/* Code for GIMPLE range related routines. Copyright (C) 2019-2021 Free Software Foundation, Inc. Contributed by Andrew MacLeod and Aldy Hernandez . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "insn-codes.h" #include "rtl.h" #include "tree.h" #include "gimple.h" #include "ssa.h" #include "gimple-pretty-print.h" #include "gimple-iterator.h" #include "optabs-tree.h" #include "gimple-fold.h" #include "tree-cfg.h" #include "fold-const.h" #include "tree-cfg.h" #include "wide-int.h" #include "fold-const.h" #include "case-cfn-macros.h" #include "omp-general.h" #include "cfgloop.h" #include "tree-ssa-loop.h" #include "tree-scalar-evolution.h" #include "dbgcnt.h" #include "alloc-pool.h" #include "vr-values.h" #include "gimple-range.h" // Adjust the range for a pointer difference where the operands came // from a memchr. // // This notices the following sequence: // // def = __builtin_memchr (arg, 0, sz) // n = def - arg // // The range for N can be narrowed to [0, PTRDIFF_MAX - 1]. static void adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt) { tree op0 = gimple_assign_rhs1 (diff_stmt); tree op1 = gimple_assign_rhs2 (diff_stmt); tree op0_ptype = TREE_TYPE (TREE_TYPE (op0)); tree op1_ptype = TREE_TYPE (TREE_TYPE (op1)); gimple *call; if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME && (call = SSA_NAME_DEF_STMT (op0)) && is_gimple_call (call) && gimple_call_builtin_p (call, BUILT_IN_MEMCHR) && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node) && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node) && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node) && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node) && gimple_call_builtin_p (call, BUILT_IN_MEMCHR) && vrp_operand_equal_p (op1, gimple_call_arg (call, 0)) && integer_zerop (gimple_call_arg (call, 1))) { tree max = vrp_val_max (ptrdiff_type_node); wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max))); tree expr_type = gimple_expr_type (diff_stmt); tree range_min = build_zero_cst (expr_type); tree range_max = wide_int_to_tree (expr_type, wmax - 1); int_range<2> r (range_min, range_max); res.intersect (r); } } // This function looks for situations when walking the use/def chains // may provide additonal contextual range information not exposed on // this statement. Like knowing the IMAGPART return value from a // builtin function is a boolean result. // We should rework how we're called, as we have an op_unknown entry // for IMAGPART_EXPR and POINTER_DIFF_EXPR in range-ops just so this // function gets called. static void gimple_range_adjustment (irange &res, const gimple *stmt) { switch (gimple_expr_code (stmt)) { case POINTER_DIFF_EXPR: adjust_pointer_diff_expr (res, stmt); return; case IMAGPART_EXPR: { tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); if (TREE_CODE (name) == SSA_NAME) { gimple *def_stmt = SSA_NAME_DEF_STMT (name); if (def_stmt && is_gimple_call (def_stmt) && gimple_call_internal_p (def_stmt)) { switch (gimple_call_internal_fn (def_stmt)) { case IFN_ADD_OVERFLOW: case IFN_SUB_OVERFLOW: case IFN_MUL_OVERFLOW: case IFN_ATOMIC_COMPARE_EXCHANGE: { int_range<2> r; r.set_varying (boolean_type_node); tree type = TREE_TYPE (gimple_assign_lhs (stmt)); range_cast (r, type); res.intersect (r); } default: break; } } } break; } default: break; } } // Return a range in R for the tree EXPR. Return true if a range is // representable, and UNDEFINED/false if not. bool get_tree_range (irange &r, tree expr) { tree type; if (TYPE_P (expr)) type = expr; else type = TREE_TYPE (expr); // Return false if the type isn't suported. if (!irange::supports_type_p (type)) { r.set_undefined (); return false; } switch (TREE_CODE (expr)) { case INTEGER_CST: if (TREE_OVERFLOW_P (expr)) expr = drop_tree_overflow (expr); r.set (expr, expr); return true; case SSA_NAME: r = gimple_range_global (expr); return true; case ADDR_EXPR: { // Handle &var which can show up in phi arguments. bool ov; if (tree_single_nonzero_warnv_p (expr, &ov)) { r = range_nonzero (type); return true; } break; } default: break; } r.set_varying (type); return true; } // Fold this unary statement using R1 as operand1's range, returning // the result in RES. Return false if the operation fails. bool gimple_range_fold (irange &res, const gimple *stmt, const irange &r1) { gcc_checking_assert (gimple_range_handler (stmt)); tree type = gimple_expr_type (stmt); // Unary SSA operations require the LHS type as the second range. int_range<2> r2 (type); return gimple_range_fold (res, stmt, r1, r2); } // Fold this binary statement using R1 and R2 as the operands ranges, // returning the result in RES. Return false if the operation fails. bool gimple_range_fold (irange &res, const gimple *stmt, const irange &r1, const irange &r2) { gcc_checking_assert (gimple_range_handler (stmt)); gimple_range_handler (stmt)->fold_range (res, gimple_expr_type (stmt), r1, r2); // If there are any gimple lookups, do those now. gimple_range_adjustment (res, stmt); return true; } // Return the base of the RHS of an assignment. tree gimple_range_base_of_assignment (const gimple *stmt) { gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN); tree op1 = gimple_assign_rhs1 (stmt); if (gimple_assign_rhs_code (stmt) == ADDR_EXPR) return get_base_address (TREE_OPERAND (op1, 0)); return op1; } // Return the first operand of this statement if it is a valid operand // supported by ranges, otherwise return NULL_TREE. Special case is // &(SSA_NAME expr), return the SSA_NAME instead of the ADDR expr. tree gimple_range_operand1 (const gimple *stmt) { gcc_checking_assert (gimple_range_handler (stmt)); switch (gimple_code (stmt)) { case GIMPLE_COND: return gimple_cond_lhs (stmt); case GIMPLE_ASSIGN: { tree base = gimple_range_base_of_assignment (stmt); if (base && TREE_CODE (base) == MEM_REF) { // If the base address is an SSA_NAME, we return it // here. This allows processing of the range of that // name, while the rest of the expression is simply // ignored. The code in range_ops will see the // ADDR_EXPR and do the right thing. tree ssa = TREE_OPERAND (base, 0); if (TREE_CODE (ssa) == SSA_NAME) return ssa; } return base; } default: break; } return NULL; } // Return the second operand of statement STMT, otherwise return NULL_TREE. tree gimple_range_operand2 (const gimple *stmt) { gcc_checking_assert (gimple_range_handler (stmt)); switch (gimple_code (stmt)) { case GIMPLE_COND: return gimple_cond_rhs (stmt); case GIMPLE_ASSIGN: if (gimple_num_ops (stmt) >= 3) return gimple_assign_rhs2 (stmt); default: break; } return NULL_TREE; } // Calculate what we can determine of the range of this unary // statement's operand if the lhs of the expression has the range // LHS_RANGE. Return false if nothing can be determined. bool gimple_range_calc_op1 (irange &r, const gimple *stmt, const irange &lhs_range) { gcc_checking_assert (gimple_num_ops (stmt) < 3); // An empty range is viral. tree type = TREE_TYPE (gimple_range_operand1 (stmt)); if (lhs_range.undefined_p ()) { r.set_undefined (); return true; } // Unary operations require the type of the first operand in the // second range position. int_range<2> type_range (type); return gimple_range_handler (stmt)->op1_range (r, type, lhs_range, type_range); } // Calculate what we can determine of the range of this statement's // first operand if the lhs of the expression has the range LHS_RANGE // and the second operand has the range OP2_RANGE. Return false if // nothing can be determined. bool gimple_range_calc_op1 (irange &r, const gimple *stmt, const irange &lhs_range, const irange &op2_range) { // Unary operation are allowed to pass a range in for second operand // as there are often additional restrictions beyond the type which // can be imposed. See operator_cast::op1_range(). tree type = TREE_TYPE (gimple_range_operand1 (stmt)); // An empty range is viral. if (op2_range.undefined_p () || lhs_range.undefined_p ()) { r.set_undefined (); return true; } return gimple_range_handler (stmt)->op1_range (r, type, lhs_range, op2_range); } // Calculate what we can determine of the range of this statement's // second operand if the lhs of the expression has the range LHS_RANGE // and the first operand has the range OP1_RANGE. Return false if // nothing can be determined. bool gimple_range_calc_op2 (irange &r, const gimple *stmt, const irange &lhs_range, const irange &op1_range) { tree type = TREE_TYPE (gimple_range_operand2 (stmt)); // An empty range is viral. if (op1_range.undefined_p () || lhs_range.undefined_p ()) { r.set_undefined (); return true; } return gimple_range_handler (stmt)->op2_range (r, type, lhs_range, op1_range); } // Calculate a range for statement S and return it in R. If NAME is provided it // represents the SSA_NAME on the