/* Basic block path solver. Copyright (C) 2021-2022 Free Software Foundation, Inc. Contributed by Aldy Hernandez . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "tree.h" #include "gimple.h" #include "cfganal.h" #include "value-range.h" #include "gimple-range.h" #include "tree-pretty-print.h" #include "gimple-range-path.h" #include "ssa.h" #include "tree-cfg.h" #include "gimple-iterator.h" // Internal construct to help facilitate debugging of solver. #define DEBUG_SOLVER (dump_file && (param_threader_debug == THREADER_DEBUG_ALL)) path_range_query::path_range_query (bool resolve, gimple_ranger *ranger) : m_cache (new ssa_global_cache), m_has_cache_entry (BITMAP_ALLOC (NULL)), m_resolve (resolve), m_alloced_ranger (!ranger) { if (m_alloced_ranger) m_ranger = new gimple_ranger; else m_ranger = ranger; m_oracle = new path_oracle (m_ranger->oracle ()); if (m_resolve && flag_checking) verify_marked_backedges (cfun); } path_range_query::~path_range_query () { delete m_oracle; if (m_alloced_ranger) delete m_ranger; BITMAP_FREE (m_has_cache_entry); delete m_cache; } // Return TRUE if NAME is an exit depenency for the path. bool path_range_query::exit_dependency_p (tree name) { return (TREE_CODE (name) == SSA_NAME && bitmap_bit_p (m_exit_dependencies, SSA_NAME_VERSION (name))); } // Mark cache entry for NAME as unused. void path_range_query::clear_cache (tree name) { unsigned v = SSA_NAME_VERSION (name); bitmap_clear_bit (m_has_cache_entry, v); } // If NAME has a cache entry, return it in R, and return TRUE. inline bool path_range_query::get_cache (vrange &r, tree name) { if (!gimple_range_ssa_p (name)) return get_global_range_query ()->range_of_expr (r, name); unsigned v = SSA_NAME_VERSION (name); if (bitmap_bit_p (m_has_cache_entry, v)) return m_cache->get_global_range (r, name); return false; } // Set the cache entry for NAME to R. void path_range_query::set_cache (const vrange &r, tree name) { unsigned v = SSA_NAME_VERSION (name); bitmap_set_bit (m_has_cache_entry, v); m_cache->set_global_range (name, r); } void path_range_query::dump (FILE *dump_file) { push_dump_file save (dump_file, dump_flags & ~TDF_DETAILS); if (m_path.is_empty ()) return; unsigned i; bitmap_iterator bi; dump_ranger (dump_file, m_path); fprintf (dump_file, "Exit dependencies:\n"); EXECUTE_IF_SET_IN_BITMAP (m_exit_dependencies, 0, i, bi) { tree name = ssa_name (i); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, "\n"); } m_cache->dump (dump_file); } void path_range_query::debug () { dump (stderr); } // Return TRUE if NAME is defined outside the current path. bool path_range_query::defined_outside_path (tree name) { gimple *def = SSA_NAME_DEF_STMT (name); basic_block bb = gimple_bb (def); return !bb || !m_path.contains (bb); } // Return the range of NAME on entry to the path. void path_range_query::range_on_path_entry (vrange &r, tree name) { gcc_checking_assert (defined_outside_path (name)); basic_block entry = entry_bb (); m_ranger->range_on_entry (r, entry, name); } // Return the range of NAME at the end of the path being analyzed. bool path_range_query::internal_range_of_expr (vrange &r, tree name, gimple *stmt) { if (!r.supports_type_p (TREE_TYPE (name))) return false; if (get_cache (r, name)) return true; if (m_resolve && defined_outside_path (name)) { range_on_path_entry (r, name); set_cache (r, name); return true; } if (stmt && range_defined_in_block (r, name, gimple_bb (stmt))) { if (TREE_CODE (name) == SSA_NAME) { Value_Range glob (TREE_TYPE (name)); gimple_range_global (glob, name); r.intersect (glob); } set_cache (r, name); return true; } gimple_range_global (r, name); return true; } bool path_range_query::range_of_expr (vrange &r, tree name, gimple *stmt) { if (internal_range_of_expr (r, name, stmt)) { if (r.undefined_p ()) m_undefined_path = true; return true; } return false; } bool