/* Preamble and helpers for the autogenerated gimple-match.cc file. Copyright (C) 2014-2022 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "target.h" #include "rtl.h" #include "tree.h" #include "gimple.h" #include "ssa.h" #include "cgraph.h" #include "vec-perm-indices.h" #include "fold-const.h" #include "fold-const-call.h" #include "stor-layout.h" #include "gimple-iterator.h" #include "gimple-fold.h" #include "calls.h" #include "tree-dfa.h" #include "builtins.h" #include "gimple-match.h" #include "tree-pass.h" #include "internal-fn.h" #include "case-cfn-macros.h" #include "gimplify.h" #include "optabs-tree.h" #include "tree-eh.h" #include "dbgcnt.h" #include "tm.h" #include "gimple-range.h" #include "langhooks.h" /* Forward declarations of the private auto-generated matchers. They expect valueized operands in canonical order and do not perform simplification of all-constant operands. */ static bool gimple_simplify (gimple_match_op *, gimple_seq *, tree (*)(tree), code_helper, tree, tree); static bool gimple_simplify (gimple_match_op *, gimple_seq *, tree (*)(tree), code_helper, tree, tree, tree); static bool gimple_simplify (gimple_match_op *, gimple_seq *, tree (*)(tree), code_helper, tree, tree, tree, tree); static bool gimple_simplify (gimple_match_op *, gimple_seq *, tree (*)(tree), code_helper, tree, tree, tree, tree, tree); static bool gimple_simplify (gimple_match_op *, gimple_seq *, tree (*)(tree), code_helper, tree, tree, tree, tree, tree, tree); static bool gimple_resimplify1 (gimple_seq *, gimple_match_op *, tree (*)(tree)); static bool gimple_resimplify2 (gimple_seq *, gimple_match_op *, tree (*)(tree)); static bool gimple_resimplify3 (gimple_seq *, gimple_match_op *, tree (*)(tree)); static bool gimple_resimplify4 (gimple_seq *, gimple_match_op *, tree (*)(tree)); static bool gimple_resimplify5 (gimple_seq *, gimple_match_op *, tree (*)(tree)); const unsigned int gimple_match_op::MAX_NUM_OPS; /* Return whether T is a constant that we'll dispatch to fold to evaluate fully constant expressions. */ static inline bool constant_for_folding (tree t) { return (CONSTANT_CLASS_P (t) /* The following is only interesting to string builtins. */ || (TREE_CODE (t) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (t, 0)) == STRING_CST)); } /* Try to convert conditional operation ORIG_OP into an IFN_COND_* operation. Return true on success, storing the new operation in NEW_OP. */ static bool convert_conditional_op (gimple_match_op *orig_op, gimple_match_op *new_op) { internal_fn ifn; if (orig_op->code.is_tree_code ()) ifn = get_conditional_internal_fn ((tree_code) orig_op->code); else { auto cfn = combined_fn (orig_op->code); if (!internal_fn_p (cfn)) return false; ifn = get_conditional_internal_fn (as_internal_fn (cfn)); } if (ifn == IFN_LAST) return false; unsigned int num_ops = orig_op->num_ops; new_op->set_op (as_combined_fn (ifn), orig_op->type, num_ops + 2); new_op->ops[0] = orig_op->cond.cond; for (unsigned int i = 0; i < num_ops; ++i) new_op->ops[i + 1] = orig_op->ops[i]; tree else_value = orig_op->cond.else_value; if (!else_value) else_value = targetm.preferred_else_value (ifn, orig_op->type, num_ops, orig_op->ops); new_op->ops[num_ops + 1] = else_value; return true; } /* RES_OP is the result of a simplification. If it is conditional, try to replace it with the equivalent UNCOND form, such as an IFN_COND_* call or a VEC_COND_EXPR. Also try to resimplify the result of the replacement if appropriate, adding any new statements to SEQ and using VALUEIZE as the valueization function. Return true if this resimplification occurred and resulted in at least one change. */ static bool maybe_resimplify_conditional_op (gimple_seq *seq, gimple_match_op *res_op, tree (*valueize) (tree)) { if (!res_op->cond.cond) return false; if (!res_op->cond.else_value && res_op->code.is_tree_code ()) { /* The "else" value doesn't matter. If the "then" value is a gimple value, just use it unconditionally. This isn't a simplification in itself, since there was no operation to build in the first place. */ if (gimple_simplified_result_is_gimple_val (res_op)) { res_op->cond.cond = NULL_TREE; return false; } /* Likewise if the operation would not trap. */ bool honor_trapv = (INTEGRAL_TYPE_P (res_op->type) && TYPE_OVERFLOW_TRAPS (res_op->type)); tree_code op_code = (tree_code) res_op->code; bool op_could_trap; /* COND_EXPR will trap if, and only if, the condition traps and hence we have to check this. For all other operations, we don't need to consider the operands. */ if (op_code == COND_EXPR) op_could_trap = generic_expr_could_trap_p (res_op->ops[0]); else op_could_trap = operation_could_trap_p ((tree_code) res_op->code, FLOAT_TYPE_P (res_op->type), honor_trapv, res_op->op_or_null (1)); if (!op_could_trap) { res_op->cond.cond = NULL_TREE; return false; } } /* If the "then" value is a gimple value and the "else" value matters, create a VEC_COND_EXPR between them, then see if it can be further simplified. */ gimple_match_op new_op; if (res_op->cond.else_value && VECTOR_TYPE_P (res_op->type) && gimple_simplified_result_is_gimple_val (res_op)) { new_op.set_op (VEC_COND_EXPR, res_op->type, res_op->cond.cond, res_op->ops[0], res_op->cond.else_value); *res_op = new_op; return gimple_resimplify3 (seq, res_op, valueize); } /* Otherwise try rewriting the operation as an IFN_COND_* call. Again, this isn't a simplification in itself, since it's what RES_OP already described. */ if (convert_conditional_op (res_op, &new_op)) *res_op = new_op; return false; } /* Helper that matches and simplifies the toplevel result from a gimple_simplify run (where we don't want to build a stmt in case it's used in in-place folding). Replaces RES_OP with a simplified and/or canonicalized result and returns whether any change was made. */ static bool gimple_resimplify1 (gimple_seq *seq, gimple_match_op *res_op, tree (*valueize)(tree)) { if (constant_for_folding (res_op->ops[0])) { tree tem = NULL_TREE; if (res_op->code.is_tree_code ()) { auto code = tree_code (res_op->code); if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)) && TREE_CODE_LENGTH (code) == 1) tem = const_unop (code, res_op->type, res_op->ops[0]); } else tem = fold_const_call (combined_fn (res_op->code), res_op->type, res_op->ops[0]); if (tem != NULL_TREE && CONSTANT_CLASS_P (tem)) { if (TREE_OVERFLOW_P (tem)) tem = drop_tree_overflow (tem); res_op->set_value (tem); maybe_resimplify_conditional_op (seq, res_op, valueize); return true; } } /* Limit recursion, there are cases like PR80887 and others, for example when value-numbering presents us with unfolded expressions that we are really not prepared to handle without eventual oscillation like ((_50 + 0) + 8) where _50 gets mapped to _50 itself as available expression. */ static unsigned depth; if (depth > 10) { if (dump_file && (dump_flags & TDF_FOLDING)) fprintf (dump_file, "Aborting expression simplification due to " "deep recursion\n"); return false; } ++depth; gimple_match_op res_op2 (*res_op); if (gimple_simplify (&res_op2, seq, valueize, res_op->code, res_op->type, res_op->ops[0])) { --depth; *res_op = res_op2; return true; } --depth; if (maybe_resimplify_conditional_op (seq, res_op, valueize)) return true; return false; } /* Helper that matches and simplifies the toplevel result from a gimple_simplify run (where we don't want to build a stmt in case it's used in in-place folding). Replaces RES_OP with a simplified and/or canonicalized result and returns whether any change was made. */ static bool gimple_resimplify2 (gimple_seq *seq, gimple_match_op *res_op, tree (*valueize)(tree)) { if (constant_for_folding (res_op->ops[0]) && constant_for_folding (res_op->ops[1])) { tree tem = NULL_TREE; if (res_op->code.is_tree_code ()) { auto code = tree_code (res_op->code); if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)) && TREE_CODE_LENGTH (code) == 2) tem = const_binop (code, res_op->type, res_op->ops[0], res_op->ops[1]); } else tem = fold_const_call (combined_fn (res_op->code), res_op->type, res_op->ops[0], res_op->ops[1]); if (tem != NULL_TREE && CONSTANT_CLASS_P (tem)) { if (TREE_OVERFLOW_P (tem)) tem = drop_tree_overflow (tem); res_op->set_value (tem); maybe_resimplify_conditional_op (seq, res_op, valueize); return true; } } /* Canonicalize operand order. */ bool canonicalized = false; bool is_comparison = (res_op->code.is_tree_code () && TREE_CODE_CLASS (tree_code (res_op->code)) == tcc_comparison); if ((is_comparison || commutative_binary_op_p (res_op->code, res_op->type)) && tree_swap_operands_p (res_op->ops[0], res_op->ops[1])) { std::swap (res_op->ops[0], res_op->ops[1]); if (is_comparison) res_op->code = swap_tree_comparison (tree_code (res_op->code)); canonicalized = true; } /* Limit recursion, see gimple_resimplify1. */ static unsigned depth; if (depth > 10) { if (dump_file && (dump_flags & TDF_FOLDING)) fprintf (dump_file, "Aborting expression simplification due to " "deep recursion\n"); return false; } ++depth; gimple_match_op res_op2 (*res_op); if (gimple_simplify (&res_op2, seq, valueize, res_op->code, res_op->type, res_op->ops[0], res_op->ops[1])) { --depth; *res_op = res_op2; return