LHS of the statement. It is only required // if there is more than one lhs/output. If a range cannot // be calculated, return false. bool gimple_ranger::calc_stmt (irange &r, gimple *s, tree name) { bool res = false; // If name is specified, make sure it is an LHS of S. gcc_checking_assert (name ? SSA_NAME_DEF_STMT (name) == s : true); if (gimple_range_handler (s)) res = range_of_range_op (r, s); else if (is_a(s)) res = range_of_phi (r, as_a (s)); else if (is_a(s)) res = range_of_call (r, as_a (s)); else if (is_a (s) && gimple_assign_rhs_code (s) == COND_EXPR) res = range_of_cond_expr (r, as_a (s)); if (!res) { // If no name is specified, try the expression kind. if (!name) { tree t = gimple_expr_type (s); if (!irange::supports_type_p (t)) return false; r.set_varying (t); return true; } if (!gimple_range_ssa_p (name)) return false; // We don't understand the stmt, so return the global range. r = gimple_range_global (name); return true; } if (r.undefined_p ()) return true; // We sometimes get compatible types copied from operands, make sure // the correct type is being returned. if (name && TREE_TYPE (name) != r.type ()) { gcc_checking_assert (range_compatible_p (r.type (), TREE_TYPE (name))); range_cast (r, TREE_TYPE (name)); } return true; } // Calculate a range for range_op statement S and return it in R. If any // If a range cannot be calculated, return false. bool gimple_ranger::range_of_range_op (irange &r, gimple *s) { int_range_max range1, range2; tree lhs = gimple_get_lhs (s); tree type = gimple_expr_type (s); gcc_checking_assert (irange::supports_type_p (type)); tree op1 = gimple_range_operand1 (s); tree op2 = gimple_range_operand2 (s); if (lhs) { // Register potential dependencies for stale value tracking. m_cache.register_dependency (lhs, op1); m_cache.register_dependency (lhs, op2); } if (gimple_code (s) == GIMPLE_ASSIGN && gimple_assign_rhs_code (s) == ADDR_EXPR) return range_of_address (r, s); if (range_of_expr (range1, op1, s)) { if (!op2) return gimple_range_fold (r, s, range1); if (range_of_expr (range2, op2, s)) return gimple_range_fold (r, s, range1, range2); } r.set_varying (type); return true; } // Calculate the range of an assignment containing an ADDR_EXPR. // Return the range in R. // If a range cannot be calculated, set it to VARYING and return true. bool gimple_ranger::range_of_address (irange &r, gimple *stmt) { gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN); gcc_checking_assert (gimple_assign_rhs_code (stmt) == ADDR_EXPR); bool strict_overflow_p; tree expr = gimple_assign_rhs1 (stmt); poly_int64 bitsize, bitpos; tree offset; machine_mode mode; int unsignedp, reversep, volatilep; tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize, &bitpos, &offset, &mode, &unsignedp, &reversep, &volatilep); if (base != NULL_TREE && TREE_CODE (base) == MEM_REF && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME) { tree ssa = TREE_OPERAND (base, 0); gcc_checking_assert (irange::supports_type_p (TREE_TYPE (ssa))); range_of_expr (r, ssa, stmt); range_cast (r, TREE_TYPE (gimple_assign_rhs1 (stmt))); poly_offset_int off = 0; bool off_cst = false; if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST) { off = mem_ref_offset (base); if (offset) off += poly_offset_int::from (wi::to_poly_wide (offset), SIGNED); off <<= LOG2_BITS_PER_UNIT; off += bitpos; off_cst = true; } /* If &X->a is equal to X, the range of X is the result. */ if (off_cst && known_eq (off, 0)) return true; else if (flag_delete_null_pointer_checks && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))) { /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't allow going from non-NULL pointer to NULL. */ if(!range_includes_zero_p (&r)) return true; } /* If MEM_REF has a "positive" offset, consider it non-NULL always, for -fdelete-null-pointer-checks also "negative" ones. Punt for unknown offsets (e.g. variable ones). */ if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)) && off_cst && known_ne (off, 0) && (flag_delete_null_pointer_checks || known_gt (off, 0))) { r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt))); return true; } r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt))); return true; } // Handle "= &a". if (tree_single_nonzero_warnv_p (expr, &strict_overflow_p)) { r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt))); return true; } // Otherwise return