/* Preamble and helpers for the autogenerated gimple-match.cc file. Copyright (C) 2014-2024 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "target.h" #include "rtl.h" #include "tree.h" #include "gimple.h" #include "ssa.h" #include "cgraph.h" #include "vec-perm-indices.h" #include "fold-const.h" #include "fold-const-call.h" #include "stor-layout.h" #include "gimple-iterator.h" #include "gimple-fold.h" #include "calls.h" #include "tree-dfa.h" #include "builtins.h" #include "gimple-match.h" #include "tree-pass.h" #include "internal-fn.h" #include "case-cfn-macros.h" #include "gimplify.h" #include "optabs-tree.h" #include "tree-eh.h" #include "dbgcnt.h" #include "tm.h" #include "gimple-range.h" #include "langhooks.h" #include "attribs.h" #include "asan.h" tree do_valueize (tree, tree (*)(tree), bool &); tree do_valueize (tree (*)(tree), tree); /* Helper for the autogenerated code, get at the definition of NAME when VALUEIZE allows that. */ inline gimple * get_def (tree (*valueize)(tree), tree name) { if (valueize && ! valueize (name)) return NULL; return SSA_NAME_DEF_STMT (name); } /* Routine to determine if the types T1 and T2 are effectively the same for GIMPLE. If T1 or T2 is not a type, the test applies to their TREE_TYPE. */ static inline bool types_match (tree t1, tree t2) { if (!TYPE_P (t1)) t1 = TREE_TYPE (t1); if (!TYPE_P (t2)) t2 = TREE_TYPE (t2); return types_compatible_p (t1, t2); } /* Routine to determine if the types T1, T2 and T3 are effectively the same for GIMPLE. If T1, T2 or T2 is not a type, the test applies to their TREE_TYPE. */ static inline bool types_match (tree t1, tree t2, tree t3) { return types_match (t1, t2) && types_match (t2, t3); } /* Return if T has a single use. For GIMPLE, we also allow any non-SSA_NAME (ie constants) and zero uses to cope with uses that aren't linked up yet. */ static bool single_use (const_tree) ATTRIBUTE_PURE; static bool single_use (const_tree t) { if (TREE_CODE (t) != SSA_NAME) return true; /* Inline return has_zero_uses (t) || has_single_use (t); */ const ssa_use_operand_t *const head = &(SSA_NAME_IMM_USE_NODE (t)); const ssa_use_operand_t *ptr; bool single = false; for (ptr = head->next; ptr != head; ptr = ptr->next) if (USE_STMT(ptr) && !is_gimple_debug (USE_STMT (ptr))) { if (single) return false; single = true; } return true; } /* Return true if math operations should be canonicalized, e.g. sqrt(sqrt(x)) -> pow(x, 0.25). */ static inline bool canonicalize_math_p () { return !cfun || (cfun->curr_properties & PROP_gimple_opt_math) == 0; } /* Return true if math operations that are beneficial only after vectorization should be canonicalized. */ static inline bool canonicalize_math_after_vectorization_p () { return !cfun || (cfun->curr_properties & PROP_gimple_lvec) != 0; } /* Return true if we can still perform transformations that may introduce vector operations that are not supported by the target. Vector lowering normally handles those, but after that pass, it becomes unsafe. */ static inline bool optimize_vectors_before_lowering_p () { return !cfun || (cfun->curr_properties & PROP_gimple_lvec) == 0; } /* Return true if pow(cst, x) should be optimized into exp(log(cst) * x). As a workaround for SPEC CPU2017 628.pop2_s, don't do it if