/* Lower _BitInt(N) operations to scalar operations. Copyright (C) 2023-2024 Free Software Foundation, Inc. Contributed by Jakub Jelinek . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "rtl.h" #include "tree.h" #include "gimple.h" #include "cfghooks.h" #include "tree-pass.h" #include "ssa.h" #include "fold-const.h" #include "gimplify.h" #include "gimple-iterator.h" #include "tree-cfg.h" #include "tree-dfa.h" #include "cfgloop.h" #include "cfganal.h" #include "target.h" #include "tree-ssa-live.h" #include "tree-ssa-coalesce.h" #include "domwalk.h" #include "memmodel.h" #include "optabs.h" #include "varasm.h" #include "gimple-range.h" #include "value-range.h" #include "langhooks.h" #include "gimplify-me.h" #include "diagnostic-core.h" #include "tree-eh.h" #include "tree-pretty-print.h" #include "alloc-pool.h" #include "tree-into-ssa.h" #include "tree-cfgcleanup.h" #include "tree-switch-conversion.h" #include "ubsan.h" #include "gimple-lower-bitint.h" /* Split BITINT_TYPE precisions in 4 categories. Small _BitInt, where target hook says it is a single limb, middle _BitInt which per ABI does not, but there is some INTEGER_TYPE in which arithmetics can be performed (operations on such _BitInt are lowered to casts to that arithmetic type and cast back; e.g. on x86_64 limb is DImode, but target supports TImode, so _BitInt(65) to _BitInt(128) are middle ones), large _BitInt which should by straight line code and finally huge _BitInt which should be handled by loops over the limbs. */ enum bitint_prec_kind { bitint_prec_small, bitint_prec_middle, bitint_prec_large, bitint_prec_huge }; /* Caches to speed up bitint_precision_kind. */ static int small_max_prec, mid_min_prec, large_min_prec, huge_min_prec; static int limb_prec; /* Categorize _BitInt(PREC) as small, middle, large or huge. */ static bitint_prec_kind bitint_precision_kind (int prec) { if (prec <= small_max_prec) return bitint_prec_small; if (huge_min_prec && prec >= huge_min_prec) return bitint_prec_huge; if (large_min_prec && prec >= large_min_prec) return bitint_prec_large; if (mid_min_prec && prec >= mid_min_prec) return bitint_prec_middle; struct bitint_info info; bool ok = targetm.c.bitint_type_info (prec, &info); gcc_assert (ok); scalar_int_mode limb_mode = as_a (info.limb_mode); if (prec <= GET_MODE_PRECISION (limb_mode)) { small_max_prec = prec; return bitint_prec_small; } if (!large_min_prec && GET_MODE_PRECISION (limb_mode) < MAX_FIXED_MODE_SIZE) large_min_prec = MAX_FIXED_MODE_SIZE + 1; if (!limb_prec) limb_prec = GET_MODE_PRECISION (limb_mode); if (!huge_min_prec) { if (4 * limb_prec >= MAX_FIXED_MODE_SIZE) huge_min_prec = 4 * limb_prec; else huge_min_prec = MAX_FIXED_MODE_SIZE + 1; } if (prec <= MAX_FIXED_MODE_SIZE) { if (!mid_min_prec || prec < mid_min_prec) mid_min_prec = prec; return bitint_prec_middle; } if (large_min_prec && prec <= large_min_prec) return bitint_prec_large; return bitint_prec_huge; } /* Same for a TYPE. */ static bitint_prec_kind bitint_precision_kind (tree type) { return bitint_precision_kind (TYPE_PRECISION (type)); } /* Return minimum precision needed to describe INTEGER_CST CST. All bits above that precision up to precision of TREE_TYPE (CST) are cleared if EXT is set to 0, or set if EXT is set to -1. */ static unsigned bitint_min_cst_precision (tree cst, int &ext) { ext = tree_int_cst_sgn (cst) < 0 ? -1 : 0; wide_int w = wi::to_wide (cst); unsigned min_prec = wi::min_precision (w, TYPE_SIGN (TREE_TYPE (cst))); /* For signed values, we don't need to count the sign bit, we'll use constant 0 or -1 for the upper bits. */ if (!TYPE_UNSIGNED (TREE_TYPE (cst))) --min_prec; else { /* For unsigned values, also try signed min_precision in case the constant has lots of most significant bits set. */ unsigned min_prec2 = wi::min_precision (w, SIGNED) - 1; if (min_prec2 < min_prec) { ext = -1; return min_prec2; } } return min_prec; } namespace { /* If OP is middle _BitInt, cast it to corresponding INTEGER_TYPE cached in TYPE and return it. */ tree maybe_cast_middle_bitint (gimple_stmt_iterator *gsi, tree op, tree &type) { if (op == NULL_TREE || TREE_CODE (TREE_TYPE (op)) != BITINT_TYPE || bitint_precision_kind (TREE_TYPE (op)) != bitint_prec_middle) return op; int prec = TYPE_PRECISION (TREE_TYPE (op)); int uns = TYPE_UNSIGNED (TREE_TYPE (op)); if (type == NULL_TREE || TYPE_PRECISION (type) != prec || TYPE_UNSIGNED (type) != uns) type = build_nonstandard_integer_type (prec, uns); if (TREE_CODE (op) != SSA_NAME) { tree nop = fold_convert (type, op); if (is_gimple_val (nop)) return nop; } tree nop = make_ssa_name (type); gimple *g = gimple_build_assign (nop, NOP_EXPR, op); gsi_insert_before (gsi, g, GSI_SAME_STMT); return nop; } /* Return true if STMT can be handled in a loop from least to most significant limb together with its dependencies. */ bool mergeable_op (gimple *stmt) { if (!is_gimple_assign (stmt)) return false; switch (gimple_assign_rhs_code (stmt)) { case PLUS_EXPR: case MINUS_EXPR: case NEGATE_EXPR: case BIT_AND_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: case BIT_NOT_EXPR: case SSA_NAME: case INTEGER_CST: return true; case LSHIFT_EXPR: { tree cnt = gimple_assign_rhs2 (stmt); if (tree_fits_uhwi_p (cnt) && tree_to_uhwi (cnt) < (unsigned HOST_WIDE_INT) limb_prec) return true; } break; CASE_CONVERT: case VIEW_CONVERT_EXPR: { tree lhs_type = TREE_TYPE (gimple_assign_lhs (stmt)); tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt)); if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME && TREE_CODE (lhs_type) == BITINT_TYPE && TREE_CODE (rhs_type) == BITINT_TYPE && bitint_precision_kind (lhs_type) >= bitint_prec_large && bitint_precision_kind (rhs_type) >= bitint_prec_large && (CEIL (TYPE_PRECISION (lhs_type), limb_prec) == CEIL (TYPE_PRECISION (rhs_type), limb_prec))) { if (TYPE_PRECISION (rhs_type) >= TYPE_PRECISION (lhs_type)) return true; if ((unsigned) TYPE_PRECISION (lhs_type) % (2 * limb_prec) != 0) return true; if (bitint_precision_kind (lhs_type) == bitint_prec_large) return true; } break; } default: break; } return false; } /* Return non-zero if stmt is .{ADD,SUB,MUL}_OVERFLOW call with _Complex large/huge _BitInt lhs which has at most two immediate uses, at most one use in REALPART_EXPR stmt in the same bb and exactly one IMAGPART_EXPR use in the same bb with a single use which casts it to non-BITINT_TYPE integral type. If there is a REALPART_EXPR use, return 2. Such cases (most common uses of those builtins) can be optimized by marking their lhs and lhs of IMAGPART_EXPR and maybe lhs of REALPART_EXPR as not needed to be backed up by a stack variable. For .UBSAN_CHECK_{ADD,SUB,MUL} return 3. */ int optimizable_arith_overflow (gimple *stmt) { bool is_ubsan = false; if (!is_gimple_call (stmt) || !gimple_call_internal_p (stmt)) return false; switch (gimple_call_internal_fn (stmt)) { case IFN_ADD_OVERFLOW: case IFN_SUB_OVERFLOW: case IFN_MUL_OVERFLOW: break; case IFN_UBSAN_CHECK_ADD: case IFN_UBSAN_CHECK_SUB: case IFN_UBSAN_CHECK_MUL: is_ubsan = true; break; default: return 0; } tree lhs = gimple_call_lhs (stmt); if (!lhs) return 0; if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) return 0; tree type = is_ubsan ? TREE_TYPE (lhs) : TREE_TYPE (TREE_TYPE (lhs)); if (TREE_CODE (type) != BITINT_TYPE || bitint_precision_kind (type) < bitint_prec_large) return 0; if (is_ubsan) { use_operand_p use_p; gimple *use_stmt; if (!single_imm_use (lhs, &use_p, &use_stmt) || gimple_bb (use_stmt) != gimple_bb (stmt) || !gimple_store_p (use_stmt) || !is_gimple_assign (use_stmt) || gimple_has_volatile_ops (use_stmt) || stmt_ends_bb_p (use_stmt)) return 0; return 3; } imm_use_iterator ui; use_operand_p use_p; int seen = 0; gimple *realpart = NULL, *cast = NULL; FOR_EACH_IMM_USE_FAST (use_p, ui, lhs) { gimple *g = USE_STMT (use_p); if (is_gimple_debug (g)) continue; if (!is_gimple_assign (g) || gimple_bb (g) != gimple_bb (stmt)) return 0; if (gimple_assign_rhs_code (g) == REALPART_EXPR) { if ((seen & 1) != 0) return 0; seen |= 1; realpart = g; } else if (gimple_assign_rhs_code (g) == IMAGPART_EXPR) { if ((seen & 2) != 0) return 0; seen |= 2; use_operand_p use2_p; gimple *use_stmt; tree lhs2 = gimple_assign_lhs (g); if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs2)) return 0; if (!single_imm_use (lhs2, &use2_p, &use_stmt) || gimple_bb (use_stmt) != gimple_bb (stmt) || !gimple_assign_cast_p (use_stmt)) return 0; lhs2 = gimple_assign_lhs (use_stmt); if (!INTEGRAL_TYPE_P (TREE_TYPE (lhs2)) || TREE_CODE (TREE_TYPE (lhs2)) == BITINT_TYPE) return 0; cast = use_stmt; } else return 0; } if ((seen & 2) == 0) return 0; if (seen == 3) { /* Punt if the cast stmt appears before realpart stmt, because if both appear, the lowering wants to emit all the code at the location of realpart stmt. */ gimple_stmt_iterator gsi = gsi_for_stmt (realpart); unsigned int cnt = 0; do { gsi_prev_nondebug (&gsi); if (gsi_end_p (gsi) || gsi_stmt (gsi) == cast) return 0; if (gsi_stmt (gsi) == stmt) return 2; /* If realpart is too far from stmt, punt as well. Usually it will appear right after it. */ if (++cnt == 32) return 0; } while (1); } return 1; } /* If STMT is some kind of comparison (GIMPLE_COND, comparison assignment) comparing large/huge _BitInt types, return the comparison code and if non-NULL fill in the comparison operands to *POP1 and *POP2. */ tree_code comparison_op (gimple *stmt, tree *pop1, tree *pop2) { tree op1 = NULL_TREE, op2 = NULL_TREE; tree_code code = ERROR_MARK; if (gimple_code (stmt) == GIMPLE_COND) { code = gimple_cond_code (stmt); op1 = gimple_cond_lhs (stmt); op2 = gimple_cond_rhs (stmt); } else if (is_gimple_assign (stmt)) { code = gimple_assign_rhs_code (stmt); op1 = gimple_assign_rhs1 (stmt); if (TREE_CODE_CLASS (code) == tcc_comparison || TREE_CODE_CLASS (code) == tcc_binary) op2 = gimple_assign_rhs2 (stmt); } if (TREE_CODE_CLASS (code) != tcc_comparison) return ERROR_MARK; tree type = TREE_TYPE (op1); if (TREE_CODE (type) != BITINT_TYPE || bitint_precision_kind (type) < bitint_prec_large) return ERROR_MARK; if (pop1) { *pop1 = op1; *pop2 = op2; } return code; } /* Class used during large/huge _BitInt lowering containing all the state for the methods. */ struct bitint_large_huge { bitint_large_huge () : m_names (NULL), m_loads (NULL), m_preserved (NULL), m_single_use_names (NULL), m_map (NULL), m_vars (NULL), m_limb_type (NULL_TREE), m_data (vNULL) {} ~bitint_large_huge (); void insert_before (gimple *); tree limb_access_type (tree, tree); tree limb_access (tree, tree, tree, bool); void if_then (gimple *, profile_probability, edge &, edge &); void if_then_else (gimple *, profile_probability, edge &, edge &); void if_then_if_then_else (gimple *g, gimple *, profile_probability, profile_probability, edge &, edge &, edge &); tree handle_operand (tree, tree); tree prepare_data_in_out (tree, tree, tree *, tree = NULL_TREE); tree add_cast (tree, tree); tree handle_plus_minus (tree_code, tree, tree, tree); tree handle_lshift (tree, tree, tree); tree handle_cast (tree, tree, tree); tree handle_load (gimple *, tree); tree handle_stmt (gimple *, tree); tree handle_operand_addr (tree, gimple *, int *, int *); tree create_loop (tree, tree *); tree lower_mergeable_stmt (gimple *, tree_code &, tree, tree); tree lower_comparison_stmt (gimple *, tree_code &, tree, tree); void lower_shift_stmt (tree, gimple *); void lower_muldiv_stmt (tree, gimple *); void lower_float_conv_stmt (tree, gimple *); tree arith_overflow_extract_bits (unsigned int, unsigned int, tree, unsigned int, bool); void finish_arith_overflow (tree, tree, tree, tree, tree, tree, gimple *, tree_code); void lower_addsub_overflow (tree, gimple *); void lower_mul_overflow (tree, gimple *); void lower_cplxpart_stmt (tree, gimple *); void lower_complexexpr_stmt (gimple *); void lower_bit_query (gimple *); void lower_call (tree, gimple *); void lower_asm (gimple *); void lower_stmt (gimple *); /* Bitmap of large/huge _BitInt SSA_NAMEs except those can be merged with their uses. */ bitmap m_names; /* Subset of those for lhs of load statements. These will be cleared in m_names if the loads will be mergeable with all their uses. */ bitmap m_loads; /* Bitmap of large/huge _BitInt SSA_NAMEs that should survive to later passes (arguments or return values of calls). */ bitmap m_preserved; /* Subset of m_names which have a single use. As the lowering can replace various original statements with their lowered form even before it is done iterating over all basic blocks, testing has_single_use for the purpose of emitting clobbers doesn't work properly. */ bitmap m_single_use_names; /* Used for coalescing/partitioning of large/huge _BitInt SSA_NAMEs set in m_names. */ var_map m_map; /* Mapping of the partitions to corresponding decls. */ tree *m_vars; /* Unsigned integer type with limb precision. */ tree m_limb_type; /* Its TYPE_SIZE_UNIT. */ unsigned HOST_WIDE_INT m_limb_size; /* Location of a gimple stmt which is being currently lowered. */ location_t m_loc; /* Current stmt iterator where code is being lowered currently. */ gimple_stmt_iterator m_gsi; /* Statement after which any clobbers should be added if non-NULL. */ gimple *m_after_stmt; /* Set when creating loops to the loop header bb and its preheader. */ basic_block m_bb, m_preheader_bb; /* Stmt iterator after which initialization statements should be emitted. */ gimple_stmt_iterator m_init_gsi; /* Decl into which a mergeable statement stores result. */ tree m_lhs; /* handle_operand/handle_stmt can be invoked in various ways. lower_mergeable_stmt for large _BitInt calls those with constant idx only, expanding to straight line code, for huge _BitInt emits a loop from least significant limb upwards, where each loop iteration handles 2 limbs, plus there can be up to one full limb and one partial limb processed after the loop, where handle_operand and/or handle_stmt are called with constant idx. m_upwards_2limb is set for this case, false otherwise. m_upwards is true if it is either large or huge _BitInt handled by lower_mergeable_stmt, i.e. indexes always increase. Another way is used by lower_comparison_stmt, which walks limbs from most significant to least significant, partial limb if any processed first with constant idx and then loop processing a single limb per iteration with non-constant idx. Another way is used in lower_shift_stmt, where for LSHIFT_EXPR destination limbs are processed from most significant to least significant or for RSHIFT_EXPR the other way around, in loops or straight line code, but idx usually is non-constant (so from handle_operand/handle_stmt POV random access). The LSHIFT_EXPR handling there can access even partial limbs using non-constant idx (then m_var_msb should be true, for all the other cases including lower_mergeable_stmt/lower_comparison_stmt that is not the case and so m_var_msb should be false. m_first should be set the first time handle_operand/handle_stmt is called and clear when it is called for some other limb with the same argument. If the lowering of an operand (e.g. INTEGER_CST) or statement (e.g. +/-/<< with < limb_prec constant) needs some state between the different calls, when m_first is true it should push some trees to m_data vector and also make sure m_data_cnt is incremented by how many trees were pushed, and when m_first is false, it can use the m_data[m_data_cnt] etc. data or update them, just needs to bump m_data_cnt by the same amount as when it was called with m_first set. The toplevel calls to handle_operand/handle_stmt should set m_data_cnt to 0 and truncate m_data vector when setting m_first to true. m_cast_conditional and m_bitfld_load are used when handling a bit-field load inside of a widening cast. handle_cast sometimes needs to do runtime comparisons and handle_operand only conditionally or even in two separate conditional blocks for one idx (once with constant index after comparing the runtime one for equality with the constant). In these cases, m_cast_conditional is set to true and the bit-field load then communicates its m_data_cnt to handle_cast using m_bitfld_load. */ bool m_first; bool m_var_msb; unsigned m_upwards_2limb; bool m_upwards; bool m_cast_conditional; unsigned m_bitfld_load; vec m_data; unsigned int m_data_cnt; }; bitint_large_huge::~bitint_large_huge () { BITMAP_FREE (m_names); BITMAP_FREE (m_loads); BITMAP_FREE (m_preserved); BITMAP_FREE (m_single_use_names); if (m_map) delete_var_map (m_map); XDELETEVEC (m_vars); m_data.release (); } /* Insert gimple statement G before current location and set its gimple_location. */ void bitint_large_huge::insert_before (gimple *g) { gimple_set_location (g, m_loc); gsi_insert_before (&m_gsi, g, GSI_SAME_STMT); } /* Return type for accessing limb IDX of BITINT_TYPE TYPE. This is normally m_limb_type, except for a partial most significant limb if any. */ tree bitint_large_huge::limb_access_type (tree type, tree idx) { if (type == NULL_TREE) return m_limb_type; unsigned HOST_WIDE_INT i = tree_to_uhwi (idx); unsigned int prec = TYPE_PRECISION (type); gcc_assert (i * limb_prec < prec); if ((i + 1) * limb_prec <= prec) return m_limb_type; else return build_nonstandard_integer_type (prec % limb_prec, TYPE_UNSIGNED (type)); } /* Return a tree how to access limb IDX of VAR corresponding to BITINT_TYPE TYPE. If WRITE_P is true, it will be a store, otherwise a read. */ tree bitint_large_huge::limb_access (tree type, tree var, tree idx, bool write_p) { tree atype = (tree_fits_uhwi_p (idx) ? limb_access_type (type, idx) : m_limb_type); tree ret; if (DECL_P (var) && tree_fits_uhwi_p (idx)) { tree ptype = build_pointer_type (strip_array_types (TREE_TYPE (var))); unsigned HOST_WIDE_INT off = tree_to_uhwi (idx) * m_limb_size; ret = build2 (MEM_REF, m_limb_type, build_fold_addr_expr (var), build_int_cst (ptype, off)); TREE_THIS_VOLATILE (ret) = TREE_THIS_VOLATILE (var); TREE_SIDE_EFFECTS (ret) = TREE_SIDE_EFFECTS (var); } else if (TREE_CODE (var) == MEM_REF && tree_fits_uhwi_p (idx)) { ret = build2 (MEM_REF, m_limb_type, TREE_OPERAND (var, 0), size_binop (PLUS_EXPR, TREE_OPERAND (var, 1), build_int_cst (TREE_TYPE (TREE_OPERAND (var, 1)), tree_to_uhwi (idx) * m_limb_size))); TREE_THIS_VOLATILE (ret) = TREE_THIS_VOLATILE (var); TREE_SIDE_EFFECTS (ret) = TREE_SIDE_EFFECTS (var); TREE_THIS_NOTRAP (ret) = TREE_THIS_NOTRAP (var); } else { var = unshare_expr (var); if (TREE_CODE (TREE_TYPE (var)) != ARRAY_TYPE || !useless_type_conversion_p (m_limb_type, TREE_TYPE (TREE_TYPE (var)))) { unsigned HOST_WIDE_INT nelts = CEIL (tree_to_uhwi (TYPE_SIZE (type)), limb_prec); tree atype = build_array_type_nelts (m_limb_type, nelts); var = build1 (VIEW_CONVERT_EXPR, atype, var); } ret = build4 (ARRAY_REF, m_limb_type, var, idx, NULL_TREE, NULL_TREE); } if (!write_p && !useless_type_conversion_p (atype, m_limb_type)) { gimple *g = gimple_build_assign (make_ssa_name (m_limb_type), ret); insert_before (g); ret = gimple_assign_lhs (g); ret = build1 (NOP_EXPR, atype, ret); } return ret; } /* Emit a half diamond, if (COND) |\ | \ | \ | new_bb1 | / | / |/ or if (COND) new_bb1; PROB is the probability that the condition is true. Updates m_gsi to start of new_bb1. Sets EDGE_TRUE to edge from new_bb1 to successor and EDGE_FALSE to the EDGE_FALSE_VALUE edge from if (COND) bb. */ void bitint_large_huge::if_then (gimple *cond, profile_probability prob, edge &edge_true, edge &edge_false) { insert_before (cond); edge e1 = split_block (gsi_bb (m_gsi), cond); edge e2 = split_block (e1->dest, (gimple *) NULL); edge e3 = make_edge (e1->src, e2->dest, EDGE_FALSE_VALUE); e1->flags = EDGE_TRUE_VALUE; e1->probability = prob; e3->probability = prob.invert (); set_immediate_dominator (CDI_DOMINATORS, e2->dest, e1->src); edge_true = e2; edge_false = e3; m_gsi = gsi_after_labels (e1->dest); } /* Emit a full diamond, if (COND) /\ / \ / \ new_bb1 new_bb2 \ / \ / \/ or if (COND) new_bb2; else new_bb1; PROB is the probability that the condition is true. Updates m_gsi to start of new_bb2. Sets EDGE_TRUE to edge from new_bb1 to successor and EDGE_FALSE to the EDGE_FALSE_VALUE edge from if (COND) bb. */ void bitint_large_huge::if_then_else (gimple *cond, profile_probability prob, edge &edge_true, edge &edge_false) { insert_before (cond); edge e1 = split_block (gsi_bb (m_gsi), cond); edge e2 = split_block (e1->dest, (gimple *) NULL); basic_block bb = create_empty_bb (e1->dest); add_bb_to_loop (bb, e1->dest->loop_father); edge e3 = make_edge (e1->src, bb, EDGE_TRUE_VALUE); e1->flags = EDGE_FALSE_VALUE; e3->probability = prob; e1->probability = prob.invert (); bb->count = e1->src->count.apply_probability (prob); set_immediate_dominator (CDI_DOMINATORS, bb, e1->src); set_immediate_dominator (CDI_DOMINATORS, e2->dest, e1->src); edge_true = make_single_succ_edge (bb, e2->dest, EDGE_FALLTHRU); edge_false = e2; m_gsi = gsi_after_labels (bb); } /* Emit a half diamond with full diamond in it if (COND1) |\ | \ | \ | if (COND2) | / \ | / \ |new_bb1 new_bb2 | | / \ | / \ | / \ | / \|/ or if (COND1) { if (COND2) new_bb2; else new_bb1; } PROB1 is the probability that the condition 1 is true. PROB2 is the probability that the condition 2 is true. Updates m_gsi to start of new_bb1. Sets EDGE_TRUE_TRUE to edge from new_bb2 to successor, EDGE_TRUE_FALSE to edge from new_bb1 to successor and EDGE_FALSE to the EDGE_FALSE_VALUE edge from if (COND1) bb. If COND2 is NULL, this is equivalent to if_then (COND1, PROB1, EDGE_TRUE_FALSE, EDGE_FALSE); EDGE_TRUE_TRUE = NULL; */ void bitint_large_huge::if_then_if_then_else (gimple *cond1, gimple *cond2, profile_probability prob1, profile_probability prob2, edge &edge_true_true, edge &edge_true_false, edge &edge_false) { edge e2, e3, e4 = NULL; if_then (cond1, prob1, e2, e3); if (cond2 == NULL) { edge_true_true = NULL; edge_true_false = e2; edge_false = e3; return; } insert_before (cond2); e2 = split_block (gsi_bb (m_gsi), cond2); basic_block bb = create_empty_bb (e2->dest); add_bb_to_loop (bb, e2->dest->loop_father); e4 = make_edge (e2->src, bb, EDGE_TRUE_VALUE); set_immediate_dominator (CDI_DOMINATORS, bb, e2->src); e4->probability = prob2; e2->flags = EDGE_FALSE_VALUE; e2->probability = prob2.invert (); bb->count = e2->src->count.apply_probability (prob2); e4 = make_single_succ_edge (bb, e3->dest, EDGE_FALLTHRU); e2 = find_edge (e2->dest, e3->dest); edge_true_true = e4; edge_true_false = e2; edge_false = e3; m_gsi = gsi_after_labels (e2->src); } /* Emit code to access limb IDX from OP. */ tree bitint_large_huge::handle_operand (tree op, tree idx) { switch (TREE_CODE (op)) { case SSA_NAME: if (m_names == NULL || !bitmap_bit_p (m_names, SSA_NAME_VERSION (op))) { if (SSA_NAME_IS_DEFAULT_DEF (op)) { if (m_first) { tree v = create_tmp_reg (m_limb_type); if (SSA_NAME_VAR (op) && VAR_P (SSA_NAME_VAR (op))) { DECL_NAME (v) = DECL_NAME (SSA_NAME_VAR (op)); DECL_SOURCE_LOCATION (v) = DECL_SOURCE_LOCATION (SSA_NAME_VAR (op)); } v = get_or_create_ssa_default_def (cfun, v); m_data.safe_push (v); } tree ret = m_data[m_data_cnt]; m_data_cnt++; if (tree_fits_uhwi_p (idx)) { tree type = limb_access_type (TREE_TYPE (op), idx); ret = add_cast (type, ret); } return ret; } location_t loc_save = m_loc; m_loc = gimple_location (SSA_NAME_DEF_STMT (op)); tree ret = handle_stmt (SSA_NAME_DEF_STMT (op), idx); m_loc = loc_save; return