varying. r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt))); return true; } // Calculate a range for phi statement S and return it in R. // If a range cannot be calculated, return false. bool gimple_ranger::range_of_phi (irange &r, gphi *phi) { tree phi_def = gimple_phi_result (phi); tree type = TREE_TYPE (phi_def); int_range_max arg_range; unsigned x; if (!irange::supports_type_p (type)) return false; // Start with an empty range, unioning in each argument's range. r.set_undefined (); for (x = 0; x < gimple_phi_num_args (phi); x++) { tree arg = gimple_phi_arg_def (phi, x); edge e = gimple_phi_arg_edge (phi, x); // Register potential dependencies for stale value tracking. m_cache.register_dependency (phi_def, arg); range_on_edge (arg_range, e, arg); r.union_ (arg_range); // Once the value reaches varying, stop looking. if (r.varying_p ()) break; } // If SCEV is available, query if this PHI has any knonwn values. if (scev_initialized_p () && !POINTER_TYPE_P (TREE_TYPE (phi_def))) { value_range loop_range; class loop *l = loop_containing_stmt (phi); if (l && loop_outer (l)) { range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi); if (!loop_range.varying_p ()) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " Loops range found for "); print_generic_expr (dump_file, phi_def, TDF_SLIM); fprintf (dump_file, ": "); loop_range.dump (dump_file); fprintf (dump_file, " and calculated range :"); r.dump (dump_file); fprintf (dump_file, "\n"); } r.intersect (loop_range); } } } return true; } // Calculate a range for call statement S and return it in R. // If a range cannot be calculated, return false. bool gimple_ranger::range_of_call (irange &r, gcall *call) { tree type = gimple_call_return_type (call); tree lhs = gimple_call_lhs (call); bool strict_overflow_p; if (!irange::supports_type_p (type)) return false; if (range_of_builtin_call (r, call)) ; else if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p)) r.set (build_int_cst (type, 0), TYPE_MAX_VALUE (type)); else if (gimple_call_nonnull_result_p (call) || gimple_call_nonnull_arg (call)) r = range_nonzero (type); else r.set_varying (type); // If there is an LHS, intersect that with what is known. if (lhs) { value_range def; def = gimple_range_global (lhs); r.intersect (def); } return true; } // Return the range of a __builtin_ubsan* in CALL and set it in R. // CODE is the type of ubsan call (PLUS_EXPR, MINUS_EXPR or // MULT_EXPR). static void range_of_builtin_ubsan_call (range_query &query, irange &r, gcall *call, tree_code code) { gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR || code == MULT_EXPR); tree type = gimple_call_return_type (call); range_operator *op = range_op_handler (code, type); gcc_checking_assert (op); int_range_max ir0, ir1; tree arg0 = gimple_call_arg (call, 0); tree arg1 = gimple_call_arg (call, 1); query.range_of_expr (ir0, arg0, call); query.range_of_expr (ir1, arg1, call); bool saved_flag_wrapv = flag_wrapv; // Pretend the arithmetic is wrapping. If there is any overflow, // we'll complain, but will actually do wrapping operation. flag_wrapv = 1; op->fold_range (r, type, ir0, ir1); flag_wrapv = saved_flag_wrapv; // If for both arguments vrp_valueize returned non-NULL, this should // have been already folded and if not, it wasn't folded because of // overflow. Avoid removing the UBSAN_CHECK_* calls in that case. if (r.singleton_p ()) r.set_varying (type); } // For a builtin in CALL, return a range in R if known and return // TRUE. Otherwise return FALSE. bool range_of_builtin_call (range_query &query, irange &r, gcall *call) { combined_fn func = gimple_call_combined_fn (call); if (func == CFN_LAST) return false; tree type = gimple_call_return_type (call); tree arg; int mini, maxi, zerov = 0, prec; scalar_int_mode mode; switch (func) { case CFN_BUILT_IN_CONSTANT_P: if (cfun->after_inlining) { r.set_zero (type); // r.equiv_clear (); return true; } arg = gimple_call_arg (call, 0); if (query.range_of_expr (r, arg, call) && r.singleton_p ()) { r.set (build_one_cst (type), build_one_cst (type)); return true; } break; CASE_CFN_FFS: CASE_CFN_POPCOUNT: // __builtin_ffs* and __builtin_popcount* return [0, prec]. arg = gimple_call_arg (call, 0); prec = TYPE_PRECISION (TREE_TYPE (arg)); mini = 0; maxi = prec; query.range_of_expr (r, arg, call); // If arg is non-zero, then ffs or popcount are non-zero. if (!range_includes_zero_p (&r)) mini = 1; // If some high bits are known to be zero, decrease the maximum. if (!r.undefined_p ()) { if (TYPE_SIGN (r.type ()) == SIGNED) range_cast (r, unsigned_type_for (r.type ())); wide_int max = r.upper_bound (); maxi = wi::floor_log2 (max) + 1; } r.set (build_int_cst (type, mini), build_int_cst (type, maxi)); return true; CASE_CFN_PARITY: r.set (build_zero_cst (type), build_one_cst (type)); return true; CASE_CFN_CLZ: // __builtin_c[lt]z* return [0, prec-1], except when the // argument is 0, but that is undefined behavior. // // For __builtin_c[lt]z* consider argument of 0 always undefined // behavior, for internal fns depending on C?Z_DEFINED_VALUE_AT_ZERO. arg = gimple_call_arg (call, 0); prec = TYPE_PRECISION (TREE_TYPE (arg)); mini = 0; maxi = prec - 1; mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg)); if (gimple_call_internal_p (call)) { if (optab_handler (clz_optab, mode) != CODE_FOR_nothing && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2) { // Only handle the single common value. if (zerov == prec) maxi = prec; else // Magic value to give up, unless we can prove arg is non-zero. mini = -2; } } query.range_of_expr (r, arg, call); // From clz of minimum we can compute result maximum. if (r.constant_p ()) { int newmaxi = prec - 1 - wi::floor_log2 (r.lower_bound ()); // Argument is unsigned, so do nothing if it is [0, ...] range. if (newmaxi != prec) { mini = 0; maxi = newmaxi; } } else if (!range_includes_zero_p (&r)) { maxi = prec - 1; mini = 0; } if (mini == -2) break; // From clz of maximum we can compute result minimum. if (r.constant_p ()) { int newmini = prec - 1 - wi::floor_log2 (r.upper_bound ()); if (newmini == prec) { // Argument range is [0, 0]. If CLZ_DEFINED_VALUE_AT_ZERO // is 2 with VALUE of prec, return [prec, prec], otherwise // ignore the range. if (maxi == prec) mini = prec; } else mini = newmini; } if (mini == -2) break; r.set (build_int_cst (type, mini), build_int_cst (type, maxi)); return true; CASE_CFN_CTZ: // __builtin_ctz* return [0, prec-1], except for when the // argument is 0, but that is undefined behavior. // // For __builtin_ctz* consider argument of 0 always undefined // behavior, for internal fns depending on CTZ_DEFINED_VALUE_AT_ZERO. arg = gimple_call_arg (call, 0); prec = TYPE_PRECISION (TREE_TYPE (arg)); mini = 0; maxi = prec - 1; mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg)); if (gimple_call_internal_p (call)) { if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2) { // Handle only the two common values. if (zerov == -1) mini = -1; else if (zerov == prec) maxi = prec; else // Magic value to give up, unless we can prove arg is non-zero. mini = -2; } } query.range_of_expr (r, arg, call); if (!r.undefined_p ()) { if (r.lower_bound () != 0) { mini = 0; maxi = prec - 1; } // If some high bits are known to be zero, we can decrease // the maximum. wide_int max = r.upper_bound (); if (max == 0) { // Argument is [0, 0]. If CTZ_DEFINED_VALUE_AT_ZERO // is 2 with value -1 or prec, return [-1, -1] or [prec, prec]. // Otherwise ignore the range. if (mini == -1) maxi = -1; else if (maxi == prec) mini = prec; } // If value at zero is prec and 0 is in the range, we can't lower // the upper bound. We could create two separate ranges though, // [0,floor_log2(max)][prec,prec] though. else if (maxi != prec) maxi = wi::floor_log2 (max); } if (mini == -2) break; r.set (build_int_cst (type, mini), build_int_cst (type, maxi)); return true; CASE_CFN_CLRSB: arg = gimple_call_arg (call, 0); prec = TYPE_PRECISION (TREE_TYPE (arg)); r.set (build_int_cst (type, 0), build_int_cst (type, prec - 1)); return true; case CFN_UBSAN_CHECK_ADD: range_of_builtin_ubsan_call (query, r, call, PLUS_EXPR); return true; case CFN_UBSAN_CHECK_SUB: range_of_builtin_ubsan_call (query, r, call, MINUS_EXPR); return true; case CFN_UBSAN_CHECK_MUL: range_of_builtin_ubsan_call (query, r, call, MULT_EXPR); return true; case CFN_GOACC_DIM_SIZE: case CFN_GOACC_DIM_POS: // Optimizing these two internal functions helps the loop // optimizer eliminate outer comparisons. Size is [1,N] // and pos is [0,N-1]. { bool is_pos = func == CFN_GOACC_DIM_POS; int axis = oacc_get_ifn_dim_arg (call); int size = oacc_get_fn_dim_size (current_function_decl, axis); if (!size) // If it's dynamic, the backend might know a hardware limitation. size = targetm.goacc.dim_limit (axis); r.set (build_int_cst (type, is_pos ? 