/* Gimple ranger SSA cache implementation. Copyright (C) 2017-2020 Free Software Foundation, Inc. Contributed by Andrew MacLeod . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "insn-codes.h" #include "tree.h" #include "gimple.h" #include "ssa.h" #include "gimple-pretty-print.h" #include "gimple-range.h" // During contructor, allocate the vector of ssa_names. non_null_ref::non_null_ref () { m_nn.create (0); m_nn.safe_grow_cleared (num_ssa_names); bitmap_obstack_initialize (&m_bitmaps); } // Free any bitmaps which were allocated,a swell as the vector itself. non_null_ref::~non_null_ref () { bitmap_obstack_release (&m_bitmaps); m_nn.release (); } // Return true if NAME has a non-null dereference in block bb. If this is the // first query for NAME, calculate the summary first. bool non_null_ref::non_null_deref_p (tree name, basic_block bb) { if (!POINTER_TYPE_P (TREE_TYPE (name))) return false; unsigned v = SSA_NAME_VERSION (name); if (!m_nn[v]) process_name (name); return bitmap_bit_p (m_nn[v], bb->index); } // Allocate an populate the bitmap for NAME. An ON bit for a block // index indicates there is a non-null reference in that block. In // order to populate the bitmap, a quick run of all the immediate uses // are made and the statement checked to see if a non-null dereference // is made on that statement. void non_null_ref::process_name (tree name) { unsigned v = SSA_NAME_VERSION (name); use_operand_p use_p; imm_use_iterator iter; bitmap b; // Only tracked for pointers. if (!POINTER_TYPE_P (TREE_TYPE (name))) return; // Already processed if a bitmap has been allocated. if (m_nn[v]) return; b = BITMAP_ALLOC (&m_bitmaps); // Loop over each immediate use and see if it implies a non-null value. FOR_EACH_IMM_USE_FAST (use_p, iter, name) { gimple *s = USE_STMT (use_p); unsigned index = gimple_bb (s)->index; tree value; enum tree_code comp_code; // If bit is already set for this block, dont bother looking again. if (bitmap_bit_p (b, index)) continue; // If we can infer a != 0 range, then set the bit for this BB if (infer_value_range (s, name, &comp_code, &value)) { if (comp_code == NE_EXPR && integer_zerop (value)) bitmap_set_bit (b, index); } } m_nn[v] = b; } // ------------------------------------------------------------------------- // This class implements a cache of ranges indexed by basic block. It // represents all that is known about an SSA_NAME on entry to each // block. It caches a range-for-type varying range so it doesn't need // to be reformed all the time. If a range is ever always associated // with a type, we can use that instead. Whenever varying is being // set for a block, the cache simply points to this cached one rather // than create a new one each time. class ssa_block_ranges { public: ssa_block_ranges (tree t, irange_allocator *allocator); ~ssa_block_ranges (); void set_bb_range (const basic_block bb, const irange &r); void set_bb_varying (const basic_block bb); bool get_bb_range (irange &r, const basic_block bb); bool bb_range_p (const basic_block bb); void dump(FILE *f); private: vec m_tab; irange *m_type_range; tree m_type; irange_allocator *m_irange_allocator; }; // Initialize a block cache for an ssa_name of type T. ssa_block_ranges::ssa_block_ranges (tree t, irange_allocator *allocator) { gcc_checking_assert (TYPE_P (t)); m_type = t; m_irange_allocator = allocator; m_tab.create (0); m_tab.safe_grow_cleared (last_basic_block_for_fn (cfun)); // Create the cached type range. m_type_range = m_irange_allocator->allocate (2); m_type_range->set_varying (t); m_tab[ENTRY_BLOCK_PTR_FOR_FN (cfun)->index] = m_type_range; } // Destruct block range. ssa_block_ranges::~ssa_block_ranges () { m_tab.release (); } // Set the range for block BB to be R. void ssa_block_ranges::set_bb_range (const basic_block bb, const irange &r) { irange *m = m_irange_allocator->allocate (r); m_tab[bb->index] = m; } // Set the range for block BB to the range for the type. void ssa_block_ranges::set_bb_varying (const basic_block bb) { m_tab[bb->index] = m_type_range; } // Return the range associated with block BB in R. Return false if // there is no range. bool ssa_block_ranges::get_bb_range (irange &r, const basic_block bb) { irange *m = m_tab[bb->index]; if (m) { r = *m; return true; } return false; } // Return true