true; } --depth; if (maybe_resimplify_conditional_op (seq, res_op, valueize)) return true; return canonicalized; } /* Helper that matches and simplifies the toplevel result from a gimple_simplify run (where we don't want to build a stmt in case it's used in in-place folding). Replaces RES_OP with a simplified and/or canonicalized result and returns whether any change was made. */ static bool gimple_resimplify3 (gimple_seq *seq, gimple_match_op *res_op, tree (*valueize)(tree)) { if (constant_for_folding (res_op->ops[0]) && constant_for_folding (res_op->ops[1]) && constant_for_folding (res_op->ops[2])) { tree tem = NULL_TREE; if (res_op->code.is_tree_code ()) { auto code = tree_code (res_op->code); if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)) && TREE_CODE_LENGTH (code) == 3) tem = fold_ternary/*_to_constant*/ (code, res_op->type, res_op->ops[0], res_op->ops[1], res_op->ops[2]); } else tem = fold_const_call (combined_fn (res_op->code), res_op->type, res_op->ops[0], res_op->ops[1], res_op->ops[2]); if (tem != NULL_TREE && CONSTANT_CLASS_P (tem)) { if (TREE_OVERFLOW_P (tem)) tem = drop_tree_overflow (tem); res_op->set_value (tem); maybe_resimplify_conditional_op (seq, res_op, valueize); return true; } } /* Canonicalize operand order. */ bool canonicalized = false; int argno = first_commutative_argument (res_op->code, res_op->type); if (argno >= 0 && tree_swap_operands_p (res_op->ops[argno], res_op->ops[argno + 1])) { std::swap (res_op->ops[argno], res_op->ops[argno + 1]); canonicalized = true; } /* Limit recursion, see gimple_resimplify1. */ static unsigned depth; if (depth > 10) { if (dump_file && (dump_flags & TDF_FOLDING)) fprintf (dump_file, "Aborting expression simplification due to " "deep recursion\n"); return false; } ++depth; gimple_match_op res_op2 (*res_op); if (gimple_simplify (&res_op2, seq, valueize, res_op->code, res_op->type, res_op->ops[0], res_op->ops[1], res_op->ops[2])) { --depth; *res_op = res_op2; return true; } --depth; if (maybe_resimplify_conditional_op (seq, res_op, valueize)) return true; return canonicalized; } /* Helper that matches and simplifies the toplevel result from a gimple_simplify run (where we don't want to build a stmt in case it's used in in-place folding). Replaces RES_OP with a simplified and/or canonicalized result and returns whether any change was made. */ static bool gimple_resimplify4 (gimple_seq *seq, gimple_match_op *res_op, tree (*valueize)(tree)) { /* No constant folding is defined for four-operand functions. */ /* Canonicalize operand order. */ bool canonicalized = false; int argno = first_commutative_argument (res_op->code, res_op->type); if (argno >= 0 && tree_swap_operands_p (res_op->ops[argno], res_op->ops[argno + 1])) { std::swap (res_op->ops[argno], res_op->ops[argno + 1]); canonicalized = true; } /* Limit recursion, see gimple_resimplify1. */ static unsigned depth; if (depth > 10) { if (dump_file && (dump_flags & TDF_FOLDING)) fprintf (dump_file, "Aborting expression simplification due to " "deep recursion\n"); return false; } ++depth; gimple_match_op res_op2 (*res_op); if (gimple_simplify (&res_op2, seq, valueize, res_op->code, res_op->type, res_op->ops[0], res_op->ops[1], res_op->ops[2], res_op->ops[3])) { --depth; *res_op = res_op2; return true; } --depth; if (maybe_resimplify_conditional_op (seq, res_op, valueize)) return true; return canonicalized; } /* Helper that matches and simplifies the toplevel result from a gimple_simplify run (where we don't want to build a stmt in case it's used in in-place folding). Replaces RES_OP with a simplified and/or canonicalized result and returns whether any change was made. */ static bool gimple_resimplify5 (gimple_seq *seq, gimple_match_op *res_op, tree (*valueize)(tree)) { /* No constant folding is defined for five-operand functions. */ /* Canonicalize operand order. */ bool canonicalized = false; int argno = first_commutative_argument (res_op->code, res_op->type); if (argno >= 0 && tree_swap_operands_p (res_op->ops[argno], res_op->ops[argno + 1])) { std::swap (res_op->ops[argno], res_op->ops[argno + 1]); canonicalized = true; } gimple_match_op res_op2 (*res_op); if (gimple_simplify (&res_op2, seq, valueize, res_op->code, res_op->type, res_op->ops[0], res_op->ops[1], res_op->ops[2], res_op->ops[3], res_op->ops[4])) { *res_op = res_op2; return true; } if (maybe_resimplify_conditional_op (seq, res_op, valueize)) return true; return canonicalized; } /* Match and simplify the toplevel valueized operation THIS. Replaces THIS with a simplified and/or canonicalized result and returns whether any