0 : 1), size ? build_int_cst (type, size - is_pos) : vrp_val_max (type)); return true; } case CFN_BUILT_IN_STRLEN: if (tree lhs = gimple_call_lhs (call)) if (ptrdiff_type_node && (TYPE_PRECISION (ptrdiff_type_node) == TYPE_PRECISION (TREE_TYPE (lhs)))) { tree type = TREE_TYPE (lhs); tree max = vrp_val_max (ptrdiff_type_node); wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max))); tree range_min = build_zero_cst (type); // To account for the terminating NULL, the maximum length // is one less than the maximum array size, which in turn // is one less than PTRDIFF_MAX (or SIZE_MAX where it's // smaller than the former type). // FIXME: Use max_object_size() - 1 here. tree range_max = wide_int_to_tree (type, wmax - 2); r.set (range_min, range_max); return true; } break; default: break; } return false; } bool gimple_ranger::range_of_builtin_call (irange &r, gcall *call) { return ::range_of_builtin_call (*this, r, call); } // Calculate a range for COND_EXPR statement S and return it in R. // If a range cannot be calculated, return false. bool gimple_ranger::range_of_cond_expr (irange &r, gassign *s) { int_range_max cond_range, range1, range2; tree cond = gimple_assign_rhs1 (s); tree op1 = gimple_assign_rhs2 (s); tree op2 = gimple_assign_rhs3 (s); gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR); gcc_checking_assert (useless_type_conversion_p (TREE_TYPE (op1), TREE_TYPE (op2))); if (!irange::supports_type_p (TREE_TYPE (op1))) return false; range_of_expr (cond_range, cond, s); range_of_expr (range1, op1, s); range_of_expr (range2, op2, s); // If the condition is known, choose the appropriate expression. if (cond_range.singleton_p ()) { // False, pick second operand. if (cond_range.zero_p ()) r = range2; else r = range1; } else { r = range1; r.union_ (range2); } return true; } bool gimple_ranger::range_of_expr (irange &r, tree expr, gimple *stmt) { if (!gimple_range_ssa_p (expr)) return get_tree_range (r, expr); // If there is no statement, just get the global value. if (!stmt) { if (!m_cache.get_global_range (r, expr)) r = gimple_range_global (expr); return true; } basic_block bb = gimple_bb (stmt); gimple *def_stmt = SSA_NAME_DEF_STMT (expr); // If name is defined in this block, try to get an range from S. if (def_stmt && gimple_bb (def_stmt) == bb) range_of_stmt (r, def_stmt, expr); else // Otherwise OP comes from outside this block, use range on entry. range_on_entry (r, bb, expr); // No range yet, see if there is a dereference in the block. // We don't care if it's between the def and a use within a block // because the entire block must be executed anyway. // FIXME:?? For non-call exceptions we could have a statement throw // which causes an early block exit. // in which case we may need to walk from S back to the def/top of block // to make sure the deref happens between S and there before claiming // there is a deref. Punt for now. if (!cfun->can_throw_non_call_exceptions && r.varying_p () && m_cache.m_non_null.non_null_deref_p (expr, bb)) r = range_nonzero (TREE_TYPE (expr)); return true; } // Return the range of NAME on entry to block BB in R. void gimple_ranger::range_on_entry (irange &r, basic_block bb, tree name) { int_range_max entry_range; gcc_checking_assert (gimple_range_ssa_p (name)); // Start with any known range range_of_stmt (r, SSA_NAME_DEF_STMT (name), name); // Now see if there is any on_entry value which may refine it. if (m_cache.block_range (entry_range, bb, name)) r.intersect (entry_range); } // Calculate the range for NAME at the end of block BB and return it in R. // Return false if no range can be calculated. void gimple_ranger::range_on_exit (irange &r, basic_block bb, tree name) { // on-exit from the exit block? gcc_checking_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)); gcc_checking_assert (gimple_range_ssa_p (name)); gimple *s = last_stmt (bb); // If there is no statement in the block and this isn't the entry // block, go get the range_on_entry for this block. For the entry // block, a NULL stmt will return the global value for NAME. if (!s && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)) range_on_entry (r, bb, name); else range_of_expr (r, name, s); gcc_checking_assert (r.undefined_p () || range_compatible_p (r.type (), TREE_TYPE (name))); } // Calculate a range for NAME on edge E and