if a range is present. bool ssa_block_ranges::bb_range_p (const basic_block bb) { return m_tab[bb->index] != NULL; } // Print the list of known ranges for file F in a nice format. void ssa_block_ranges::dump (FILE *f) { basic_block bb; int_range_max r; FOR_EACH_BB_FN (bb, cfun) if (get_bb_range (r, bb)) { fprintf (f, "BB%d -> ", bb->index); r.dump (f); fprintf (f, "\n"); } } // ------------------------------------------------------------------------- // Initialize the block cache. block_range_cache::block_range_cache () { m_ssa_ranges.create (0); m_ssa_ranges.safe_grow_cleared (num_ssa_names); m_irange_allocator = new irange_allocator; } // Remove any m_block_caches which have been created. block_range_cache::~block_range_cache () { unsigned x; for (x = 0; x < m_ssa_ranges.length (); ++x) { if (m_ssa_ranges[x]) delete m_ssa_ranges[x]; } delete m_irange_allocator; // Release the vector itself. m_ssa_ranges.release (); } // Return a reference to the m_block_cache for NAME. If it has not been // accessed yet, allocate it. ssa_block_ranges & block_range_cache::get_block_ranges (tree name) { unsigned v = SSA_NAME_VERSION (name); if (v >= m_ssa_ranges.length ()) m_ssa_ranges.safe_grow_cleared (num_ssa_names + 1); if (!m_ssa_ranges[v]) m_ssa_ranges[v] = new ssa_block_ranges (TREE_TYPE (name), m_irange_allocator); return *(m_ssa_ranges[v]); } // Set the range for NAME on entry to block BB to R. void block_range_cache::set_bb_range (tree name, const basic_block bb, const irange &r) { return get_block_ranges (name).set_bb_range (bb, r); } // Set the range for NAME on entry to block BB to varying. void block_range_cache::set_bb_varying (tree name, const basic_block bb) { return get_block_ranges (name).set_bb_varying (bb); } // Return the range for NAME on entry to BB in R. Return true if there // is one. bool block_range_cache::get_bb_range (irange &r, tree name, const basic_block bb) { return get_block_ranges (name).get_bb_range (r, bb); } // Return true if NAME has a range set in block BB. bool block_range_cache::bb_range_p (tree name, const basic_block bb) { return get_block_ranges (name).bb_range_p (bb); } // Print all known block caches to file F. void block_range_cache::dump (FILE *f) { unsigned x; for (x = 0; x < m_ssa_ranges.length (); ++x) { if (m_ssa_ranges[x]) { fprintf (f, " Ranges for "); print_generic_expr (f, ssa_name (x), TDF_NONE); fprintf (f, ":\n"); m_ssa_ranges[x]->dump (f); fprintf (f, "\n"); } } } // Print all known ranges on entry to blobk BB to file F. void block_range_cache::dump (FILE *f, basic_block bb, bool print_varying) { unsigned x; int_range_max r; bool summarize_varying = false; for (x = 1; x < m_ssa_ranges.length (); ++x) { if (!gimple_range_ssa_p (ssa_name (x))) continue; if (m_ssa_ranges[x] && m_ssa_ranges[x]->get_bb_range (r, bb)) { if (!print_varying && r.varying_p ()) { summarize_varying = true; continue; } print_generic_expr (f, ssa_name (x), TDF_NONE); fprintf (f, "\t"); r.dump(f); fprintf (f, "\n"); } } // If there were any varying entries, lump them all together. if (summarize_varying) { fprintf (f, "VARYING_P on entry : "); for (x = 1; x < num_ssa_names; ++x) { if (!gimple_range_ssa_p (ssa_name (x))) continue; if (m_ssa_ranges[x] && m_ssa_ranges[x]->get_bb_range (r, bb)) { if (r.varying_p ()) { print_generic_expr (f, ssa_name (x), TDF_NONE); fprintf (f, " "); } } } fprintf (f, "\n"); } } // ------------------------------------------------------------------------- // Initialize a global cache. ssa_global_cache::ssa_global_cache () { m_tab.create (0); m_tab.safe_grow_cleared (num_ssa_names); m_irange_allocator = new irange_allocator; } // Deconstruct a global cache. ssa_global_cache::~ssa_global_cache () { m_tab.release (); delete m_irange_allocator; } // Retrieve the global range of NAME from cache memory if it exists. // Return the value in R. bool ssa_global_cache::get_global_range (irange &r, tree name) const { unsigned v = SSA_NAME_VERSION (name); if (v >= m_tab.length ()) return false; irange *stow = m_tab[v]; if (!stow) return false; r = *stow; return true; } // Set the range for NAME to R in the global cache. void ssa_global_cache::set_global_range (tree name, const irange &r) { unsigned v = SSA_NAME_VERSION (name); if (v >= m_tab.length ()) m_tab.safe_grow_cleared (num_ssa_names + 1); irange *m = m_tab[v]; if (m && m->fits_p (r)) *m = r; else m_tab[v] = m_irange_allocator->allocate (r); } // Set the range for NAME to R in the glonbal cache. void ssa_global_cache::clear_global_range (tree name) { unsigned v = SSA_NAME_VERSION (name); if (v >= m_tab.length ()) m_tab.safe_grow_cleared (num_ssa_names + 1); m_tab[v] = NULL; } // Clear the global cache. void ssa_global_cache::clear () { memset (m_tab.address(), 0, m_tab.length () * sizeof (irange *)); } // Dump the contents of the global cache to F. void ssa_global_cache::dump (FILE *f) { unsigned x; int_range_max r; fprintf (f, "Non-varying global ranges:\n"); fprintf (f, "=========================:\n"); for ( x = 1; x < num_ssa_names; x++) if (gimple_range_ssa_p (ssa_name (x)) && get_global_range (r, ssa_name (x)) && !r.varying_p ()) { print_generic_expr (f, ssa_name (x), TDF_NONE); fprintf (f, " : "); r.dump (f); fprintf (f, "\n"); } fputc ('\n', f); } // -------------------------------------------------------------------------- ranger_cache::ranger_cache (range_query &q) : query (q) { m_workback.create (0); m_workback.safe_grow_cleared (last_basic_block_for_fn (cfun)); m_update_list.create (0); m_update_list.safe_grow_cleared (last_basic_block_for_fn (cfun)); m_update_list.truncate (0); m_poor_value_list.create (0); m_poor_value_list.safe_grow_cleared (20); m_poor_value_list.truncate (0); } ranger_cache::~ranger_cache () { m_poor_value_list.release (); m_workback.release (); m_update_list.release (); } // Push a request for a new lookup in block BB of name. Return true if // the request is actually made (ie, isn't a duplicate). bool ranger_cache::push_poor_value (basic_block bb, tree name) { if (m_poor_value_list.length ()) { // Don't push anything else to the same block. If there are multiple // things required, another request will come during a later evaluation // and this prevents oscillation building uneccessary depth. if ((m_poor_value_list.last ()).bb == bb) return false; } struct update_record rec; rec.bb = bb; rec.calc = name; m_poor_value_list.safe_push (rec); return true; } // Provide lookup for the gori-computes class to access the best known range // of an ssa_name in any given basic block. Note, this does no additonal // lookups, just accesses the data that is already known. void ranger_cache::ssa_range_in_bb (irange &r, tree name, basic_block bb) { gimple *s = SSA_NAME_DEF_STMT (name); basic_block def_bb = ((s && gimple_bb (s)) ? gimple_bb (s) : ENTRY_BLOCK_PTR_FOR_FN (cfun)); if (bb == def_bb) { // NAME is defined in this block, so request its current value if (!m_globals.get_global_range (r, name)) { // If it doesn't have a value calculated, it means it's a // "poor" value being used in some calculation. Queue it up // as a poor value to be improved later. r = gimple_range_global (name); if (push_poor_value (bb, name)) { if (DEBUG_RANGE_CACHE) { fprintf (dump_file, "*CACHE* no global def in bb %d for ", bb->index); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, " depth : %d\n", m_poor_value_list.length ()); } } } } // Look for the on-entry value of name in BB from the cache. else if (!m_on_entry.get_bb_range (r, name, bb)) { // If it has no entry then mark this as a poor value. if (push_poor_value (bb, name)) { if (DEBUG_RANGE_CACHE) { fprintf (dump_file, "*CACHE* no on entry range in bb %d for ", bb->index); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, " depth : %d\n", m_poor_value_list.length ()); } } // Try to pick up any known global value as a best guess for now. if (!m_globals.get_global_range (r, name)) r = gimple_range_global (name); } // Check if pointers have any non-null dereferences. Non-call // exceptions mean we could throw in the middle of the block, so just // punt for now on those. if (r.varying_p () && m_non_null.non_null_deref_p (name, bb) && !cfun->can_throw_non_call_exceptions) r = range_nonzero (TREE_TYPE (name)); } // Return a static range for NAME on entry to basic block BB in R. If // calc is true, fill any cache entries required between BB and the // def block for NAME. Otherwise, return false if the cache is empty. bool ranger_cache::block_range (irange &r, basic_block bb, tree name, bool calc) { gcc_checking_assert (gimple_range_ssa_p (name)); if (calc) { gimple *def_stmt = SSA_NAME_DEF_STMT (name); basic_block def_bb = NULL; if (def_stmt) def_bb = gimple_bb (def_stmt);; if (!def_bb) { // If we get to the entry block, this better be a default def // or range_on_entry was called for a block not dominated by // the def. gcc_checking_assert (SSA_NAME_IS_DEFAULT_DEF (name)); def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun); } // There is no range on entry for the definition block. if (def_bb == bb) return false; // Otherwise, go figure out what is known in predecessor blocks. fill_block_cache (name, bb, def_bb); gcc_checking_assert (m_on_entry.bb_range_p (name, bb)); } return m_on_entry.get_bb_range (r, name, bb); } // Add BB to the list of blocks to update, unless it's already in the list. void ranger_cache::add_to_update (basic_block bb) { if (!m_update_list.contains (bb)) m_update_list.quick_push (bb); } // If there is anything in the iterative update_list, continue // processing NAME until the list of blocks is empty. void ranger_cache::iterative_cache_update (tree name) { basic_block bb; edge_iterator ei; edge e; int_range_max new_range; int_range_max current_range; int_range_max e_range; // Process each block by seeing if its calculated range on entry is // the same as its cached value. If there is a difference, update // the cache to reflect the new value, and check to see if any // successors have cache entries which may need to be checked for // updates. while (m_update_list.length () > 0) { bb = m_update_list.pop (); gcc_checking_assert (m_on_entry.bb_range_p (name, bb)); m_on_entry.get_bb_range (current_range, name, bb); // Calculate the "new" range on entry by unioning the pred edges. new_range.set_undefined (); FOR_EACH_EDGE (e, ei, bb->preds) { if (DEBUG_RANGE_CACHE) fprintf (dump_file, " edge %d->%d :", e->src->index, bb->index); // Get whatever range we can for this edge. if (!outgoing_edge_range_p (e_range, e, name)) { ssa_range_in_bb (e_range, name, e->src); if (DEBUG_RANGE_CACHE) { fprintf (dump_file, "No outgoing edge range, picked up "); e_range.dump(dump_file); fprintf (dump_file, "\n"); } } else { if (DEBUG_RANGE_CACHE) { fprintf (dump_file, "outgoing range :"); e_range.dump(dump_file); fprintf (dump_file, "\n"); } } new_range.union_ (e_range); if (new_range.varying_p ()) break; } if (DEBUG_RANGE_CACHE) { fprintf (dump_file, "FWD visiting block %d for ", bb->index); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, " starting range : "); current_range.dump (dump_file); fprintf (dump_file, "\n"); } // If the range on entry has changed, update it. if (new_range != current_range) { if (DEBUG_RANGE_CACHE) { fprintf (dump_file, " Updating range to "); new_range.dump (dump_file); fprintf (dump_file, "\n Updating blocks :"); } m_on_entry.set_bb_range (name, bb, new_range); // Mark each successor that has a range to re-check its range FOR_EACH_EDGE (e, ei, bb->succs) if (m_on_entry.bb_range_p (name, e->dest)) { if (DEBUG_RANGE_CACHE) fprintf (dump_file, " bb%d",e->dest->index); add_to_update (e->dest); } if (DEBUG_RANGE_CACHE) fprintf (dump_file, "\n"); } } if (DEBUG_RANGE_CACHE) { fprintf (dump_file, "DONE visiting blocks for "); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, "\n"); } } // Make sure that the range-on-entry cache for NAME is set for block BB. // Work back through the CFG to DEF_BB ensuring the range is calculated // on the block/edges leading back to that point. void ranger_cache::fill_block_cache (tree name, basic_block bb, basic_block def_bb) { edge_iterator ei; edge e; int_range_max block_result; int_range_max undefined; unsigned poor_list_start = m_poor_value_list.length (); // At this point we shouldn't be looking at the def, entry or exit block. gcc_checking_assert (bb != def_bb && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && bb != EXIT_BLOCK_PTR_FOR_FN (cfun)); // If the block cache is set, then we've already visited this block. if (m_on_entry.bb_range_p (name, bb)) return; // Visit each block back to the DEF. Initialize each one to UNDEFINED. // m_visited at the end will contain all the blocks that we needed to set // the range_on_entry cache for. m_workback.truncate (0); m_workback.quick_push (bb); undefined.set_undefined (); m_on_entry.set_bb_range (name, bb, undefined); gcc_checking_assert (m_update_list.length () == 0); if (DEBUG_RANGE_CACHE) { fprintf (dump_file, "\n"); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, " : "); } while (m_workback.length () > 0) { basic_block node = m_workback.pop (); if (DEBUG_RANGE_CACHE) { fprintf (dump_file, "BACK visiting block %d for ", node->index); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, "\n"); } FOR_EACH_EDGE (e, ei, node->preds) { basic_block pred = e->src; int_range_max r; if (DEBUG_RANGE_CACHE) fprintf (dump_file, " %d->%d ",e->src->index, e->dest->index); // If the pred block is the def block add this BB to update list. if (pred == def_bb) { add_to_update (node); continue; } // If the pred is entry but NOT def, then it is used before // defined, it'll get set to [] and no need to update it. if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun)) { if (DEBUG_RANGE_CACHE) fprintf (dump_file, "entry: bail."); continue; } // Regardless of whether we have visited pred or not, if the // pred has a non-null reference, revisit this block. if (m_non_null.non_null_deref_p (name, pred)) { if (DEBUG_RANGE_CACHE) fprintf (dump_file, "nonnull: update "); add_to_update (node); } // If the pred block already has a range, or if it can contribute // something new. Ie, the edge generates a range of some sort. if (m_on_entry.get_bb_range (r, name, pred)) { if (DEBUG_RANGE_CACHE) fprintf (dump_file, "has cache, "); if (!r.undefined_p () || has_edge_range_p (e, name)) { add_to_update (node); if (DEBUG_RANGE_CACHE) fprintf (dump_file, "update. "); } continue; } if (DEBUG_RANGE_CACHE) fprintf (dump_file, "pushing undefined pred block. "); // If the pred hasn't been visited (has no range), add it to // the list. gcc_checking_assert (!m_on_entry.bb_range_p (name, pred)); m_on_entry.set_bb_range (name, pred, undefined); m_workback.quick_push (pred); } } if (DEBUG_RANGE_CACHE) fprintf (dump_file, "\n"); // Now fill in the marked blocks with values. iterative_cache_update (name); if (DEBUG_RANGE_CACHE) fprintf (dump_file, " iterative update done.\n"); // Now that the cache has been updated, check to see if there were any // SSA_NAMES used in filling the cache which were "poor values". // We can evaluate them, and inject any new values into the iteration // list, and see if it improves any on-entry values. if (poor_list_start != m_poor_value_list.length ()) { gcc_checking_assert (poor_list_start < m_poor_value_list.length ()); while (poor_list_start < m_poor_value_list.length ()) { // Find a range for this unresolved value. // Note, this may spawn new cache filling cycles, but by the time it // is finished, the work vectors will all be back to the same state // as before the call. The update record vector will always be // returned to the current state upon return. struct update_record rec = m_poor_value_list.pop (); basic_block calc_bb = rec.bb; int_range_max tmp; // The update work list should be empty at this point. gcc_checking_assert (m_update_list.length () == 0); if (DEBUG_RANGE_CACHE) { fprintf (dump_file, "(%d:%d)Calculating ", m_poor_value_list.length () + 1, poor_list_start); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, " used poor value for "); print_generic_expr (dump_file, rec.calc, TDF_SLIM); fprintf (dump_file, " in bb%d, trying to improve:\n", calc_bb->index); } // It must have at least one edge, pick edge 0. we just want to // calculate a range at the exit from the block so the caches feeding // this block will be filled up. gcc_checking_assert (EDGE_SUCC (calc_bb, 0)); query.range_on_edge (tmp, EDGE_SUCC (calc_bb, 0), rec.calc); if (DEBUG_RANGE_CACHE) fprintf (dump_file, " Checking successors of bb%d :", calc_bb->index); // Try recalculating any successor blocks with the new value. // Note that even if this value is refined from the initial value, // it may not affect the calculation, but the iterative update // will resolve that efficently. FOR_EACH_EDGE (e, ei, calc_bb->succs) { if (DEBUG_RANGE_CACHE) fprintf (dump_file, "bb%d: ", e->dest->index); // Only update active cache entries. if (m_on_entry.bb_range_p (name, e->dest)) { if (DEBUG_RANGE_CACHE) fprintf (dump_file, "update "); add_to_update (e->dest); } } if (DEBUG_RANGE_CACHE) fprintf (dump_file, "\n"); // Now see if there is a new value. iterative_cache_update (name); } } }