path_range_query::unreachable_path_p () { return m_undefined_path; } // Initialize the current path to PATH. The current block is set to // the entry block to the path. // // Note that the blocks are in reverse order, so the exit block is // path[0]. void path_range_query::set_path (const vec &path) { gcc_checking_assert (path.length () > 1); m_path = path.copy (); m_pos = m_path.length () - 1; bitmap_clear (m_has_cache_entry); } bool path_range_query::ssa_defined_in_bb (tree name, basic_block bb) { return (TREE_CODE (name) == SSA_NAME && SSA_NAME_DEF_STMT (name) && gimple_bb (SSA_NAME_DEF_STMT (name)) == bb); } // Return the range of the result of PHI in R. // // Since PHIs are calculated in parallel at the beginning of the // block, we must be careful to never save anything to the cache here. // It is the caller's responsibility to adjust the cache. Also, // calculating the PHI's range must not trigger additional lookups. void path_range_query::ssa_range_in_phi (vrange &r, gphi *phi) { tree name = gimple_phi_result (phi); if (at_entry ()) { if (m_resolve && m_ranger->range_of_expr (r, name, phi)) return; // Try to fold the phi exclusively with global or cached values. // This will get things like PHI <5(99), 6(88)>. We do this by // calling range_of_expr with no context. unsigned nargs = gimple_phi_num_args (phi); Value_Range arg_range (TREE_TYPE (name)); r.set_undefined (); for (size_t i = 0; i < nargs; ++i) { tree arg = gimple_phi_arg_def (phi, i); if (range_of_expr (arg_range, arg, /*stmt=*/NULL)) r.union_ (arg_range); else { r.set_varying (TREE_TYPE (name)); return; } } return; } basic_block bb = gimple_bb (phi); basic_block prev = prev_bb (); edge e_in = find_edge (prev, bb); tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e_in); // Avoid using the cache for ARGs defined in this block, as // that could create an ordering problem. if (ssa_defined_in_bb (arg, bb) || !get_cache (r, arg)) { if (m_resolve) { Value_Range tmp (TREE_TYPE (name)); // Using both the range on entry to the path, and the // range on this edge yields significantly better // results. if (TREE_CODE (arg) == SSA_NAME && defined_outside_path (arg)) range_on_path_entry (r, arg); else r.set_varying (TREE_TYPE (name)); m_ranger->range_on_edge (tmp, e_in, arg); r.intersect (tmp); return; } r.set_varying (TREE_TYPE (name)); } } // If NAME is defined in BB, set R to the range of NAME, and return // TRUE. Otherwise, return FALSE. bool path_range_query::range_defined_in_block (vrange &r, tree name, basic_block bb) { gimple *def_stmt = SSA_NAME_DEF_STMT (name); basic_block def_bb = gimple_bb (def_stmt); if (def_bb != bb) return false; if (get_cache (r, name)) return true; if (gimple_code (def_stmt) == GIMPLE_PHI) ssa_range_in_phi (r, as_a (def_stmt)); else { if (name) get_path_oracle ()->killing_def (name); if (!range_of_stmt (r, def_stmt, name)) r.set_varying (TREE_TYPE (name)); } if (bb && POINTER_TYPE_P (TREE_TYPE (name))) m_ranger->m_cache.m_exit.maybe_adjust_range (r, name, bb); if (DEBUG_SOLVER && (bb || !r.varying_p ())) { fprintf (dump_file, "range_defined_in_block (BB%d) for ", bb ? bb->index : -1); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, " is "); r.dump (dump_file); fprintf (dump_file, "\n"); } return true; } // Compute ranges defined in the PHIs in this block. void path_range_query::compute_ranges_in_phis (basic_block bb) { auto_bitmap phi_set; // PHIs must be resolved simultaneously on entry to the block // because any dependencies must be satistifed with values on entry. // Thus, we calculate all PHIs first, and then update the cache at // the end. for (auto iter = gsi_start_phis (bb); !gsi_end_p (iter); gsi_next (&iter)) { gphi *phi = iter.phi (); tree name = gimple_phi_result (phi); if (!exit_dependency_p (name)) continue; Value_Range r (TREE_TYPE (name)); if (range_defined_in_block (r, name, bb)) { unsigned v = SSA_NAME_VERSION (name); set_cache (r, name); bitmap_set_bit (phi_set, v); // Pretend we don't have a cache entry for this name until // we're done with all PHIs. bitmap_clear_bit (m_has_cache_entry, v); } } bitmap_ior_into (m_has_cache_entry, phi_set); } // Return TRUE if relations may be invalidated after crossing edge E. bool path_range_query::relations_may_be_invalidated (edge e) { // As soon as the path crosses a back edge, we can encounter // definitions of SSA_NAMEs that may have had a use in the path // already, so this will then be a new definition. The relation // code is all designed around seeing things in dominator order, and // crossing a back edge in the path violates this assumption. return (e->flags & EDGE_DFS_BACK); } // Compute ranges defined in the current block, or exported to the // next block. void path_range_query::compute_ranges_in_block (basic_block bb) { bitmap_iterator bi; unsigned i; if (m_resolve && !at_entry ()) compute_phi_relations (bb, prev_bb ()); // Force recalculation of any names in the cache that are defined in // this block. This can happen on interdependent SSA/phis in loops. EXECUTE_IF_SET_IN_BITMAP (m_exit_dependencies, 0, i, bi) { tree name = ssa_name (i); if (ssa_defined_in_bb (name, bb)) clear_cache (name); } // Solve dependencies defined in this block, starting with the PHIs... compute_ranges_in_phis (bb); // ...and then the rest of the dependencies. EXECUTE_IF_SET_IN_BITMAP (m_exit_dependencies, 0, i, bi) { tree name = ssa_name (i); Value_Range r (TREE_TYPE (name)); if (gimple_code (SSA_NAME_DEF_STMT (name)) != GIMPLE_PHI && range_defined_in_block (r, name, bb)) set_cache (r, name); } if (at_exit ()) return; // Solve dependencies that are exported to the next block. basic_block next = next_bb (); edge e = find_edge (bb, next); if (m_resolve && relations_may_be_invalidated (e)) { if (DEBUG_SOLVER) fprintf (dump_file, "Resetting relations as they may be invalidated in %d->%d.\n", e->src->index, e->dest->index); path_oracle *p = get_path_oracle (); p->reset_path (); // ?? Instead of nuking the root oracle altogether, we could // reset the path oracle to search for relations from the top of // the loop with the root oracle. Something for future development. p->set_root_oracle (nullptr); } gori_compute &g = m_ranger->gori (); bitmap exports = g.exports (bb); EXECUTE_IF_AND_IN_BITMAP (m_exit_dependencies, exports, 0, i, bi) { tree name = ssa_name (i); Value_Range r (TREE_TYPE (name)); if (g.outgoing_edge_range_p (r, e, name, *this)) { Value_Range cached_range (TREE_TYPE (name)); if (get_cache (cached_range, name)) r.intersect (cached_range); set_cache (r, name); if (DEBUG_SOLVER) { fprintf (dump_file, "outgoing_edge_range_p for "); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, " on edge %d->%d ", e->src->index, e->dest->index); fprintf (dump_file, "is "); r.dump (dump_file); fprintf (dump_file, "\n"); } } } if (m_resolve) compute_outgoing_relations (bb, next); } // Adjust all pointer exit dependencies in BB with non-null information. void path_range_query::adjust_for_non_null_uses (basic_block bb) { int_range_max r; bitmap_iterator bi; unsigned i; EXECUTE_IF_SET_IN_BITMAP (m_exit_dependencies, 0, i, bi) { tree name = ssa_name (i); if (!POINTER_TYPE_P (TREE_TYPE (name))) continue; if (get_cache (r, name)) { if (r.nonzero_p ()) continue; } else r.set_varying (TREE_TYPE (name)); if (m_ranger->m_cache.m_exit.maybe_adjust_range (r, name, bb)) set_cache (r, name); } } // If NAME is a supported SSA_NAME, add it to the bitmap in dependencies. bool path_range_query::add_to_exit_dependencies (tree name, bitmap dependencies) { if (TREE_CODE (name) == SSA_NAME && Value_Range::supports_type_p (TREE_TYPE (name))) return bitmap_set_bit (dependencies, SSA_NAME_VERSION (name)); return false; } // Compute the exit dependencies to