ret; } int p; gimple *g; tree t; p = var_to_partition (m_map, op); gcc_assert (m_vars[p] != NULL_TREE); t = limb_access (TREE_TYPE (op), m_vars[p], idx, false); g = gimple_build_assign (make_ssa_name (TREE_TYPE (t)), t); insert_before (g); t = gimple_assign_lhs (g); if (m_first && m_single_use_names && m_vars[p] != m_lhs && m_after_stmt && bitmap_bit_p (m_single_use_names, SSA_NAME_VERSION (op))) { tree clobber = build_clobber (TREE_TYPE (m_vars[p]), CLOBBER_STORAGE_END); g = gimple_build_assign (m_vars[p], clobber); gimple_stmt_iterator gsi = gsi_for_stmt (m_after_stmt); gsi_insert_after (&gsi, g, GSI_SAME_STMT); } return t; case INTEGER_CST: if (tree_fits_uhwi_p (idx)) { tree c, type = limb_access_type (TREE_TYPE (op), idx); unsigned HOST_WIDE_INT i = tree_to_uhwi (idx); if (m_first) { m_data.safe_push (NULL_TREE); m_data.safe_push (NULL_TREE); } if (limb_prec != HOST_BITS_PER_WIDE_INT) { wide_int w = wi::rshift (wi::to_wide (op), i * limb_prec, TYPE_SIGN (TREE_TYPE (op))); c = wide_int_to_tree (type, wide_int::from (w, TYPE_PRECISION (type), UNSIGNED)); } else if (i >= TREE_INT_CST_EXT_NUNITS (op)) c = build_int_cst (type, tree_int_cst_sgn (op) < 0 ? -1 : 0); else c = build_int_cst (type, TREE_INT_CST_ELT (op, i)); m_data_cnt += 2; return c; } if (m_first || (m_data[m_data_cnt] == NULL_TREE && m_data[m_data_cnt + 1] == NULL_TREE)) { unsigned int prec = TYPE_PRECISION (TREE_TYPE (op)); unsigned int rem = prec % (2 * limb_prec); int ext; unsigned min_prec = bitint_min_cst_precision (op, ext); if (m_first) { m_data.safe_push (NULL_TREE); m_data.safe_push (NULL_TREE); } if (integer_zerop (op)) { tree c = build_zero_cst (m_limb_type); m_data[m_data_cnt] = c; m_data[m_data_cnt + 1] = c; } else if (integer_all_onesp (op)) { tree c = build_all_ones_cst (m_limb_type); m_data[m_data_cnt] = c; m_data[m_data_cnt + 1] = c; } else if (m_upwards_2limb && min_prec <= (unsigned) limb_prec) { /* Single limb constant. Use a phi with that limb from the preheader edge and 0 or -1 constant from the other edge and for the second limb in the loop. */ tree out; gcc_assert (m_first); m_data.pop (); m_data.pop (); prepare_data_in_out (fold_convert (m_limb_type, op), idx, &out, build_int_cst (m_limb_type, ext)); } else if (min_prec > prec - rem - 2 * limb_prec) { /* Constant which has enough significant bits that it isn't worth trying to save .rodata space by extending from smaller number. */ tree type; if (m_var_msb) type = TREE_TYPE (op); else /* If we have a guarantee the most significant partial limb (if any) will be only accessed through handle_operand with INTEGER_CST idx, we don't need to include the partial limb in .rodata. */ type = build_bitint_type (prec - rem, 1); tree c = tree_output_constant_def (fold_convert (type, op)); m_data[m_data_cnt] = c; m_data[m_data_cnt + 1] = NULL_TREE; } else if (m_upwards_2limb) { /* Constant with smaller number of bits. Trade conditional code for .rodata space by extending from smaller number. */ min_prec = CEIL (min_prec, 2 * limb_prec) * (2 * limb_prec); tree type = build_bitint_type (min_prec, 1); tree c = tree_output_constant_def (fold_convert (type, op)); tree idx2 = make_ssa_name (sizetype); g = gimple_build_assign (idx2, PLUS_EXPR, idx, size_one_node); insert_before (g); g = gimple_build_cond (LT_EXPR, idx, size_int (min_prec / limb_prec), NULL_TREE, NULL_TREE); edge edge_true, edge_false; if_then (g, (min_prec >= (prec - rem) / 2 ? profile_probability::likely () : profile_probability::unlikely ()), edge_true, edge_false); tree c1 = limb_access (TREE_TYPE (op), c, idx, false); g = gimple_build_assign (make_ssa_name (TREE_TYPE (c1)), c1); insert_before (g); c1 = gimple_assign_lhs (g); tree c2 = limb_access (TREE_TYPE (op), c, idx2, false); g = gimple_build_assign (make_ssa_name (TREE_TYPE (c2)), c2); insert_before (g); c2 = gimple_assign_lhs (g); tree c3 = build_int_cst (m_limb_type, ext); m_gsi = gsi_after_labels (edge_true->dest); m_data[m_data_cnt] = make_ssa_name (m_limb_type); m_data[m_data_cnt + 1] = make_ssa_name (m_limb_type); gphi *phi = create_phi_node (m_data[m_data_cnt], edge_true->dest); add_phi_arg (phi, c1, edge_true, UNKNOWN_LOCATION); add_phi_arg (phi, c3, edge_false, UNKNOWN_LOCATION); phi = create_phi_node (m_data[m_data_cnt + 1], edge_true->dest); add_phi_arg (phi, c2, edge_true, UNKNOWN_LOCATION); add_phi_arg (phi, c3, edge_false, UNKNOWN_LOCATION); } else { /* Constant with smaller number of bits. Trade conditional code for .rodata space by extending from smaller number. Version for loops with random access to the limbs or downwards loops. */ min_prec = CEIL (min_prec, limb_prec) * limb_prec; tree c; if (min_prec <= (unsigned) limb_prec) c = fold_convert (m_limb_type, op); else { tree type = build_bitint_type (min_prec, 1); c = tree_output_constant_def (fold_convert (type, op)); } m_data[m_data_cnt] = c; m_data[m_data_cnt + 1] = integer_type_node; } t = m_data[m_data_cnt]; if (m_data[m_data_cnt + 1] == NULL_TREE) { t = limb_access (TREE_TYPE (op), t, idx, false); g = gimple_build_assign (make_ssa_name (TREE_TYPE (t)), t); insert_before (g); t = gimple_assign_lhs (g); } } else if (m_data[m_data_cnt + 1] == NULL_TREE) { t = limb_access (TREE_TYPE (op), m_data[m_data_cnt], idx, false); g = gimple_build_assign (make_ssa_name (TREE_TYPE (t)), t); insert_before (g); t = gimple_assign_lhs (g); } else t = m_data[m_data_cnt + 1]; if (m_data[m_data_cnt + 1] == integer_type_node) { unsigned int prec = TYPE_PRECISION (TREE_TYPE (op)); unsigned rem = prec % (2 * limb_prec); int ext = wi::neg_p (wi::to_wide (op)) ? -1 : 0; tree c = m_data[m_data_cnt]; unsigned min_prec = TYPE_PRECISION (TREE_TYPE (c)); g = gimple_build_cond (LT_EXPR, idx, size_int (min_prec / limb_prec), NULL_TREE, NULL_TREE); edge edge_true, edge_false; if_then (g, (min_prec >= (prec - rem) / 2 ? profile_probability::likely () : profile_probability::unlikely ()), edge_true, edge_false); if (min_prec > (unsigned) limb_prec) { c = limb_access (TREE_TYPE (op), c, idx, false); g = gimple_build_assign (make_ssa_name (TREE_TYPE (c)), c); insert_before (g); c = gimple_assign_lhs (g); } tree c2 = build_int_cst (m_limb_type, ext); m_gsi = gsi_after_labels (edge_true->dest); t = make_ssa_name (m_limb_type); gphi *phi = create_phi_node (t, edge_true->dest); add_phi_arg (phi, c, edge_true, UNKNOWN_LOCATION); add_phi_arg (phi, c2, edge_false, UNKNOWN_LOCATION); } m_data_cnt += 2; return t; default: gcc_unreachable (); } } /* Helper method, add a PHI node with VAL from preheader edge if inside of a loop and m_first. Keep state in a pair of m_data elements. If VAL_OUT is non-NULL, use that as PHI argument from the latch edge, otherwise create a new SSA_NAME for it and let caller initialize it. */ tree bitint_large_huge::prepare_data_in_out (tree val, tree idx, tree *data_out, tree val_out) { if (!m_first) { *data_out = tree_fits_uhwi_p (idx) ? NULL_TREE : m_data[m_data_cnt + 1]; return m_data[m_data_cnt]; } *data_out = NULL_TREE; if (tree_fits_uhwi_p (idx)) { m_data.safe_push (val); m_data.safe_push (NULL_TREE); return val; } tree in = make_ssa_name (TREE_TYPE (val)); gphi *phi = create_phi_node (in, m_bb); edge e1 = find_edge (m_preheader_bb, m_bb); edge e2 = EDGE_PRED (m_bb, 0); if (e1 == e2) e2 = EDGE_PRED (m_bb, 1); add_phi_arg (phi, val, e1, UNKNOWN_LOCATION); tree out = val_out ? val_out : make_ssa_name (TREE_TYPE (val)); add_phi_arg (phi, out, e2, UNKNOWN_LOCATION); m_data.safe_push (in); m_data.safe_push (out); return in; } /* Return VAL cast to TYPE. If VAL is INTEGER_CST, just convert it without emitting any code, otherwise emit the conversion statement before the current location. */ tree bitint_large_huge::add_cast (tree type, tree val) { if (TREE_CODE (val) == INTEGER_CST) return fold_convert (type, val); tree lhs = make_ssa_name (type); gimple *g = gimple_build_assign (lhs, NOP_EXPR, val); insert_before (g); return lhs; } /* Helper of handle_stmt method, handle PLUS_EXPR or MINUS_EXPR. */ tree bitint_large_huge::handle_plus_minus (tree_code code, tree rhs1, tree rhs2, tree idx) { tree lhs, data_out, ctype; tree rhs1_type = TREE_TYPE (rhs1); gimple *g; tree data_in = prepare_data_in_out (build_zero_cst (m_limb_type), idx, &data_out); if (optab_handler (code == PLUS_EXPR ? uaddc5_optab : usubc5_optab, TYPE_MODE (m_limb_type)) != CODE_FOR_nothing) { ctype = build_complex_type (m_limb_type); if (!types_compatible_p (rhs1_type, m_limb_type)) { if (!TYPE_UNSIGNED (rhs1_type)) { tree type = unsigned_type_for (rhs1_type); rhs1 = add_cast (type, rhs1); rhs2 = add_cast (type, rhs2); } rhs1 = add_cast (m_limb_type, rhs1); rhs2 = add_cast (m_limb_type, rhs2); } lhs = make_ssa_name (ctype); g = gimple_build_call_internal (code == PLUS_EXPR ? IFN_UADDC : IFN_USUBC, 3, rhs1, rhs2, data_in); gimple_call_set_lhs (g, lhs); insert_before (g); if (data_out == NULL_TREE) data_out = make_ssa_name (m_limb_type); g = gimple_build_assign (data_out, IMAGPART_EXPR, build1 (IMAGPART_EXPR, m_limb_type, lhs)); insert_before (g); } else if (types_compatible_p (rhs1_type, m_limb_type)) { ctype = build_complex_type (m_limb_type); lhs = make_ssa_name (ctype); g = gimple_build_call_internal (code == PLUS_EXPR ? IFN_ADD_OVERFLOW : IFN_SUB_OVERFLOW, 2, rhs1, rhs2); gimple_call_set_lhs (g, lhs); insert_before (g); if (data_out == NULL_TREE) data_out = make_ssa_name (m_limb_type); if (!integer_zerop (data_in)) { rhs1 = make_ssa_name (m_limb_type); g = gimple_build_assign (rhs1, REALPART_EXPR, build1 (REALPART_EXPR, m_limb_type, lhs)); insert_before (g); rhs2 = make_ssa_name (m_limb_type); g = gimple_build_assign (rhs2, IMAGPART_EXPR, build1 (IMAGPART_EXPR, m_limb_type, lhs)); insert_before (g); lhs = make_ssa_name (ctype); g = gimple_build_call_internal (code == PLUS_EXPR ? IFN_ADD_OVERFLOW : IFN_SUB_OVERFLOW, 2, rhs1, data_in); gimple_call_set_lhs (g, lhs); insert_before (g); data_in = make_ssa_name (m_limb_type); g = gimple_build_assign (data_in, IMAGPART_EXPR, build1 (IMAGPART_EXPR, m_limb_type, lhs)); insert_before (g); g = gimple_build_assign (data_out, PLUS_EXPR, rhs2, data_in); insert_before (g); } else { g = gimple_build_assign (data_out, IMAGPART_EXPR, build1 (IMAGPART_EXPR, m_limb_type, lhs)); insert_before (g); } } else { tree in = add_cast (rhs1_type, data_in); lhs = make_ssa_name (rhs1_type); g = gimple_build_assign (lhs, code, rhs1, rhs2); insert_before (g); rhs1 = make_ssa_name (rhs1_type); g = gimple_build_assign (rhs1, code, lhs, in); insert_before (g); m_data[m_data_cnt] = NULL_TREE; m_data_cnt += 2; return rhs1; } rhs1 = make_ssa_name (m_limb_type); g = gimple_build_assign (rhs1, REALPART_EXPR, build1 (REALPART_EXPR, m_limb_type, lhs)); insert_before (g); if (!types_compatible_p (rhs1_type, m_limb_type)) rhs1 = add_cast (rhs1_type, rhs1); m_data[m_data_cnt] = data_out; m_data_cnt += 2; return rhs1; } /* Helper function for handle_stmt method, handle LSHIFT_EXPR by count in [0, limb_prec - 1] range. */ tree bitint_large_huge::handle_lshift (tree rhs1, tree rhs2, tree idx) { unsigned HOST_WIDE_INT cnt = tree_to_uhwi (rhs2); gcc_checking_assert (cnt < (unsigned) limb_prec); if (cnt == 0) return rhs1; tree lhs, data_out, rhs1_type = TREE_TYPE (rhs1); gimple *g; tree data_in = prepare_data_in_out (build_zero_cst (m_limb_type), idx, &data_out); if (!integer_zerop (data_in)) { lhs = make_ssa_name (m_limb_type); g = gimple_build_assign (lhs, RSHIFT_EXPR, data_in, build_int_cst (unsigned_type_node, limb_prec - cnt)); insert_before (g); if (!types_compatible_p (rhs1_type, m_limb_type)) lhs = add_cast (rhs1_type, lhs); data_in = lhs; } if (types_compatible_p (rhs1_type, m_limb_type)) { if (data_out == NULL_TREE) data_out = make_ssa_name (m_limb_type); g = gimple_build_assign (data_out, rhs1); insert_before (g); } if (cnt < (unsigned) TYPE_PRECISION (rhs1_type)) { lhs = make_ssa_name (rhs1_type); g = gimple_build_assign (lhs, LSHIFT_EXPR, rhs1, rhs2); insert_before (g); if (!integer_zerop (data_in)) { rhs1 = lhs; lhs = make_ssa_name (rhs1_type); g = gimple_build_assign (lhs, BIT_IOR_EXPR, rhs1, data_in); insert_before (g); } } else lhs = data_in; m_data[m_data_cnt] = data_out; m_data_cnt += 2; return lhs; } /* Helper function for handle_stmt method, handle an integral to integral conversion. */ tree bitint_large_huge::handle_cast (tree lhs_type, tree rhs1, tree idx) { tree rhs_type = TREE_TYPE (rhs1); gimple *g; if (TREE_CODE (rhs1) == SSA_NAME && TREE_CODE (lhs_type) == BITINT_TYPE && TREE_CODE (rhs_type) == BITINT_TYPE && bitint_precision_kind (lhs_type) >= bitint_prec_large && bitint_precision_kind (rhs_type) >= bitint_prec_large) { if (TYPE_PRECISION (rhs_type) >= TYPE_PRECISION (lhs_type) /* If lhs has bigger precision than rhs, we can use the simple case only if there is a guarantee that the most significant limb is handled in straight line code. If m_var_msb (on left shifts) or if m_upwards_2limb * limb_prec is equal to lhs precision that is not the case. */ || (!m_var_msb && (CEIL (TYPE_PRECISION (lhs_type), limb_prec) == CEIL (TYPE_PRECISION (rhs_type), limb_prec)) && (!m_upwards_2limb || (m_upwards_2limb * limb_prec < TYPE_PRECISION (lhs_type))))) { rhs1 = handle_operand (rhs1, idx); if (tree_fits_uhwi_p (idx)) { tree type = limb_access_type (lhs_type, idx); if (!types_compatible_p (type, TREE_TYPE (rhs1))) rhs1 = add_cast (type, rhs1); } return rhs1; } tree t; /* Indexes lower than this don't need any special processing. */ unsigned low = ((unsigned) TYPE_PRECISION (rhs_type) - !TYPE_UNSIGNED (rhs_type)) / limb_prec; /* Indexes >= than this always contain an extension. */ unsigned high = CEIL ((unsigned) TYPE_PRECISION (rhs_type), limb_prec); bool save_first = m_first; if (m_first) { m_data.safe_push (NULL_TREE); m_data.safe_push (NULL_TREE); m_data.safe_push (NULL_TREE); if (TYPE_UNSIGNED (rhs_type)) /* No need to keep state between iterations. */ ; else if (m_upwards && !m_upwards_2limb) /* We need to keep state between iterations, but not within any loop, everything is straight line code with only increasing indexes. */ ; else if (!m_upwards_2limb) { unsigned save_data_cnt = m_data_cnt; gimple_stmt_iterator save_gsi = m_gsi; m_gsi = m_init_gsi; if (gsi_end_p (m_gsi)) m_gsi = gsi_after_labels (gsi_bb (m_gsi)); else gsi_next (&m_gsi); m_data_cnt = save_data_cnt + 3; t = handle_operand (rhs1, size_int (low)); m_first = false; m_data[save_data_cnt + 2] = build_int_cst (NULL_TREE, m_data_cnt); m_data_cnt = save_data_cnt; t = add_cast (signed_type_for (m_limb_type), t); tree lpm1 = build_int_cst (unsigned_type_node, limb_prec - 1); tree n = make_ssa_name (TREE_TYPE (t)); g = gimple_build_assign (n, RSHIFT_EXPR, t, lpm1); insert_before (g); m_data[save_data_cnt + 1] = add_cast (m_limb_type, n); m_init_gsi = m_gsi; if (gsi_end_p (m_init_gsi)) m_init_gsi = gsi_last_bb (gsi_bb (m_init_gsi)); else gsi_prev (&m_init_gsi); m_gsi = save_gsi; } else if (m_upwards_2limb * limb_prec < TYPE_PRECISION (rhs_type)) /* We need to keep state between iterations, but fortunately not within the loop, only afterwards. */ ; else { tree out; m_data.truncate (m_data_cnt); prepare_data_in_out (build_zero_cst (m_limb_type), idx, &out); m_data.safe_push (NULL_TREE); } } unsigned save_data_cnt = m_data_cnt; m_data_cnt += 3; if (!tree_fits_uhwi_p (idx)) { if (m_upwards_2limb && (m_upwards_2limb * limb_prec <= ((unsigned) TYPE_PRECISION (rhs_type) - !TYPE_UNSIGNED (rhs_type)))) { rhs1 = handle_operand (rhs1, idx); if (m_first) m_data[save_data_cnt + 2] = build_int_cst (NULL_TREE, m_data_cnt); m_first = save_first; return rhs1; } bool single_comparison = low == high || (m_upwards_2limb && (low & 1) == m_first); g = gimple_build_cond (single_comparison ? LT_EXPR : LE_EXPR, idx, size_int (low), NULL_TREE, NULL_TREE); edge edge_true_true, edge_true_false, edge_false; if_then_if_then_else (g, (single_comparison ? NULL : gimple_build_cond (EQ_EXPR, idx, size_int (low), NULL_TREE, NULL_TREE)), profile_probability::likely (), profile_probability::unlikely (), edge_true_true, edge_true_false, edge_false); bool save_cast_conditional = m_cast_conditional; m_cast_conditional = true; m_bitfld_load = 0; tree t1 = handle_operand (rhs1, idx), t2 = NULL_TREE; if (m_first) m_data[save_data_cnt + 2] = build_int_cst (NULL_TREE, m_data_cnt); tree ext = NULL_TREE; tree bitfld = NULL_TREE; if (!single_comparison) { m_gsi = gsi_after_labels (edge_true_true->src); m_first = false; m_data_cnt = save_data_cnt + 3; if (m_bitfld_load) { bitfld = m_data[m_bitfld_load]; m_data[m_bitfld_load] = m_data[m_bitfld_load + 2]; m_bitfld_load = 0; } t2 = handle_operand (rhs1, size_int (low)); if (!useless_type_conversion_p (m_limb_type, TREE_TYPE (t2))) t2 = add_cast (m_limb_type, t2); if (!TYPE_UNSIGNED (rhs_type) && m_upwards_2limb) { ext = add_cast (signed_type_for (m_limb_type), t2); tree lpm1 = build_int_cst (unsigned_type_node, limb_prec - 1); tree n = make_ssa_name (TREE_TYPE (ext)); g = gimple_build_assign (n, RSHIFT_EXPR, ext, lpm1); insert_before (g); ext = add_cast (m_limb_type, n); } } tree t3; if (TYPE_UNSIGNED (rhs_type)) t3 = build_zero_cst (m_limb_type); else if (m_upwards_2limb && (save_first || ext != NULL_TREE)) t3 = m_data[save_data_cnt]; else t3 = m_data[save_data_cnt + 1]; m_gsi = gsi_after_labels (edge_true_false->dest); t = make_ssa_name (m_limb_type); gphi *phi = create_phi_node (t, edge_true_false->dest); add_phi_arg (phi, t1, edge_true_false, UNKNOWN_LOCATION); add_phi_arg (phi, t3, edge_false, UNKNOWN_LOCATION); if (edge_true_true) add_phi_arg (phi, t2, edge_true_true, UNKNOWN_LOCATION); if (ext) { tree t4 = make_ssa_name (m_limb_type); phi = create_phi_node (t4, edge_true_false->dest); add_phi_arg (phi, build_zero_cst (m_limb_type), edge_true_false, UNKNOWN_LOCATION); add_phi_arg (phi, m_data[save_data_cnt], edge_false, UNKNOWN_LOCATION); add_phi_arg (phi, ext, edge_true_true, UNKNOWN_LOCATION); if (!save_cast_conditional) { g = gimple_build_assign (m_data[save_data_cnt + 1], t4); insert_before (g); } else for (basic_block bb = gsi_bb (m_gsi);;) { edge e1 = single_succ_edge (bb); edge e2 = find_edge (e1->dest, m_bb), e3; tree t5 = (e2 ? m_data[save_data_cnt + 1] : make_ssa_name (m_limb_type)); phi = create_phi_node (t5, e1->dest); edge_iterator ei; FOR_EACH_EDGE (e3, ei, e1->dest->preds) add_phi_arg (phi, (e3 == e1 ? t4 : build_zero_cst (m_limb_type)), e3, UNKNOWN_LOCATION); if (e2) break; t4 = t5; bb = e1->dest; } } if (m_bitfld_load) { tree t4; if (!m_first) t4 = m_data[m_bitfld_load + 1]; else t4 = make_ssa_name (m_limb_type); phi = create_phi_node (t4, edge_true_false->dest); add_phi_arg (phi, edge_true_true ? bitfld : m_data[m_bitfld_load], edge_true_false, UNKNOWN_LOCATION); add_phi_arg (phi, m_data[m_bitfld_load + 2], edge_false, UNKNOWN_LOCATION); if (edge_true_true) add_phi_arg (phi, m_data[m_bitfld_load], edge_true_true, UNKNOWN_LOCATION); m_data[m_bitfld_load] = t4; m_data[m_bitfld_load + 2] = t4; m_bitfld_load = 0; } m_cast_conditional = save_cast_conditional; m_first = save_first; return t; } else { if (tree_to_uhwi (idx) < low) { t = handle_operand (rhs1, idx); if (m_first) m_data[save_data_cnt + 2] = build_int_cst (NULL_TREE, m_data_cnt); } else if (tree_to_uhwi (idx) < high) { t = handle_operand (rhs1, size_int (low)); if (m_first) m_data[save_data_cnt + 2] = build_int_cst (NULL_TREE, m_data_cnt); if (!useless_type_conversion_p (m_limb_type, TREE_TYPE (t))) t = add_cast (m_limb_type, t); tree ext = NULL_TREE; if (!TYPE_UNSIGNED (rhs_type) && m_upwards) { ext = add_cast (signed_type_for (m_limb_type), t); tree lpm1 = build_int_cst (unsigned_type_node, limb_prec - 1); tree n = make_ssa_name (TREE_TYPE (ext)); g = gimple_build_assign (n, RSHIFT_EXPR, ext, lpm1); insert_before (g); ext = add_cast (m_limb_type, n); m_data[save_data_cnt + 1] = ext; } } else { if (TYPE_UNSIGNED (rhs_type) && m_first) { handle_operand (rhs1, size_zero_node); m_data[save_data_cnt + 2] = build_int_cst (NULL_TREE, m_data_cnt); } else m_data_cnt = tree_to_uhwi (m_data[save_data_cnt + 2]); if (TYPE_UNSIGNED (rhs_type)) t = build_zero_cst (m_limb_type); else if (m_bb && m_data[save_data_cnt]) t = m_data[save_data_cnt]; else t = m_data[save_data_cnt + 1]; } tree type = limb_access_type (lhs_type, idx); if (!useless_type_conversion_p (type, m_limb_type)) t = add_cast (type, t); m_first = save_first; return t; } } else if (TREE_CODE (lhs_type) == BITINT_TYPE && bitint_precision_kind (lhs_type) >= bitint_prec_large && INTEGRAL_TYPE_P (rhs_type)) { /* Add support for 3 or more limbs filled in from normal integral type if this assert fails. If no target chooses limb mode smaller than half of largest supported normal integral type, this will not be needed. */ gcc_assert (TYPE_PRECISION (rhs_type) <= 2 * limb_prec); tree r1 = NULL_TREE, r2 = NULL_TREE, rext = NULL_TREE; if (m_first) { gimple_stmt_iterator save_gsi = m_gsi; m_gsi = m_init_gsi; if (gsi_end_p (m_gsi)) m_gsi = gsi_after_labels (gsi_bb (m_gsi)); else gsi_next (&m_gsi); if (TREE_CODE (rhs_type) == BITINT_TYPE && bitint_precision_kind (rhs_type) == bitint_prec_middle) { tree type = NULL_TREE; rhs1 = maybe_cast_middle_bitint (&m_gsi, rhs1, type); rhs_type = TREE_TYPE (rhs1); } r1 = rhs1; if (!useless_type_conversion_p (m_limb_type, TREE_TYPE (rhs1))) r1 = add_cast (m_limb_type, rhs1); if (TYPE_PRECISION (rhs_type) > limb_prec) { g = gimple_build_assign (make_ssa_name (rhs_type), RSHIFT_EXPR, rhs1, build_int_cst (unsigned_type_node, limb_prec)); insert_before (g); r2 = add_cast (m_limb_type, gimple_assign_lhs (g)); } if (TYPE_UNSIGNED (rhs_type)) rext = build_zero_cst (m_limb_type); else { rext = add_cast (signed_type_for (m_limb_type), r2 ? r2 : r1); g = gimple_build_assign (make_ssa_name (TREE_TYPE (rext)), RSHIFT_EXPR, rext, build_int_cst (unsigned_type_node, limb_prec - 1)); insert_before (g); rext = add_cast (m_limb_type, gimple_assign_lhs (g)); } m_init_gsi = m_gsi; if (gsi_end_p (m_init_gsi)) m_init_gsi = gsi_last_bb (gsi_bb (m_init_gsi)); else gsi_prev (&m_init_gsi); m_gsi = save_gsi; } tree t; if (m_upwards_2limb) { if (m_first) { tree out1, out2; prepare_data_in_out (r1, idx, &out1, rext); if (TYPE_PRECISION (rhs_type) > limb_prec) { prepare_data_in_out (r2, idx, &out2, rext); m_data.pop (); t = m_data.pop (); m_data[m_data_cnt + 1] = t; } else m_data[m_data_cnt + 1] = rext; m_data.safe_push (rext); t = m_data[m_data_cnt]; } else if (!tree_fits_uhwi_p (idx)) t = m_data[m_data_cnt + 1]; else { tree type = limb_access_type (lhs_type, idx); t = m_data[m_data_cnt + 2]; if (!useless_type_conversion_p (type, m_limb_type)) t = add_cast (type, t); } m_data_cnt += 3; return t; } else if (m_first) { m_data.safe_push (r1); m_data.safe_push (r2); m_data.safe_push (rext); } if (tree_fits_uhwi_p (idx)) { tree type = limb_access_type (lhs_type, idx); if (integer_zerop (idx)) t = m_data[m_data_cnt]; else if (TYPE_PRECISION (rhs_type) > limb_prec && integer_onep (idx)) t = m_data[m_data_cnt + 1]; else t = m_data[m_data_cnt + 2]; if (!useless_type_conversion_p (type, m_limb_type)) t = add_cast (type, t); m_data_cnt += 3; return t; } g = gimple_build_cond (NE_EXPR, idx, size_zero_node, NULL_TREE, NULL_TREE); edge e2, e3, e4 = NULL; if_then (g, profile_probability::likely (), e2, e3); if (m_data[m_data_cnt + 1]) { g = gimple_build_cond (EQ_EXPR, idx, size_one_node, NULL_TREE, NULL_TREE); insert_before (g); edge e5 = split_block (gsi_bb (m_gsi), g); e4 = make_edge (e5->src, e2->dest, EDGE_TRUE_VALUE); e2 = find_edge (e5->dest, e2->dest); e4->probability = profile_probability::unlikely (); e5->flags = EDGE_FALSE_VALUE; e5->probability = e4->probability.invert (); } m_gsi = gsi_after_labels (e2->dest); t = make_ssa_name (m_limb_type); gphi *phi = create_phi_node (t, e2->dest); add_phi_arg (phi, m_data[m_data_cnt + 2], e2, UNKNOWN_LOCATION); add_phi_arg (phi, m_data[m_data_cnt], e3, UNKNOWN_LOCATION); if (e4) add_phi_arg (phi, m_data[m_data_cnt + 1], e4, UNKNOWN_LOCATION); m_data_cnt += 3; return t; } return NULL_TREE; } /* Helper function for handle_stmt method, handle a load from memory. */ tree bitint_large_huge::handle_load (gimple *stmt, tree idx) { tree rhs1 = gimple_assign_rhs1 (stmt); tree rhs_type = TREE_TYPE (rhs1); bool eh = stmt_ends_bb_p (stmt); edge eh_edge = NULL; gimple *g; if (eh) { edge_iterator ei; basic_block bb = gimple_bb (stmt); FOR_EACH_EDGE (eh_edge, ei, bb->succs) if (eh_edge->flags & EDGE_EH) break; } if (TREE_CODE (rhs1) == COMPONENT_REF && DECL_BIT_FIELD_TYPE (TREE_OPERAND (rhs1, 1))) { tree fld = TREE_OPERAND (rhs1, 1); /* For little-endian, we can allow as inputs bit-fields which start at a limb boundary. */ gcc_assert (tree_fits_uhwi_p (DECL_FIELD_BIT_OFFSET (fld))); if (DECL_OFFSET_ALIGN (fld) >= TYPE_ALIGN (TREE_TYPE (rhs1)) && (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (fld)) % limb_prec) == 0) goto normal_load; /* Even if DECL_FIELD_BIT_OFFSET (fld) is a multiple of UNITS_PER_BIT, handle it normally for now. */ if ((tree_to_uhwi (DECL_FIELD_BIT_OFFSET (fld)) % BITS_PER_UNIT) == 0) goto normal_load; tree repr = DECL_BIT_FIELD_REPRESENTATIVE (fld); poly_int64 bitoffset; poly_uint64 field_offset, repr_offset; bool var_field_off = false; if (poly_int_tree_p (DECL_FIELD_OFFSET (fld), &field_offset) && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset)) bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT; else { bitoffset = 0; var_field_off = true; } bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (fld)) - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))); tree nrhs1 = build3 (COMPONENT_REF, TREE_TYPE (repr), TREE_OPERAND (rhs1, 0), repr, var_field_off ? TREE_OPERAND (rhs1, 2) : NULL_TREE); HOST_WIDE_INT bo = bitoffset.to_constant (); unsigned bo_idx = (unsigned HOST_WIDE_INT) bo / limb_prec; unsigned bo_bit = (unsigned HOST_WIDE_INT) bo % limb_prec; if (m_first) { if (m_upwards) { gimple_stmt_iterator save_gsi = m_gsi; m_gsi = m_init_gsi; if (gsi_end_p (m_gsi)) m_gsi = gsi_after_labels (gsi_bb (m_gsi)); else gsi_next (&m_gsi); tree t = limb_access (rhs_type, nrhs1, size_int (bo_idx), true); tree iv = make_ssa_name (m_limb_type); g = gimple_build_assign (iv, t); insert_before (g); if (eh) { maybe_duplicate_eh_stmt (g, stmt); if (eh_edge) { edge e = split_block (gsi_bb (m_gsi), g); make_edge (e->src, eh_edge->dest, EDGE_EH)->probability = profile_probability::very_unlikely (); m_gsi = gsi_after_labels (e->dest); if (gsi_bb (save_gsi) == e->src) { if (gsi_end_p (save_gsi)) save_gsi = gsi_end_bb (e->dest); else save_gsi = gsi_for_stmt (gsi_stmt (save_gsi)); } if (m_preheader_bb == e->src) m_preheader_bb = e->dest; } } m_init_gsi = m_gsi; if (gsi_end_p (m_init_gsi)) m_init_gsi = gsi_last_bb (gsi_bb (m_init_gsi)); else gsi_prev (&m_init_gsi); m_gsi = save_gsi; tree out; prepare_data_in_out (iv, idx, &out); out = m_data[m_data_cnt]; m_data.safe_push (out); } else { m_data.safe_push (NULL_TREE); m_data.safe_push (NULL_TREE); m_data.safe_push (NULL_TREE); } } tree nidx0 = NULL_TREE, nidx1; tree iv = m_data[m_data_cnt]; if (m_cast_conditional && iv) { gcc_assert (!m_bitfld_load); m_bitfld_load = m_data_cnt; } if (tree_fits_uhwi_p (idx)) { unsigned prec = TYPE_PRECISION (rhs_type); unsigned HOST_WIDE_INT i = tree_to_uhwi (idx); gcc_assert (i * limb_prec < prec); nidx1 = size_int (i + bo_idx + 1); if ((i + 1) * limb_prec > prec) { prec %= limb_prec; if (prec + bo_bit <= (unsigned) limb_prec) nidx1 = NULL_TREE; } if (!iv) nidx0 = size_int (i + bo_idx); } else { if (!iv) { if (bo_idx == 0) nidx0 = idx; else { nidx0 = make_ssa_name (sizetype); g = gimple_build_assign (nidx0, PLUS_EXPR, idx, size_int (bo_idx)); insert_before (g); } } nidx1 = make_ssa_name (sizetype); g = gimple_build_assign (nidx1, PLUS_EXPR, idx, size_int (bo_idx + 1)); insert_before (g); } tree iv2 = NULL_TREE; if (nidx0) { tree t = limb_access (rhs_type, nrhs1, nidx0, true); iv = make_ssa_name (m_limb_type); g = gimple_build_assign (iv, t); insert_before (g); gcc_assert (!eh); } if (nidx1) { bool conditional = m_var_msb && !tree_fits_uhwi_p (idx); unsigned prec = TYPE_PRECISION (rhs_type); if (conditional) { if ((prec % limb_prec) == 0 || ((prec % limb_prec) + bo_bit > (unsigned) limb_prec)) conditional = false; } edge edge_true = NULL, edge_false = NULL; if (conditional) { g = gimple_build_cond (NE_EXPR, idx, size_int (prec / limb_prec), NULL_TREE, NULL_TREE); if_then (g, profile_probability::likely (), edge_true, edge_false); } tree t = limb_access (rhs_type, nrhs1, nidx1, true); if (m_upwards_2limb && !m_first && !m_bitfld_load && !tree_fits_uhwi_p (idx)) iv2 = m_data[m_data_cnt + 1]; else iv2 = make_ssa_name (m_limb_type); g = gimple_build_assign (iv2, t); insert_before (g); if (eh) { maybe_duplicate_eh_stmt (g, stmt); if (eh_edge) { edge e = split_block (gsi_bb (m_gsi), g); m_gsi = gsi_after_labels (e->dest); make_edge (e->src, eh_edge->dest, EDGE_EH)->probability = profile_probability::very_unlikely (); } } if (conditional) { tree iv3 = make_ssa_name (m_limb_type); if (eh) edge_true = find_edge (gsi_bb (m_gsi), edge_false->dest); gphi *phi = create_phi_node (iv3, edge_true->dest); add_phi_arg (phi, iv2, edge_true, UNKNOWN_LOCATION); add_phi_arg (phi, build_zero_cst (m_limb_type), edge_false, UNKNOWN_LOCATION); m_gsi = gsi_after_labels (edge_true->dest); } } g = gimple_build_assign (make_ssa_name (m_limb_type), RSHIFT_EXPR, iv, build_int_cst (unsigned_type_node, bo_bit)); insert_before (g); iv = gimple_assign_lhs (g); if (iv2) { g = gimple_build_assign (make_ssa_name (m_limb_type), LSHIFT_EXPR, iv2, build_int_cst (unsigned_type_node, limb_prec - bo_bit)); insert_before (g); g = gimple_build_assign (make_ssa_name (m_limb_type), BIT_IOR_EXPR, gimple_assign_lhs (g), iv); insert_before (g); iv = gimple_assign_lhs (g); if (m_data[m_data_cnt]) m_data[m_data_cnt] = iv2; } if (tree_fits_uhwi_p (idx)) { tree atype = limb_access_type (rhs_type, idx); if (!useless_type_conversion_p (atype, TREE_TYPE (iv))) iv = add_cast (atype, iv); } m_data_cnt += 3; return iv; } normal_load: /* Use write_p = true for loads with EH edges to make sure limb_access doesn't add a cast as separate statement after it. */ rhs1 = limb_access (rhs_type, rhs1, idx, eh); tree ret = make_ssa_name (TREE_TYPE (rhs1)); g = gimple_build_assign (ret, rhs1); insert_before (g); if (eh) { maybe_duplicate_eh_stmt (g, stmt); if (eh_edge) { edge e = split_block (gsi_bb (m_gsi), g); m_gsi = gsi_after_labels (e->dest); make_edge (e->src, eh_edge->dest, EDGE_EH)->probability = profile_probability::very_unlikely (); } if (tree_fits_uhwi_p (idx)) { tree atype = limb_access_type (rhs_type, idx); if (!useless_type_conversion_p (atype, TREE_TYPE (rhs1))) ret = add_cast (atype, ret); } } return ret; } /* Return a limb IDX from a mergeable statement STMT. */ tree bitint_large_huge::handle_stmt (gimple *stmt, tree idx) { tree lhs, rhs1, rhs2 = NULL_TREE; gimple *g; switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: if (gimple_assign_load_p (stmt)) return handle_load (stmt, idx); switch (gimple_assign_rhs_code (stmt)) { case BIT_AND_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: rhs2 = handle_operand (gimple_assign_rhs2 (stmt), idx); /* FALLTHRU */ case BIT_NOT_EXPR: rhs1 = handle_operand (gimple_assign_rhs1 (stmt), idx); lhs = make_ssa_name (TREE_TYPE (rhs1)); g = gimple_build_assign (lhs, gimple_assign_rhs_code (stmt), rhs1, rhs2); insert_before (g); return lhs; case PLUS_EXPR: case MINUS_EXPR: rhs1 = handle_operand (gimple_assign_rhs1 (stmt), idx); rhs2 = handle_operand (gimple_assign_rhs2 (stmt), idx); return handle_plus_minus (gimple_assign_rhs_code (stmt), rhs1, rhs2, idx); case NEGATE_EXPR: rhs2 = handle_operand (gimple_assign_rhs1 (stmt), idx); rhs1 = build_zero_cst (TREE_TYPE (rhs2)); return handle_plus_minus (MINUS_EXPR, rhs1, rhs2, idx); case LSHIFT_EXPR: return handle_lshift (handle_operand (gimple_assign_rhs1 (stmt), idx), gimple_assign_rhs2 (stmt), idx); case SSA_NAME: case INTEGER_CST: return handle_operand (gimple_assign_rhs1 (stmt), idx); CASE_CONVERT: case VIEW_CONVERT_EXPR: return handle_cast (TREE_TYPE (gimple_assign_lhs (stmt)), gimple_assign_rhs1 (stmt), idx); default: break; } break; default: break; } gcc_unreachable (); } /* Return minimum precision of OP at STMT. Positive value is minimum precision above which all bits are zero, negative means all bits above negation of the value are copies of the sign bit. */ static int range_to_prec (tree op, gimple *stmt) { int_range_max r; wide_int w; tree type = TREE_TYPE (op); unsigned int prec = TYPE_PRECISION (type); if (!optimize || !get_range_query (cfun)->range_of_expr (r, op, stmt) || r.undefined_p ()) { if (TYPE_UNSIGNED (type)) return prec; else return MIN ((int) -prec, -2); } if (!TYPE_UNSIGNED (TREE_TYPE (op))) { w = r.lower_bound (); if (wi::neg_p (w)) { int min_prec1 = wi::min_precision (w, SIGNED); w = r.upper_bound (); int min_prec2 = wi::min_precision (w, SIGNED); int min_prec = MAX (min_prec1, min_prec2); return MIN (-min_prec, -2); } } w = r.upper_bound (); int min_prec = wi::min_precision (w, UNSIGNED); return MAX (min_prec, 1); } /* Return address of the first limb of OP and write into *PREC its precision. If positive, the operand is zero extended from that precision, if it is negative, the operand is sign-extended from -*PREC. If PREC_STORED is NULL, it is the toplevel call, otherwise *PREC_STORED is prec from the innermost call without range optimizations. */ tree bitint_large_huge::handle_operand_addr (tree op, gimple *stmt, int *prec_stored, int *prec) { wide_int w; location_t loc_save = m_loc; if ((TREE_CODE (TREE_TYPE (op)) != BITINT_TYPE || bitint_precision_kind (TREE_TYPE (op)) < bitint_prec_large) && TREE_CODE (op) != INTEGER_CST) { do_int: *prec = range_to_prec (op, stmt); bitint_prec_kind kind = bitint_prec_small; gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (op))); if (TREE_CODE (TREE_TYPE (op)) == BITINT_TYPE) kind = bitint_precision_kind (TREE_TYPE (op)); if (kind == bitint_prec_middle) { tree type = NULL_TREE; op = maybe_cast_middle_bitint (&m_gsi, op, type); } tree op_type = TREE_TYPE (op); unsigned HOST_WIDE_INT nelts = CEIL (TYPE_PRECISION (op_type), limb_prec); /* Add support for 3 or more limbs filled in from normal integral type if this assert fails. If no target chooses limb mode smaller than half of largest supported normal integral type, this will not be needed. */ gcc_assert (nelts <= 2); if (prec_stored) *prec_stored = (TYPE_UNSIGNED (op_type) ? TYPE_PRECISION (op_type) : -TYPE_PRECISION (op_type)); if (*prec <= limb_prec && *prec >= -limb_prec) { nelts = 1; if (prec_stored) { if (TYPE_UNSIGNED (op_type)) { if (*prec_stored > limb_prec) *prec_stored = limb_prec; } else if (*prec_stored < -limb_prec) *prec_stored = -limb_prec; } } tree atype = build_array_type_nelts (m_limb_type, nelts); tree var = create_tmp_var (atype); tree t1 = op; if (!useless_type_conversion_p (m_limb_type, op_type)) t1 = add_cast (m_limb_type, t1); tree v = build4 (ARRAY_REF, m_limb_type, var, size_zero_node, NULL_TREE, NULL_TREE); gimple *g = gimple_build_assign (v, t1); insert_before (g); if (nelts > 1) { tree lp = build_int_cst (unsigned_type_node, limb_prec); g = gimple_build_assign (make_ssa_name (op_type), RSHIFT_EXPR, op, lp); insert_before (g); tree t2 = gimple_assign_lhs (g); t2 = add_cast (m_limb_type, t2); v = build4 (ARRAY_REF, m_limb_type, var, size_one_node, NULL_TREE, NULL_TREE); g = gimple_build_assign (v, t2); insert_before (g); } tree ret = build_fold_addr_expr (var); if (!stmt_ends_bb_p (gsi_stmt (m_gsi))) { tree clobber = build_clobber (atype, CLOBBER_STORAGE_END); g = gimple_build_assign (var, clobber); gsi_insert_after (&m_gsi, g, GSI_SAME_STMT); } m_loc = loc_save; return ret; } switch (TREE_CODE (op)) { case SSA_NAME: if (m_names == NULL || !bitmap_bit_p (m_names, SSA_NAME_VERSION (op))) { gimple *g = SSA_NAME_DEF_STMT (op); tree ret; m_loc = gimple_location (g); if (gimple_assign_load_p (g)) { *prec = range_to_prec (op, NULL); if (prec_stored) *prec_stored = (TYPE_UNSIGNED (TREE_TYPE (op)) ? TYPE_PRECISION (TREE_TYPE (op)) : -TYPE_PRECISION (TREE_TYPE (op))); ret = build_fold_addr_expr (gimple_assign_rhs1 (g)); ret = force_gimple_operand_gsi (&m_gsi, ret, true, NULL_TREE, true, GSI_SAME_STMT); } else if (gimple_code (g) == GIMPLE_NOP) { *prec = TYPE_UNSIGNED (TREE_TYPE (op)) ? limb_prec : -limb_prec; if (prec_stored) *prec_stored = *prec; tree var = create_tmp_var (m_limb_type); TREE_ADDRESSABLE (var) = 1; ret = build_fold_addr_expr (var); if (!stmt_ends_bb_p (gsi_stmt (m_gsi))) { tree clobber = build_clobber (m_limb_type, CLOBBER_STORAGE_END); g = gimple_build_assign (var, clobber); gsi_insert_after (&m_gsi, g, GSI_SAME_STMT); } } else { gcc_assert (gimple_assign_cast_p (g)); tree rhs1 = gimple_assign_rhs1 (g); bitint_prec_kind kind = bitint_prec_small; gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))); if (TREE_CODE (TREE_TYPE (rhs1)) == BITINT_TYPE) kind = bitint_precision_kind (TREE_TYPE (rhs1)); if (kind >= bitint_prec_large) { tree lhs_type = TREE_TYPE (op); tree rhs_type = TREE_TYPE (rhs1); int prec_stored_val = 0; ret = handle_operand_addr (rhs1, g, &prec_stored_val, prec); if (TYPE_PRECISION (lhs_type) > TYPE_PRECISION (rhs_type)) { if (TYPE_UNSIGNED (lhs_type) && !TYPE_UNSIGNED (rhs_type)) gcc_assert (*prec >= 0 || prec_stored == NULL); } else { if (*prec > 0 && *prec < TYPE_PRECISION (lhs_type)) ; else if (TYPE_UNSIGNED (lhs_type)) { gcc_assert (*prec > 0 || prec_stored_val > 0 || (-prec_stored_val >= TYPE_PRECISION (lhs_type))); *prec = TYPE_PRECISION (lhs_type); } else if (*prec < 0 && -*prec < TYPE_PRECISION (lhs_type)) ; else *prec = -TYPE_PRECISION (lhs_type); } } else { op = rhs1; stmt = g; goto do_int; } } m_loc = loc_save; return ret; } else { int p = var_to_partition (m_map, op); gcc_assert (m_vars[p] != NULL_TREE); *prec = range_to_prec (op, stmt); if (prec_stored) *prec_stored = (TYPE_UNSIGNED (TREE_TYPE (op)) ? TYPE_PRECISION (TREE_TYPE (op)) : -TYPE_PRECISION (TREE_TYPE (op))); return build_fold_addr_expr (m_vars[p]); } case INTEGER_CST: unsigned int min_prec, mp; tree type; w = wi::to_wide (op); if (tree_int_cst_sgn (op) >= 0) { min_prec = wi::min_precision (w, UNSIGNED); *prec = MAX (min_prec, 1); } else { min_prec = wi::min_precision (w, SIGNED); *prec = MIN ((int) -min_prec, -2); } mp = CEIL (min_prec, limb_prec) * limb_prec; if (mp == 0) mp = 1; if (mp >= (unsigned) TYPE_PRECISION (TREE_TYPE (op)) && (TREE_CODE (TREE_TYPE (op)) == BITINT_TYPE || TYPE_PRECISION (TREE_TYPE (op)) <= limb_prec)) type = TREE_TYPE (op); else type = build_bitint_type (mp, 1); if (TREE_CODE (type) != BITINT_TYPE || bitint_precision_kind (type) == bitint_prec_small) { if (TYPE_PRECISION (type) <= limb_prec) type = m_limb_type; else { while (bitint_precision_kind (mp) == bitint_prec_small) mp += limb_prec; /* This case is for targets which e.g. have 64-bit limb but categorize up to 128-bits _BitInts as small. We could use type of m_limb_type[2] and similar instead to save space. */ type = build_bitint_type (mp, 1); } } if (prec_stored) { if (tree_int_cst_sgn (op) >= 0) *prec_stored = MAX (TYPE_PRECISION (type), 1); else *prec_stored = MIN ((int) -TYPE_PRECISION (type), -2); } op = tree_output_constant_def (fold_convert (type, op)); return build_fold_addr_expr (op); default: gcc_unreachable (); } } /* Helper function, create a loop before the current location, start with sizetype INIT value from the preheader edge. Return a PHI result and set *IDX_NEXT to SSA_NAME it creates and uses from the latch edge. */ tree bitint_large_huge::create_loop (tree init, tree *idx_next) { if (!gsi_end_p (m_gsi)) gsi_prev (&m_gsi); else m_gsi = gsi_last_bb (gsi_bb (m_gsi)); edge e1 = split_block (gsi_bb (m_gsi), gsi_stmt (m_gsi)); edge e2 = split_block (e1->dest, (gimple *) NULL); edge e3 = make_edge (e1->dest, e1->dest, EDGE_TRUE_VALUE); e3->probability = profile_probability::very_unlikely (); e2->flags = EDGE_FALSE_VALUE; e2->probability = e3->probability.invert (); tree idx = make_ssa_name (sizetype); gphi *phi = create_phi_node (idx, e1->dest); add_phi_arg (phi, init, e1, UNKNOWN_LOCATION); *idx_next = make_ssa_name (sizetype); add_phi_arg (phi, *idx_next, e3, UNKNOWN_LOCATION); m_gsi = gsi_after_labels (e1->dest); m_bb = e1->dest; m_preheader_bb = e1->src; class loop *loop = alloc_loop (); loop->header = e1->dest; add_loop (loop, e1->src->loop_father); return idx; } /* Lower large/huge _BitInt statement mergeable or similar STMT which can be lowered using iteration from the least significant limb up to the most significant limb. For large _BitInt it is emitted as straight line code before current location, for huge _BitInt as a loop handling two limbs at once, followed by handling up to limbs in straight line code (at most one full and one partial limb). It can also handle EQ_EXPR/NE_EXPR comparisons, in that case CMP_CODE should be the comparison code and CMP_OP1/CMP_OP2 the comparison operands. */ tree bitint_large_huge::lower_mergeable_stmt (gimple *stmt, tree_code &cmp_code, tree cmp_op1, tree cmp_op2) { bool eq_p = cmp_code != ERROR_MARK; tree type; if (eq_p) type = TREE_TYPE (cmp_op1); else type = TREE_TYPE (gimple_assign_lhs (stmt)); gcc_assert (TREE_CODE (type) == BITINT_TYPE); bitint_prec_kind kind = bitint_precision_kind (type); gcc_assert (kind >= bitint_prec_large); gimple *g; tree lhs = gimple_get_lhs (stmt); tree rhs1, lhs_type = lhs ? TREE_TYPE (lhs) : NULL_TREE; if (lhs && TREE_CODE (lhs) == SSA_NAME && TREE_CODE (TREE_TYPE (lhs)) == BITINT_TYPE && bitint_precision_kind (TREE_TYPE (lhs)) >= bitint_prec_large) { int p = var_to_partition (m_map, lhs); gcc_assert (m_vars[p] != NULL_TREE); m_lhs = lhs = m_vars[p]; } unsigned cnt, rem = 0, end = 0, prec = TYPE_PRECISION (type); bool sext = false; tree ext = NULL_TREE, store_operand = NULL_TREE; bool eh = false; basic_block eh_pad = NULL; tree nlhs = NULL_TREE; unsigned HOST_WIDE_INT bo_idx = 0; unsigned HOST_WIDE_INT bo_bit = 0; tree bf_cur = NULL_TREE, bf_next = NULL_TREE; if (gimple_store_p (stmt)) { store_operand = gimple_assign_rhs1 (stmt); eh = stmt_ends_bb_p (stmt); if (eh) { edge e; edge_iterator ei; basic_block bb = gimple_bb (stmt); FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_EH) { eh_pad = e->dest; break; } } if (TREE_CODE (lhs) == COMPONENT_REF && DECL_BIT_FIELD_TYPE (TREE_OPERAND (lhs, 1))) { tree fld = TREE_OPERAND (lhs, 1); gcc_assert (tree_fits_uhwi_p (DECL_FIELD_BIT_OFFSET (fld))); tree repr = DECL_BIT_FIELD_REPRESENTATIVE (fld); poly_int64 bitoffset; poly_uint64 field_offset, repr_offset; if ((tree_to_uhwi (DECL_FIELD_BIT_OFFSET (fld)) % BITS_PER_UNIT) == 0) nlhs = lhs; else { bool var_field_off = false; if (poly_int_tree_p (DECL_FIELD_OFFSET (fld), &field_offset) && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset)) bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT; else { bitoffset = 0; var_field_off = true; } bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (fld)) - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))); nlhs = build3 (COMPONENT_REF, TREE_TYPE (repr), TREE_OPERAND (lhs, 0), repr, var_field_off ? TREE_OPERAND (lhs, 2) : NULL_TREE); HOST_WIDE_INT bo = bitoffset.to_constant (); bo_idx = (unsigned HOST_WIDE_INT) bo / limb_prec; bo_bit = (unsigned HOST_WIDE_INT) bo % limb_prec; } } } if ((store_operand && TREE_CODE (store_operand) == SSA_NAME && (m_names == NULL || !bitmap_bit_p (m_names, SSA_NAME_VERSION (store_operand))) && gimple_assign_cast_p (SSA_NAME_DEF_STMT (store_operand))) || gimple_assign_cast_p (stmt)) { rhs1 = gimple_assign_rhs1 (store_operand ? SSA_NAME_DEF_STMT (store_operand) : stmt); /* Optimize mergeable ops ending with widening cast to _BitInt (or followed by store). We can lower just the limbs of the cast operand and widen afterwards. */ if (TREE_CODE (rhs1) == SSA_NAME && (m_names == NULL || !bitmap_bit_p (m_names, SSA_NAME_VERSION (rhs1))) && TREE_CODE (TREE_TYPE (rhs1)) == BITINT_TYPE && bitint_precision_kind (TREE_TYPE (rhs1)) >= bitint_prec_large && (CEIL ((unsigned) TYPE_PRECISION (TREE_TYPE (rhs1)), limb_prec) < CEIL (prec, limb_prec) || (kind == bitint_prec_huge && TYPE_PRECISION (TREE_TYPE (rhs1)) < prec))) { store_operand = rhs1; prec = TYPE_PRECISION (TREE_TYPE (rhs1)); kind = bitint_precision_kind (TREE_TYPE (rhs1)); if (!TYPE_UNSIGNED (TREE_TYPE (rhs1))) sext = true; } } tree idx = NULL_TREE, idx_first = NULL_TREE, idx_next = NULL_TREE; if (kind == bitint_prec_large) cnt = CEIL (prec, limb_prec); else { rem = (prec % (2 * limb_prec)); end = (prec - rem) / limb_prec; cnt = 2 + CEIL (rem, limb_prec); idx = idx_first = create_loop (size_zero_node, &idx_next); } basic_block edge_bb = NULL; if (eq_p) { gimple_stmt_iterator gsi = gsi_for_stmt (stmt); gsi_prev (&gsi); edge e = split_block (gsi_bb (gsi), gsi_stmt (gsi)); edge_bb = e->src; if (kind == bitint_prec_large) m_gsi = gsi_end_bb (edge_bb); } else m_after_stmt = stmt; if (kind != bitint_prec_large) m_upwards_2limb = end; m_upwards = true; bool separate_ext = (prec != (unsigned) TYPE_PRECISION (type) && (CEIL ((unsigned) TYPE_PRECISION (type), limb_prec) > CEIL (prec, limb_prec))); for (unsigned i = 0; i < cnt; i++) { m_data_cnt = 0; if (kind == bitint_prec_large) idx = size_int (i); else if (i >= 2) idx = size_int (end + (i > 2)); if (eq_p) { rhs1 = handle_operand (cmp_op1, idx); tree rhs2 = handle_operand (cmp_op2, idx); g = gimple_build_cond (NE_EXPR, rhs1, rhs2, NULL_TREE, NULL_TREE); insert_before (g); edge e1 = split_block (gsi_bb (m_gsi), g); e1->flags = EDGE_FALSE_VALUE; edge e2 = make_edge (e1->src, gimple_bb (stmt), EDGE_TRUE_VALUE); e1->probability = profile_probability::unlikely (); e2->probability = e1->probability.invert (); if (i == 0) set_immediate_dominator (CDI_DOMINATORS, e2->dest, e2->src); m_gsi = gsi_after_labels (e1->dest); } else { if (store_operand) rhs1 = handle_operand (store_operand, idx); else rhs1 = handle_stmt (stmt, idx); if (!useless_type_conversion_p (m_limb_type, TREE_TYPE (rhs1))) rhs1 = add_cast (m_limb_type, rhs1); if (sext && i == cnt - 1) ext = rhs1; tree nidx = idx; if (bo_idx) { if (tree_fits_uhwi_p (idx)) nidx = size_int (tree_to_uhwi (idx) + bo_idx); else { nidx = make_ssa_name (sizetype); g = gimple_build_assign (nidx, PLUS_EXPR, idx, size_int (bo_idx)); insert_before (g); } } bool done = false; basic_block new_bb = NULL; /* Handle stores into bit-fields. */ if (bo_bit) { if (i == 0) { edge e2 = NULL; if (kind != bitint_prec_large) { prepare_data_in_out (build_zero_cst (m_limb_type), idx, &bf_next); bf_next = m_data.pop (); bf_cur = m_data.pop (); g = gimple_build_cond (EQ_EXPR, idx, size_zero_node, NULL_TREE, NULL_TREE); edge edge_true; if_then_else (g, profile_probability::unlikely (), edge_true, e2); new_bb = e2->dest; } tree ftype = build_nonstandard_integer_type (limb_prec - bo_bit, 1); tree bfr = build3 (BIT_FIELD_REF, ftype, unshare_expr (nlhs), bitsize_int (limb_prec - bo_bit), bitsize_int (bo_idx * limb_prec + bo_bit)); tree t = add_cast (ftype, rhs1); g = gimple_build_assign (bfr, t); insert_before (g); if (eh) { maybe_duplicate_eh_stmt (g, stmt); if (eh_pad) { edge e = split_block (gsi_bb (m_gsi), g); m_gsi = gsi_after_labels (e->dest); make_edge (e->src, eh_pad, EDGE_EH)->probability = profile_probability::very_unlikely (); } } if (kind == bitint_prec_large) { bf_cur = rhs1; done = true; } else if (e2) m_gsi = gsi_after_labels (e2->src); } if (!done) { tree t1 = make_ssa_name (m_limb_type); tree t2 = make_ssa_name (m_limb_type); tree t3 = make_ssa_name (m_limb_type); g = gimple_build_assign (t1, RSHIFT_EXPR, bf_cur, build_int_cst (unsigned_type_node, limb_prec - bo_bit)); insert_before (g); g = gimple_build_assign (t2, LSHIFT_EXPR, rhs1, build_int_cst (unsigned_type_node, bo_bit)); insert_before (g); bf_cur = rhs1; g = gimple_build_assign (t3, BIT_IOR_EXPR, t1, t2); insert_before (g); rhs1 = t3; if (bf_next && i == 1) { g = gimple_build_assign (bf_next, bf_cur); insert_before (g); } } } if (!done) { /* Handle bit-field access to partial last limb if needed. */ if (nlhs && i == cnt - 1 && !separate_ext && tree_fits_uhwi_p (idx)) { unsigned int tprec = TYPE_PRECISION (type); unsigned int rprec = tprec % limb_prec; if (rprec + bo_bit < (unsigned) limb_prec) { tree ftype = build_nonstandard_integer_type (rprec + bo_bit, 1); tree bfr = build3 (BIT_FIELD_REF, ftype, unshare_expr (nlhs), bitsize_int (rprec + bo_bit), bitsize_int ((bo_idx + tprec / limb_prec) * limb_prec)); tree t = add_cast (ftype, rhs1); g = gimple_build_assign (bfr, t); done = true; bf_cur = NULL_TREE; } else if (rprec + bo_bit == (unsigned) limb_prec) bf_cur = NULL_TREE; } /* Otherwise, stores to any other lhs. */ if (!done) { tree l = limb_access (lhs_type, nlhs ? nlhs : lhs, nidx, true); g = gimple_build_assign (l, rhs1); } insert_before (g); if (eh) { maybe_duplicate_eh_stmt (g, stmt); if (eh_pad) { edge e = split_block (gsi_bb (m_gsi), g); m_gsi = gsi_after_labels (e->dest); make_edge (e->src, eh_pad, EDGE_EH)->probability = profile_probability::very_unlikely (); } } if (new_bb) m_gsi = gsi_after_labels (new_bb); } } m_first = false; if (kind == bitint_prec_huge && i <= 1) { if (i == 0) { idx = make_ssa_name (sizetype); g = gimple_build_assign (idx, PLUS_EXPR, idx_first, size_one_node); insert_before (g); } else { g = gimple_build_assign (idx_next, PLUS_EXPR, idx_first, size_int (2)); insert_before (g); g = gimple_build_cond (NE_EXPR, idx_next, size_int (end), NULL_TREE, NULL_TREE); insert_before (g); if (eq_p) m_gsi = gsi_after_labels (edge_bb); else m_gsi = gsi_for_stmt (stmt); m_bb = NULL; } } } if (separate_ext) { if (sext) { ext = add_cast (signed_type_for (m_limb_type), ext); tree lpm1 = build_int_cst (unsigned_type_node, limb_prec - 1); tree n = make_ssa_name (TREE_TYPE (ext)); g = gimple_build_assign (n, RSHIFT_EXPR, ext, lpm1); insert_before (g); ext = add_cast (m_limb_type, n); } else ext = build_zero_cst (m_limb_type); kind = bitint_precision_kind (type); unsigned start = CEIL (prec, limb_prec); prec = TYPE_PRECISION (type); idx = idx_first = idx_next = NULL_TREE; if (prec <= (start + 2 + (bo_bit != 0)) * limb_prec) kind = bitint_prec_large; if (kind == bitint_prec_large) cnt = CEIL (prec, limb_prec) - start; else { rem = prec % limb_prec; end = (prec - rem) / limb_prec; cnt = (bo_bit != 0) + 1 + (rem != 0); } for (unsigned i = 0; i < cnt; i++) { if (kind == bitint_prec_large || (i == 0 && bo_bit != 0)) idx = size_int (start + i); else if (i == cnt - 1 && (rem != 0)) idx = size_int (end); else if (i == (bo_bit != 0)) idx = create_loop (size_int (start + i), &idx_next); rhs1 = ext; if (bf_cur != NULL_TREE && bf_cur != ext) { tree t1 = make_ssa_name (m_limb_type); g = gimple_build_assign (t1, RSHIFT_EXPR, bf_cur, build_int_cst (unsigned_type_node, limb_prec - bo_bit)); insert_before (g); if (integer_zerop (ext)) rhs1 = t1; else { tree t2 = make_ssa_name (m_limb_type); rhs1 = make_ssa_name (m_limb_type); g = gimple_build_assign (t2, LSHIFT_EXPR, ext, build_int_cst (unsigned_type_node, bo_bit)); insert_before (g); g = gimple_build_assign (rhs1, BIT_IOR_EXPR, t1, t2); insert_before (g); } bf_cur = ext; } tree nidx = idx; if (bo_idx) { if (tree_fits_uhwi_p (idx)) nidx = size_int (tree_to_uhwi (idx) + bo_idx); else { nidx = make_ssa_name (sizetype); g = gimple_build_assign (nidx, PLUS_EXPR, idx, size_int (bo_idx)); insert_before (g); } } bool done = false; /* Handle bit-field access to partial last limb if needed. */ if (nlhs && i == cnt - 1) { unsigned int tprec = TYPE_PRECISION (type); unsigned int rprec = tprec % limb_prec; if (rprec + bo_bit < (unsigned) limb_prec) { tree ftype = build_nonstandard_integer_type (rprec + bo_bit, 1); tree bfr = build3 (BIT_FIELD_REF, ftype, unshare_expr (nlhs), bitsize_int (rprec + bo_bit), bitsize_int ((bo_idx + tprec / limb_prec) * limb_prec)); tree t = add_cast (ftype, rhs1); g = gimple_build_assign (bfr, t); done = true; bf_cur = NULL_TREE; } else if (rprec + bo_bit == (unsigned) limb_prec) bf_cur = NULL_TREE; } /* Otherwise, stores to any other lhs. */ if (!done) { tree l = limb_access (lhs_type, nlhs ? nlhs : lhs, nidx, true); g = gimple_build_assign (l, rhs1); } insert_before (g); if (eh) { maybe_duplicate_eh_stmt (g, stmt); if (eh_pad) { edge e = split_block (gsi_bb (m_gsi), g); m_gsi = gsi_after_labels (e->dest); make_edge (e->src, eh_pad, EDGE_EH)->probability = profile_probability::very_unlikely (); } } if (kind == bitint_prec_huge && i == (bo_bit != 0)) { g = gimple_build_assign (idx_next, PLUS_EXPR, idx, size_one_node); insert_before (g); g = gimple_build_cond (NE_EXPR, idx_next, size_int (end), NULL_TREE, NULL_TREE); insert_before (g); m_gsi = gsi_for_stmt (stmt); m_bb = NULL; } } } if (bf_cur != NULL_TREE) { unsigned int tprec = TYPE_PRECISION (type); unsigned int rprec = tprec % limb_prec; tree ftype = build_nonstandard_integer_type (rprec + bo_bit, 1); tree bfr = build3 (BIT_FIELD_REF, ftype, unshare_expr (nlhs), bitsize_int (rprec + bo_bit), bitsize_int ((bo_idx + tprec / limb_prec) * limb_prec)); rhs1 = bf_cur; if (bf_cur != ext) { rhs1 = make_ssa_name (TREE_TYPE (rhs1)); g = gimple_build_assign (rhs1, RSHIFT_EXPR, bf_cur, build_int_cst (unsigned_type_node, limb_prec - bo_bit)); insert_before (g); } rhs1 = add_cast (ftype, rhs1); g = gimple_build_assign (bfr, rhs1); insert_before (g); if (eh) { maybe_duplicate_eh_stmt (g, stmt); if (eh_pad) { edge e = split_block (gsi_bb (m_gsi), g); m_gsi = gsi_after_labels (e->dest); make_edge (e->src, eh_pad, EDGE_EH)->probability = profile_probability::very_unlikely (); } } } if (gimple_store_p (stmt)) { unlink_stmt_vdef (stmt); release_ssa_name (gimple_vdef (stmt)); gsi_remove (&m_gsi, true); } if (eq_p) { lhs = make_ssa_name (boolean_type_node); basic_block bb = gimple_bb (stmt); gphi *phi = create_phi_node (lhs, bb); edge e = find_edge (gsi_bb (m_gsi), bb); unsigned int n = EDGE_COUNT (bb->preds); for (unsigned int i = 0; i < n; i++) { edge e2 = EDGE_PRED (bb, i); add_phi_arg (phi, e == e2 ? boolean_true_node : boolean_false_node, e2, UNKNOWN_LOCATION); } cmp_code = cmp_code == EQ_EXPR ? NE_EXPR : EQ_EXPR; return lhs; } else return NULL_TREE; } /* Handle a large/huge _BitInt comparison statement STMT other than EQ_EXPR/NE_EXPR. CMP_CODE, CMP_OP1 and CMP_OP2 meaning is like in lower_mergeable_stmt. The {GT,GE,LT,LE}_EXPR comparisons are lowered by iteration from the most significant limb downwards to the least significant one, for large _BitInt in straight line code, otherwise with most significant limb handled in straight line code followed by a loop handling one limb at a time. Comparisons with unsigned huge _BitInt with precisions which are multiples of limb precision can use just the loop and don't need to handle most significant limb before the loop. The loop or straight line code jumps to final basic block if a particular pair of limbs is not equal. */ tree bitint_large_huge::lower_comparison_stmt (gimple *stmt, tree_code &cmp_code, tree cmp_op1, tree cmp_op2) { tree type = TREE_TYPE (cmp_op1); gcc_assert (TREE_CODE (type) == BITINT_TYPE); bitint_prec_kind kind = bitint_precision_kind (type); gcc_assert (kind >= bitint_prec_large); gimple *g; if (!TYPE_UNSIGNED (type) && integer_zerop (cmp_op2) && (cmp_code == GE_EXPR || cmp_code == LT_EXPR)) { unsigned end = CEIL ((unsigned) TYPE_PRECISION (type), limb_prec) - 1; tree idx = size_int (end); m_data_cnt = 0; tree rhs1 = handle_operand (cmp_op1, idx); if (TYPE_UNSIGNED (TREE_TYPE (rhs1))) { tree stype = signed_type_for (TREE_TYPE (rhs1)); rhs1 = add_cast (stype, rhs1); } tree lhs = make_ssa_name (boolean_type_node); g = gimple_build_assign (lhs, cmp_code, rhs1, build_zero_cst (TREE_TYPE (rhs1))); insert_before (g); cmp_code = NE_EXPR; return lhs; } unsigned cnt, rem = 0, end = 0; tree idx = NULL_TREE, idx_next = NULL_TREE; if (kind == bitint_prec_large) cnt = CEIL ((unsigned) TYPE_PRECISION (type), limb_prec); else { rem = ((unsigned) TYPE_PRECISION (type) % limb_prec); if (rem == 0 && !TYPE_UNSIGNED (type)) rem = limb_prec; end = ((unsigned) TYPE_PRECISION (type) - rem) / limb_prec; cnt = 1 + (rem != 0); } basic_block edge_bb = NULL; gimple_stmt_iterator gsi = gsi_for_stmt (stmt); gsi_prev (&gsi); edge e = split_block (gsi_bb (gsi), gsi_stmt (gsi)); edge_bb = e->src; m_gsi = gsi_end_bb (edge_bb); edge *edges = XALLOCAVEC (edge, cnt * 2); for (unsigned i = 0; i < cnt; i++) { m_data_cnt = 0; if (kind == bitint_prec_large) idx = size_int (cnt - i - 1); else if (i == cnt - 1) idx = create_loop (size_int (end - 1), &idx_next); else idx = size_int (end); tree rhs1 = handle_operand (cmp_op1, idx); tree rhs2 = handle_operand (cmp_op2, idx); if (i == 0 && !TYPE_UNSIGNED (type) && TYPE_UNSIGNED (TREE_TYPE (rhs1))) { tree stype = signed_type_for (TREE_TYPE (rhs1)); rhs1 = add_cast (stype, rhs1); rhs2 = add_cast (stype, rhs2); } g = gimple_build_cond (GT_EXPR, rhs1, rhs2, NULL_TREE, NULL_TREE); insert_before (g); edge e1 = split_block (gsi_bb (m_gsi), g); e1->flags = EDGE_FALSE_VALUE; edge e2 = make_edge (e1->src, gimple_bb (stmt), EDGE_TRUE_VALUE); e1->probability = profile_probability::likely (); e2->probability = e1->probability.invert (); if (i == 0) set_immediate_dominator (CDI_DOMINATORS, e2->dest, e2->src); m_gsi = gsi_after_labels (e1->dest); edges[2 * i] = e2; g = gimple_build_cond (LT_EXPR, rhs1, rhs2, NULL_TREE, NULL_TREE); insert_before (g); e1 = split_block (gsi_bb (m_gsi), g); e1->flags = EDGE_FALSE_VALUE; e2 = make_edge (e1->src, gimple_bb (stmt), EDGE_TRUE_VALUE); e1->probability = profile_probability::unlikely (); e2->probability = e1->probability.invert (); m_gsi = gsi_after_labels (e1->dest); edges[2 * i + 1] = e2; m_first = false; if (kind == bitint_prec_huge && i == cnt - 1) { g = gimple_build_assign (idx_next, PLUS_EXPR, idx, size_int (-1)); insert_before (g); g = gimple_build_cond (NE_EXPR, idx, size_zero_node, NULL_TREE, NULL_TREE); insert_before (g); edge true_edge, false_edge; extract_true_false_edges_from_block (gsi_bb (m_gsi), &true_edge, &false_edge); m_gsi = gsi_after_labels (false_edge->dest); m_bb = NULL; } } tree lhs = make_ssa_name (boolean_type_node); basic_block bb = gimple_bb (stmt); gphi *phi = create_phi_node (lhs, bb); for (unsigned int i = 0; i < cnt * 2; i++) { tree val = ((cmp_code == GT_EXPR || cmp_code == GE_EXPR) ^ (i & 1)) ? boolean_true_node : boolean_false_node; add_phi_arg (phi, val, edges[i], UNKNOWN_LOCATION); } add_phi_arg (phi, (cmp_code == GE_EXPR || cmp_code == LE_EXPR) ? boolean_true_node : boolean_false_node, find_edge (gsi_bb (m_gsi), bb), UNKNOWN_LOCATION); cmp_code = NE_EXPR; return lhs; } /* Lower large/huge _BitInt left and right shift except for left shift by < limb_prec constant. */ void bitint_large_huge::lower_shift_stmt (tree obj, gimple *stmt) { tree rhs1 = gimple_assign_rhs1 (stmt); tree lhs = gimple_assign_lhs (stmt); tree_code rhs_code = gimple_assign_rhs_code (stmt); tree type = TREE_TYPE (rhs1); gimple *final_stmt = gsi_stmt (m_gsi); gcc_assert (TREE_CODE (type) == BITINT_TYPE && bitint_precision_kind (type) >= bitint_prec_large); int prec = TYPE_PRECISION (type); tree n = gimple_assign_rhs2 (stmt), n1, n2, n3, n4; gimple *g; if (obj == NULL_TREE) { int part = var_to_partition (m_map, lhs); gcc_assert (m_vars[part] != NULL_TREE); obj = m_vars[part]; } /* Preparation code common for both left and right shifts. unsigned n1 = n % limb_prec; size_t n2 = n / limb_prec; size_t n3 = n1 != 0; unsigned n4 = (limb_prec - n1) % limb_prec; (for power of 2 limb_prec n4 can be -n1 & (limb_prec)). */ if (TREE_CODE (n) == INTEGER_CST) { tree lp = build_int_cst (TREE_TYPE (n), limb_prec); n1 = int_const_binop (TRUNC_MOD_EXPR, n, lp); n2 = fold_convert (sizetype, int_const_binop (TRUNC_DIV_EXPR, n, lp)); n3 = size_int (!integer_zerop (n1)); n4 = int_const_binop (TRUNC_MOD_EXPR, int_const_binop (MINUS_EXPR, lp, n1), lp); } else { n1 = make_ssa_name (TREE_TYPE (n)); n2 = make_ssa_name (sizetype); n3 = make_ssa_name (sizetype); n4 = make_ssa_name (TREE_TYPE (n)); if (pow2p_hwi (limb_prec)) { tree lpm1 = build_int_cst (TREE_TYPE (n), limb_prec - 1); g = gimple_build_assign (n1, BIT_AND_EXPR, n, lpm1); insert_before (g); g = gimple_build_assign (useless_type_conversion_p (sizetype, TREE_TYPE (n)) ? n2 : make_ssa_name (TREE_TYPE (n)), RSHIFT_EXPR, n, build_int_cst (TREE_TYPE (n), exact_log2 (limb_prec))); insert_before (g); if (gimple_assign_lhs (g) != n2) { g = gimple_build_assign (n2, NOP_EXPR, gimple_assign_lhs (g)); insert_before (g); } g = gimple_build_assign (make_ssa_name (TREE_TYPE (n)), NEGATE_EXPR, n1); insert_before (g); g = gimple_build_assign (n4, BIT_AND_EXPR, gimple_assign_lhs (g), lpm1); insert_before (g); } else { tree lp = build_int_cst (TREE_TYPE (n), limb_prec); g = gimple_build_assign (n1, TRUNC_MOD_EXPR, n, lp); insert_before (g); g = gimple_build_assign (useless_type_conversion_p (sizetype, TREE_TYPE (n)) ? n2 : make_ssa_name (TREE_TYPE (n)), TRUNC_DIV_EXPR, n, lp); insert_before (g); if (gimple_assign_lhs (g) != n2) { g = gimple_build_assign (n2, NOP_EXPR, gimple_assign_lhs (g)); insert_before (g); } g = gimple_build_assign (make_ssa_name (TREE_TYPE (n)), MINUS_EXPR, lp, n1); insert_before (g); g = gimple_build_assign (n4, TRUNC_MOD_EXPR, gimple_assign_lhs (g), lp); insert_before (g); } g = gimple_build_assign (make_ssa_name (boolean_type_node), NE_EXPR, n1, build_zero_cst (TREE_TYPE (n))); insert_before (g); g = gimple_build_assign (n3, NOP_EXPR, gimple_assign_lhs (g)); insert_before (g); } tree p = build_int_cst (sizetype, prec / limb_prec - (prec % limb_prec == 0)); if (rhs_code == RSHIFT_EXPR) { /* Lower dst = src >> n; as unsigned n1 = n % limb_prec; size_t n2 = n / limb_prec; size_t n3 = n1 != 0; unsigned n4 = (limb_prec - n1) % limb_prec; size_t idx; size_t p = prec / limb_prec - (prec % limb_prec == 0); int signed_p = (typeof (src) -1) < 0; for (idx = n2; idx < ((!signed_p && (prec % limb_prec == 0)) ? p : p - n3); ++idx) dst[idx - n2] = (src[idx] >> n1) | (src[idx + n3] << n4); limb_type ext; if (prec % limb_prec == 0) ext = src[p]; else if (signed_p) ext = ((signed limb_type) (src[p] << (limb_prec - (prec % limb_prec)))) >> (limb_prec - (prec % limb_prec)); else ext = src[p] & (((limb_type) 1 << (prec % limb_prec)) - 1); if (!signed_p && (prec % limb_prec == 0)) ; else if (idx < prec / 64) { dst[idx - n2] = (src[idx] >> n1) | (ext << n4); ++idx; } idx -= n2; if (signed_p) { dst[idx] = ((signed limb_type) ext) >> n1; ext = ((signed limb_type) ext) >> (limb_prec - 1); } else { dst[idx] = ext >> n1; ext = 0; } for (++idx; idx <= p; ++idx) dst[idx] = ext; */ tree pmn3; if (TYPE_UNSIGNED (type) && prec % limb_prec == 0) pmn3 = p; else if (TREE_CODE (n3) == INTEGER_CST) pmn3 = int_const_binop (MINUS_EXPR, p, n3); else { pmn3 = make_ssa_name (sizetype); g = gimple_build_assign (pmn3, MINUS_EXPR, p, n3); insert_before (g); } g = gimple_build_cond (LT_EXPR, n2, pmn3, NULL_TREE, NULL_TREE); edge edge_true, edge_false; if_then (g, profile_probability::likely (), edge_true, edge_false); tree idx_next; tree idx = create_loop (n2, &idx_next); tree idxmn2 = make_ssa_name (sizetype); tree idxpn3 = make_ssa_name (sizetype); g = gimple_build_assign (idxmn2, MINUS_EXPR, idx, n2); insert_before (g); g = gimple_build_assign (idxpn3, PLUS_EXPR, idx, n3); insert_before (g); m_data_cnt = 0; tree t1 = handle_operand (rhs1, idx); m_first = false; g = gimple_build_assign (make_ssa_name (m_limb_type), RSHIFT_EXPR, t1, n1); insert_before (g); t1 = gimple_assign_lhs (g); if (!integer_zerop (n3)) { m_data_cnt = 0; tree t2 = handle_operand (rhs1, idxpn3); g = gimple_build_assign (make_ssa_name (m_limb_type), LSHIFT_EXPR, t2, n4); insert_before (g); t2 = gimple_assign_lhs (g); g = gimple_build_assign (make_ssa_name (m_limb_type), BIT_IOR_EXPR, t1, t2); insert_before (g); t1 = gimple_assign_lhs (g); } tree l = limb_access (TREE_TYPE (lhs), obj, idxmn2, true); g = gimple_build_assign (l, t1); insert_before (g); g = gimple_build_assign (idx_next, PLUS_EXPR, idx, size_one_node); insert_before (g); g = gimple_build_cond (LT_EXPR, idx_next, pmn3, NULL_TREE, NULL_TREE); insert_before (g); idx = make_ssa_name (sizetype); m_gsi = gsi_for_stmt (final_stmt); gphi *phi = create_phi_node (idx, gsi_bb (m_gsi)); edge_false = find_edge (edge_false->src, gsi_bb (m_gsi)); edge_true = EDGE_PRED (gsi_bb (m_gsi), EDGE_PRED (gsi_bb (m_gsi), 0) == edge_false); add_phi_arg (phi, n2, edge_false, UNKNOWN_LOCATION); add_phi_arg (phi, idx_next, edge_true, UNKNOWN_LOCATION); m_data_cnt = 0; tree ms = handle_operand (rhs1, p); tree ext = ms; if (!types_compatible_p (TREE_TYPE (ms), m_limb_type)) ext = add_cast (m_limb_type, ms); if (!(TYPE_UNSIGNED (type) && prec % limb_prec == 0) && !integer_zerop (n3)) { g = gimple_build_cond (LT_EXPR, idx, p, NULL_TREE, NULL_TREE); if_then (g, profile_probability::likely (), edge_true, edge_false); m_data_cnt = 0; t1 = handle_operand (rhs1, idx); g = gimple_build_assign (make_ssa_name (m_limb_type), RSHIFT_EXPR, t1, n1); insert_before (g); t1 = gimple_assign_lhs (g); g = gimple_build_assign (make_ssa_name (m_limb_type), LSHIFT_EXPR, ext, n4); insert_before (g); tree t2 = gimple_assign_lhs (g); g = gimple_build_assign (make_ssa_name (m_limb_type), BIT_IOR_EXPR, t1, t2); insert_before (g); t1 = gimple_assign_lhs (g); idxmn2 = make_ssa_name (sizetype); g = gimple_build_assign (idxmn2, MINUS_EXPR, idx, n2); insert_before (g); l = limb_access (TREE_TYPE (lhs), obj, idxmn2, true); g = gimple_build_assign (l, t1); insert_before (g); idx_next = make_ssa_name (sizetype); g = gimple_build_assign (idx_next, PLUS_EXPR, idx, size_one_node); insert_before (g); m_gsi = gsi_for_stmt (final_stmt); tree nidx = make_ssa_name (sizetype); phi = create_phi_node (nidx, gsi_bb (m_gsi)); edge_false = find_edge (edge_false->src, gsi_bb (m_gsi)); edge_true = EDGE_PRED (gsi_bb (m_gsi), EDGE_PRED (gsi_bb (m_gsi), 0) == edge_false); add_phi_arg (phi, idx, edge_false, UNKNOWN_LOCATION); add_phi_arg (phi, idx_next, edge_true, UNKNOWN_LOCATION); idx = nidx; } g = gimple_build_assign (make_ssa_name (sizetype), MINUS_EXPR, idx, n2); insert_before (g); idx = gimple_assign_lhs (g); tree sext = ext; if (!TYPE_UNSIGNED (type)) sext = add_cast (signed_type_for (m_limb_type), ext); g = gimple_build_assign (make_ssa_name (TREE_TYPE (sext)), RSHIFT_EXPR, sext, n1); insert_before (g); t1 = gimple_assign_lhs (g); if (!TYPE_UNSIGNED (type)) { t1 = add_cast (m_limb_type, t1); g = gimple_build_assign (make_ssa_name (TREE_TYPE (sext)), RSHIFT_EXPR, sext, build_int_cst (TREE_TYPE (n), limb_prec - 1)); insert_before (g); ext = add_cast (m_limb_type, gimple_assign_lhs (g)); } else ext = build_zero_cst (m_limb_type); l = limb_access (TREE_TYPE (lhs), obj, idx, true); g = gimple_build_assign (l, t1); insert_before (g); g = gimple_build_assign (make_ssa_name (sizetype), PLUS_EXPR, idx, size_one_node); insert_before (g); idx = gimple_assign_lhs (g); g = gimple_build_cond (LE_EXPR, idx, p, NULL_TREE, NULL_TREE); if_then (g, profile_probability::likely (), edge_true, edge_false); idx = create_loop (idx, &idx_next); l = limb_access (TREE_TYPE (lhs), obj, idx, true); g = gimple_build_assign (l, ext); insert_before (g); g = gimple_build_assign (idx_next, PLUS_EXPR, idx, size_one_node); insert_before (g); g = gimple_build_cond (LE_EXPR, idx_next, p, NULL_TREE, NULL_TREE); insert_before (g); } else { /* Lower dst = src << n; as unsigned n1 = n % limb_prec; size_t n2 = n / limb_prec; size_t n3 = n1 != 0; unsigned n4 = (limb_prec - n1) % limb_prec; size_t idx; size_t p = prec / limb_prec - (prec % limb_prec == 0); for (idx = p; (ssize_t) idx >= (ssize_t) (n2 + n3); --idx) dst[idx] = (src[idx - n2] << n1) | (src[idx - n2 - n3] >> n4); if (n1) { dst[idx] = src[idx - n2] << n1; --idx; } for (; (ssize_t) idx >= 0; --idx) dst[idx] = 0; */ tree n2pn3; if (TREE_CODE (n2) == INTEGER_CST && TREE_CODE (n3) == INTEGER_CST) n2pn3 = int_const_binop (PLUS_EXPR, n2, n3); else { n2pn3 = make_ssa_name (sizetype); g = gimple_build_assign (n2pn3, PLUS_EXPR, n2, n3); insert_before (g); } /* For LSHIFT_EXPR, we can use handle_operand with non-INTEGER_CST idx even to access the most significant partial limb. */ m_var_msb = true; if (integer_zerop (n3)) /* For n3 == 0 p >= n2 + n3 is always true for all valid shift counts. Emit if (true) condition that can be optimized later. */ g = gimple_build_cond (NE_EXPR, boolean_true_node, boolean_false_node, NULL_TREE, NULL_TREE); else g = gimple_build_cond (LE_EXPR, n2pn3, p, NULL_TREE, NULL_TREE); edge edge_true, edge_false; if_then (g, profile_probability::likely (), edge_true, edge_false); tree idx_next; tree idx = create_loop (p, &idx_next); tree idxmn2 = make_ssa_name (sizetype); tree idxmn2mn3 = make_ssa_name (sizetype); g = gimple_build_assign (idxmn2, MINUS_EXPR, idx, n2); insert_before (g); g = gimple_build_assign (idxmn2mn3, MINUS_EXPR, idxmn2, n3); insert_before (g); m_data_cnt = 0; tree t1 = handle_operand (rhs1, idxmn2); m_first = false; g = gimple_build_assign (make_ssa_name (m_limb_type), LSHIFT_EXPR, t1, n1); insert_before (g); t1 = gimple_assign_lhs (g); if (!integer_zerop (n3)) { m_data_cnt = 0; tree t2 = handle_operand (rhs1, idxmn2mn3); g = gimple_build_assign (make_ssa_name (m_limb_type), RSHIFT_EXPR, t2, n4); insert_before (g); t2 = gimple_assign_lhs (g); g = gimple_build_assign (make_ssa_name (m_limb_type), BIT_IOR_EXPR, t1, t2); insert_before (g); t1 = gimple_assign_lhs (g); } tree l = limb_access (TREE_TYPE (lhs), obj, idx, true); g = gimple_build_assign (l, t1); insert_before (g); g = gimple_build_assign (idx_next, PLUS_EXPR, idx, size_int (-1)); insert_before (g); tree sn2pn3 = add_cast (ssizetype, n2pn3); g = gimple_build_cond (GE_EXPR, add_cast (ssizetype, idx_next), sn2pn3, NULL_TREE, NULL_TREE); insert_before (g); idx = make_ssa_name (sizetype); m_gsi = gsi_for_stmt (final_stmt); gphi *phi = create_phi_node (idx, gsi_bb (m_gsi)); edge_false = find_edge (edge_false->src, gsi_bb (m_gsi)); edge_true = EDGE_PRED (gsi_bb (m_gsi), EDGE_PRED (gsi_bb (m_gsi), 0) == edge_false); add_phi_arg (phi, p, edge_false, UNKNOWN_LOCATION); add_phi_arg (phi, idx_next, edge_true, UNKNOWN_LOCATION); m_data_cnt = 0; if (!integer_zerop (n3)) { g = gimple_build_cond (NE_EXPR, n3, size_zero_node, NULL_TREE, NULL_TREE); if_then (g, profile_probability::likely (), edge_true, edge_false); idxmn2 = make_ssa_name (sizetype); g = gimple_build_assign (idxmn2, MINUS_EXPR, idx, n2); insert_before (g); m_data_cnt = 0; t1 = handle_operand (rhs1, idxmn2); g = gimple_build_assign (make_ssa_name (m_limb_type), LSHIFT_EXPR, t1, n1); insert_before (g); t1 = gimple_assign_lhs (g); l = limb_access (TREE_TYPE (lhs), obj, idx, true); g = gimple_build_assign (l, t1); insert_before (g); idx_next = make_ssa_name (sizetype); g = gimple_build_assign (idx_next, PLUS_EXPR, idx, size_int (-1)); insert_before (g); m_gsi = gsi_for_stmt (final_stmt); tree nidx = make_ssa_name (sizetype); phi = create_phi_node (nidx, gsi_bb (m_gsi)); edge_false = find_edge (edge_false->src, gsi_bb (m_gsi)); edge_true = EDGE_PRED (gsi_bb (m_gsi), EDGE_PRED (gsi_bb (m_gsi), 0) == edge_false); add_phi_arg (phi, idx, edge_false, UNKNOWN_LOCATION); add_phi_arg (phi, idx_next, edge_true, UNKNOWN_LOCATION); idx = nidx; } g = gimple_build_cond (GE_EXPR, add_cast (ssizetype, idx), ssize_int (0), NULL_TREE, NULL_TREE); if_then (g, profile_probability::likely (), edge_true, edge_false); idx = create_loop (idx, &idx_next); l = limb_access (TREE_TYPE (lhs), obj, idx, true); g = gimple_build_assign (l, build_zero_cst (m_limb_type)); insert_before (g); g = gimple_build_assign (idx_next, PLUS_EXPR, idx, size_int (-1)); insert_before (g); g = gimple_build_cond (GE_EXPR, add_cast (ssizetype, idx_next), ssize_int (0), NULL_TREE, NULL_TREE); insert_before (g); } } /* Lower large/huge _BitInt multiplication or division. */ void bitint_large_huge::lower_muldiv_stmt (tree obj, gimple *stmt) { tree rhs1 = gimple_assign_rhs1 (stmt); tree rhs2 = gimple_assign_rhs2 (stmt); tree lhs = gimple_assign_lhs (stmt); tree_code rhs_code = gimple_assign_rhs_code (stmt); tree type = TREE_TYPE (rhs1); gcc_assert (TREE_CODE (type) == BITINT_TYPE && bitint_precision_kind (type) >= bitint_prec_large); int prec = TYPE_PRECISION (type), prec1, prec2; rhs1 = handle_operand_addr (rhs1, stmt, NULL, &prec1); rhs2 = handle_operand_addr (rhs2, stmt, NULL, &prec2); if (obj == NULL_TREE) { int part = var_to_partition (m_map, lhs); gcc_assert (m_vars[part] != NULL_TREE); obj = m_vars[part]; lhs = build_fold_addr_expr (obj); } else { lhs = build_fold_addr_expr (obj); lhs = force_gimple_operand_gsi (&m_gsi, lhs, true, NULL_TREE, true, GSI_SAME_STMT); } tree sitype = lang_hooks.types.type_for_mode (SImode, 0); gimple *g; switch (rhs_code) { case MULT_EXPR: g = gimple_build_call_internal (IFN_MULBITINT, 6, lhs, build_int_cst (sitype, prec), rhs1, build_int_cst (sitype, prec1), rhs2, build_int_cst (sitype, prec2)); insert_before (g); break; case TRUNC_DIV_EXPR: g = gimple_build_call_internal (IFN_DIVMODBITINT, 8, lhs, build_int_cst (sitype, prec), null_pointer_node, build_int_cst (sitype, 0), rhs1, build_int_cst (sitype, prec1), rhs2, build_int_cst (sitype, prec2)); if (!stmt_ends_bb_p (stmt)) gimple_call_set_nothrow (as_a (g), true); insert_before (g); break; case TRUNC_MOD_EXPR: g = gimple_build_call_internal (IFN_DIVMODBITINT, 8, null_pointer_node, build_int_cst (sitype, 0), lhs, build_int_cst (sitype, prec), rhs1, build_int_cst (sitype, prec1), rhs2, build_int_cst (sitype, prec2)); if (!stmt_ends_bb_p (stmt)) gimple_call_set_nothrow (as_a (g), true); insert_before (g); break; default: gcc_unreachable (); } if (stmt_ends_bb_p (stmt)) { maybe_duplicate_eh_stmt (g, stmt); edge e1; edge_iterator ei; basic_block bb = gimple_bb (stmt); FOR_EACH_EDGE (e1, ei, bb->succs) if (e1->flags & EDGE_EH) break; if (e1) { edge e2 = split_block (gsi_bb (m_gsi), g); m_gsi = gsi_after_labels (e2->dest); make_edge (e2->src, e1->dest, EDGE_EH)->probability = profile_probability::very_unlikely (); } } } /* Lower large/huge _BitInt conversion to/from floating point. */ void bitint_large_huge::lower_float_conv_stmt (tree obj, gimple *stmt) { tree rhs1 = gimple_assign_rhs1 (stmt); tree lhs = gimple_assign_lhs (stmt); tree_code rhs_code = gimple_assign_rhs_code (stmt); tree sitype = lang_hooks.types.type_for_mode (SImode, 0); gimple *g; if (rhs_code == FIX_TRUNC_EXPR) { int prec = TYPE_PRECISION (TREE_TYPE (lhs)); if (!TYPE_UNSIGNED (TREE_TYPE (lhs))) prec = -prec; if (obj == NULL_TREE) { int part = var_to_partition (m_map, lhs); gcc_assert (m_vars[part] != NULL_TREE); obj = m_vars[part]; lhs = build_fold_addr_expr (obj); } else { lhs = build_fold_addr_expr (obj); lhs = force_gimple_operand_gsi (&m_gsi, lhs, true, NULL_TREE, true, GSI_SAME_STMT); } scalar_mode from_mode = as_a (TYPE_MODE (TREE_TYPE (rhs1))); #ifdef HAVE_SFmode /* IEEE single is a full superset of both IEEE half and bfloat formats, convert to float first and then to _BitInt to avoid the need of another 2 library routines. */ if ((REAL_MODE_FORMAT (from_mode) == &arm_bfloat_half_format || REAL_MODE_FORMAT (from_mode) == &ieee_half_format) && REAL_MODE_FORMAT (SFmode) == &ieee_single_format) { tree type = lang_hooks.types.type_for_mode (SFmode, 0); if (type) rhs1 = add_cast (type, rhs1); } #endif g = gimple_build_call_internal (IFN_FLOATTOBITINT, 3, lhs, build_int_cst (sitype, prec), rhs1); insert_before (g); } else { int prec; rhs1 = handle_operand_addr (rhs1, stmt, NULL, &prec); g = gimple_build_call_internal (IFN_BITINTTOFLOAT, 2, rhs1, build_int_cst (sitype, prec)); gimple_call_set_lhs (g, lhs); if (!stmt_ends_bb_p (stmt)) gimple_call_set_nothrow (as_a (g), true); gsi_replace (&m_gsi, g, true); } } /* Helper method for lower_addsub_overflow and lower_mul_overflow. If check_zero is true, caller wants to check if all bits in [start, end) are zero, otherwise if bits in [start, end) are either all zero or all ones. L is the limb with index LIMB, START and END are measured in bits. */ tree bitint_large_huge::arith_overflow_extract_bits (unsigned int start, unsigned int end, tree l, unsigned int limb, bool check_zero) { unsigned startlimb = start / limb_prec; unsigned endlimb = (end - 1) / limb_prec; gimple *g; if ((start % limb_prec) == 0 && (end % limb_prec) == 0) return l; if (startlimb == endlimb && limb == startlimb) { if (check_zero) { wide_int w = wi::shifted_mask (start % limb_prec, end - start, false, limb_prec); g = gimple_build_assign (make_ssa_name (m_limb_type), BIT_AND_EXPR, l, wide_int_to_tree (m_limb_type, w)); insert_before (g); return gimple_assign_lhs (g); } unsigned int shift = start % limb_prec; if ((end % limb_prec) != 0) { unsigned int lshift = (-end) % limb_prec; shift += lshift; g = gimple_build_assign (make_ssa_name (m_limb_type), LSHIFT_EXPR, l, build_int_cst (unsigned_type_node, lshift)); insert_before (g); l = gimple_assign_lhs (g); } l = add_cast (signed_type_for (m_limb_type), l); g = gimple_build_assign (make_ssa_name (TREE_TYPE (l)), RSHIFT_EXPR, l, build_int_cst (unsigned_type_node, shift)); insert_before (g); return add_cast (m_limb_type, gimple_assign_lhs (g)); } else if (limb == startlimb) { if ((start % limb_prec) == 0) return l; if (!check_zero) l = add_cast (signed_type_for (m_limb_type), l); g = gimple_build_assign (make_ssa_name (TREE_TYPE (l)), RSHIFT_EXPR, l, build_int_cst (unsigned_type_node, start % limb_prec)); insert_before (g); l = gimple_assign_lhs (g); if (!check_zero) l = add_cast (m_limb_type, l); return l; } else if (limb == endlimb) { if ((end % limb_prec) == 0) return l; if (check_zero) { wide_int w = wi::mask (end % limb_prec, false, limb_prec); g = gimple_build_assign (make_ssa_name (m_limb_type), BIT_AND_EXPR, l, wide_int_to_tree (m_limb_type, w)); insert_before (g); return gimple_assign_lhs (g); } unsigned int shift = (-end) % limb_prec; g = gimple_build_assign (make_ssa_name (m_limb_type), LSHIFT_EXPR, l, build_int_cst (unsigned_type_node, shift)); insert_before (g); l = add_cast (signed_type_for (m_limb_type), gimple_assign_lhs (g)); g = gimple_build_assign (make_ssa_name (TREE_TYPE (l)), RSHIFT_EXPR, l, build_int_cst (unsigned_type_node, shift)); insert_before (g); return add_cast (m_limb_type, gimple_assign_lhs (g)); } return l; } /* Helper method for lower_addsub_overflow and lower_mul_overflow. Store result including overflow flag into the right locations. */ void bitint_large_huge::finish_arith_overflow (tree var, tree obj, tree type, tree ovf, tree lhs, tree orig_obj, gimple *stmt, tree_code code) { gimple *g; if (obj == NULL_TREE && (TREE_CODE (type) != BITINT_TYPE || bitint_precision_kind (type) < bitint_prec_large)) { /* Add support for 3 or more limbs filled in from normal integral type if this assert fails. If no target chooses limb mode smaller than half of largest supported normal integral type, this will not be needed. */ gcc_assert (TYPE_PRECISION (type) <= 2 * limb_prec); tree lhs_type = type; if (TREE_CODE (type) == BITINT_TYPE && bitint_precision_kind (type) == bitint_prec_middle) lhs_type = build_nonstandard_integer_type (TYPE_PRECISION (type), TYPE_UNSIGNED (type)); tree r1 = limb_access (NULL_TREE, var, size_int (0), true); g = gimple_build_assign (make_ssa_name (m_limb_type), r1); insert_before (g); r1 = gimple_assign_lhs (g); if (!useless_type_conversion_p (lhs_type, TREE_TYPE (r1))) r1 = add_cast (lhs_type, r1); if (TYPE_PRECISION (lhs_type) > limb_prec) { tree r2 = limb_access (NULL_TREE, var, size_int (1), true); g = gimple_build_assign (make_ssa_name (m_limb_type), r2); insert_before (g); r2 = gimple_assign_lhs (g); r2 = add_cast (lhs_type, r2); g = gimple_build_assign (make_ssa_name (lhs_type), LSHIFT_EXPR, r2, build_int_cst (unsigned_type_node, limb_prec)); insert_before (g); g = gimple_build_assign (make_ssa_name (lhs_type), BIT_IOR_EXPR, r1, gimple_assign_lhs (g)); insert_before (g); r1 = gimple_assign_lhs (g); } if (lhs_type != type) r1 = add_cast (type, r1); ovf = add_cast (lhs_type, ovf); if (lhs_type != type) ovf = add_cast (type, ovf); g = gimple_build_assign (lhs, COMPLEX_EXPR, r1, ovf); m_gsi = gsi_for_stmt (stmt); gsi_replace (&m_gsi, g, true); } else { unsigned HOST_WIDE_INT nelts = 0; tree atype = NULL_TREE; if (obj) { nelts = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (obj))) / limb_prec; if (orig_obj == NULL_TREE) nelts >>= 1; atype = build_array_type_nelts (m_limb_type, nelts); } if (var && obj) { tree v1, v2; tree zero; if (orig_obj == NULL_TREE) { zero = build_zero_cst (build_pointer_type (TREE_TYPE (obj))); v1 = build2 (MEM_REF, atype, build_fold_addr_expr (unshare_expr (obj)), zero); } else if (!useless_type_conversion_p (atype, TREE_TYPE (obj))) v1 = build1 (VIEW_CONVERT_EXPR, atype, unshare_expr (obj)); else v1 = unshare_expr (obj); zero = build_zero_cst (build_pointer_type (TREE_TYPE (var))); v2 = build2 (MEM_REF, atype, build_fold_addr_expr (var), zero); g = gimple_build_assign (v1, v2); insert_before (g); } if (orig_obj == NULL_TREE && obj) { ovf = add_cast (m_limb_type, ovf); tree l = limb_access (NULL_TREE, obj, size_int (nelts), true); g = gimple_build_assign (l, ovf); insert_before (g); if (nelts > 1) { atype = build_array_type_nelts (m_limb_type, nelts - 1); tree off = build_int_cst (build_pointer_type (TREE_TYPE (obj)), (nelts + 1) * m_limb_size); tree v1 = build2 (MEM_REF, atype, build_fold_addr_expr (unshare_expr (obj)), off); g = gimple_build_assign (v1, build_zero_cst (atype)); insert_before (g); } } else if (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE) { imm_use_iterator ui; use_operand_p use_p; FOR_EACH_IMM_USE_FAST (use_p, ui, lhs) { g = USE_STMT (use_p); if (!is_gimple_assign (g) || gimple_assign_rhs_code (g) != IMAGPART_EXPR) continue; tree lhs2 = gimple_assign_lhs (g); gimple *use_stmt; single_imm_use (lhs2, &use_p, &use_stmt); lhs2 = gimple_assign_lhs (use_stmt); gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt); if (useless_type_conversion_p (TREE_TYPE (lhs2), TREE_TYPE (ovf))) g = gimple_build_assign (lhs2, ovf); else g = gimple_build_assign (lhs2, NOP_EXPR, ovf); gsi_replace (&gsi, g, true); if (gsi_stmt (m_gsi) == use_stmt) m_gsi = gsi_for_stmt (g); break; } } else if (ovf != boolean_false_node) { g = gimple_build_cond (NE_EXPR, ovf, boolean_false_node, NULL_TREE, NULL_TREE); edge edge_true, edge_false; if_then (g, profile_probability::very_unlikely (), edge_true, edge_false); tree zero = build_zero_cst (TREE_TYPE (lhs)); tree fn = ubsan_build_overflow_builtin (code, m_loc, TREE_TYPE (lhs), zero, zero, NULL); force_gimple_operand_gsi (&m_gsi, fn, true, NULL_TREE, true, GSI_SAME_STMT); m_gsi = gsi_after_labels (edge_true->dest); } } if (var) { tree clobber = build_clobber (TREE_TYPE (var), CLOBBER_STORAGE_END); g = gimple_build_assign (var, clobber); gsi_insert_after (&m_gsi, g, GSI_SAME_STMT); } } /* Helper function for lower_addsub_overflow and lower_mul_overflow. Given precisions of result TYPE (PREC), argument 0 precision PREC0, argument 1 precision PREC1 and minimum precision for the result PREC2, compute *START, *END, *CHECK_ZERO and return OVF. */ static tree arith_overflow (tree_code code, tree type, int prec, int prec0, int prec1, int prec2, unsigned *start, unsigned *end, bool *check_zero) { *start = 0; *end = 0; *check_zero = true; /* Ignore this special rule for subtraction, even if both prec0 >= 0 and prec1 >= 0, their subtraction can be negative in infinite precision. */ if (code != MINUS_EXPR && prec0 >= 0 && prec1 >= 0) { /* Result in [0, prec2) is unsigned, if prec > prec2, all bits above it will be zero. */ if ((prec - !TYPE_UNSIGNED (type)) >= prec2) return boolean_false_node; else { /* ovf if any of bits in [start, end) is non-zero. */ *start = prec - !TYPE_UNSIGNED (type); *end = prec2; } } else if (TYPE_UNSIGNED (type)) { /* If result in [0, prec2) is signed and if prec > prec2, all bits above it will be sign bit copies. */ if (prec >= prec2) { /* ovf if bit prec - 1 is non-zero. */ *start = prec - 1; *end = prec; } else { /* ovf if any of bits in [start, end) is non-zero. */ *start = prec; *end = prec2; } } else if (prec >= prec2) return boolean_false_node; else { /* ovf if [start, end) bits aren't all zeros or all ones. */ *start = prec - 1; *end = prec2; *check_zero = false; } return NULL_TREE; } /* Lower a .{ADD,SUB}_OVERFLOW call with at least one large/huge _BitInt argument or return type _Complex large/huge _BitInt. */ void bitint_large_huge::lower_addsub_overflow (tree obj, gimple *stmt) { tree arg0 = gimple_call_arg (stmt, 0); tree arg1 = gimple_call_arg (stmt, 1); tree lhs = gimple_call_lhs (stmt); gimple *g; if (!lhs) { gimple_stmt_iterator gsi = gsi_for_stmt (stmt); gsi_remove (&gsi, true); return; } gimple *final_stmt = gsi_stmt (m_gsi); tree type = TREE_TYPE (lhs); if (TREE_CODE (type) == COMPLEX_TYPE) type = TREE_TYPE (type); int prec = TYPE_PRECISION (type); int prec0 = range_to_prec (arg0, stmt); int prec1 = range_to_prec (arg1, stmt); /* If PREC0 >= 0 && PREC1 >= 0 and CODE is not MINUS_EXPR, PREC2 is the be minimum unsigned precision of any possible operation's result, otherwise it is minimum signed precision. Some examples: If PREC0 or PREC1 is 8, it means that argument is [0, 0xff], if PREC0 or PREC1 is 10, it means that argument is [0, 0x3ff], if PREC0 or PREC1 is -8, it means that argument is [-0x80, 0x7f], if PREC0 or PREC1 is -10, it means that argument is [-0x200, 0x1ff]. PREC0 CODE PREC1 RESULT PREC2 SIGNED vs. UNSIGNED 8 + 8 [0, 0x1fe] 9 UNSIGNED 8 + 10 [0, 0x4fe] 11 UNSIGNED -8 + -8 [-0x100, 0xfe] 9 SIGNED -8 + -10 [-0x280, 0x27e] 11 SIGNED 8 + -8 [-0x80, 0x17e] 10 SIGNED 8 + -10 [-0x200, 0x2fe] 11 SIGNED 10 + -8 [-0x80, 0x47e] 12 SIGNED 8 - 8 [-0xff, 0xff] 9 SIGNED 8 - 10 [-0x3ff, 0xff] 11 SIGNED 10 - 8 [-0xff, 0x3ff] 11 SIGNED -8 - -8 [-0xff, 0xff] 9 SIGNED -8 - -10 [-0x27f, 0x27f] 11 SIGNED -10 - -8 [-0x27f, 0x27f] 11 SIGNED 8 - -8 [-0x7f, 0x17f] 10 SIGNED 8 - -10 [-0x1ff, 0x2ff] 11 SIGNED 10 - -8 [-0x7f, 0x47f] 12 SIGNED -8 - 8 [-0x17f, 0x7f] 10 SIGNED -8 - 10 [-0x47f, 0x7f] 12 SIGNED -10 - 8 [-0x2ff, 0x1ff] 11 SIGNED */ int prec2 = MAX (prec0 < 0 ? -prec0 : prec0, prec1 < 0 ? -prec1 : prec1); /* If operands are either both signed or both unsigned, we need just one additional bit. */ prec2 = (((prec0 < 0) == (prec1 < 0) /* If one operand is signed and one unsigned and the signed one has larger precision, we need just one extra bit, otherwise two. */ || (prec0 < 0 ? (prec2 == -prec0 && prec2 != prec1) : (prec2 == -prec1 && prec2 != prec0))) ? prec2 + 1 : prec2 + 2); int prec3 = MAX (prec0 < 0 ? -prec0 : prec0, prec1 < 0 ? -prec1 : prec1); prec3 = MAX (prec3, prec); tree var = NULL_TREE; tree orig_obj = obj; if (obj == NULL_TREE && TREE_CODE (type) == BITINT_TYPE && bitint_precision_kind (type) >= bitint_prec_large && m_names && bitmap_bit_p (m_names, SSA_NAME_VERSION (lhs))) { int part = var_to_partition (m_map, lhs); gcc_assert (m_vars[part] != NULL_TREE); obj = m_vars[part]; if (TREE_TYPE (lhs) == type) orig_obj = obj; } if (TREE_CODE (type) != BITINT_TYPE || bitint_precision_kind (type) < bitint_prec_large) { unsigned HOST_WIDE_INT nelts = CEIL (prec, limb_prec); tree atype = build_array_type_nelts (m_limb_type, nelts); var = create_tmp_var (atype); } enum tree_code code; switch (gimple_call_internal_fn (stmt)) { case IFN_ADD_OVERFLOW: case IFN_UBSAN_CHECK_ADD: code = PLUS_EXPR; break; case IFN_SUB_OVERFLOW: case IFN_UBSAN_CHECK_SUB: code = MINUS_EXPR; break; default: gcc_unreachable (); } unsigned start, end; bool check_zero; tree ovf = arith_overflow (code, type, prec, prec0, prec1, prec2, &start, &end, &check_zero); unsigned startlimb, endlimb; if (ovf) { startlimb = ~0U; endlimb = ~0U; } else { startlimb = start / limb_prec; endlimb = (end - 1) / limb_prec; } int prec4 = ovf != NULL_TREE ? prec : prec3; bitint_prec_kind kind = bitint_precision_kind (prec4); unsigned cnt, rem = 0, fin = 0; tree idx = NULL_TREE, idx_first = NULL_TREE, idx_next = NULL_TREE; bool last_ovf = (ovf == NULL_TREE && CEIL (prec2, limb_prec) > CEIL (prec3, limb_prec)); if (kind != bitint_prec_huge) cnt = CEIL (prec4, limb_prec) + last_ovf; else { rem = (prec4 % (2 * limb_prec)); fin = (prec4 - rem) / limb_prec; cnt = 2 + CEIL (rem, limb_prec) + last_ovf; idx = idx_first = create_loop (size_zero_node, &idx_next); } if (kind == bitint_prec_huge) m_upwards_2limb = fin; m_upwards = true; tree type0 = TREE_TYPE (arg0); tree type1 = TREE_TYPE (arg1); int prec5 = prec3; if (bitint_precision_kind (prec5) < bitint_prec_large) prec5 = MAX (TYPE_PRECISION (type0), TYPE_PRECISION (type1)); if (TYPE_PRECISION (type0) < prec5) { type0 = build_bitint_type (prec5, TYPE_UNSIGNED (type0)); if (TREE_CODE (arg0) == INTEGER_CST) arg0 = fold_convert (type0, arg0); } if (TYPE_PRECISION (type1) < prec5) { type1 = build_bitint_type (prec5, TYPE_UNSIGNED (type1)); if (TREE_CODE (arg1) == INTEGER_CST) arg1 = fold_convert (type1, arg1); } unsigned int data_cnt = 0; tree last_rhs1 = NULL_TREE, last_rhs2 = NULL_TREE; tree cmp = build_zero_cst (m_limb_type); unsigned prec_limbs = CEIL ((unsigned) prec, limb_prec); tree ovf_out = NULL_TREE, cmp_out = NULL_TREE; for (unsigned i = 0; i < cnt; i++) { m_data_cnt = 0; tree rhs1, rhs2; if (kind != bitint_prec_huge) idx = size_int (i); else if (i >= 2) idx = size_int (fin + (i > 2)); if (!last_ovf || i < cnt - 1) { if (type0 != TREE_TYPE (arg0)) rhs1 = handle_cast (type0, arg0, idx); else rhs1 = handle_operand (arg0, idx); if (type1 != TREE_TYPE (arg1)) rhs2 = handle_cast (type1, arg1, idx); else rhs2 = handle_operand (arg1, idx); if (i == 0) data_cnt = m_data_cnt; if (!useless_type_conversion_p (m_limb_type, TREE_TYPE (rhs1))) rhs1 = add_cast (m_limb_type, rhs1); if (!useless_type_conversion_p (m_limb_type, TREE_TYPE (rhs2))) rhs2 = add_cast (m_limb_type, rhs2); last_rhs1 = rhs1; last_rhs2 = rhs2; } else { m_data_cnt = data_cnt; if (TYPE_UNSIGNED (type0)) rhs1 = build_zero_cst (m_limb_type); else { rhs1 = add_cast (signed_type_for (m_limb_type), last_rhs1); if (TREE_CODE (rhs1) == INTEGER_CST) rhs1 = build_int_cst (m_limb_type, tree_int_cst_sgn (rhs1) < 0 ? -1 : 0); else { tree lpm1 = build_int_cst (unsigned_type_node, limb_prec - 1); g = gimple_build_assign (make_ssa_name (TREE_TYPE (rhs1)), RSHIFT_EXPR, rhs1, lpm1); insert_before (g); rhs1 = add_cast (m_limb_type, gimple_assign_lhs (g)); } } if (TYPE_UNSIGNED (type1)) rhs2 = build_zero_cst (m_limb_type); else { rhs2 = add_cast (signed_type_for (m_limb_type), last_rhs2); if (TREE_CODE (rhs2) == INTEGER_CST) rhs2 = build_int_cst (m_limb_type, tree_int_cst_sgn (rhs2) < 0 ? -1 : 0); else { tree lpm1 = build_int_cst (unsigned_type_node, limb_prec - 1); g = gimple_build_assign (make_ssa_name (TREE_TYPE (rhs2)), RSHIFT_EXPR, rhs2, lpm1); insert_before (g); rhs2 = add_cast (m_limb_type, gimple_assign_lhs (g)); } } } tree rhs = handle_plus_minus (code, rhs1, rhs2, idx); if (ovf != boolean_false_node) { if (tree_fits_uhwi_p (idx)) { unsigned limb = tree_to_uhwi (idx); if (limb >= startlimb && limb <= endlimb) { tree l = arith_overflow_extract_bits (start, end, rhs, limb, check_zero); tree this_ovf = make_ssa_name (boolean_type_node); if (ovf == NULL_TREE && !check_zero) { cmp = l; g = gimple_build_assign (make_ssa_name (m_limb_type), PLUS_EXPR, l, build_int_cst (m_limb_type, 1)); insert_before (g); g = gimple_build_assign (this_ovf, GT_EXPR, gimple_assign_lhs (g), build_int_cst (m_limb_type, 1)); } else g = gimple_build_assign (this_ovf, NE_EXPR, l, cmp); insert_before (g); if (ovf == NULL_TREE) ovf = this_ovf; else { tree b = make_ssa_name (boolean_type_node); g = gimple_build_assign (b, BIT_IOR_EXPR, ovf, this_ovf); insert_before (g); ovf = b; } } } else if (startlimb < fin) { if (m_first && startlimb + 2 < fin) { tree data_out; ovf = prepare_data_in_out (boolean_false_node, idx, &data_out); ovf_out = m_data.pop (); m_data.pop (); if (!check_zero) { cmp = prepare_data_in_out (cmp, idx, &data_out); cmp_out = m_data.pop (); m_data.pop (); } } if (i != 0 || startlimb != fin - 1) { tree_code cmp_code; bool single_comparison = (startlimb + 2 >= fin || (startlimb & 1) != (i & 1)); if (!single_comparison) { cmp_code = GE_EXPR; if (!check_zero && (start % limb_prec) == 0) single_comparison = true; } else if ((startlimb & 1) == (i & 1)) cmp_code = EQ_EXPR; else cmp_code = GT_EXPR; g = gimple_build_cond (cmp_code, idx, size_int (startlimb), NULL_TREE, NULL_TREE); edge edge_true_true, edge_true_false, edge_false; gimple *g2 = NULL; if (!single_comparison) g2 = gimple_build_cond (NE_EXPR, idx, size_int (startlimb), NULL_TREE, NULL_TREE); if_then_if_then_else (g, g2, profile_probability::likely (), profile_probability::likely (), edge_true_true, edge_true_false, edge_false); unsigned tidx = startlimb + (cmp_code == GT_EXPR); tree l = arith_overflow_extract_bits (start, end, rhs, tidx, check_zero); tree this_ovf = make_ssa_name (boolean_type_node); if (cmp_code != GT_EXPR && !check_zero) { g = gimple_build_assign (make_ssa_name (m_limb_type), PLUS_EXPR, l, build_int_cst (m_limb_type, 1)); insert_before (g); g = gimple_build_assign (this_ovf, GT_EXPR, gimple_assign_lhs (g), build_int_cst (m_limb_type, 1)); } else g = gimple_build_assign (this_ovf, NE_EXPR, l, cmp); insert_before (g); if (cmp_code == GT_EXPR) { tree t = make_ssa_name (boolean_type_node); g = gimple_build_assign (t, BIT_IOR_EXPR, ovf, this_ovf); insert_before (g); this_ovf = t; } tree this_ovf2 = NULL_TREE; if (!single_comparison) { m_gsi = gsi_after_labels (edge_true_true->src); tree t = make_ssa_name (boolean_type_node); g = gimple_build_assign (t, NE_EXPR, rhs, cmp); insert_before (g); this_ovf2 = make_ssa_name (boolean_type_node); g = gimple_build_assign (this_ovf2, BIT_IOR_EXPR, ovf, t); insert_before (g); } m_gsi = gsi_after_labels (edge_true_false->dest); tree t; if (i == 1 && ovf_out) t = ovf_out; else t = make_ssa_name (boolean_type_node); gphi *phi = create_phi_node (t, edge_true_false->dest); add_phi_arg (phi, this_ovf, edge_true_false, UNKNOWN_LOCATION); add_phi_arg (phi, ovf ? ovf : boolean_false_node, edge_false, UNKNOWN_LOCATION); if (edge_true_true) add_phi_arg (phi, this_ovf2, edge_true_true, UNKNOWN_LOCATION); ovf = t; if (!check_zero && cmp_code != GT_EXPR) { t = cmp_out ? cmp_out : make_ssa_name (m_limb_type); phi = create_phi_node (t, edge_true_false->dest); add_phi_arg (phi, l, edge_true_false, UNKNOWN_LOCATION); add_phi_arg (phi, cmp, edge_false, UNKNOWN_LOCATION); if (edge_true_true) add_phi_arg (phi, cmp, edge_true_true, UNKNOWN_LOCATION); cmp = t; } } } } if (var || obj) { if (tree_fits_uhwi_p (idx) && tree_to_uhwi (idx) >= prec_limbs) ; else if (!tree_fits_uhwi_p (idx) && (unsigned) prec < (fin - (i == 0)) * limb_prec) { bool single_comparison = (((unsigned) prec % limb_prec) == 0 || prec_limbs + 1 >= fin || (prec_limbs & 1) == (i & 1)); g = gimple_build_cond (LE_EXPR, idx, size_int (prec_limbs - 1), NULL_TREE, NULL_TREE); gimple *g2 = NULL; if (!single_comparison) g2 = gimple_build_cond (LT_EXPR, idx, size_int (prec_limbs - 1), NULL_TREE, NULL_TREE); edge edge_true_true, edge_true_false, edge_false; if_then_if_then_else (g, g2, profile_probability::likely (), profile_probability::likely (), edge_true_true, edge_true_false, edge_false); tree l = limb_access (type, var ? var : obj, idx, true); g = gimple_build_assign (l, rhs); insert_before (g); if (!single_comparison) { m_gsi = gsi_after_labels (edge_true_true->src); l = limb_access (type, var ? var : obj, size_int (prec_limbs - 1), true); if (!useless_type_conversion_p (TREE_TYPE (l), TREE_TYPE (rhs))) rhs = add_cast (TREE_TYPE (l), rhs); g = gimple_build_assign (l, rhs); insert_before (g); } m_gsi = gsi_after_labels (edge_true_false->dest); } else { tree l = limb_access (type, var ? var : obj, idx, true); if (!useless_type_conversion_p (TREE_TYPE (l), TREE_TYPE (rhs))) rhs = add_cast (TREE_TYPE (l), rhs); g = gimple_build_assign (l, rhs); insert_before (g); } } m_first = false; if (kind == bitint_prec_huge && i <= 1) { if (i == 0) { idx = make_ssa_name (sizetype); g = gimple_build_assign (idx, PLUS_EXPR, idx_first, size_one_node); insert_before (g); } else { g = gimple_build_assign (idx_next, PLUS_EXPR, idx_first, size_int (2)); insert_before (g); g = gimple_build_cond (NE_EXPR, idx_next, size_int (fin), NULL_TREE, NULL_TREE); insert_before (g); m_gsi = gsi_for_stmt (final_stmt); m_bb = NULL; } } } finish_arith_overflow (var, obj, type, ovf, lhs, orig_obj, stmt, code); } /* Lower a .MUL_OVERFLOW call with at least one large/huge _BitInt argument or return type _Complex large/huge _BitInt. */ void bitint_large_huge::lower_mul_overflow (tree obj, gimple *stmt) { tree arg0 = gimple_call_arg (stmt, 0); tree arg1 = gimple_call_arg (stmt, 1); tree lhs = gimple_call_lhs (stmt); if (!lhs) { gimple_stmt_iterator gsi = gsi_for_stmt (stmt); gsi_remove (&gsi, true); return; } gimple *final_stmt = gsi_stmt (m_gsi); tree type = TREE_TYPE (lhs); if (TREE_CODE (type) == COMPLEX_TYPE) type = TREE_TYPE (type); int prec = TYPE_PRECISION (type), prec0, prec1; arg0 = handle_operand_addr (arg0, stmt, NULL, &prec0); arg1 = handle_operand_addr (arg1, stmt, NULL, &prec1); int prec2 = ((prec0 < 0 ? -prec0 : prec0) + (prec1 < 0 ? -prec1 : prec1)); if (prec0 == 1 || prec1 == 1) --prec2; tree var = NULL_TREE; tree orig_obj = obj; bool force_var = false; if (obj == NULL_TREE && TREE_CODE (type) == BITINT_TYPE && bitint_precision_kind (type) >= bitint_prec_large && m_names && bitmap_bit_p (m_names, SSA_NAME_VERSION (lhs))) { int part = var_to_partition (m_map, lhs); gcc_assert (m_vars[part] != NULL_TREE); obj = m_vars[part]; if (TREE_TYPE (lhs) == type) orig_obj = obj; } else if (obj != NULL_TREE && DECL_P (obj)) { for (int i = 0; i < 2; ++i) { tree arg = i ? arg1 : arg0; if (TREE_CODE (arg) == ADDR_EXPR) arg = TREE_OPERAND (arg, 0); if (get_base_address (arg) == obj) { force_var = true; break; } } } if (obj == NULL_TREE || force_var || TREE_CODE (type) != BITINT_TYPE || bitint_precision_kind (type) < bitint_prec_large || prec2 > (CEIL (prec, limb_prec) * limb_prec * (orig_obj ? 1 : 2))) { unsigned HOST_WIDE_INT nelts = CEIL (MAX (prec, prec2), limb_prec); tree atype = build_array_type_nelts (m_limb_type, nelts); var = create_tmp_var (atype); } tree addr = build_fold_addr_expr (var ? var : obj); addr = force_gimple_operand_gsi (&m_gsi, addr, true, NULL_TREE, true, GSI_SAME_STMT); tree sitype = lang_hooks.types.type_for_mode (SImode, 0); gimple *g = gimple_build_call_internal (IFN_MULBITINT, 6, addr, build_int_cst (sitype, MAX (prec2, prec)), arg0, build_int_cst (sitype, prec0), arg1, build_int_cst (sitype, prec1)); insert_before (g); unsigned start, end; bool check_zero; tree ovf = arith_overflow (MULT_EXPR, type, prec, prec0, prec1, prec2, &start, &end, &check_zero); if (ovf == NULL_TREE) { unsigned startlimb = start / limb_prec; unsigned endlimb = (end - 1) / limb_prec; unsigned cnt; bool use_loop = false; if (startlimb == endlimb) cnt = 1; else if (startlimb + 1 == endlimb) cnt = 2; else if ((end % limb_prec) == 0) { cnt = 2; use_loop = true; } else { cnt = 3; use_loop = startlimb + 2 < endlimb; } if (cnt == 1) { tree l = limb_access (NULL_TREE, var ? var : obj, size_int (startlimb), true); g = gimple_build_assign (make_ssa_name (m_limb_type), l); insert_before (g); l = arith_overflow_extract_bits (start, end, gimple_assign_lhs (g), startlimb, check_zero); ovf = make_ssa_name (boolean_type_node); if (check_zero) g = gimple_build_assign (ovf, NE_EXPR, l, build_zero_cst (m_limb_type)); else { g = gimple_build_assign (make_ssa_name (m_limb_type), PLUS_EXPR, l, build_int_cst (m_limb_type, 1)); insert_before (g); g = gimple_build_assign (ovf, GT_EXPR, gimple_assign_lhs (g), build_int_cst (m_limb_type, 1)); } insert_before (g); } else { basic_block edge_bb = NULL; gimple_stmt_iterator gsi = m_gsi; gsi_prev (&gsi); edge e = split_block (gsi_bb (gsi), gsi_stmt (gsi)); edge_bb = e->src; m_gsi = gsi_end_bb (edge_bb); tree cmp = build_zero_cst (m_limb_type); for (unsigned i = 0; i < cnt; i++) { tree idx, idx_next = NULL_TREE; if (i == 0) idx = size_int (startlimb); else if (i == 2) idx = size_int (endlimb); else if (use_loop) idx = create_loop (size_int (startlimb + 1), &idx_next); else idx = size_int (startlimb + 1); tree l = limb_access (NULL_TREE, var ? var : obj, idx, true); g = gimple_build_assign (make_ssa_name (m_limb_type), l); insert_before (g); l = gimple_assign_lhs (g); if (i == 0 || i == 2) l = arith_overflow_extract_bits (start, end, l, tree_to_uhwi (idx), check_zero); if (i == 0 && !check_zero) { cmp = l; g = gimple_build_assign (make_ssa_name (m_limb_type), PLUS_EXPR, l, build_int_cst (m_limb_type, 1)); insert_before (g); g = gimple_build_cond (GT_EXPR, gimple_assign_lhs (g), build_int_cst (m_limb_type, 1), NULL_TREE, NULL_TREE); } else g = gimple_build_cond (NE_EXPR, l, cmp, NULL_TREE, NULL_TREE); insert_before (g); edge e1 = split_block (gsi_bb (m_gsi), g); e1->flags = EDGE_FALSE_VALUE; edge e2 = make_edge (e1->src, gimple_bb (final_stmt), EDGE_TRUE_VALUE); e1->probability = profile_probability::likely (); e2->probability = e1->probability.invert (); if (i == 0) set_immediate_dominator (CDI_DOMINATORS, e2->dest, e2->src); m_gsi = gsi_after_labels (e1->dest); if (i == 1 && use_loop) { g = gimple_build_assign (idx_next, PLUS_EXPR, idx, size_one_node); insert_before (g); g = gimple_build_cond (NE_EXPR, idx_next, size_int (endlimb + (cnt == 1)), NULL_TREE, NULL_TREE); insert_before (g); edge true_edge, false_edge; extract_true_false_edges_from_block (gsi_bb (m_gsi), &true_edge, &false_edge); m_gsi = gsi_after_labels (false_edge->dest); m_bb = NULL; } } ovf = make_ssa_name (boolean_type_node); basic_block bb = gimple_bb (final_stmt); gphi *phi = create_phi_node (ovf, bb); edge e1 = find_edge (gsi_bb (m_gsi), bb); edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->preds) { tree val = e == e1 ? boolean_false_node : boolean_true_node; add_phi_arg (phi, val, e, UNKNOWN_LOCATION); } m_gsi = gsi_for_stmt (final_stmt); } } finish_arith_overflow (var, obj, type, ovf, lhs, orig_obj, stmt, MULT_EXPR); } /* Lower REALPART_EXPR or IMAGPART_EXPR stmt extracting part of result from .{ADD,SUB,MUL}_OVERFLOW call. */ void bitint_large_huge::lower_cplxpart_stmt (tree obj, gimple *stmt) { tree rhs1 = gimple_assign_rhs1 (stmt); rhs1 = TREE_OPERAND (rhs1, 0); if (obj == NULL_TREE) { int part = var_to_partition (m_map, gimple_assign_lhs (stmt)); gcc_assert (m_vars[part] != NULL_TREE); obj = m_vars[part]; } if (TREE_CODE (rhs1) == SSA_NAME && (m_names == NULL || !bitmap_bit_p (m_names, SSA_NAME_VERSION (rhs1)))) { lower_call (obj, SSA_NAME_DEF_STMT (rhs1)); return; } int part = var_to_partition (m_map, rhs1); gcc_assert (m_vars[part] != NULL_TREE); tree var = m_vars[part]; unsigned HOST_WIDE_INT nelts = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (obj))) / limb_prec; tree atype = build_array_type_nelts (m_limb_type, nelts); if (!useless_type_conversion_p (atype, TREE_TYPE (obj))) obj = build1 (VIEW_CONVERT_EXPR, atype, obj); tree off = build_int_cst (build_pointer_type (TREE_TYPE (var)), gimple_assign_rhs_code (stmt) == REALPART_EXPR ? 0 : nelts * m_limb_size); tree v2 = build2 (MEM_REF, atype, build_fold_addr_expr (var), off); gimple *g = gimple_build_assign (obj, v2); insert_before (g); } /* Lower COMPLEX_EXPR stmt. */ void bitint_large_huge::lower_complexexpr_stmt (gimple *stmt) { tree lhs = gimple_assign_lhs (stmt); tree rhs1 = gimple_assign_rhs1 (stmt); tree rhs2 = gimple_assign_rhs2 (stmt); int part = var_to_partition (m_map, lhs); gcc_assert (m_vars[part] != NULL_TREE); lhs = m_vars[part]; unsigned HOST_WIDE_INT nelts = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (rhs1))) / limb_prec; tree atype = build_array_type_nelts (m_limb_type, nelts); tree zero = build_zero_cst (build_pointer_type (TREE_TYPE (lhs))); tree v1 = build2 (MEM_REF, atype, build_fold_addr_expr (lhs), zero); tree v2; if (TREE_CODE (rhs1) == SSA_NAME) { part = var_to_partition (m_map, rhs1); gcc_assert (m_vars[part] != NULL_TREE); v2 = m_vars[part]; } else if (integer_zerop (rhs1)) v2 = build_zero_cst (atype); else v2 = tree_output_constant_def (rhs1); if (!useless_type_conversion_p (atype, TREE_TYPE (v2))) v2 = build1 (VIEW_CONVERT_EXPR, atype, v2); gimple *g = gimple_build_assign (v1, v2); insert_before (g); tree off = fold_convert (build_pointer_type (TREE_TYPE (lhs)), TYPE_SIZE_UNIT (atype)); v1 = build2 (MEM_REF, atype, build_fold_addr_expr (lhs), off); if (TREE_CODE (rhs2) == SSA_NAME) { part = var_to_partition (m_map, rhs2); gcc_assert (m_vars[part] != NULL_TREE); v2 = m_vars[part]; } else if (integer_zerop (rhs2)) v2 = build_zero_cst (atype); else v2 = tree_output_constant_def (rhs2); if (!useless_type_conversion_p (atype, TREE_TYPE (v2))) v2 = build1 (VIEW_CONVERT_EXPR, atype, v2); g = gimple_build_assign (v1, v2); insert_before (g); } /* Lower a .{CLZ,CTZ,CLRSB,FFS,PARITY,POPCOUNT} call with one large/huge _BitInt argument. */ void bitint_large_huge::lower_bit_query (gimple *stmt) { tree arg0 = gimple_call_arg (stmt, 0); tree arg1 = (gimple_call_num_args (stmt) == 2 ? gimple_call_arg (stmt, 1) : NULL_TREE); tree lhs = gimple_call_lhs (stmt); gimple *g; if (!lhs) { gimple_stmt_iterator gsi = gsi_for_stmt (stmt); gsi_remove (&gsi, true); return; } tree type = TREE_TYPE (arg0); gcc_assert (TREE_CODE (type) == BITINT_TYPE); bitint_prec_kind kind = bitint_precision_kind (type); gcc_assert (kind >= bitint_prec_large); enum internal_fn ifn = gimple_call_internal_fn (stmt); enum built_in_function fcode = END_BUILTINS; gcc_assert (TYPE_PRECISION (unsigned_type_node) == limb_prec || TYPE_PRECISION (long_unsigned_type_node) == limb_prec || TYPE_PRECISION (long_long_unsigned_type_node) == limb_prec); switch (ifn) { case IFN_CLZ: if (TYPE_PRECISION (unsigned_type_node) == limb_prec) fcode = BUILT_IN_CLZ; else if (TYPE_PRECISION (long_unsigned_type_node) == limb_prec) fcode = BUILT_IN_CLZL; else fcode = BUILT_IN_CLZLL; break; case IFN_FFS: /* .FFS (X) is .CTZ (X, -1) + 1, though under the hood we don't add the addend at the end. */ arg1 = integer_zero_node; /* FALLTHRU */ case IFN_CTZ: if (TYPE_PRECISION (unsigned_type_node) == limb_prec) fcode = BUILT_IN_CTZ; else if (TYPE_PRECISION (long_unsigned_type_node) == limb_prec) fcode = BUILT_IN_CTZL; else fcode = BUILT_IN_CTZLL; m_upwards = true; break; case IFN_CLRSB: if (TYPE_PRECISION (unsigned_type_node) == limb_prec) fcode = BUILT_IN_CLRSB; else if (TYPE_PRECISION (long_unsigned_type_node) == limb_prec) fcode = BUILT_IN_CLRSBL; else fcode = BUILT_IN_CLRSBLL; break; case IFN_PARITY: if (TYPE_PRECISION (unsigned_type_node) == limb_prec) fcode = BUILT_IN_PARITY; else if (TYPE_PRECISION (long_unsigned_type_node) == limb_prec) fcode = BUILT_IN_PARITYL; else fcode = BUILT_IN_PARITYLL; m_upwards = true; break; case IFN_POPCOUNT: if (TYPE_PRECISION (unsigned_type_node) == limb_prec) fcode = BUILT_IN_POPCOUNT; else if (TYPE_PRECISION (long_unsigned_type_node) == limb_prec) fcode = BUILT_IN_POPCOUNTL; else fcode = BUILT_IN_POPCOUNTLL; m_upwards = true; break; default: gcc_unreachable (); } tree fndecl = builtin_decl_explicit (fcode), res = NULL_TREE; unsigned cnt = 0, rem = 0, end = 0, prec = TYPE_PRECISION (type); struct bq_details { edge e; tree val, addend; } *bqp = NULL; basic_block edge_bb = NULL; if (m_upwards) { tree idx = NULL_TREE, idx_first = NULL_TREE, idx_next = NULL_TREE; if (kind == bitint_prec_large) cnt = CEIL (prec, limb_prec); else { rem = (prec % (2 * limb_prec)); end = (prec - rem) / limb_prec; cnt = 2 + CEIL (rem, limb_prec); idx = idx_first = create_loop (size_zero_node, &idx_next); } if (ifn == IFN_CTZ || ifn == IFN_FFS) { gimple_stmt_iterator gsi = gsi_for_stmt (stmt); gsi_prev (&gsi); edge e = split_block (gsi_bb (gsi), gsi_stmt (gsi)); edge_bb = e->src; if (kind == bitint_prec_large) m_gsi = gsi_end_bb (edge_bb); bqp = XALLOCAVEC (struct bq_details, cnt); } else m_after_stmt = stmt; if (kind != bitint_prec_large) m_upwards_2limb = end; for (unsigned i = 0; i < cnt; i++) { m_data_cnt = 0; if (kind == bitint_prec_large) idx = size_int (i); else if (i >= 2) idx = size_int (end + (i > 2)); tree rhs1 = handle_operand (arg0, idx); if (!useless_type_conversion_p (m_limb_type, TREE_TYPE (rhs1))) { if (!TYPE_UNSIGNED (TREE_TYPE (rhs1))) rhs1 = add_cast (unsigned_type_for (TREE_TYPE (rhs1)), rhs1); rhs1 = add_cast (m_limb_type, rhs1); } tree in, out, tem; if (ifn == IFN_PARITY) in = prepare_data_in_out (build_zero_cst (m_limb_type), idx, &out); else if (ifn == IFN_FFS) in = prepare_data_in_out (integer_one_node, idx, &out); else in = prepare_data_in_out (integer_zero_node, idx, &out); switch (ifn) { case IFN_CTZ: case IFN_FFS: g = gimple_build_cond (NE_EXPR, rhs1, build_zero_cst (m_limb_type), NULL_TREE, NULL_TREE); insert_before (g); edge e1, e2; e1 = split_block (gsi_bb (m_gsi), g); e1->flags = EDGE_FALSE_VALUE; e2 = make_edge (e1->src, gimple_bb (stmt), EDGE_TRUE_VALUE); e1->probability = profile_probability::unlikely (); e2->probability = e1->probability.invert (); if (i == 0) set_immediate_dominator (CDI_DOMINATORS, e2->dest, e2->src); m_gsi = gsi_after_labels (e1->dest); bqp[i].e = e2; bqp[i].val = rhs1; if (tree_fits_uhwi_p (idx)) bqp[i].addend = build_int_cst (integer_type_node, tree_to_uhwi (idx) * limb_prec + (ifn == IFN_FFS)); else { bqp[i].addend = in; if (i == 1) res = out; else res = make_ssa_name (integer_type_node); g = gimple_build_assign (res, PLUS_EXPR, in, build_int_cst (integer_type_node, limb_prec)); insert_before (g); m_data[m_data_cnt] = res; } break; case IFN_PARITY: if (!integer_zerop (in)) { if (kind == bitint_prec_huge && i == 1) res = out; else res = make_ssa_name (m_limb_type); g = gimple_build_assign (res, BIT_XOR_EXPR, in, rhs1); insert_before (g); } else res = rhs1; m_data[m_data_cnt] = res; break; case IFN_POPCOUNT: g = gimple_build_call (fndecl, 1, rhs1); tem = make_ssa_name (integer_type_node); gimple_call_set_lhs (g, tem); insert_before (g); if (!integer_zerop (in)) { if (kind == bitint_prec_huge && i == 1) res = out; else res = make_ssa_name (integer_type_node); g = gimple_build_assign (res, PLUS_EXPR, in, tem); insert_before (g); } else res = tem; m_data[m_data_cnt] = res; break; default: gcc_unreachable (); } m_first = false; if (kind == bitint_prec_huge && i <= 1) { if (i == 0) { idx = make_ssa_name (sizetype); g = gimple_build_assign (idx, PLUS_EXPR, idx_first, size_one_node); insert_before (g); } else { g = gimple_build_assign (idx_next, PLUS_EXPR, idx_first, size_int (2)); insert_before (g); g = gimple_build_cond (NE_EXPR, idx_next, size_int (end), NULL_TREE, NULL_TREE); insert_before (g); if (ifn == IFN_CTZ || ifn == IFN_FFS) m_gsi = gsi_after_labels (edge_bb); else m_gsi = gsi_for_stmt (stmt); m_bb = NULL; } } } } else { tree idx = NULL_TREE, idx_next = NULL_TREE, first = NULL_TREE; int sub_one = 0; if (kind == bitint_prec_large) cnt = CEIL (prec, limb_prec); else { rem = prec % limb_prec; if (rem == 0 && (!TYPE_UNSIGNED (type) || ifn == IFN_CLRSB)) rem = limb_prec; end = (prec - rem) / limb_prec; cnt = 1 + (rem != 0); if (ifn == IFN_CLRSB) sub_one = 1; } gimple_stmt_iterator gsi = gsi_for_stmt (stmt); gsi_prev (&gsi); edge e = split_block (gsi_bb (gsi), gsi_stmt (gsi)); edge_bb = e->src; m_gsi = gsi_end_bb (edge_bb); if (ifn == IFN_CLZ) bqp = XALLOCAVEC (struct bq_details, cnt); else { gsi = gsi_for_stmt (stmt); gsi_prev (&gsi); e = split_block (gsi_bb (gsi), gsi_stmt (gsi)); edge_bb = e->src; bqp = XALLOCAVEC (struct bq_details, 2 * cnt); } for (unsigned i = 0; i < cnt; i++) { m_data_cnt = 0; if (kind == bitint_prec_large) idx = size_int (cnt - i - 1); else if (i == cnt - 1) idx = create_loop (size_int (end - 1), &idx_next); else idx = size_int (end); tree rhs1 = handle_operand (arg0, idx); if (!useless_type_conversion_p (m_limb_type, TREE_TYPE (rhs1))) { if (ifn == IFN_CLZ && !TYPE_UNSIGNED (TREE_TYPE (rhs1))) rhs1 = add_cast (unsigned_type_for (TREE_TYPE (rhs1)), rhs1); else if (ifn == IFN_CLRSB && TYPE_UNSIGNED (TREE_TYPE (rhs1))) rhs1 = add_cast (signed_type_for (TREE_TYPE (rhs1)), rhs1); rhs1 = add_cast (m_limb_type, rhs1); } if (ifn == IFN_CLZ) { g = gimple_build_cond (NE_EXPR, rhs1, build_zero_cst (m_limb_type), NULL_TREE, NULL_TREE); insert_before (g); edge e1 = split_block (gsi_bb (m_gsi), g); e1->flags = EDGE_FALSE_VALUE; edge e2 = make_edge (e1->src, gimple_bb (stmt), EDGE_TRUE_VALUE); e1->probability = profile_probability::unlikely (); e2->probability = e1->probability.invert (); if (i == 0) set_immediate_dominator (CDI_DOMINATORS, e2->dest, e2->src); m_gsi = gsi_after_labels (e1->dest); bqp[i].e = e2; bqp[i].val = rhs1; } else { if (i == 0) { first = rhs1; g = gimple_build_assign (make_ssa_name (m_limb_type), PLUS_EXPR, rhs1, build_int_cst (m_limb_type, 1)); insert_before (g); g = gimple_build_cond (GT_EXPR, gimple_assign_lhs (g), build_int_cst (m_limb_type, 1), NULL_TREE, NULL_TREE); insert_before (g); } else { g = gimple_build_assign (make_ssa_name (m_limb_type), BIT_XOR_EXPR, rhs1, first); insert_before (g); tree stype = signed_type_for (m_limb_type); g = gimple_build_cond (LT_EXPR, add_cast (stype, gimple_assign_lhs (g)), build_zero_cst (stype), NULL_TREE, NULL_TREE); insert_before (g); edge e1 = split_block (gsi_bb (m_gsi), g); e1->flags = EDGE_FALSE_VALUE; edge e2 = make_edge (e1->src, gimple_bb (stmt), EDGE_TRUE_VALUE); e1->probability = profile_probability::unlikely (); e2->probability = e1->probability.invert (); if (i == 1) set_immediate_dominator (CDI_DOMINATORS, e2->dest, e2->src); m_gsi = gsi_after_labels (e1->dest); bqp[2 * i].e = e2; g = gimple_build_cond (NE_EXPR, rhs1, first, NULL_TREE, NULL_TREE); insert_before (g); } edge e1 = split_block (gsi_bb (m_gsi), g); e1->flags = EDGE_FALSE_VALUE; edge e2 = make_edge (e1->src, edge_bb, EDGE_TRUE_VALUE); e1->probability = profile_probability::unlikely (); e2->probability = e1->probability.invert (); if (i == 0) set_immediate_dominator (CDI_DOMINATORS, e2->dest, e2->src); m_gsi = gsi_after_labels (e1->dest); bqp[2 * i + 1].e = e2; bqp[i].val = rhs1; } if (tree_fits_uhwi_p (idx)) bqp[i].addend = build_int_cst (integer_type_node, (int) prec - (((int) tree_to_uhwi (idx) + 1) * limb_prec) - sub_one); else { tree in, out; in = build_int_cst (integer_type_node, rem - sub_one); m_first = true; in = prepare_data_in_out (in, idx, &out); out = m_data[m_data_cnt + 1]; bqp[i].addend = in; g = gimple_build_assign (out, PLUS_EXPR, in, build_int_cst (integer_type_node, limb_prec)); insert_before (g); m_data[m_data_cnt] = out; } m_first = false; if (kind == bitint_prec_huge && i == cnt - 1) { g = gimple_build_assign (idx_next, PLUS_EXPR, idx, size_int (-1)); insert_before (g); g = gimple_build_cond (NE_EXPR, idx, size_zero_node, NULL_TREE, NULL_TREE); insert_before (g); edge true_edge, false_edge; extract_true_false_edges_from_block (gsi_bb (m_gsi), &true_edge, &false_edge); m_gsi = gsi_after_labels (false_edge->dest); m_bb = NULL; } } } switch (ifn) { case IFN_CLZ: case IFN_CTZ: case IFN_FFS: gphi *phi1, *phi2, *phi3; basic_block bb; bb = gsi_bb (m_gsi); remove_edge (find_edge (bb, gimple_bb (stmt))); phi1 = create_phi_node (make_ssa_name (m_limb_type), gimple_bb (stmt)); phi2 = create_phi_node (make_ssa_name (integer_type_node), gimple_bb (stmt)); for (unsigned i = 0; i < cnt; i++) { add_phi_arg (phi1, bqp[i].val, bqp[i].e, UNKNOWN_LOCATION); add_phi_arg (phi2, bqp[i].addend, bqp[i].e, UNKNOWN_LOCATION); } if (arg1 == NULL_TREE) { g = gimple_build_builtin_unreachable (m_loc); insert_before (g); } m_gsi = gsi_for_stmt (stmt); g = gimple_build_call (fndecl, 1, gimple_phi_result (phi1)); gimple_call_set_lhs (g, make_ssa_name (integer_type_node)); insert_before (g); if (arg1 == NULL_TREE) g = gimple_build_assign (lhs, PLUS_EXPR, gimple_phi_result (phi2), gimple_call_lhs (g)); else { g = gimple_build_assign (make_ssa_name (integer_type_node), PLUS_EXPR, gimple_phi_result (phi2), gimple_call_lhs (g)); insert_before (g); edge e1 = split_block (gimple_bb (stmt), g); edge e2 = make_edge (bb, e1->dest, EDGE_FALLTHRU); e2->probability = profile_probability::always (); set_immediate_dominator (CDI_DOMINATORS, e1->dest, get_immediate_dominator (CDI_DOMINATORS, e1->src)); phi3 = create_phi_node (make_ssa_name (integer_type_node), e1->dest); add_phi_arg (phi3, gimple_assign_lhs (g), e1, UNKNOWN_LOCATION); add_phi_arg (phi3, arg1, e2, UNKNOWN_LOCATION); m_gsi = gsi_for_stmt (stmt); g = gimple_build_assign (lhs, gimple_phi_result (phi3)); } gsi_replace (&m_gsi, g, true); break; case IFN_CLRSB: bb = gsi_bb (m_gsi); remove_edge (find_edge (bb, edge_bb)); edge e; e = make_edge (bb, gimple_bb (stmt), EDGE_FALLTHRU); e->probability = profile_probability::always (); set_immediate_dominator (CDI_DOMINATORS, gimple_bb (stmt), get_immediate_dominator (CDI_DOMINATORS, edge_bb)); phi1 = create_phi_node (make_ssa_name (m_limb_type), edge_bb); phi2 = create_phi_node (make_ssa_name (integer_type_node), edge_bb); phi3 = create_phi_node (make_ssa_name (integer_type_node), gimple_bb (stmt)); for (unsigned i = 0; i < cnt; i++) { add_phi_arg (phi1, bqp[i].val, bqp[2 * i + 1].e, UNKNOWN_LOCATION); add_phi_arg (phi2, bqp[i].addend, bqp[2 * i + 1].e, UNKNOWN_LOCATION); tree a = bqp[i].addend; if (i && kind == bitint_prec_large) a = int_const_binop (PLUS_EXPR, a, integer_minus_one_node); if (i) add_phi_arg (phi3, a, bqp[2 * i].e, UNKNOWN_LOCATION); } add_phi_arg (phi3, build_int_cst (integer_type_node, prec - 1), e, UNKNOWN_LOCATION); m_gsi = gsi_after_labels (edge_bb); g = gimple_build_call (fndecl, 1, add_cast (signed_type_for (m_limb_type), gimple_phi_result (phi1))); gimple_call_set_lhs (g, make_ssa_name (integer_type_node)); insert_before (g); g = gimple_build_assign (make_ssa_name (integer_type_node), PLUS_EXPR, gimple_call_lhs (g), gimple_phi_result (phi2)); insert_before (g); if (kind != bitint_prec_large) { g = gimple_build_assign (make_ssa_name (integer_type_node), PLUS_EXPR, gimple_assign_lhs (g), integer_one_node); insert_before (g); } add_phi_arg (phi3, gimple_assign_lhs (g), find_edge (edge_bb, gimple_bb (stmt)), UNKNOWN_LOCATION); m_gsi = gsi_for_stmt (stmt); g = gimple_build_assign (lhs, gimple_phi_result (phi3)); gsi_replace (&m_gsi, g, true); break; case IFN_PARITY: g = gimple_build_call (fndecl, 1, res); gimple_call_set_lhs (g, lhs); gsi_replace (&m_gsi, g, true); break; case IFN_POPCOUNT: g = gimple_build_assign (lhs, res); gsi_replace (&m_gsi, g, true); break; default: gcc_unreachable (); } } /* Lower a call statement with one or more large/huge _BitInt arguments or large/huge _BitInt return value. */ void bitint_large_huge::lower_call (tree obj, gimple *stmt) { gimple_stmt_iterator gsi = gsi_for_stmt (stmt); unsigned int nargs = gimple_call_num_args (stmt); if (gimple_call_internal_p (stmt)) switch (gimple_call_internal_fn (stmt)) { case IFN_ADD_OVERFLOW: case IFN_SUB_OVERFLOW: case IFN_UBSAN_CHECK_ADD: case IFN_UBSAN_CHECK_SUB: lower_addsub_overflow (obj, stmt); return; case IFN_MUL_OVERFLOW: case IFN_UBSAN_CHECK_MUL: lower_mul_overflow (obj, stmt); return; case IFN_CLZ: case IFN_CTZ: case IFN_CLRSB: case IFN_FFS: case IFN_PARITY: case IFN_POPCOUNT: lower_bit_query (stmt); return; default: break; } for (unsigned int i = 0; i < nargs; ++i) { tree arg = gimple_call_arg (stmt, i); if (TREE_CODE (arg) != SSA_NAME || TREE_CODE (TREE_TYPE (arg)) != BITINT_TYPE || bitint_precision_kind (TREE_TYPE (arg)) <= bitint_prec_middle) continue; if (SSA_NAME_IS_DEFAULT_DEF (arg) && (!SSA_NAME_VAR (arg) || VAR_P (SSA_NAME_VAR (arg)))) { tree var = create_tmp_reg (TREE_TYPE (arg)); arg = get_or_create_ssa_default_def (cfun, var); } else { int p = var_to_partition (m_map, arg); tree v = m_vars[p]; gcc_assert (v != NULL_TREE); if (!types_compatible_p (TREE_TYPE (arg), TREE_TYPE (v))) v = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (arg), v); arg = make_ssa_name (TREE_TYPE (arg)); gimple *g = gimple_build_assign (arg, v); gsi_insert_before (&gsi, g, GSI_SAME_STMT); } gimple_call_set_arg (stmt, i, arg); if (m_preserved == NULL) m_preserved = BITMAP_ALLOC (NULL); bitmap_set_bit (m_preserved, SSA_NAME_VERSION (arg)); } tree lhs = gimple_call_lhs (stmt); if (lhs && TREE_CODE (lhs) == SSA_NAME && TREE_CODE (TREE_TYPE (lhs)) == BITINT_TYPE && bitint_precision_kind (TREE_TYPE (lhs)) >= bitint_prec_large) { int p = var_to_partition (m_map, lhs); tree v = m_vars[p]; gcc_assert (v != NULL_TREE); if (!types_compatible_p (TREE_TYPE (lhs), TREE_TYPE (v))) v = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), v); gimple_call_set_lhs (stmt, v); SSA_NAME_DEF_STMT (lhs) = gimple_build_nop (); } update_stmt (stmt); } /* Lower __asm STMT which involves large/huge _BitInt values. */ void bitint_large_huge::lower_asm (gimple *stmt) { gasm *g = as_a (stmt); unsigned noutputs = gimple_asm_noutputs (g); unsigned ninputs = gimple_asm_ninputs (g); for (unsigned i = 0; i < noutputs; ++i) { tree t = gimple_asm_output_op (g, i); tree s = TREE_VALUE (t); if (TREE_CODE (s) == SSA_NAME && TREE_CODE (TREE_TYPE (s)) == BITINT_TYPE && bitint_precision_kind (TREE_TYPE (s)) >= bitint_prec_large) { int part = var_to_partition (m_map, s); gcc_assert (m_vars[part] != NULL_TREE); TREE_VALUE (t) = m_vars[part]; } } for (unsigned i = 0; i < ninputs; ++i) { tree t = gimple_asm_input_op (g, i); tree s = TREE_VALUE (t); if (TREE_CODE (s) == SSA_NAME && TREE_CODE (TREE_TYPE (s)) == BITINT_TYPE && bitint_precision_kind (TREE_TYPE (s)) >= bitint_prec_large) { int part = var_to_partition (m_map, s); gcc_assert (m_vars[part] != NULL_TREE); TREE_VALUE (t) = m_vars[part]; } } update_stmt (stmt); } /* Lower statement STMT which involves large/huge _BitInt values into code accessing individual limbs. */ void bitint_large_huge::lower_stmt (gimple *stmt) { m_first = true; m_lhs = NULL_TREE; m_data.truncate (0); m_data_cnt = 0; m_gsi = gsi_for_stmt (stmt); m_after_stmt = NULL; m_bb = NULL; m_init_gsi = m_gsi; gsi_prev (&m_init_gsi); m_preheader_bb = NULL; m_upwards_2limb = 0; m_upwards = false; m_var_msb = false; m_cast_conditional = false; m_bitfld_load = 0; m_loc = gimple_location (stmt); if (is_gimple_call (stmt)) { lower_call (NULL_TREE, stmt); return; } if (gimple_code (stmt) == GIMPLE_ASM) { lower_asm (stmt); return; } tree lhs = NULL_TREE, cmp_op1 = NULL_TREE, cmp_op2 = NULL_TREE; tree_code cmp_code = comparison_op (stmt, &cmp_op1, &cmp_op2); bool eq_p = (cmp_code == EQ_EXPR || cmp_code == NE_EXPR); bool mergeable_cast_p = false; bool final_cast_p = false; if (gimple_assign_cast_p (stmt)) { lhs = gimple_assign_lhs (stmt); tree rhs1 = gimple_assign_rhs1 (stmt); if (TREE_CODE (TREE_TYPE (lhs)) == BITINT_TYPE && bitint_precision_kind (TREE_TYPE (lhs)) >= bitint_prec_large && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) mergeable_cast_p = true; else if (TREE_CODE (TREE_TYPE (rhs1)) == BITINT_TYPE && bitint_precision_kind (TREE_TYPE (rhs1)) >= bitint_prec_large && INTEGRAL_TYPE_P (TREE_TYPE (lhs))) { final_cast_p = true; if (TREE_CODE (rhs1) == SSA_NAME && (m_names == NULL || !bitmap_bit_p (m_names, SSA_NAME_VERSION (rhs1)))) { gimple *g = SSA_NAME_DEF_STMT (rhs1); if (is_gimple_assign (g) && gimple_assign_rhs_code (g) == IMAGPART_EXPR) { tree rhs2 = TREE_OPERAND (gimple_assign_rhs1 (g), 0); if (TREE_CODE (rhs2) == SSA_NAME && (m_names == NULL || !bitmap_bit_p (m_names, SSA_NAME_VERSION (rhs2)))) { g = SSA_NAME_DEF_STMT (rhs2); int ovf = optimizable_arith_overflow (g); if (ovf == 2) /* If .{ADD,SUB,MUL}_OVERFLOW has both REALPART_EXPR and IMAGPART_EXPR uses, where the latter is cast to non-_BitInt, it will be optimized when handling the REALPART_EXPR. */ return; if (ovf == 1) { lower_call (NULL_TREE, g); return; } } } } } } if (gimple_store_p (stmt)) { tree rhs1 = gimple_assign_rhs1 (stmt); if (TREE_CODE (rhs1) == SSA_NAME && (m_names == NULL || !bitmap_bit_p (m_names, SSA_NAME_VERSION (rhs1)))) { gimple *g = SSA_NAME_DEF_STMT (rhs1); m_loc = gimple_location (g); lhs = gimple_assign_lhs (stmt); if (is_gimple_assign (g) && !mergeable_op (g)) switch (gimple_assign_rhs_code (g)) { case LSHIFT_EXPR: case RSHIFT_EXPR: lower_shift_stmt (lhs, g); handled: m_gsi = gsi_for_stmt (stmt); unlink_stmt_vdef (stmt); release_ssa_name (gimple_vdef (stmt)); gsi_remove (&m_gsi, true); return; case MULT_EXPR: case TRUNC_DIV_EXPR: case TRUNC_MOD_EXPR: lower_muldiv_stmt (lhs, g); goto handled; case FIX_TRUNC_EXPR: lower_float_conv_stmt (lhs, g); goto handled; case REALPART_EXPR: case IMAGPART_EXPR: lower_cplxpart_stmt (lhs, g); goto handled; default: break; } else if (optimizable_arith_overflow (g) == 3) { lower_call (lhs, g); goto handled; } m_loc = gimple_location (stmt); } } if (mergeable_op (stmt) || gimple_store_p (stmt) || gimple_assign_load_p (stmt) || eq_p || mergeable_cast_p) { lhs = lower_mergeable_stmt (stmt, cmp_code, cmp_op1, cmp_op2); if (!eq_p) return; } else if (cmp_code != ERROR_MARK) lhs = lower_comparison_stmt (stmt, cmp_code, cmp_op1, cmp_op2); if (cmp_code != ERROR_MARK) { if (gimple_code (stmt) == GIMPLE_COND) { gcond *cstmt = as_a (stmt); gimple_cond_set_lhs (cstmt, lhs); gimple_cond_set_rhs (cstmt, boolean_false_node); gimple_cond_set_code (cstmt, cmp_code); update_stmt (stmt); return; } if (gimple_assign_rhs_code (stmt) == COND_EXPR) { tree cond = build2 (cmp_code, boolean_type_node, lhs, boolean_false_node); gimple_assign_set_rhs1 (stmt, cond); lhs = gimple_assign_lhs (stmt); gcc_assert (TREE_CODE (TREE_TYPE (lhs)) != BITINT_TYPE || (bitint_precision_kind (TREE_TYPE (lhs)) <= bitint_prec_middle)); update_stmt (stmt); return; } gimple_assign_set_rhs1 (stmt, lhs); gimple_assign_set_rhs2 (stmt, boolean_false_node); gimple_assign_set_rhs_code (stmt, cmp_code); update_stmt (stmt); return; } if (final_cast_p) { tree lhs_type = TREE_TYPE (lhs); /* Add support for 3 or more limbs filled in from normal integral type if this assert fails. If no target chooses limb mode smaller than half of largest supported normal integral type, this will not be needed. */ gcc_assert (TYPE_PRECISION (lhs_type) <= 2 * limb_prec); gimple *g; if (TREE_CODE (lhs_type) == BITINT_TYPE && bitint_precision_kind (lhs_type) == bitint_prec_middle) lhs_type = build_nonstandard_integer_type (TYPE_PRECISION (lhs_type), TYPE_UNSIGNED (lhs_type)); m_data_cnt = 0; tree rhs1 = gimple_assign_rhs1 (stmt); tree r1 = handle_operand (rhs1, size_int (0)); if (!useless_type_conversion_p (lhs_type, TREE_TYPE (r1))) r1 = add_cast (lhs_type, r1); if (TYPE_PRECISION (lhs_type) > limb_prec) { m_data_cnt = 0; m_first = false; tree r2 = handle_operand (rhs1, size_int (1)); r2 = add_cast (lhs_type, r2); g = gimple_build_assign (make_ssa_name (lhs_type), LSHIFT_EXPR, r2, build_int_cst (unsigned_type_node, limb_prec)); insert_before (g); g = gimple_build_assign (make_ssa_name (lhs_type), BIT_IOR_EXPR, r1, gimple_assign_lhs (g)); insert_before (g); r1 = gimple_assign_lhs (g); } if (lhs_type != TREE_TYPE (lhs)) g = gimple_build_assign (lhs, NOP_EXPR, r1); else g = gimple_build_assign (lhs, r1); gsi_replace (&m_gsi, g, true); return; } if (is_gimple_assign (stmt)) switch (gimple_assign_rhs_code (stmt)) { case LSHIFT_EXPR: case RSHIFT_EXPR: lower_shift_stmt (NULL_TREE, stmt); return; case MULT_EXPR: case TRUNC_DIV_EXPR: case TRUNC_MOD_EXPR: lower_muldiv_stmt (NULL_TREE, stmt); return; case FIX_TRUNC_EXPR: case FLOAT_EXPR: lower_float_conv_stmt (NULL_TREE, stmt); return; case REALPART_EXPR: case IMAGPART_EXPR: lower_cplxpart_stmt (NULL_TREE, stmt); return; case COMPLEX_EXPR: lower_complexexpr_stmt (stmt); return; default: break; } gcc_unreachable (); } /* Helper for walk_non_aliased_vuses. Determine if we arrived at the desired memory state. */ void * vuse_eq (ao_ref *, tree vuse1, void *data) { tree vuse2 = (tree) data; if (vuse1 == vuse2) return data; return NULL; } /* Return true if STMT uses a library function and needs to take address of its inputs. We need to avoid bit-fields in those cases. */ bool stmt_needs_operand_addr (gimple *stmt) { if (is_gimple_assign (stmt)) switch (gimple_assign_rhs_code (stmt)) { case MULT_EXPR: case TRUNC_DIV_EXPR: case TRUNC_MOD_EXPR: case FLOAT_EXPR: return true; default: break; } else if (gimple_call_internal_p (stmt, IFN_MUL_OVERFLOW) || gimple_call_internal_p (stmt, IFN_UBSAN_CHECK_MUL)) return true; return false; } /* Dominator walker used to discover which large/huge _BitInt loads could be sunk into all their uses. */ class bitint_dom_walker : public dom_walker { public: bitint_dom_walker (bitmap names, bitmap loads) : dom_walker (CDI_DOMINATORS), m_names (names), m_loads (loads) {} edge before_dom_children (basic_block) final override; private: bitmap m_names, m_loads; }; edge bitint_dom_walker::before_dom_children (basic_block bb) { gphi *phi = get_virtual_phi (bb); tree vop; if (phi) vop = gimple_phi_result (phi); else if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)) vop = NULL_TREE; else vop = (tree) get_immediate_dominator (CDI_DOMINATORS, bb)->aux; auto_vec worklist; for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); if (is_gimple_debug (stmt)) continue; if (!vop && gimple_vuse (stmt)) vop = gimple_vuse (stmt); tree cvop = vop; if (gimple_vdef (stmt)) vop = gimple_vdef (stmt); tree lhs = gimple_get_lhs (stmt); if (lhs && TREE_CODE (lhs) == SSA_NAME && TREE_CODE (TREE_TYPE (lhs)) == BITINT_TYPE && bitint_precision_kind (TREE_TYPE (lhs)) >= bitint_prec_large && !bitmap_bit_p (m_names, SSA_NAME_VERSION (lhs))) /* If lhs of stmt is large/huge _BitInt SSA_NAME not in m_names, it means it will be handled in a loop or straight line code at the location of its (ultimate) immediate use, so for vop checking purposes check these only at the ultimate immediate use. */ continue; ssa_op_iter oi; use_operand_p use_p; FOR_EACH_SSA_USE_OPERAND (use_p, stmt, oi, SSA_OP_USE) { tree s = USE_FROM_PTR (use_p); if (TREE_CODE (TREE_TYPE (s)) == BITINT_TYPE && bitint_precision_kind (TREE_TYPE (s)) >= bitint_prec_large) worklist.safe_push (s); } bool needs_operand_addr = stmt_needs_operand_addr (stmt); while (worklist.length () > 0) { tree s = worklist.pop (); if (!bitmap_bit_p (m_names, SSA_NAME_VERSION (s))) { gimple *g = SSA_NAME_DEF_STMT (s); needs_operand_addr |= stmt_needs_operand_addr (g); FOR_EACH_SSA_USE_OPERAND (use_p, g, oi, SSA_OP_USE) { tree s2 = USE_FROM_PTR (use_p); if (TREE_CODE (TREE_TYPE (s2)) == BITINT_TYPE && (bitint_precision_kind (TREE_TYPE (s2)) >= bitint_prec_large)) worklist.safe_push (s2); } continue; } if (!SSA_NAME_OCCURS_IN_ABNORMAL_PHI (s) && gimple_assign_cast_p (SSA_NAME_DEF_STMT (s))) { tree rhs = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (s)); if (TREE_CODE (rhs) == SSA_NAME && bitmap_bit_p (m_loads, SSA_NAME_VERSION (rhs))) s = rhs; else continue; } else if (!bitmap_bit_p (m_loads, SSA_NAME_VERSION (s))) continue; tree rhs1 = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (s)); if (needs_operand_addr && TREE_CODE (rhs1) == COMPONENT_REF && DECL_BIT_FIELD_TYPE (TREE_OPERAND (rhs1, 1))) { tree fld = TREE_OPERAND (rhs1, 1); /* For little-endian, we can allow as inputs bit-fields which start at a limb boundary. */ if (DECL_OFFSET_ALIGN (fld) >= TYPE_ALIGN (TREE_TYPE (rhs1)) && tree_fits_uhwi_p (DECL_FIELD_BIT_OFFSET (fld)) && (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (fld)) % limb_prec) == 0) ; else { bitmap_clear_bit (m_loads, SSA_NAME_VERSION (s)); continue; } } ao_ref ref; ao_ref_init (&ref, rhs1); tree lvop = gimple_vuse (SSA_NAME_DEF_STMT (s)); unsigned limit = 64; tree vuse = cvop; if (vop != cvop && is_gimple_assign (stmt) && gimple_store_p (stmt) && !operand_equal_p (lhs, gimple_assign_rhs1 (SSA_NAME_DEF_STMT (s)), 0)) vuse = vop; if (vuse != lvop && walk_non_aliased_vuses (&ref, vuse, false, vuse_eq, NULL, NULL, limit, lvop) == NULL) bitmap_clear_bit (m_loads, SSA_NAME_VERSION (s)); } } bb->aux = (void *) vop; return NULL; } } /* Replacement for normal processing of STMT in tree-ssa-coalesce.cc build_ssa_conflict_graph. The differences are: 1) don't process assignments with large/huge _BitInt lhs not in NAMES 2) for large/huge _BitInt multiplication/division/modulo process def only after processing uses rather than before to make uses conflict with the definition 3) for large/huge _BitInt uses not in NAMES mark the uses of their SSA_NAME_DEF_STMT (recursively), because those uses will be sunk into the final statement. */ void build_bitint_stmt_ssa_conflicts (gimple *stmt, live_track *live, ssa_conflicts *graph, bitmap names, void (*def) (live_track *, tree, ssa_conflicts *), void (*use) (live_track *, tree)) { bool muldiv_p = false; tree lhs = NULL_TREE; if (is_gimple_assign (stmt)) { lhs = gimple_assign_lhs (stmt); if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (TREE_TYPE (lhs)) == BITINT_TYPE && bitint_precision_kind (TREE_TYPE (lhs)) >= bitint_prec_large) { if (!bitmap_bit_p (names, SSA_NAME_VERSION (lhs))) return; switch (gimple_assign_rhs_code (stmt)) { case MULT_EXPR: case TRUNC_DIV_EXPR: case TRUNC_MOD_EXPR: muldiv_p = true; default: break; } } } ssa_op_iter iter; tree var; if (!muldiv_p) { /* For stmts with more than one SSA_NAME definition pretend all the SSA_NAME outputs but the first one are live at this point, so that conflicts are added in between all those even when they are actually not really live after the asm, because expansion might copy those into pseudos after the asm and if multiple outputs share the same partition, it might overwrite those that should be live. E.g. asm volatile (".." : "=r" (a) : "=r" (b) : "0" (a), "1" (a)); return a; See PR70593. */ bool first = true; FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF) if (first) first = false; else use (live, var); FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF) def (live, var, graph); } auto_vec worklist; FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE) if (TREE_CODE (TREE_TYPE (var)) == BITINT_TYPE && bitint_precision_kind (TREE_TYPE (var)) >= bitint_prec_large) { if (bitmap_bit_p (names, SSA_NAME_VERSION (var))) use (live, var); else worklist.safe_push (var); } while (worklist.length () > 0) { tree s = worklist.pop (); FOR_EACH_SSA_TREE_OPERAND (var, SSA_NAME_DEF_STMT (s), iter, SSA_OP_USE) if (TREE_CODE (TREE_TYPE (var)) == BITINT_TYPE && bitint_precision_kind (TREE_TYPE (var)) >= bitint_prec_large) { if (bitmap_bit_p (names, SSA_NAME_VERSION (var))) use (live, var); else worklist.safe_push (var); } } if (muldiv_p) def (live, lhs, graph); } /* If STMT is .{ADD,SUB,MUL}_OVERFLOW with INTEGER_CST arguments, return the largest bitint_prec_kind of them, otherwise return bitint_prec_small. */ static bitint_prec_kind arith_overflow_arg_kind (gimple *stmt) { bitint_prec_kind ret = bitint_prec_small; if (is_gimple_call (stmt) && gimple_call_internal_p (stmt)) switch (gimple_call_internal_fn (stmt)) { case IFN_ADD_OVERFLOW: case IFN_SUB_OVERFLOW: case IFN_MUL_OVERFLOW: for (int i = 0; i < 2; ++i) { tree a = gimple_call_arg (stmt, i); if (TREE_CODE (a) == INTEGER_CST && TREE_CODE (TREE_TYPE (a)) == BITINT_TYPE) { bitint_prec_kind kind = bitint_precision_kind (TREE_TYPE (a)); ret = MAX (ret, kind); } } break; default: break; } return ret; } /* Entry point for _BitInt(N) operation lowering during optimization. */ static unsigned int gimple_lower_bitint (void) { small_max_prec = mid_min_prec = large_min_prec = huge_min_prec = 0; limb_prec = 0; unsigned int i; for (i = 0; i < num_ssa_names; ++i) { tree s = ssa_name (i); if (s == NULL) continue; tree type = TREE_TYPE (s); if (TREE_CODE (type) == COMPLEX_TYPE) { if (arith_overflow_arg_kind (SSA_NAME_DEF_STMT (s)) != bitint_prec_small) break; type = TREE_TYPE (type); } if (TREE_CODE (type) == BITINT_TYPE && bitint_precision_kind (type) != bitint_prec_small) break; /* We need to also rewrite stores of large/huge _BitInt INTEGER_CSTs into memory. Such functions could have no large/huge SSA_NAMEs. */ if (SSA_NAME_IS_VIRTUAL_OPERAND (s)) { gimple *g = SSA_NAME_DEF_STMT (s); if (is_gimple_assign (g) && gimple_store_p (g)) { tree t = gimple_assign_rhs1 (g); if (TREE_CODE (TREE_TYPE (t)) == BITINT_TYPE && (bitint_precision_kind (TREE_TYPE (t)) >= bitint_prec_large)) break; } } /* Similarly, e.g. with -frounding-math casts from _BitInt INTEGER_CSTs to floating point types need to be rewritten. */ else if (SCALAR_FLOAT_TYPE_P (type)) { gimple *g = SSA_NAME_DEF_STMT (s); if (is_gimple_assign (g) && gimple_assign_rhs_code (g) == FLOAT_EXPR) { tree t = gimple_assign_rhs1 (g); if (TREE_CODE (t) == INTEGER_CST && TREE_CODE (TREE_TYPE (t)) == BITINT_TYPE && (bitint_precision_kind (TREE_TYPE (t)) != bitint_prec_small)) break; } } } if (i == num_ssa_names) return 0; basic_block bb; auto_vec switch_statements; FOR_EACH_BB_FN (bb, cfun) { if (gswitch *swtch = safe_dyn_cast (*gsi_last_bb (bb))) { tree idx = gimple_switch_index (swtch); if (TREE_CODE (TREE_TYPE (idx)) != BITINT_TYPE || bitint_precision_kind (TREE_TYPE (idx)) < bitint_prec_large) continue; if (optimize) group_case_labels_stmt (swtch); switch_statements.safe_push (swtch); } } if (!switch_statements.is_empty ()) { bool expanded = false; gimple *stmt; unsigned int j; i = 0; FOR_EACH_VEC_ELT (switch_statements, j, stmt) { gswitch *swtch = as_a (stmt); tree_switch_conversion::switch_decision_tree dt (swtch); expanded |= dt.analyze_switch_statement (); } if (expanded) { free_dominance_info (CDI_DOMINATORS); free_dominance_info (CDI_POST_DOMINATORS); mark_virtual_operands_for_renaming (cfun); cleanup_tree_cfg (TODO_update_ssa); } } struct bitint_large_huge large_huge; bool has_large_huge_parm_result = false; bool has_large_huge = false; unsigned int ret = 0, first_large_huge = ~0U; bool edge_insertions = false; for (; i < num_ssa_names; ++i) { tree s = ssa_name (i); if (s == NULL) continue; tree type = TREE_TYPE (s); if (TREE_CODE (type) == COMPLEX_TYPE) { if (arith_overflow_arg_kind (SSA_NAME_DEF_STMT (s)) >= bitint_prec_large) has_large_huge = true; type = TREE_TYPE (type); } if (TREE_CODE (type) == BITINT_TYPE && bitint_precision_kind (type) >= bitint_prec_large) { if (first_large_huge == ~0U) first_large_huge = i; gimple *stmt = SSA_NAME_DEF_STMT (s), *g; gimple_stmt_iterator gsi; tree_code rhs_code; /* Unoptimize certain constructs to simpler alternatives to avoid having to lower all of them. */ if (is_gimple_assign (stmt) && gimple_bb (stmt)) switch (rhs_code = gimple_assign_rhs_code (stmt)) { default: break; case LROTATE_EXPR: case RROTATE_EXPR: { first_large_huge = 0; location_t loc = gimple_location (stmt); gsi = gsi_for_stmt (stmt); tree rhs1 = gimple_assign_rhs1 (stmt); tree type = TREE_TYPE (rhs1); tree n = gimple_assign_rhs2 (stmt), m; tree p = build_int_cst (TREE_TYPE (n), TYPE_PRECISION (type)); if (TREE_CODE (n) == INTEGER_CST) m = fold_build2 (MINUS_EXPR, TREE_TYPE (n), p, n); else { m = make_ssa_name (TREE_TYPE (n)); g = gimple_build_assign (m, MINUS_EXPR, p, n); gsi_insert_before (&gsi, g, GSI_SAME_STMT); gimple_set_location (g, loc); } if (!TYPE_UNSIGNED (type)) { tree utype = build_bitint_type (TYPE_PRECISION (type), 1); if (TREE_CODE (rhs1) == INTEGER_CST) rhs1 = fold_convert (utype, rhs1); else { tree t = make_ssa_name (type); g = gimple_build_assign (t, NOP_EXPR, rhs1); gsi_insert_before (&gsi, g, GSI_SAME_STMT); gimple_set_location (g, loc); } } g = gimple_build_assign (make_ssa_name (TREE_TYPE (rhs1)), rhs_code == LROTATE_EXPR ? LSHIFT_EXPR : RSHIFT_EXPR, rhs1, n); gsi_insert_before (&gsi, g, GSI_SAME_STMT); gimple_set_location (g, loc); tree op1 = gimple_assign_lhs (g); g = gimple_build_assign (make_ssa_name (TREE_TYPE (rhs1)), rhs_code == LROTATE_EXPR ? RSHIFT_EXPR : LSHIFT_EXPR, rhs1, m); gsi_insert_before (&gsi, g, GSI_SAME_STMT); gimple_set_location (g, loc); tree op2 = gimple_assign_lhs (g); tree lhs = gimple_assign_lhs (stmt); if (!TYPE_UNSIGNED (type)) { g = gimple_build_assign (make_ssa_name (TREE_TYPE (op1)), BIT_IOR_EXPR, op1, op2); gsi_insert_before (&gsi, g, GSI_SAME_STMT); gimple_set_location (g, loc); g = gimple_build_assign (lhs, NOP_EXPR, gimple_assign_lhs (g)); } else g = gimple_build_assign (lhs, BIT_IOR_EXPR, op1, op2); gsi_replace (&gsi, g, true); gimple_set_location (g, loc); } break; case ABS_EXPR: case ABSU_EXPR: case MIN_EXPR: case MAX_EXPR: case COND_EXPR: first_large_huge = 0; gsi = gsi_for_stmt (stmt); tree lhs = gimple_assign_lhs (stmt); tree rhs1 = gimple_assign_rhs1 (stmt), rhs2 = NULL_TREE; location_t loc = gimple_location (stmt); if (rhs_code == ABS_EXPR) g = gimple_build_cond (LT_EXPR, rhs1, build_zero_cst (TREE_TYPE (rhs1)), NULL_TREE, NULL_TREE); else if (rhs_code == ABSU_EXPR) { rhs2 = make_ssa_name (TREE_TYPE (lhs)); g = gimple_build_assign (rhs2, NOP_EXPR, rhs1); gsi_insert_before (&gsi, g, GSI_SAME_STMT); gimple_set_location (g, loc); g = gimple_build_cond (LT_EXPR, rhs1, build_zero_cst (TREE_TYPE (rhs1)), NULL_TREE, NULL_TREE); rhs1 = rhs2; } else if (rhs_code == MIN_EXPR || rhs_code == MAX_EXPR) { rhs2 = gimple_assign_rhs2 (stmt); if (TREE_CODE (rhs1) == INTEGER_CST) std::swap (rhs1, rhs2); g = gimple_build_cond (LT_EXPR, rhs1, rhs2, NULL_TREE, NULL_TREE); if (rhs_code == MAX_EXPR) std::swap (rhs1, rhs2); } else { g = gimple_build_cond (NE_EXPR, rhs1, build_zero_cst (TREE_TYPE (rhs1)), NULL_TREE, NULL_TREE); rhs1 = gimple_assign_rhs2 (stmt); rhs2 = gimple_assign_rhs3 (stmt); } gsi_insert_before (&gsi, g, GSI_SAME_STMT); gimple_set_location (g, loc); edge e1 = split_block (gsi_bb (gsi), g); edge e2 = split_block (e1->dest, (gimple *) NULL); edge e3 = make_edge (e1->src, e2->dest, EDGE_FALSE_VALUE); e3->probability = profile_probability::even (); e1->flags = EDGE_TRUE_VALUE; e1->probability = e3->probability.invert (); if (dom_info_available_p (CDI_DOMINATORS)) set_immediate_dominator (CDI_DOMINATORS, e2->dest, e1->src); if (rhs_code == ABS_EXPR || rhs_code == ABSU_EXPR) { gsi = gsi_after_labels (e1->dest); g = gimple_build_assign (make_ssa_name (TREE_TYPE (rhs1)), NEGATE_EXPR, rhs1); gsi_insert_before (&gsi, g, GSI_SAME_STMT); gimple_set_location (g, loc); rhs2 = gimple_assign_lhs (g); std::swap (rhs1, rhs2); } gsi = gsi_for_stmt (stmt); gsi_remove (&gsi, true); gphi *phi = create_phi_node (lhs, e2->dest); add_phi_arg (phi, rhs1, e2, UNKNOWN_LOCATION); add_phi_arg (phi, rhs2, e3, UNKNOWN_LOCATION); break; } } /* We need to also rewrite stores of large/huge _BitInt INTEGER_CSTs into memory. Such functions could have no large/huge SSA_NAMEs. */ else if (SSA_NAME_IS_VIRTUAL_OPERAND (s)) { gimple *g = SSA_NAME_DEF_STMT (s); if (is_gimple_assign (g) && gimple_store_p (g)) { tree t = gimple_assign_rhs1 (g); if (TREE_CODE (TREE_TYPE (t)) == BITINT_TYPE && (bitint_precision_kind (TREE_TYPE (t)) >= bitint_prec_large)) has_large_huge = true; } } /* Similarly, e.g. with -frounding-math casts from _BitInt INTEGER_CSTs to floating point types need to be rewritten. */ else if (SCALAR_FLOAT_TYPE_P (type)) { gimple *g = SSA_NAME_DEF_STMT (s); if (is_gimple_assign (g) && gimple_assign_rhs_code (g) == FLOAT_EXPR) { tree t = gimple_assign_rhs1 (g); if (TREE_CODE (t) == INTEGER_CST && TREE_CODE (TREE_TYPE (t)) == BITINT_TYPE && (bitint_precision_kind (TREE_TYPE (t)) >= bitint_prec_large)) has_large_huge = true; } } } for (i = first_large_huge; i < num_ssa_names; ++i) { tree s = ssa_name (i); if (s == NULL) continue; tree type = TREE_TYPE (s); if (TREE_CODE (type) == COMPLEX_TYPE) type = TREE_TYPE (type); if (TREE_CODE (type) == BITINT_TYPE && bitint_precision_kind (type) >= bitint_prec_large) { use_operand_p use_p; gimple *use_stmt; has_large_huge = true; if (optimize && optimizable_arith_overflow (SSA_NAME_DEF_STMT (s))) continue; /* Ignore large/huge _BitInt SSA_NAMEs which have single use in the same bb and could be handled in the same loop with the immediate use. */ if (optimize && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (s) && single_imm_use (s, &use_p, &use_stmt) && gimple_bb (SSA_NAME_DEF_STMT (s)) == gimple_bb (use_stmt)) { if (mergeable_op (SSA_NAME_DEF_STMT (s))) { if (mergeable_op (use_stmt)) continue; tree_code cmp_code = comparison_op (use_stmt, NULL, NULL); if (cmp_code == EQ_EXPR || cmp_code == NE_EXPR) continue; if (gimple_assign_cast_p (use_stmt)) { tree lhs = gimple_assign_lhs (use_stmt); if (INTEGRAL_TYPE_P (TREE_TYPE (lhs))) continue; } else if (gimple_store_p (use_stmt) && is_gimple_assign (use_stmt) && !gimple_has_volatile_ops (use_stmt) && !stmt_ends_bb_p (use_stmt)) continue; } if (gimple_assign_cast_p (SSA_NAME_DEF_STMT (s))) { tree rhs1 = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (s)); if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)) && ((is_gimple_assign (use_stmt) && (gimple_assign_rhs_code (use_stmt) != COMPLEX_EXPR)) || gimple_code (use_stmt) == GIMPLE_COND) && (!gimple_store_p (use_stmt) || (is_gimple_assign (use_stmt) && !gimple_has_volatile_ops (use_stmt) && !stmt_ends_bb_p (use_stmt))) && (TREE_CODE (rhs1) != SSA_NAME || !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs1))) { if (TREE_CODE (TREE_TYPE (rhs1)) != BITINT_TYPE || (bitint_precision_kind (TREE_TYPE (rhs1)) < bitint_prec_large)) continue; if (is_gimple_assign (use_stmt)) switch (gimple_assign_rhs_code (use_stmt)) { case MULT_EXPR: case TRUNC_DIV_EXPR: case TRUNC_MOD_EXPR: case FLOAT_EXPR: /* Uses which use handle_operand_addr can't deal with nested casts. */ if (TREE_CODE (rhs1) == SSA_NAME && gimple_assign_cast_p (SSA_NAME_DEF_STMT (rhs1)) && has_single_use (rhs1) && (gimple_bb (SSA_NAME_DEF_STMT (rhs1)) == gimple_bb (SSA_NAME_DEF_STMT (s)))) goto force_name; break; default: break; } if ((TYPE_PRECISION (TREE_TYPE (rhs1)) >= TYPE_PRECISION (TREE_TYPE (s))) && mergeable_op (use_stmt)) continue; /* Prevent merging a widening non-mergeable cast on result of some narrower mergeable op together with later mergeable operations. E.g. result of _BitInt(223) addition shouldn't be sign-extended to _BitInt(513) and have another _BitInt(513) added to it, as handle_plus_minus with its PHI node handling inside of handle_cast will not work correctly. An exception is if use_stmt is a store, this is handled directly in lower_mergeable_stmt. */ if (TREE_CODE (rhs1) != SSA_NAME || !has_single_use (rhs1) || (gimple_bb (SSA_NAME_DEF_STMT (rhs1)) != gimple_bb (SSA_NAME_DEF_STMT (s))) || !mergeable_op (SSA_NAME_DEF_STMT (rhs1)) || gimple_store_p (use_stmt)) continue; if ((TYPE_PRECISION (TREE_TYPE (rhs1)) < TYPE_PRECISION (TREE_TYPE (s))) && gimple_assign_cast_p (SSA_NAME_DEF_STMT (rhs1))) { /* Another exception is if the widening cast is from mergeable same precision cast from something not mergeable. */ tree rhs2 = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (rhs1)); if (TREE_CODE (TREE_TYPE (rhs2)) == BITINT_TYPE && (TYPE_PRECISION (TREE_TYPE (rhs1)) == TYPE_PRECISION (TREE_TYPE (rhs2)))) { if (TREE_CODE (rhs2) != SSA_NAME || !has_single_use (rhs2) || (gimple_bb (SSA_NAME_DEF_STMT (rhs2)) != gimple_bb (SSA_NAME_DEF_STMT (s))) || !mergeable_op (SSA_NAME_DEF_STMT (rhs2))) continue; } } } } if (is_gimple_assign (SSA_NAME_DEF_STMT (s))) switch (gimple_assign_rhs_code (SSA_NAME_DEF_STMT (s))) { case IMAGPART_EXPR: { tree rhs1 = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (s)); rhs1 = TREE_OPERAND (rhs1, 0); if (TREE_CODE (rhs1) == SSA_NAME) { gimple *g = SSA_NAME_DEF_STMT (rhs1); if (optimizable_arith_overflow (g)) continue; } } /* FALLTHRU */ case LSHIFT_EXPR: case RSHIFT_EXPR: case MULT_EXPR: case TRUNC_DIV_EXPR: case TRUNC_MOD_EXPR: case FIX_TRUNC_EXPR: case REALPART_EXPR: if (gimple_store_p (use_stmt) && is_gimple_assign (use_stmt) && !gimple_has_volatile_ops (use_stmt) && !stmt_ends_bb_p (use_stmt)) { tree lhs = gimple_assign_lhs (use_stmt); /* As multiply/division passes address of the lhs to library function and that assumes it can extend it to whole number of limbs, avoid merging those with bit-field stores. Don't allow it for shifts etc. either, so that the bit-field store handling doesn't have to be done everywhere. */ if (TREE_CODE (lhs) == COMPONENT_REF && DECL_BIT_FIELD_TYPE (TREE_OPERAND (lhs, 1))) break; continue; } break; default: break; } } /* Also ignore uninitialized uses. */ if (SSA_NAME_IS_DEFAULT_DEF (s) && (!SSA_NAME_VAR (s) || VAR_P (SSA_NAME_VAR (s)))) continue; force_name: if (!large_huge.m_names) large_huge.m_names = BITMAP_ALLOC (NULL); bitmap_set_bit (large_huge.m_names, SSA_NAME_VERSION (s)); if (has_single_use (s)) { if (!large_huge.m_single_use_names) large_huge.m_single_use_names = BITMAP_ALLOC (NULL); bitmap_set_bit (large_huge.m_single_use_names, SSA_NAME_VERSION (s)); } if (SSA_NAME_VAR (s) && ((TREE_CODE (SSA_NAME_VAR (s)) == PARM_DECL && SSA_NAME_IS_DEFAULT_DEF (s)) || TREE_CODE (SSA_NAME_VAR (s)) == RESULT_DECL)) has_large_huge_parm_result = true; if (optimize && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (s) && gimple_assign_load_p (SSA_NAME_DEF_STMT (s)) && !gimple_has_volatile_ops (SSA_NAME_DEF_STMT (s)) && !stmt_ends_bb_p (SSA_NAME_DEF_STMT (s))) { use_operand_p use_p; imm_use_iterator iter; bool optimizable_load = true; FOR_EACH_IMM_USE_FAST (use_p, iter, s) { gimple *use_stmt = USE_STMT (use_p); if (is_gimple_debug (use_stmt)) continue; if (gimple_code (use_stmt) == GIMPLE_PHI || is_gimple_call (use_stmt)) { optimizable_load = false; break; } } ssa_op_iter oi; FOR_EACH_SSA_USE_OPERAND (use_p, SSA_NAME_DEF_STMT (s), oi, SSA_OP_USE) { tree s2 = USE_FROM_PTR (use_p); if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (s2)) { optimizable_load = false; break; } } if (optimizable_load && !stmt_ends_bb_p (SSA_NAME_DEF_STMT (s))) { if (!large_huge.m_loads) large_huge.m_loads = BITMAP_ALLOC (NULL); bitmap_set_bit (large_huge.m_loads, SSA_NAME_VERSION (s)); } } } /* We need to also rewrite stores of large/huge _BitInt INTEGER_CSTs into memory. Such functions could have no large/huge SSA_NAMEs. */ else if (SSA_NAME_IS_VIRTUAL_OPERAND (s)) { gimple *g = SSA_NAME_DEF_STMT (s); if (is_gimple_assign (g) && gimple_store_p (g)) { tree t = gimple_assign_rhs1 (g); if (TREE_CODE (TREE_TYPE (t)) == BITINT_TYPE && bitint_precision_kind (TREE_TYPE (t)) >= bitint_prec_large) has_large_huge = true; } } } if (large_huge.m_names || has_large_huge) { ret = TODO_update_ssa_only_virtuals | TODO_cleanup_cfg; calculate_dominance_info (CDI_DOMINATORS); if (optimize) enable_ranger (cfun); if (large_huge.m_loads) { basic_block entry = ENTRY_BLOCK_PTR_FOR_FN (cfun); entry->aux = NULL; bitint_dom_walker (large_huge.m_names, large_huge.m_loads).walk (entry); bitmap_and_compl_into (large_huge.m_names, large_huge.m_loads); clear_aux_for_blocks (); BITMAP_FREE (large_huge.m_loads); } large_huge.m_limb_type = build_nonstandard_integer_type (limb_prec, 1); large_huge.m_limb_size = tree_to_uhwi (TYPE_SIZE_UNIT (large_huge.m_limb_type)); } if (large_huge.m_names) { large_huge.m_map = init_var_map (num_ssa_names, NULL, large_huge.m_names); coalesce_ssa_name (large_huge.m_map); partition_view_normal (large_huge.m_map); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "After Coalescing:\n"); dump_var_map (dump_file, large_huge.m_map); } large_huge.m_vars = XCNEWVEC (tree, num_var_partitions (large_huge.m_map)); bitmap_iterator bi; if (has_large_huge_parm_result) EXECUTE_IF_SET_IN_BITMAP (large_huge.m_names, 0, i, bi) { tree s = ssa_name (i); if (SSA_NAME_VAR (s) && ((TREE_CODE (SSA_NAME_VAR (s)) == PARM_DECL && SSA_NAME_IS_DEFAULT_DEF (s)) || TREE_CODE (SSA_NAME_VAR (s)) == RESULT_DECL)) { int p = var_to_partition (large_huge.m_map, s); if (large_huge.m_vars[p] == NULL_TREE) { large_huge.m_vars[p] = SSA_NAME_VAR (s); mark_addressable (SSA_NAME_VAR (s)); } } } tree atype = NULL_TREE; EXECUTE_IF_SET_IN_BITMAP (large_huge.m_names, 0, i, bi) { tree s = ssa_name (i); int p = var_to_partition (large_huge.m_map, s); if (large_huge.m_vars[p] != NULL_TREE) continue; if (atype == NULL_TREE || !tree_int_cst_equal (TYPE_SIZE (atype), TYPE_SIZE (TREE_TYPE (s)))) { unsigned HOST_WIDE_INT nelts = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (s))) / limb_prec; atype = build_array_type_nelts (large_huge.m_limb_type, nelts); } large_huge.m_vars[p] = create_tmp_var (atype, "bitint"); mark_addressable (large_huge.m_vars[p]); } } FOR_EACH_BB_REVERSE_FN (bb, cfun) { gimple_stmt_iterator prev; for (gimple_stmt_iterator gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = prev) { prev = gsi; gsi_prev (&prev); ssa_op_iter iter; gimple *stmt = gsi_stmt (gsi); if (is_gimple_debug (stmt)) continue; bitint_prec_kind kind = bitint_prec_small; tree t; FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, SSA_OP_ALL_OPERANDS) if (TREE_CODE (TREE_TYPE (t)) == BITINT_TYPE) { bitint_prec_kind this_kind = bitint_precision_kind (TREE_TYPE (t)); kind = MAX (kind, this_kind); } if (is_gimple_assign (stmt) && gimple_store_p (stmt)) { t = gimple_assign_rhs1 (stmt); if (TREE_CODE (TREE_TYPE (t)) == BITINT_TYPE) { bitint_prec_kind this_kind = bitint_precision_kind (TREE_TYPE (t)); kind = MAX (kind, this_kind); } } if (is_gimple_assign (stmt) && gimple_assign_rhs_code (stmt) == FLOAT_EXPR) { t = gimple_assign_rhs1 (stmt); if (TREE_CODE (TREE_TYPE (t)) == BITINT_TYPE && TREE_CODE (t) == INTEGER_CST) { bitint_prec_kind this_kind = bitint_precision_kind (TREE_TYPE (t)); kind = MAX (kind, this_kind); } } if (is_gimple_call (stmt)) { t = gimple_call_lhs (stmt); if (t && TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE) { bitint_prec_kind this_kind = arith_overflow_arg_kind (stmt); kind = MAX (kind, this_kind); if (TREE_CODE (TREE_TYPE (TREE_TYPE (t))) == BITINT_TYPE) { this_kind = bitint_precision_kind (TREE_TYPE (TREE_TYPE (t))); kind = MAX (kind, this_kind); } } } if (kind == bitint_prec_small) continue; switch (gimple_code (stmt)) { case GIMPLE_CALL: /* For now. We'll need to handle some internal functions and perhaps some builtins. */ if (kind == bitint_prec_middle) continue; break; case GIMPLE_ASM: if (kind == bitint_prec_middle) continue; break; case GIMPLE_RETURN: continue; case GIMPLE_ASSIGN: if (gimple_clobber_p (stmt)) continue; if (kind >= bitint_prec_large) break; if (gimple_assign_single_p (stmt)) /* No need to lower copies, loads or stores. */ continue; if (gimple_assign_cast_p (stmt)) { tree lhs = gimple_assign_lhs (stmt); tree rhs = gimple_assign_rhs1 (stmt); if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)) && INTEGRAL_TYPE_P (TREE_TYPE (rhs)) && (TYPE_PRECISION (TREE_TYPE (lhs)) == TYPE_PRECISION (TREE_TYPE (rhs)))) /* No need to lower casts to same precision. */ continue; } break; default: break; } if (kind == bitint_prec_middle) { tree type = NULL_TREE; /* Middle _BitInt(N) is rewritten to casts to INTEGER_TYPEs with the same precision and back. */ unsigned int nops = gimple_num_ops (stmt); for (unsigned int i = is_gimple_assign (stmt) ? 1 : 0; i < nops; ++i) if (tree op = gimple_op (stmt, i)) { tree nop = maybe_cast_middle_bitint (&gsi, op, type); if (nop != op) gimple_set_op (stmt, i, nop); else if (COMPARISON_CLASS_P (op)) { TREE_OPERAND (op, 0) = maybe_cast_middle_bitint (&gsi, TREE_OPERAND (op, 0), type); TREE_OPERAND (op, 1) = maybe_cast_middle_bitint (&gsi, TREE_OPERAND (op, 1), type); } else if (TREE_CODE (op) == CASE_LABEL_EXPR) { CASE_LOW (op) = maybe_cast_middle_bitint (&gsi, CASE_LOW (op), type); CASE_HIGH (op) = maybe_cast_middle_bitint (&gsi, CASE_HIGH (op), type); } } if (tree lhs = gimple_get_lhs (stmt)) if (TREE_CODE (TREE_TYPE (lhs)) == BITINT_TYPE && (bitint_precision_kind (TREE_TYPE (lhs)) == bitint_prec_middle)) { int prec = TYPE_PRECISION (TREE_TYPE (lhs)); int uns = TYPE_UNSIGNED (TREE_TYPE (lhs)); type = build_nonstandard_integer_type (prec, uns); tree lhs2 = make_ssa_name (type); gimple_set_lhs (stmt, lhs2); gimple *g = gimple_build_assign (lhs, NOP_EXPR, lhs2); if (stmt_ends_bb_p (stmt)) { edge e = find_fallthru_edge (gsi_bb (gsi)->succs); gsi_insert_on_edge_immediate (e, g); } else gsi_insert_after (&gsi, g, GSI_SAME_STMT); } update_stmt (stmt); continue; } if (tree lhs = gimple_get_lhs (stmt)) if (TREE_CODE (lhs) == SSA_NAME) { tree type = TREE_TYPE (lhs); if (TREE_CODE (type) == COMPLEX_TYPE) type = TREE_TYPE (type); if (TREE_CODE (type) == BITINT_TYPE && bitint_precision_kind (type) >= bitint_prec_large && (large_huge.m_names == NULL || !bitmap_bit_p (large_huge.m_names, SSA_NAME_VERSION (lhs)))) continue; } large_huge.lower_stmt (stmt); } tree atype = NULL_TREE; for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gphi *phi = gsi.phi (); tree lhs = gimple_phi_result (phi); if (TREE_CODE (TREE_TYPE (lhs)) != BITINT_TYPE || bitint_precision_kind (TREE_TYPE (lhs)) < bitint_prec_large) continue; int p1 = var_to_partition (large_huge.m_map, lhs); gcc_assert (large_huge.m_vars[p1] != NULL_TREE); tree v1 = large_huge.m_vars[p1]; for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i) { tree arg = gimple_phi_arg_def (phi, i); edge e = gimple_phi_arg_edge (phi, i); gimple *g; switch (TREE_CODE (arg)) { case INTEGER_CST: if (integer_zerop (arg) && VAR_P (v1)) { tree zero = build_zero_cst (TREE_TYPE (v1)); g = gimple_build_assign (v1, zero); gsi_insert_on_edge (e, g); edge_insertions = true; break; } int ext; unsigned int min_prec, prec, rem; tree c; prec = TYPE_PRECISION (TREE_TYPE (arg)); rem = prec % (2 * limb_prec); min_prec = bitint_min_cst_precision (arg, ext); if (min_prec > prec - rem - 2 * limb_prec && min_prec > (unsigned) limb_prec) /* Constant which has enough significant bits that it isn't worth trying to save .rodata space by extending from smaller number. */ min_prec = prec; else min_prec = CEIL (min_prec, limb_prec) * limb_prec; if (min_prec == 0) c = NULL_TREE; else if (min_prec == prec) c = tree_output_constant_def (arg); else if (min_prec == (unsigned) limb_prec) c = fold_convert (large_huge.m_limb_type, arg); else { tree ctype = build_bitint_type (min_prec, 1); c = tree_output_constant_def (fold_convert (ctype, arg)); } if (c) { if (VAR_P (v1) && min_prec == prec) { tree v2 = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (v1), c); g = gimple_build_assign (v1, v2); gsi_insert_on_edge (e, g); edge_insertions = true; break; } if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE) g = gimple_build_assign (build1 (VIEW_CONVERT_EXPR, TREE_TYPE (c), v1), c); else { unsigned HOST_WIDE_INT nelts = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (c))) / limb_prec; tree vtype = build_array_type_nelts (large_huge.m_limb_type, nelts); g = gimple_build_assign (build1 (VIEW_CONVERT_EXPR, vtype, v1), build1 (VIEW_CONVERT_EXPR, vtype, c)); } gsi_insert_on_edge (e, g); } if (ext == 0) { unsigned HOST_WIDE_INT nelts = (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (v1))) - min_prec) / limb_prec; tree vtype = build_array_type_nelts (large_huge.m_limb_type, nelts); tree ptype = build_pointer_type (TREE_TYPE (v1)); tree off; if (c) off = fold_convert (ptype, TYPE_SIZE_UNIT (TREE_TYPE (c))); else off = build_zero_cst (ptype); tree vd = build2 (MEM_REF, vtype, build_fold_addr_expr (v1), off); g = gimple_build_assign (vd, build_zero_cst (vtype)); } else { tree vd = v1; if (c) { tree ptype = build_pointer_type (TREE_TYPE (v1)); tree off = fold_convert (ptype, TYPE_SIZE_UNIT (TREE_TYPE (c))); vd = build2 (MEM_REF, large_huge.m_limb_type, build_fold_addr_expr (v1), off); } vd = build_fold_addr_expr (vd); unsigned HOST_WIDE_INT nbytes = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (v1))); if (c) nbytes -= tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (c))); tree fn = builtin_decl_implicit (BUILT_IN_MEMSET); g = gimple_build_call (fn, 3, vd, integer_minus_one_node, build_int_cst (sizetype, nbytes)); } gsi_insert_on_edge (e, g); edge_insertions = true; break; default: gcc_unreachable (); case SSA_NAME: if (gimple_code (SSA_NAME_DEF_STMT (arg)) == GIMPLE_NOP) { if (large_huge.m_names == NULL || !bitmap_bit_p (large_huge.m_names, SSA_NAME_VERSION (arg))) continue; } int p2 = var_to_partition (large_huge.m_map, arg); if (p1 == p2) continue; gcc_assert (large_huge.m_vars[p2] != NULL_TREE); tree v2 = large_huge.m_vars[p2]; if (VAR_P (v1) && VAR_P (v2)) g = gimple_build_assign (v1, v2); else if (VAR_P (v1)) g = gimple_build_assign (v1, build1 (VIEW_CONVERT_EXPR, TREE_TYPE (v1), v2)); else if (VAR_P (v2)) g = gimple_build_assign (build1 (VIEW_CONVERT_EXPR, TREE_TYPE (v2), v1), v2); else { if (atype == NULL_TREE || !tree_int_cst_equal (TYPE_SIZE (atype), TYPE_SIZE (TREE_TYPE (lhs)))) { unsigned HOST_WIDE_INT nelts = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (lhs))) / limb_prec; atype = build_array_type_nelts (large_huge.m_limb_type, nelts); } g = gimple_build_assign (build1 (VIEW_CONVERT_EXPR, atype, v1), build1 (VIEW_CONVERT_EXPR, atype, v2)); } gsi_insert_on_edge (e, g); edge_insertions = true; break; } } } } if (large_huge.m_names || has_large_huge) { gimple *nop = NULL; for (i = 0; i < num_ssa_names; ++i) { tree s = ssa_name (i); if (s == NULL_TREE) continue; tree type = TREE_TYPE (s); if (TREE_CODE (type) == COMPLEX_TYPE) type = TREE_TYPE (type); if (TREE_CODE (type) == BITINT_TYPE && bitint_precision_kind (type) >= bitint_prec_large) { if (large_huge.m_preserved && bitmap_bit_p (large_huge.m_preserved, SSA_NAME_VERSION (s))) continue; gimple *g = SSA_NAME_DEF_STMT (s); if (gimple_code (g) == GIMPLE_NOP) { if (SSA_NAME_VAR (s)) set_ssa_default_def (cfun, SSA_NAME_VAR (s), NULL_TREE); release_ssa_name (s); continue; } if (gimple_bb (g) == NULL) { release_ssa_name (s); continue; } if (gimple_code (g) != GIMPLE_ASM) { gimple_stmt_iterator gsi = gsi_for_stmt (g); bool save_vta = flag_var_tracking_assignments; flag_var_tracking_assignments = false; gsi_remove (&gsi, true); flag_var_tracking_assignments = save_vta; } if (nop == NULL) nop = gimple_build_nop (); SSA_NAME_DEF_STMT (s) = nop; release_ssa_name (s); } } if (optimize) disable_ranger (cfun); } if (edge_insertions) gsi_commit_edge_inserts (); return ret; } namespace { const pass_data pass_data_lower_bitint = { GIMPLE_PASS, /* type */ "bitintlower", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ PROP_ssa, /* properties_required */ PROP_gimple_lbitint, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_lower_bitint : public gimple_opt_pass { public: pass_lower_bitint (gcc::context *ctxt) : gimple_opt_pass (pass_data_lower_bitint, ctxt) {} /* opt_pass methods: */ opt_pass * clone () final override { return new pass_lower_bitint (m_ctxt); } unsigned int execute (function *) final override { return gimple_lower_bitint (); } }; // class pass_lower_bitint } // anon namespace gimple_opt_pass * make_pass_lower_bitint (gcc::context *ctxt) { return new pass_lower_bitint (ctxt); } namespace { const pass_data pass_data_lower_bitint_O0 = { GIMPLE_PASS, /* type */ "bitintlower0", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ PROP_cfg, /* properties_required */ PROP_gimple_lbitint, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_lower_bitint_O0 : public gimple_opt_pass { public: pass_lower_bitint_O0 (gcc::context *ctxt) : gimple_opt_pass (pass_data_lower_bitint_O0, ctxt) {} /* opt_pass methods: */ bool gate (function *fun) final override { /* With errors, normal optimization passes are not run. If we don't lower bitint operations at all, rtl expansion will abort. */ return !(fun->curr_properties & PROP_gimple_lbitint); } unsigned int execute (function *) final override { return gimple_lower_bitint (); } }; // class pass_lower_bitint_O0 } // anon namespace gimple_opt_pass * make_pass_lower_bitint_O0 (gcc::context *ctxt) { return new pass_lower_bitint_O0 (ctxt); }