arg0 is an exact integer, arg1 = phi_res +/- cst1 and phi_res = PHI where cst2 +/- cst1 is an exact integer, because then pow (arg0, arg1) will likely be exact, while exp (log (arg0) * arg1) might be not. Also don't do it if arg1 is phi_res above and cst2 is an exact integer. */ static bool optimize_pow_to_exp (tree arg0, tree arg1) { gcc_assert (TREE_CODE (arg0) == REAL_CST); if (!real_isinteger (TREE_REAL_CST_PTR (arg0), TYPE_MODE (TREE_TYPE (arg0)))) return true; if (TREE_CODE (arg1) != SSA_NAME) return true; gimple *def = SSA_NAME_DEF_STMT (arg1); gphi *phi = dyn_cast (def); tree cst1 = NULL_TREE; enum tree_code code = ERROR_MARK; if (!phi) { if (!is_gimple_assign (def)) return true; code = gimple_assign_rhs_code (def); switch (code) { case PLUS_EXPR: case MINUS_EXPR: break; default: return true; } if (TREE_CODE (gimple_assign_rhs1 (def)) != SSA_NAME || TREE_CODE (gimple_assign_rhs2 (def)) != REAL_CST) return true; cst1 = gimple_assign_rhs2 (def); phi = dyn_cast (SSA_NAME_DEF_STMT (gimple_assign_rhs1 (def))); if (!phi) return true; } tree cst2 = NULL_TREE; int n = gimple_phi_num_args (phi); for (int i = 0; i < n; i++) { tree arg = PHI_ARG_DEF (phi, i); if (TREE_CODE (arg) != REAL_CST) continue; else if (cst2 == NULL_TREE) cst2 = arg; else if (!operand_equal_p (cst2, arg, 0)) return true; } if (cst1 && cst2) cst2 = const_binop (code, TREE_TYPE (cst2), cst2, cst1); if (cst2 && TREE_CODE (cst2) == REAL_CST && real_isinteger (TREE_REAL_CST_PTR (cst2), TYPE_MODE (TREE_TYPE (cst2)))) return false; return true; } /* Return true if a division INNER_DIV / DIVISOR where INNER_DIV is another division can be optimized. Don't optimize if INNER_DIV is used in a TRUNC_MOD_EXPR with DIVISOR as second operand. */ static bool optimize_successive_divisions_p (tree divisor, tree inner_div) { if (!gimple_in_ssa_p (cfun)) return false; imm_use_iterator imm_iter; use_operand_p use_p; FOR_EACH_IMM_USE_FAST (use_p, imm_iter, inner_div) { gimple *use_stmt = USE_STMT (use_p); if (!is_gimple_assign (use_stmt) || gimple_assign_rhs_code (use_stmt) != TRUNC_MOD_EXPR || !operand_equal_p (gimple_assign_rhs2 (use_stmt), divisor, 0)) continue; return false; } return true; } /* Return true if EXPR1 and EXPR2 have the same value, but not necessarily same type. The types can differ through nop conversions. */ #define bitwise_equal_p(expr1, expr2) \ gimple_bitwise_equal_p (expr1, expr2, valueize) bool gimple_nop_convert (tree, tree *, tree (*) (tree)); bool gimple_maybe_truncate (tree, tree *, tree (*) (tree)); /* Helper function for bitwise_equal_p macro. */ static inline bool gimple_bitwise_equal_p (tree expr1, tree expr2, tree (*valueize) (tree)) { if (expr1 == expr2) return true; if (!tree_nop_conversion_p (TREE_TYPE (expr1), TREE_TYPE (expr2))) return false; if (TREE_CODE (expr1) == INTEGER_CST && TREE_CODE (expr2) == INTEGER_CST) return wi::to_wide (expr1) == wi::to_wide (expr2); if (operand_equal_p (expr1, expr2, 0)) return true; tree expr3, expr4; if (!gimple_nop_convert (expr1, &expr3, valueize)) expr3 = expr1; if (!gimple_nop_convert (expr2, &expr4, valueize)) expr4 = expr2; if (expr1 != expr3) { if (operand_equal_p (expr3, expr2, 0)) return true; if (expr2 != expr4 && operand_equal_p (expr3, expr4, 0)) return true; } if (expr2 != expr4 && operand_equal_p (expr1, expr4, 0)) return true; if (gimple_maybe_truncate (expr3, &expr3, valueize) && gimple_maybe_truncate (expr4, &expr4, valueize) && operand_equal_p (expr3, expr4, 0)) return true; return false; } /* Return true if EXPR1 and EXPR2 have the bitwise opposite value, but not necessarily same type. The types can differ through nop conversions. */ #define bitwise_inverted_equal_p(expr1, expr2, wascmp) \ gimple_bitwise_inverted_equal_p (expr1, expr2, wascmp, valueize) bool gimple_bit_not_with_nop (tree, tree *, tree (*) (tree)); bool gimple_maybe_cmp (tree, tree *, tree (*) (tree)); bool gimple_bit_xor_cst (tree, tree *, tree (*) (tree)); /* Helper function for bitwise_inverted_equal_p macro. */ static inline bool gimple_bitwise_inverted_equal_p (tree expr1, tree expr2, bool &wascmp, tree (*valueize) (tree)) { wascmp = false; if (expr1 == expr2) return false; if (!tree_nop_conversion_p (TREE_TYPE (expr1), TREE_TYPE (expr2))) return false; tree cst1 = uniform_integer_cst_p (expr1); tree cst2 = uniform_integer_cst_p (expr2); if (cst1 && cst2) return wi::to_wide (cst1) == ~wi::to_wide (cst2); if (operand_equal_p (expr1, expr2, 0)) return false; tree xor1[2]; tree xor2[2]; /* `X ^ CST` and `X ^ ~CST` match for ~. */ if (gimple_bit_xor_cst (expr1, xor1, valueize) && gimple_bit_xor_cst (expr2, xor2, valueize)) { if (operand_equal_p (xor1[0], xor2[0], 0) && (wi::to_wide (uniform_integer_cst_p (xor1[1])) == ~wi::to_wide (uniform_integer_cst_p (xor2[1])))) return true; } tree other; /* Try if EXPR1 was defined as ~EXPR2. */ if (gimple_bit_not_with_nop (expr1, &other, valueize)) { if (gimple_bitwise_equal_p (other, expr2, valueize)) return true; } /* Try if EXPR2 was defined as ~EXPR1. */ if (gimple_bit_not_with_nop (expr2, &other, valueize)) { if (gimple_bitwise_equal_p (other, expr1, valueize)) return true; } /* If neither are defined by BIT_NOT, try to see if both are defined by comparisons and see if they are complementary (inversion) of each other. */ tree newexpr1, newexpr2; if (!gimple_maybe_cmp (expr1, &newexpr1, valueize)) return false; if (!gimple_maybe_cmp (expr2, &newexpr2, valueize)) return false; gimple *d1 = get_def (valueize, newexpr1); gassign *a1 = dyn_cast (d1); gimple *d2 = get_def (valueize, newexpr2); gassign *a2 = dyn_cast (d2); tree op10 = do_valueize (valueize, gimple_assign_rhs1 (a1)); tree op20 = do_valueize (valueize, gimple_assign_rhs1 (a2)); if (!operand_equal_p (op10, op20)) return false; tree op11 = do_valueize (valueize, gimple_assign_rhs2 (a1)); tree op21 = do_valueize (valueize, gimple_assign_rhs2 (a2)); if (!operand_equal_p (op11, op21)) return false; wascmp = true; tree_code ac1 = gimple_assign_rhs_code (a1); tree_code ac2 = gimple_assign_rhs_code (a2); /* Match `^` against `==` but this should only happen when the type is a 1bit precision integer. */ if (ac1 == BIT_XOR_EXPR) { tree type = TREE_TYPE (newexpr1); gcc_assert (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1); return ac2 == EQ_EXPR; } if (ac2 == BIT_XOR_EXPR) { tree type = TREE_TYPE (newexpr1); gcc_assert (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1); return ac1 == EQ_EXPR; } if (invert_tree_comparison (ac1, HONOR_NANS (op10)) == ac2) return true; return false; }