PATH. These are essentially the // SSA names used to calculate the final conditional along the path. void path_range_query::compute_exit_dependencies (bitmap dependencies, const vec &path) { // Start with the imports from the exit block... basic_block exit = path[0]; gori_compute &gori = m_ranger->gori (); bitmap_copy (dependencies, gori.imports (exit)); auto_vec worklist (bitmap_count_bits (dependencies)); bitmap_iterator bi; unsigned i; EXECUTE_IF_SET_IN_BITMAP (dependencies, 0, i, bi) { tree name = ssa_name (i); worklist.quick_push (name); } // ...and add any operands used to define these imports. while (!worklist.is_empty ()) { tree name = worklist.pop (); gimple *def_stmt = SSA_NAME_DEF_STMT (name); if (SSA_NAME_IS_DEFAULT_DEF (name) || !path.contains (gimple_bb (def_stmt))) continue; if (gphi *phi = dyn_cast (def_stmt)) { for (size_t i = 0; i < gimple_phi_num_args (phi); ++i) { edge e = gimple_phi_arg_edge (phi, i); tree arg = gimple_phi_arg (phi, i)->def; if (TREE_CODE (arg) == SSA_NAME && path.contains (e->src) && bitmap_set_bit (dependencies, SSA_NAME_VERSION (arg))) worklist.safe_push (arg); } } else if (gassign *ass = dyn_cast (def_stmt)) { tree ssa[3]; if (range_op_handler (ass)) { ssa[0] = gimple_range_ssa_p (gimple_range_operand1 (ass)); ssa[1] = gimple_range_ssa_p (gimple_range_operand2 (ass)); ssa[2] = NULL_TREE; } else if (gimple_assign_rhs_code (ass) == COND_EXPR) { ssa[0] = gimple_range_ssa_p (gimple_assign_rhs1 (ass)); ssa[1] = gimple_range_ssa_p (gimple_assign_rhs2 (ass)); ssa[2] = gimple_range_ssa_p (gimple_assign_rhs3 (ass)); } else continue; for (unsigned j = 0; j < 3; ++j) { tree rhs = ssa[j]; if (rhs && add_to_exit_dependencies (rhs, dependencies)) worklist.safe_push (rhs); } } } // Exported booleans along the path, may help conditionals. if (m_resolve) for (i = 0; i < path.length (); ++i) { basic_block bb = path[i]; tree name; FOR_EACH_GORI_EXPORT_NAME (gori, bb, name) if (TREE_CODE (TREE_TYPE (name)) == BOOLEAN_TYPE) bitmap_set_bit (dependencies, SSA_NAME_VERSION (name)); } } // Compute the ranges for DEPENDENCIES along PATH. // // DEPENDENCIES are path exit dependencies. They are the set of SSA // names, any of which could potentially change the value of the final // conditional in PATH. If none is given, the exit dependencies are // calculated from the final conditional in the path. void path_range_query::compute_ranges (const vec &path, const bitmap_head *dependencies) { if (DEBUG_SOLVER) fprintf (dump_file, "\n==============================================\n"); set_path (path); m_undefined_path = false; if (dependencies) bitmap_copy (m_exit_dependencies, dependencies); else compute_exit_dependencies (m_exit_dependencies, m_path); if (m_resolve) get_path_oracle ()->reset_path (); if (DEBUG_SOLVER) { fprintf (dump_file, "path_range_query: compute_ranges for path: "); for (unsigned i = path.length (); i > 0; --i) { basic_block bb = path[i - 1]; fprintf (dump_file, "%d", bb->index); if (i > 1) fprintf (dump_file, "->"); } fprintf (dump_file, "\n"); } while (1) { basic_block bb = curr_bb (); compute_ranges_in_block (bb); adjust_for_non_null_uses (bb); if (at_exit ()) break; move_next (); } if (DEBUG_SOLVER) { get_path_oracle ()->dump (dump_file); dump (dump_file); } } // Convenience function to compute ranges along a path consisting of // E->SRC and E->DEST. void path_range_query::compute_ranges (edge e) { auto_vec bbs (2); bbs.quick_push (e->dest); bbs.quick_push (e->src); compute_ranges (bbs); } // A folding aid used to register and query relations along a path. // When queried, it returns relations as they would appear on exit to // the path. // // Relations are registered on entry so the path_oracle knows which // block to query the root oracle at when a relation lies outside the // path. However, when queried we return the relation on exit to the // path, since the root_oracle ignores the registered. class jt_fur_source : public fur_depend { public: jt_fur_source (gimple *s, path_range_query *, gori_compute *, const vec &); relation_kind query_relation (tree op1, tree op2) override; void register_relation (gimple *, relation_kind, tree op1, tree op2) override; void register_relation (edge, relation_kind, tree op1, tree op2) override; private: basic_block m_entry; }; jt_fur_source::jt_fur_source (gimple *s, path_range_query *query, gori_compute *gori, const vec &path) : fur_depend (s, gori, query) { gcc_checking_assert (!path.is_empty ()); m_entry = path[path.length () - 1]; if (dom_info_available_p (CDI_DOMINATORS)) m_oracle = query->oracle (); else m_oracle = NULL; } // Ignore statement and register relation on entry to path. void jt_fur_source::register_relation (gimple *, relation_kind k, tree op1, tree op2) { if (m_oracle) m_oracle->register_relation (m_entry, k, op1, op2); } // Ignore edge and register relation on entry to path. void jt_fur_source::register_relation (edge, relation_kind k, tree op1, tree op2) { if (m_oracle) m_oracle->register_relation (m_entry, k, op1, op2); } relation_kind jt_fur_source::query_relation (tree op1, tree op2) { if (!m_oracle) return VREL_VARYING; if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME) return VREL_VARYING; return m_oracle->query_relation (m_entry, op1, op2); } // Return the range of STMT at the end of the path being analyzed. bool path_range_query::range_of_stmt (vrange &r, gimple *stmt, tree) { tree type = gimple_range_type (stmt); if (!type || !r.supports_type_p (type)) return false; // If resolving unknowns, fold the statement making use of any // relations along the path. if (m_resolve) { fold_using_range f; jt_fur_source src (stmt, this, &m_ranger->gori (), m_path); if (!f.fold_stmt (r, stmt, src)) r.set_varying (type); } // Otherwise, fold without relations. else if (!fold_range (r, stmt, this)) r.set_varying (type); return true; } // If possible, register the relation on the incoming edge E into PHI. void path_range_query::maybe_register_phi_relation (gphi *phi, edge e) { tree arg = gimple_phi_arg_def (phi, e->dest_idx); if (!gimple_range_ssa_p (arg)) return; if (relations_may_be_invalidated (e)) return; basic_block bb = gimple_bb (phi); tree result = gimple_phi_result (phi); // Avoid recording the equivalence if the arg is defined in this // block, as that could create an ordering problem. if (ssa_defined_in_bb (arg, bb)) return; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "maybe_register_phi_relation in bb%d:", bb->index); get_path_oracle ()->killing_def (result); m_oracle->register_relation (entry_bb (), VREL_EQ, arg, result); } // Compute relations for each PHI in BB. For example: // // x_5 = PHI // // If the path flows through BB5, we can register that x_5 == y_9. void path_range_query::compute_phi_relations (basic_block bb, basic_block prev) { if (prev == NULL) return; edge e_in = find_edge (prev, bb); for (gphi_iterator iter = gsi_start_phis (bb); !gsi_end_p (iter); gsi_next (&iter)) { gphi *phi = iter.phi (); tree result = gimple_phi_result (phi); unsigned nargs = gimple_phi_num_args (phi); if (!exit_dependency_p (result)) continue; for (size_t i = 0; i < nargs; ++i) if (e_in == gimple_phi_arg_edge (phi, i)) { maybe_register_phi_relation (phi, e_in); break; } } } // Compute outgoing relations from BB to NEXT. void path_range_query::compute_outgoing_relations (basic_block bb, basic_block next) { if (gcond *cond = safe_dyn_cast (last_stmt (bb))) { int_range<2> r; edge e0 = EDGE_SUCC (bb, 0); edge e1 = EDGE_SUCC (bb, 1); if (e0->dest == next) gcond_edge_range (r, e0); else if (e1->dest == next) gcond_edge_range (r, e1); else gcc_unreachable (); jt_fur_source src (NULL, this, &m_ranger->gori (), m_path); src.register_outgoing_edges (cond, r, e0, e1); } }