return it in R. bool gimple_ranger::range_on_edge (irange &r, edge e, tree name) { int_range_max edge_range; gcc_checking_assert (irange::supports_type_p (TREE_TYPE (name))); // PHI arguments can be constants, catch these here. if (!gimple_range_ssa_p (name)) return range_of_expr (r, name); range_on_exit (r, e->src, name); gcc_checking_assert (r.undefined_p () || range_compatible_p (r.type(), TREE_TYPE (name))); // Check to see if NAME is defined on edge e. if (m_cache.outgoing_edge_range_p (edge_range, e, name)) r.intersect (edge_range); return true; } // Calculate a range for statement S and return it in R. If NAME is // provided it represents the SSA_NAME on the LHS of the statement. // It is only required if there is more than one lhs/output. Check // the global cache for NAME first to see if the evaluation can be // avoided. If a range cannot be calculated, return false and UNDEFINED. bool gimple_ranger::range_of_stmt (irange &r, gimple *s, tree name) { r.set_undefined (); if (!name) name = gimple_get_lhs (s); // If no name, simply call the base routine. if (!name) return calc_stmt (r, s, NULL_TREE); if (!gimple_range_ssa_p (name)) return false; // Check if the stmt has already been processed, and is not stale. if (m_cache.get_non_stale_global_range (r, name)) return true; // Otherwise calculate a new value. int_range_max tmp; calc_stmt (tmp, s, name); // Combine the new value with the old value. This is required because // the way value propagation works, when the IL changes on the fly we // can sometimes get different results. See PR 97741. r.intersect (tmp); m_cache.set_global_range (name, r); return true; } // This routine will export whatever global ranges are known to GCC // SSA_RANGE_NAME_INFO fields. void gimple_ranger::export_global_ranges () { unsigned x; int_range_max r; if (dump_file) { fprintf (dump_file, "Exported global range table\n"); fprintf (dump_file, "===========================\n"); } for ( x = 1; x < num_ssa_names; x++) { tree name = ssa_name (x); if (name && !SSA_NAME_IN_FREE_LIST (name) && gimple_range_ssa_p (name) && m_cache.get_global_range (r, name) && !r.varying_p()) { // Make sure the new range is a subset of the old range. int_range_max old_range; old_range = gimple_range_global (name); old_range.intersect (r); /* Disable this while we fix tree-ssa/pr61743-2.c. */ //gcc_checking_assert (old_range == r); // WTF? Can't write non-null pointer ranges?? stupid set_range_info! if (!POINTER_TYPE_P (TREE_TYPE (name)) && !r.undefined_p ()) { value_range vr = r; set_range_info (name, vr); if (dump_file) { print_generic_expr (dump_file, name , TDF_SLIM); fprintf (dump_file, " --> "); vr.dump (dump_file); fprintf (dump_file, "\n"); fprintf (dump_file, " irange : "); r.dump (dump_file); fprintf (dump_file, "\n"); } } } } } // Print the known table values to file F. void gimple_ranger::dump (FILE *f) { basic_block bb; FOR_EACH_BB_FN (bb, cfun) { unsigned x; edge_iterator ei; edge e; int_range_max range; fprintf (f, "\n=========== BB %d ============\n", bb->index); m_cache.dump (f, bb); dump_bb (f, bb, 4, TDF_NONE); // Now find any globals defined in this block. for (x = 1; x < num_ssa_names; x++) { tree name = ssa_name (x); if (gimple_range_ssa_p (name) && SSA_NAME_DEF_STMT (name) && gimple_bb (SSA_NAME_DEF_STMT (name)) == bb && m_cache.get_global_range (range, name)) { if (!range.varying_p ()) { print_generic_expr (f, name, TDF_SLIM); fprintf (f, " : "); range.dump (f); fprintf (f, "\n"); } } } // And now outgoing edges, if they define anything. FOR_EACH_EDGE (e, ei, bb->succs) { for (x = 1; x < num_ssa_names; x++) { tree name = gimple_range_ssa_p (ssa_name (x)); if (name && m_cache.outgoing_edge_range_p (range, e, name)) { gimple *s = SSA_NAME_DEF_STMT (name); // Only print the range if this is the def block, or // the on entry cache for either end of the edge is // set. if ((s && bb == gimple_bb (s)) || m_cache.block_range (range, bb, name, false) || m_cache.block_range (range, e->dest, name, false)) { range_on_edge (range, e, name); if (!range.varying_p ()) { fprintf (f, "%d->%d ", e->src->index, e->dest->index); char c = ' '; if (e->flags & EDGE_TRUE_VALUE) fprintf (f, " (T)%c", c); else if (e->flags & EDGE_FALSE_VALUE) fprintf (f, " (F)%c", c); else fprintf (f, " "); print_generic_expr (f, name, TDF_SLIM); fprintf(f, " : \t"); range.dump(f); fprintf (f, "\n"); } } } } } } m_cache.dump (dump_file, (dump_flags & TDF_DETAILS) != 0); } // If SCEV has any information about phi node NAME, return it as a range in R. void gimple_ranger::range_of_ssa_name_with_loop_info (irange &r, tree name, class loop *l, gphi *phi) { gcc_checking_assert (TREE_CODE (name) == SSA_NAME); tree min, max, type = TREE_TYPE (name); if (bounds_of_var_in_loop (&min, &max, this, l, phi, name)) { // ?? We could do better here. Since MIN/MAX can only be an // SSA, SSA +- INTEGER_CST, or INTEGER_CST, we could easily call // the ranger and solve anything not an integer. if (TREE_CODE (min) != INTEGER_CST) min = vrp_val_min (type); if (TREE_CODE (max) != INTEGER_CST) max = vrp_val_max (type); r.set (min, max); } else r.set_varying (type); } // -------------------------------------------------------------------------- // trace_ranger implementation. trace_ranger::trace_ranger () { indent = 0; trace_count = 0; } // If dumping, return true and print the prefix for the next output line. bool trace_ranger::dumping (unsigned counter, bool trailing) { if (dump_file && (dump_flags & TDF_DETAILS)) { // Print counter index as well as INDENT spaces. if (!trailing) fprintf (dump_file, " %-7u ", counter); else fprintf (dump_file, " "); unsigned x; for (x = 0; x< indent; x++) fputc (' ', dump_file); return true; } return false; } // After calling a routine, if dumping, print the CALLER, NAME, and RESULT, // returning RESULT. bool trace_ranger::trailer (unsigned counter, const char *caller, bool result, tree name, const irange &r) { if (dumping (counter, true)) { indent -= bump; fputs(result ? "TRUE : " : "FALSE : ", dump_file); fprintf (dump_file, "(%u) ", counter); fputs (caller, dump_file); fputs (" (",dump_file); if (name) print_generic_expr (dump_file, name, TDF_SLIM); fputs (") ",dump_file); if (result) { r.dump (dump_file); fputc('\n', dump_file); } else fputc('\n', dump_file); // Marks the end of a request. if (indent == 0) fputc('\n', dump_file); } return result; } // Tracing version of range_on_edge. Call it with printing wrappers. bool trace_ranger::range_on_edge (irange &r, edge e, tree name) { unsigned idx = ++trace_count; if (dumping (idx)) { fprintf (dump_file, "range_on_edge ("); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, ") on edge %d->%d\n", e->src->index, e->dest->index); indent += bump; } bool res = gimple_ranger::range_on_edge (r, e, name); trailer (idx, "range_on_edge", true, name, r); return res; } // Tracing version of range_on_entry. Call it with printing wrappers. void trace_ranger::range_on_entry (irange &r, basic_block bb, tree name) { unsigned idx = ++trace_count; if (dumping (idx)) { fprintf (dump_file, "range_on_entry ("); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, ") to BB %d\n", bb->index); indent += bump; } gimple_ranger::range_on_entry (r, bb, name); trailer (idx, "range_on_entry", true, name, r); } // Tracing version of range_on_exit. Call it with printing wrappers. void trace_ranger::range_on_exit (irange &r, basic_block bb, tree name) { unsigned idx = ++trace_count; if (dumping (idx)) { fprintf (dump_file, "range_on_exit ("); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, ") from BB %d\n", bb->index); indent += bump; } gimple_ranger::range_on_exit (r, bb, name); trailer (idx, "range_on_exit", true, name, r); } // Tracing version of range_of_stmt. Call it with printing wrappers. bool trace_ranger::range_of_stmt (irange &r, gimple *s, tree name) { bool res; unsigned idx = ++trace_count; if (dumping (idx)) { fprintf (dump_file, "range_of_stmt ("); if (name) print_generic_expr (dump_file, name, TDF_SLIM); fputs (") at stmt ", dump_file); print_gimple_stmt (dump_file, s, 0, TDF_SLIM); indent += bump; } res = gimple_ranger::range_of_stmt (r, s, name); return trailer (idx, "range_of_stmt", res, name, r); } // Tracing version of range_of_expr. Call it with printing wrappers. bool trace_ranger::range_of_expr (irange &r, tree name, gimple *s) { bool res; unsigned idx = ++trace_count; if (dumping (idx)) { fprintf (dump_file, "range_of_expr("); print_generic_expr (dump_file, name, TDF_SLIM); fputs (")", dump_file); if (s) { fputs (" at stmt ", dump_file); print_gimple_stmt (dump_file, s, 0, TDF_SLIM); } else fputs ("\n", dump_file); indent += bump; } res = gimple_ranger::range_of_expr (r, name, s); return trailer (idx, "range_of_expr", res, name, r); }