change was made. */ bool gimple_match_op::resimplify (gimple_seq *seq, tree (*valueize)(tree)) { switch (num_ops) { case 1: return gimple_resimplify1 (seq, this, valueize); case 2: return gimple_resimplify2 (seq, this, valueize); case 3: return gimple_resimplify3 (seq, this, valueize); case 4: return gimple_resimplify4 (seq, this, valueize); case 5: return gimple_resimplify5 (seq, this, valueize); default: gcc_unreachable (); } } /* If in GIMPLE the operation described by RES_OP should be single-rhs, build a GENERIC tree for that expression and update RES_OP accordingly. */ void maybe_build_generic_op (gimple_match_op *res_op) { tree_code code = (tree_code) res_op->code; tree val; switch (code) { case REALPART_EXPR: case IMAGPART_EXPR: case VIEW_CONVERT_EXPR: val = build1 (code, res_op->type, res_op->ops[0]); res_op->set_value (val); break; case BIT_FIELD_REF: val = build3 (code, res_op->type, res_op->ops[0], res_op->ops[1], res_op->ops[2]); REF_REVERSE_STORAGE_ORDER (val) = res_op->reverse; res_op->set_value (val); break; default:; } } tree (*mprts_hook) (gimple_match_op *); /* Try to build RES_OP, which is known to be a call to FN. Return null if the target doesn't support the function. */ static gcall * build_call_internal (internal_fn fn, gimple_match_op *res_op) { if (direct_internal_fn_p (fn)) { tree_pair types = direct_internal_fn_types (fn, res_op->type, res_op->ops); if (!direct_internal_fn_supported_p (fn, types, OPTIMIZE_FOR_BOTH)) return NULL; } return gimple_build_call_internal (fn, res_op->num_ops, res_op->op_or_null (0), res_op->op_or_null (1), res_op->op_or_null (2), res_op->op_or_null (3), res_op->op_or_null (4)); } /* Push the exploded expression described by RES_OP as a statement to SEQ if necessary and return a gimple value denoting the value of the expression. If RES is not NULL then the result will be always RES and even gimple values are pushed to SEQ. */ tree maybe_push_res_to_seq (gimple_match_op *res_op, gimple_seq *seq, tree res) { tree *ops = res_op->ops; unsigned num_ops = res_op->num_ops; /* The caller should have converted conditional operations into an UNCOND form and resimplified as appropriate. The conditional form only survives this far if that conversion failed. */ if (res_op->cond.cond) return NULL_TREE; if (res_op->code.is_tree_code ()) { if (!res && gimple_simplified_result_is_gimple_val (res_op)) return ops[0]; if (mprts_hook) { tree tem = mprts_hook (res_op); if (tem) return tem; } } if (!seq) return NULL_TREE; /* Play safe and do not allow abnormals to be mentioned in newly created statements. */ for (unsigned int i = 0; i < num_ops; ++i) if (TREE_CODE (ops[i]) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ops[i])) return NULL_TREE; if (num_ops > 0 && COMPARISON_CLASS_P (ops[0])) for (unsigned int i = 0; i < 2; ++i) if (TREE_CODE (TREE_OPERAND (ops[0], i)) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (TREE_OPERAND (ops[0], i))) return NULL_TREE; if (res_op->code.is_tree_code ()) { auto code = tree_code (res_op->code); if (!res) { if (gimple_in_ssa_p (cfun)) res = make_ssa_name (res_op->type); else res = create_tmp_reg (res_op->type); } maybe_build_generic_op (res_op); gimple *new_stmt = gimple_build_assign (res, code, res_op->op_or_null (0), res_op->op_or_null (1), res_op->op_or_null (2)); gimple_seq_add_stmt_without_update (seq, new_stmt); return res; } else { gcc_assert (num_ops != 0); auto fn = combined_fn (res_op->code); gcall *new_stmt = NULL; if (internal_fn_p (fn)) { /* Generate the given function if we can. */ internal_fn ifn = as_internal_fn (fn); new_stmt = build_call_internal (ifn, res_op); if (!new_stmt) return NULL_TREE; } else { /* Find the function we want to call. */ tree decl = builtin_decl_implicit (as_builtin_fn (fn)); if (!decl) return NULL; /* We can't and should not emit calls to non-const functions. */ if (!(flags_from_decl_or_type (decl) & ECF_CONST)) return NULL; new_stmt = gimple_build_call (decl, num_ops, res_op->op_or_null (0), res_op->op_or_null (1), res_op->op_or_null (2), res_op->op_or_null (3), res_op->op_or_null (4)); } if (!res) { if (gimple_in_ssa_p (cfun)) res = make_ssa_name (res_op->type); else res = create_tmp_reg (res_op->type); } gimple_call_set_lhs (new_stmt, res); gimple_seq_add_stmt_without_update (seq, new_stmt); return res; } } /* Public API overloads follow for operation being tree_code or built_in_function and for one to three operands or arguments. They return NULL_TREE if nothing could be simplified or the resulting simplified value with parts pushed to SEQ. If SEQ is NULL then if the