, true); else { unlink_stmt_vdef (stmt); gsi_remove (&gsi, true); release_defs (stmt); } } /* Note that we're replacing OLD_RHS with NEW_RHS in STMT. */ static void note_replacement (gimple *stmt, tree old_rhs, tree new_rhs) { fprintf (dump_file, "Replacing use of "); print_generic_expr (dump_file, old_rhs); fprintf (dump_file, " with "); print_generic_expr (dump_file, new_rhs); fprintf (dump_file, " in "); print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); } /* If RHS is an SSA name whose definition just changes the sign of a value, return that other value, otherwise return null. */ static tree strip_sign_op_1 (tree rhs) { if (TREE_CODE (rhs) != SSA_NAME) return NULL_TREE; gimple *def_stmt = SSA_NAME_DEF_STMT (rhs); if (gassign *assign = dyn_cast <gassign *> (def_stmt)) switch (gimple_assign_rhs_code (assign)) { case ABS_EXPR: case NEGATE_EXPR: return gimple_assign_rhs1 (assign); default: break; } else if (gcall *call = dyn_cast <gcall *> (def_stmt)) switch (gimple_call_combined_fn (call)) { CASE_CFN_COPYSIGN: CASE_CFN_COPYSIGN_FN: return gimple_call_arg (call, 0); default: break; } return NULL_TREE; } /* If RHS is an SSA name whose definition just changes the sign of a value, strip all such operations and return the ultimate input to them. Return null otherwise. Although this could in principle lead to quadratic searching, in practice a long sequence of sign manipulations should already have been folded down. E.g. --x -> x, abs(-x) -> abs(x). We search for more than one operation in order to catch cases like -abs(x). */ static tree strip_sign_op (tree rhs) { tree new_rhs = strip_sign_op_1 (rhs); if (!new_rhs) return NULL_TREE; while (tree next = strip_sign_op_1 (new_rhs)) new_rhs = next; return new_rhs; } /* Start a change in the value of VAR that is suitable for all non-debug uses of VAR. We need to make sure that debug statements continue to use the original definition of VAR where possible, or are nullified otherwise. */ void backprop::prepare_change (tree var) { if (MAY_HAVE_DEBUG_BIND_STMTS) insert_debug_temp_for_var_def (NULL, var); reset_flow_sensitive_info (var); } /* STMT has been changed. Give the fold machinery a chance to simplify and canonicalize it (e.g. by ensuring that commutative operands have the right order), then record the updates. */ void backprop::complete_change (gimple *stmt) { gimple_stmt_iterator gsi = gsi_for_stmt (stmt); if (fold_stmt (&gsi)) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " which folds to: "); print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, TDF_SLIM); } } update_stmt (gsi_stmt (gsi)); } /* Optimize CALL, a call to a built-in function with lhs LHS, on the basis that INFO describes all uses of LHS. */ void backprop::optimize_builtin_call (gcall *call, tree lhs, const usage_info *info) { /* If we have an f such that -f(x) = f(-x), and if the sign of the result doesn't matter, strip any sign operations from the input. */ if (info->flags.ignore_sign && negate_mathfn_p (gimple_call_combined_fn (call))) { tree new_arg = strip_sign_op (gimple_call_arg (call, 0)); if (new_arg) { prepare_change (lhs); gimple_call_set_arg (call, 0, new_arg); complete_change (call); } } } /* Optimize ASSIGN, an assignment to LHS, by replacing rhs operand N with RHS<N>, if RHS<N> is nonnull. This may change the value of LHS. */ void backprop::replace_assign_rhs (gassign *assign, tree lhs, tree rhs1, tree rhs2, tree rhs3) { if (!rhs1 && !rhs2 && !rhs3) return; prepare_change (lhs); if (rhs1) gimple_assign_set_rhs1 (assign, rhs1); if (rhs2) gimple_assign_set_rhs2 (assign, rhs2); if (rhs3) gimple_assign_set_rhs3 (assign, rhs3); complete_change (assign); } /* Optimize ASSIGN, an assignment to LHS, on the basis that INFO describes all uses of LHS. */ void backprop::optimize_assign (gassign *assign, tree lhs, const usage_info *info) { switch (gimple_assign_rhs_code (assign)) { case MULT_EXPR: case RDIV_EXPR: /* If the sign of the result doesn't matter, strip sign operations from both inputs. */ if (info->flags.ignore_sign) replace_assign_rhs (assign, lhs, strip_sign_op (gimple_assign_rhs1 (assign)), strip_sign_op (gimple_assign_rhs2 (assign)), NULL_TREE); break; case COND_EXPR: /* If the sign of A ? B : C doesn't matter, strip sign operations from both B and C. */ if (info->flags.ignore_sign) replace_assign_rhs (assign, lhs, NULL_TREE, strip_sign_op (gimple_assign_rhs2 (assign)), strip_sign_op (gimple_assign_rhs3 (assign))); break; default: break; } } /* Optimize PHI, which defines VAR, on the basis that INFO describes all uses of the result. */ void backprop::optimize_phi (gphi *phi, tree var, const usage_info *info) { /* If the sign of the result doesn't matter, try to strip sign operations from arguments. */ if (info->flags.ignore_sign) { basic_block bb = gimple_bb (phi); use_operand_p use; ssa_op_iter oi; bool replaced = false; FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE) { /* Propagating along abnormal edges is delicate, punt for now. */ const int index = PHI_ARG_INDEX_FROM_USE (use); if (EDGE_PRED (bb, index)->flags & EDGE_ABNORMAL) continue; tree new_arg = strip_sign_op (USE_FROM_PTR (use)); if (new_arg) { if (!replaced) prepare_change (var); if (dump_file && (dump_flags & TDF_DETAILS)) note_replacement (phi, USE_FROM_PTR (use), new_arg); replace_exp (use, new_arg); replaced = true; } } } } void backprop::execute () { /* Phase 1: Traverse the function, making optimistic assumptions about any phi whose definition we haven't seen. */ int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (m_fn)); unsigned int postorder_num = post_order_compute (postorder, false, false); for (unsigned int i = 0; i < postorder_num; ++i) { process_block (BASIC_BLOCK_FOR_FN (m_fn, postorder[i])); bitmap_set_bit (m_visited_blocks, postorder[i]); } XDELETEVEC (postorder); /* Phase 2: Use the initial (perhaps overly optimistic) information to create a maximal fixed point solution. */ while (!m_worklist.is_empty ()) process_var (pop_from_worklist ()); if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "\n"); /* Phase 3: Do a reverse post-order walk, using information about the uses of SSA names to optimize their definitions. */ for (unsigned int i = m_vars.length (); i-- > 0;) { usage_info *info = m_vars[i].second; if (info->is_useful ()) { tree var = m_vars[i].first; gimple *stmt = SSA_NAME_DEF_STMT (var); if (gcall *call = dyn_cast <gcall *> (stmt)) optimize_builtin_call (call, var, info); else if (gassign *assign = dyn_cast <gassign *> (stmt)) optimize_assign (assign, var, info); else if (gphi *phi = dyn_cast <gphi *> (stmt)) optimize_phi (phi, var, info); } } /* Phase 4: Do a post-order walk, deleting statements that are no longer needed. */ for (unsigned int i = 0; i < m_vars.length (); ++i) { tree var = m_vars[i].first; if (has_zero_uses (var)) remove_unused_var (var); } if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "\n"); } const pass_data pass_data_backprop = { GIMPLE_PASS, /* type */ "backprop", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_TREE_BACKPROP, /* tv_id */ ( PROP_cfg | PROP_ssa ), /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_backprop : public gimple_opt_pass { public: pass_backprop (gcc::context *ctxt) : gimple_opt_pass (pass_data_backprop, ctxt) {} /* opt_pass methods: */ opt_pass * clone () final override { return new pass_backprop (m_ctxt); } bool gate (function *) final override { return flag_ssa_backprop; } unsigned int execute (function *) final override; }; // class pass_backprop unsigned int pass_backprop::execute (function *fn) { backprop (fn).execute (); return 0; } } // anon namespace gimple_opt_pass * make_pass_backprop (gcc::context *ctxt) { return new pass_backprop (ctxt); }