simplification needs to create new stmts it will fail. If VALUEIZE is non-NULL then all SSA names will be valueized using that hook prior to applying simplifications. */ /* Unary ops. */ tree gimple_simplify (enum tree_code code, tree type, tree op0, gimple_seq *seq, tree (*valueize)(tree)) { if (constant_for_folding (op0)) { tree res = const_unop (code, type, op0); if (res != NULL_TREE && CONSTANT_CLASS_P (res)) return res; } gimple_match_op res_op; if (!gimple_simplify (&res_op, seq, valueize, code, type, op0)) return NULL_TREE; return maybe_push_res_to_seq (&res_op, seq); } /* Binary ops. */ tree gimple_simplify (enum tree_code code, tree type, tree op0, tree op1, gimple_seq *seq, tree (*valueize)(tree)) { if (constant_for_folding (op0) && constant_for_folding (op1)) { tree res = const_binop (code, type, op0, op1); if (res != NULL_TREE && CONSTANT_CLASS_P (res)) return res; } /* Canonicalize operand order both for matching and fallback stmt generation. */ if ((commutative_tree_code (code) || TREE_CODE_CLASS (code) == tcc_comparison) && tree_swap_operands_p (op0, op1)) { std::swap (op0, op1); if (TREE_CODE_CLASS (code) == tcc_comparison) code = swap_tree_comparison (code); } gimple_match_op res_op; if (!gimple_simplify (&res_op, seq, valueize, code, type, op0, op1)) return NULL_TREE; return maybe_push_res_to_seq (&res_op, seq); } /* Ternary ops. */ tree gimple_simplify (enum tree_code code, tree type, tree op0, tree op1, tree op2, gimple_seq *seq, tree (*valueize)(tree)) { if (constant_for_folding (op0) && constant_for_folding (op1) && constant_for_folding (op2)) { tree res = fold_ternary/*_to_constant */ (code, type, op0, op1, op2); if (res != NULL_TREE && CONSTANT_CLASS_P (res)) return res; } /* Canonicalize operand order both for matching and fallback stmt generation. */ if (commutative_ternary_tree_code (code) && tree_swap_operands_p (op0, op1)) std::swap (op0, op1); gimple_match_op res_op; if (!gimple_simplify (&res_op, seq, valueize, code, type, op0, op1, op2)) return NULL_TREE; return maybe_push_res_to_seq (&res_op, seq); } /* Builtin or internal function with one argument. */ tree gimple_simplify (combined_fn fn, tree type, tree arg0, gimple_seq *seq, tree (*valueize)(tree)) { if (constant_for_folding (arg0)) { tree res = fold_const_call (fn, type, arg0); if (res && CONSTANT_CLASS_P (res)) return res; } gimple_match_op res_op; if (!gimple_simplify (&res_op, seq, valueize, fn, type, arg0)) return NULL_TREE; return maybe_push_res_to_seq (&res_op, seq); } /* Builtin or internal function with two arguments. */ tree gimple_simplify (combined_fn fn, tree type, tree arg0, tree arg1, gimple_seq *seq, tree (*valueize)(tree)) { if (constant_for_folding (arg0) && constant_for_folding (arg1)) { tree res = fold_const_call (fn, type, arg0, arg1); if (res && CONSTANT_CLASS_P (res)) return res; } gimple_match_op res_op; if (!gimple_simplify (&res_op, seq, valueize, fn, type, arg0, arg1)) return NULL_TREE; return maybe_push_res_to_seq (&res_op, seq); } /* Builtin or internal function with three arguments. */ tree gimple_simplify (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2, gimple_seq *seq, tree (*valueize)(tree)) { if (constant_for_folding (arg0) && constant_for_folding (arg1) && constant_for_folding (arg2)) { tree res = fold_const_call (fn, type, arg0, arg1, arg2); if (res && CONSTANT_CLASS_P (res)) return res; } gimple_match_op res_op; if (!gimple_simplify (&res_op, seq, valueize, fn, type, arg0, arg1, arg2)) return NULL_TREE; return maybe_push_res_to_seq (&res_op, seq); } /* Helper for gimple_simplify valueizing OP using VALUEIZE and setting VALUEIZED to true if valueization changed OP. */ static inline tree do_valueize (tree op, tree (*valueize)(tree), bool &valueized) { if (valueize && TREE_CODE (op) == SSA_NAME) { tree tem = valueize (op); if (tem && tem != op) { op = tem; valueized = true; } } return op; } /* If RES_OP is a call to a conditional internal function, try simplifying the associated unconditional operation and using the result to build a new conditional operation. For example, if RES_OP is: IFN_COND_ADD (COND, A, B, ELSE) try simplifying (plus A B) and using the result to build a replacement for the whole IFN_COND_ADD. Return true if this approach led to a simplification, otherwise leave RES_OP unchanged (and so suitable for other simplifications). When returning true, add any new statements to SEQ and use VALUEIZE as the valueization function. RES_OP is known to be a call to IFN. */ static bool try_conditional_simplification (internal_fn ifn, gimple_match_op *res_op, gimple_seq *seq, tree (*valueize) (tree)) { code_helper op; tree_code code = conditional_internal_fn_code (ifn); if (code != ERROR_MARK) op = code; else { ifn = get_unconditional_internal_fn (ifn); if (ifn == IFN_LAST) return false; op = as_combined_fn (ifn); } unsigned int num_ops = res_op->num_ops; gimple_match_op cond_op (gimple_match_cond (res_op->ops[0], res_op->ops[num_ops - 1]), op, res_op->type, num_ops - 2); memcpy (cond_op.ops, res_op->ops + 1, (num_ops - 1) * sizeof *cond_op.ops); switch (num_ops - 2) { case 1: if (!gimple_resimplify1 (seq, &cond_op, valueize)) return false; break; case 2: if (!gimple_resimplify2 (seq, &cond_op, valueize)) return false; break; case 3: if (!gimple_resimplify3 (seq, &cond_op, valueize)) return false; break; default: gcc_unreachable (); } *res_op = cond_op; maybe_resimplify_conditional_op (seq, res_op, valueize); return true; } /* Common subroutine of gimple_extract_op and gimple_simplify. Try to describe STMT in RES_OP, returning true on success. Before recording an operand, call: - VALUEIZE_CONDITION for a COND_EXPR condition - VALUEIZE_OP for every other top-level operand Both routines take a tree argument and returns a tree. */ template inline bool gimple_extract (gimple *stmt, gimple_match_op *res_op, ValueizeOp valueize_op, ValueizeCondition valueize_condition) { switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: { enum tree_code code = gimple_assign_rhs_code (stmt); tree type = TREE_TYPE (gimple_assign_lhs (stmt)); switch (gimple_assign_rhs_class (stmt)) { case GIMPLE_SINGLE_RHS: if (code == REALPART_EXPR || code == IMAGPART_EXPR || code == VIEW_CONVERT_EXPR) { tree op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); res_op->set_op (code, type, valueize_op (op0)); return true; } else if (code == BIT_FIELD_REF) { tree rhs1 = gimple_assign_rhs1 (stmt); tree op0 = valueize_op (TREE_OPERAND (rhs1, 0)); res_op->set_op (code, type, op0, TREE_OPERAND (rhs1, 1), TREE_OPERAND (rhs1, 2), REF_REVERSE_STORAGE_ORDER (rhs1)); return true; } else if (code == SSA_NAME) { tree op0 = gimple_assign_rhs1 (stmt); res_op->set_op (TREE_CODE (op0), type, valueize_op (op0)); return true; } break; case GIMPLE_UNARY_RHS: { tree rhs1 = gimple_assign_rhs1 (stmt); res_op->set_op (code, type, valueize_op (rhs1)); return true; } case GIMPLE_BINARY_RHS: { tree rhs1 = valueize_op (gimple_assign_rhs1 (stmt)); tree rhs2 = valueize_op (gimple_assign_rhs2 (stmt)); res_op->set_op (code, type, rhs1, rhs2); return true; } case GIMPLE_TERNARY_RHS: { tree rhs1 = gimple_assign_rhs1 (stmt); if (code == COND_EXPR && COMPARISON_CLASS_P (rhs1)) rhs1 = valueize_condition (rhs1); else rhs1 = valueize_op (rhs1); tree rhs2 = valueize_op (gimple_assign_rhs2 (stmt)); tree rhs3 = valueize_op (gimple_assign_rhs3 (stmt)); res_op->set_op (code, type, rhs1, rhs2, rhs3); return true; } default: gcc_unreachable (); } break; } case GIMPLE_CALL: /* ??? This way we can't simplify calls with side-effects. */ if (gimple_call_lhs (stmt) != NULL_TREE && gimple_call_num_args (stmt) >= 1 && gimple_call_num_args (stmt) <= 5) { combined_fn cfn; if (gimple_call_internal_p (stmt)) cfn = as_combined_fn (gimple_call_internal_fn (stmt)); else { tree fn = gimple_call_fn (stmt); if (!fn) return false; fn = valueize_op (fn); if (TREE_CODE (fn) != ADDR_EXPR || TREE_CODE (TREE_OPERAND (fn, 0)) != FUNCTION_DECL) return false; tree decl = TREE_OPERAND (fn, 0); if (DECL_BUILT_IN_CLASS (decl) != BUILT_IN_NORMAL || !gimple_builtin_call_types_compatible_p (stmt, decl)) return false; cfn = as_combined_fn (DECL_FUNCTION_CODE (decl)); } unsigned int num_args = gimple_call_num_args (stmt); res_op->set_op (cfn, TREE_TYPE (gimple_call_lhs (stmt)), num_args); for (unsigned i = 0; i < num_args; ++i) res_op->ops[i] = valueize_op (gimple_call_arg (stmt, i)); return true; } break; case GIMPLE_COND: { tree lhs = valueize_op (gimple_cond_lhs (stmt)); tree rhs = valueize_op (gimple_cond_rhs (stmt)); res_op->set_op (gimple_cond_code (stmt), boolean_type_node, lhs, rhs); return true; } default: break; } return false; } /* Try to describe STMT in RES_OP, returning true on success. For GIMPLE_CONDs, describe the condition that is being tested. For GIMPLE_ASSIGNs, describe the rhs of the assignment. For GIMPLE_CALLs, describe the call. */ bool gimple_extract_op (gimple *stmt, gimple_match_op *res_op) { auto nop = [](tree op) { return op; }; return gimple_extract (stmt, res_op, nop, nop); } /* The main STMT based simplification entry. It is used by the fold_stmt and the fold_stmt_to_constant APIs. */ bool gimple_simplify (gimple *stmt, gimple_match_op *res_op, gimple_seq *seq, tree (*valueize)(tree), tree (*top_valueize)(tree)) { bool valueized = false; auto valueize_op = [&](tree op) { return do_valueize (op, top_valueize, valueized); }; auto valueize_condition = [&](tree op) -> tree { bool cond_valueized = false; tree lhs = do_valueize (TREE_OPERAND (op, 0), top_valueize, cond_valueized); tree rhs = do_valueize (TREE_OPERAND (op, 1), top_valueize, cond_valueized); gimple_match_op res_op2 (res_op->cond, TREE_CODE (op), TREE_TYPE (op), lhs, rhs); if ((gimple_resimplify2 (seq, &res_op2, valueize) || cond_valueized) && res_op2.code.is_tree_code ()) { auto code = tree_code (res_op2.code); if (TREE_CODE_CLASS (code) == tcc_comparison) { valueized = true; return build2 (code, TREE_TYPE (op), res_op2.ops[0], res_op2.ops[1]); } else if (code == SSA_NAME || code == INTEGER_CST || code == VECTOR_CST) { valueized = true; return res_op2.ops[0]; } } return valueize_op (op); }; if (!gimple_extract (stmt, res_op, valueize_op, valueize_condition)) return false; if (res_op->code.is_internal_fn ()) { internal_fn ifn = internal_fn (res_op->code); if (try_conditional_simplification (ifn, res_op, seq, valueize)) return true; } if (!res_op->reverse && res_op->num_ops && res_op->resimplify (seq, valueize)) return true; return valueized; } /* Helper for the autogenerated code, valueize OP. */ inline tree do_valueize (tree (*valueize)(tree), tree op) { if (valueize && TREE_CODE (op) == SSA_NAME) { tree tem = valueize (op); if (tem) return tem; } return op; } /* Helper for the autogenerated code, get at the definition of NAME when VALUEIZE allows that. */ inline gimple * get_def (tree (*valueize)(tree), tree name) { if (valueize && ! valueize (name)) return NULL; return SSA_NAME_DEF_STMT (name); } /* Routine to determine if the types T1 and T2 are effectively the same for GIMPLE. If T1 or T2 is not a type, the test applies to their TREE_TYPE. */ static inline bool types_match (tree t1, tree t2) { if (!TYPE_P (t1)) t1 = TREE_TYPE (t1); if (!TYPE_P (t2)) t2 = TREE_TYPE (t2); return types_compatible_p (t1, t2); } /* Return if T has a single use. For GIMPLE, we also allow any non-SSA_NAME (ie constants) and zero uses to cope with uses that aren't linked up yet. */ static bool single_use (const_tree) ATTRIBUTE_PURE; static bool single_use (const_tree t) { if (TREE_CODE (t) != SSA_NAME) return true; /* Inline return has_zero_uses (t) || has_single_use (t); */ const ssa_use_operand_t *const head = &(SSA_NAME_IMM_USE_NODE (t)); const ssa_use_operand_t *ptr; bool single = false; for (ptr = head->next; ptr != head; ptr = ptr->next) if (USE_STMT(ptr) && !is_gimple_debug (USE_STMT (ptr))) { if (single) return false; single = true; } return true; } /* Return true if math operations should be canonicalized, e.g. sqrt(sqrt(x)) -> pow(x, 0.25). */ static inline bool canonicalize_math_p () { return !cfun || (cfun->curr_properties & PROP_gimple_opt_math) == 0; } /* Return true if math operations that are beneficial only after vectorization should be canonicalized. */ static inline bool canonicalize_math_after_vectorization_p () { return !cfun || (cfun->curr_properties & PROP_gimple_lvec) != 0; } /* Return true if we can still perform transformations that may introduce vector operations that are not supported by the target. Vector lowering normally handles those, but after that pass, it becomes unsafe. */ static inline bool optimize_vectors_before_lowering_p () { return !cfun || (cfun->curr_properties & PROP_gimple_lvec) == 0; } /* Return true if pow(cst, x) should be optimized into exp(log(cst) * x). As a workaround for SPEC CPU2017 628.pop2_s, don't do it if arg0 is an exact integer, arg1 = phi_res +/- cst1 and phi_res = PHI where cst2 +/- cst1 is an exact integer, because then pow (arg0, arg1) will likely be exact, while exp (log (arg0) * arg1) might be not. Also don't do it if arg1 is phi_res above and cst2 is an exact integer. */ static bool optimize_pow_to_exp (tree arg0, tree arg1) { gcc_assert (TREE_CODE (arg0) == REAL_CST); if (!real_isinteger (TREE_REAL_CST_PTR (arg0), TYPE_MODE (TREE_TYPE (arg0)))) return true; if (TREE_CODE (arg1) != SSA_NAME) return true; gimple *def = SSA_NAME_DEF_STMT (arg1); gphi *phi = dyn_cast (def); tree cst1 = NULL_TREE; enum tree_code code = ERROR_MARK; if (!phi) { if (!is_gimple_assign (def)) return true; code = gimple_assign_rhs_code (def); switch (code) { case PLUS_EXPR: case MINUS_EXPR: break; default: return true; } if (TREE_CODE (gimple_assign_rhs1 (def)) != SSA_NAME || TREE_CODE (gimple_assign_rhs2 (def)) != REAL_CST) return true; cst1 = gimple_assign_rhs2 (def); phi = dyn_cast (SSA_NAME_DEF_STMT (gimple_assign_rhs1 (def))); if (!phi) return true; } tree cst2 = NULL_TREE; int n = gimple_phi_num_args (phi); for (int i = 0; i < n; i++) { tree arg = PHI_ARG_DEF (phi, i); if (TREE_CODE (arg) != REAL_CST) continue; else if (cst2 == NULL_TREE) cst2 = arg; else if (!operand_equal_p (cst2, arg, 0)) return true; } if (cst1 && cst2) cst2 = const_binop (code, TREE_TYPE (cst2), cst2, cst1); if (cst2 && TREE_CODE (cst2) == REAL_CST && real_isinteger (TREE_REAL_CST_PTR (cst2), TYPE_MODE (TREE_TYPE (cst2)))) return false; return true; } /* Return true if a division INNER_DIV / DIVISOR where INNER_DIV is another division can be optimized. Don't optimize if INNER_DIV is used in a TRUNC_MOD_EXPR with DIVISOR as second operand. */ static bool optimize_successive_divisions_p (tree divisor, tree inner_div) { if (!gimple_in_ssa_p (cfun)) return false; imm_use_iterator imm_iter; use_operand_p use_p; FOR_EACH_IMM_USE_FAST (use_p, imm_iter, inner_div) { gimple *use_stmt = USE_STMT (use_p); if (!is_gimple_assign (use_stmt) || gimple_assign_rhs_code (use_stmt) != TRUNC_MOD_EXPR || !operand_equal_p (gimple_assign_rhs2 (use_stmt), divisor, 0)) continue; return false; } return true; } /* Return a canonical form for CODE when operating on TYPE. The idea is to remove redundant ways of representing the same operation so that code_helpers can be hashed and compared for equality. The only current canonicalization is to replace built-in functions with internal functions, in cases where internal-fn.def defines such an internal function. Note that the new code_helper cannot necessarily be used in place of the original code_helper. For example, the new code_helper might be an internal function that the target does not support. */ code_helper canonicalize_code (code_helper code, tree type) { if (code.is_fn_code ()) return associated_internal_fn (combined_fn (code), type); return code; } /* Return true if CODE is a binary operation and if CODE is commutative when operating on type TYPE. */ bool commutative_binary_op_p (code_helper code, tree type) { if (code.is_tree_code ()) return commutative_tree_code (tree_code (code)); auto cfn = combined_fn (code); return commutative_binary_fn_p (associated_internal_fn (cfn, type)); } /* Return true if CODE represents a ternary operation and if the first two operands are commutative when CODE is operating on TYPE. */ bool commutative_ternary_op_p (code_helper code, tree type) { if (code.is_tree_code ()) return commutative_ternary_tree_code (tree_code (code)); auto cfn = combined_fn (code); return commutative_ternary_fn_p (associated_internal_fn (cfn, type)); } /* If CODE is commutative in two consecutive operands, return the index of the first, otherwise return -1. */ int first_commutative_argument (code_helper code, tree type) { if (code.is_tree_code ()) { auto tcode = tree_code (code); if (commutative_tree_code (tcode) || commutative_ternary_tree_code (tcode)) return 0; return -1; } auto cfn = combined_fn (code); return first_commutative_argument (associated_internal_fn (cfn, type)); } /* Return true if CODE is a binary operation that is associative when operating on type TYPE. */ bool associative_binary_op_p (code_helper code, tree type) { if (code.is_tree_code ()) return associative_tree_code (tree_code (code)); auto cfn = combined_fn (code); return associative_binary_fn_p (associated_internal_fn (cfn, type)); } /* Return true if the target directly supports operation CODE on type TYPE. QUERY_TYPE acts as for optab_for_tree_code. */ bool directly_supported_p (code_helper code, tree type, optab_subtype query_type) { if (code.is_tree_code ()) { direct_optab optab = optab_for_tree_code (tree_code (code), type, query_type); return (optab != unknown_optab && optab_handler (optab, TYPE_MODE (type)) != CODE_FOR_nothing); } gcc_assert (query_type == optab_default || (query_type == optab_vector && VECTOR_TYPE_P (type)) || (query_type == optab_scalar && !VECTOR_TYPE_P (type))); internal_fn ifn = associated_internal_fn (combined_fn (code), type); return (direct_internal_fn_p (ifn) && direct_internal_fn_supported_p (ifn, type, OPTIMIZE_FOR_SPEED)); } /* A wrapper around the internal-fn.cc versions of get_conditional_internal_fn for a code_helper CODE operating on type TYPE. */ internal_fn get_conditional_internal_fn (code_helper code, tree type) { if (code.is_tree_code ()) return get_conditional_internal_fn (tree_code (code)); auto cfn = combined_fn (code); return get_conditional_internal_fn (associated_internal_fn (cfn, type)); }