/* Support routines for the various generation passes. Copyright (C) 2000-2023 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "bconfig.h" #define INCLUDE_STRING #define INCLUDE_VECTOR #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "obstack.h" #include "errors.h" #include "read-md.h" #include "gensupport.h" #include "vec.h" #define MAX_OPERANDS 40 static rtx operand_data[MAX_OPERANDS]; static rtx match_operand_entries_in_pattern[MAX_OPERANDS]; static char used_operands_numbers[MAX_OPERANDS]; /* List of entries which are part of the new syntax. */ hash_set<rtx> compact_syntax; /* In case some macros used by files we include need it, define this here. */ int target_flags; int insn_elision = 1; static struct obstack obstack; struct obstack *rtl_obstack = &obstack; /* Counter for named patterns and INSN_CODEs. */ static int insn_sequence_num; /* Counter for define_splits. */ static int split_sequence_num; /* Counter for define_peephole2s. */ static int peephole2_sequence_num; static int predicable_default; static const char *predicable_true; static const char *predicable_false; static const char *subst_true = "yes"; static const char *subst_false = "no"; static htab_t condition_table; /* We initially queue all patterns, process the define_insn, define_cond_exec and define_subst patterns, then return them one at a time. */ class queue_elem { public: rtx data; file_location loc; class queue_elem *next; /* In a DEFINE_INSN that came from a DEFINE_INSN_AND_SPLIT or DEFINE_INSN_AND_REWRITE, SPLIT points to the generated DEFINE_SPLIT. */ class queue_elem *split; }; #define MNEMONIC_ATTR_NAME "mnemonic" #define MNEMONIC_HTAB_SIZE 1024 static class queue_elem *define_attr_queue; static class queue_elem **define_attr_tail = &define_attr_queue; static class queue_elem *define_pred_queue; static class queue_elem **define_pred_tail = &define_pred_queue; static class queue_elem *define_insn_queue; static class queue_elem **define_insn_tail = &define_insn_queue; static class queue_elem *define_cond_exec_queue; static class queue_elem **define_cond_exec_tail = &define_cond_exec_queue; static class queue_elem *define_subst_queue; static class queue_elem **define_subst_tail = &define_subst_queue; static class queue_elem *other_queue; static class queue_elem **other_tail = &other_queue; static class queue_elem *define_subst_attr_queue; static class queue_elem **define_subst_attr_tail = &define_subst_attr_queue; /* Mapping from DEFINE_* rtxes to their location in the source file. */ static hash_map <rtx, file_location> *rtx_locs; static void remove_constraints (rtx); static int is_predicable (class queue_elem *); static void identify_predicable_attribute (void); static int n_alternatives (const char *); static void collect_insn_data (rtx, int *, int *); static const char *alter_test_for_insn (class queue_elem *, class queue_elem *); static char *shift_output_template (char *, const char *, int); static const char *alter_output_for_insn (class queue_elem *, class queue_elem *, int, int); static void process_one_cond_exec (class queue_elem *); static void process_define_cond_exec (void); static void init_predicate_table (void); static void record_insn_name (int, const char *); static bool has_subst_attribute (class queue_elem *, class queue_elem *); static const char * alter_output_for_subst_insn (rtx, int); static void alter_attrs_for_subst_insn (class queue_elem *, int); static void process_substs_on_one_elem (class queue_elem *, class queue_elem *); static rtx subst_dup (rtx, int, int); static void process_define_subst (void); static const char * duplicate_alternatives (const char *, int); static const char * duplicate_each_alternative (const char * str, int n_dup); typedef const char * (*constraints_handler_t) (const char *, int); static rtx alter_constraints (rtx, int, constraints_handler_t); static rtx adjust_operands_numbers (rtx); static rtx replace_duplicating_operands_in_pattern (rtx); /* Make a version of gen_rtx_CONST_INT so that GEN_INT can be used in the gensupport programs. */ rtx gen_rtx_CONST_INT (machine_mode ARG_UNUSED (mode), HOST_WIDE_INT arg) { rtx rt = rtx_alloc (CONST_INT); XWINT (rt, 0) = arg; return rt; } /* Return the rtx pattern specified by the list of rtxes in a define_insn or define_split. */ rtx add_implicit_parallel (rtvec vec) { if (GET_NUM_ELEM (vec) == 1) return RTVEC_ELT (vec, 0); else { rtx pattern = rtx_alloc (PARALLEL); XVEC (pattern, 0) = vec; return pattern; } } /* Predicate handling. We construct from the machine description a table mapping each predicate to a list of the rtl codes it can possibly match. The function 'maybe_both_true' uses it to deduce that there are no expressions that can be matches by certain pairs of tree nodes. Also, if a predicate can match only one code, we can hardwire that code into the node testing the predicate. Some predicates are flagged as special. validate_pattern will not warn about modeless match_operand expressions if they have a special predicate. Predicates that allow only constants are also treated as special, for this purpose. validate_pattern will warn about predicates that allow non-lvalues when they appear in destination operands. Calculating the set of rtx codes that can possibly be accepted by a predicate expression EXP requires a three-state logic: any given subexpression may definitively accept a code C (Y), definitively reject a code C (N), or may have an indeterminate effect (I). N and I is N; Y or I is Y; Y and I, N or I are both I. Here are full truth tables. a b a&b a|b Y Y Y Y N Y N Y N N N N I Y I Y I N N I I I I I We represent Y with 1, N with 0, I with 2. If any code is left in an I state by the complete expression, we must assume that that code can be accepted. */ #define N 0 #define Y 1 #define I 2 #define TRISTATE_AND(a,b) \ ((a) == I ? ((b) == N ? N : I) : \ (b) == I ? ((a) == N ? N : I) : \ (a) && (b)) #define TRISTATE_OR(a,b) \ ((a) == I ? ((b) == Y ? Y : I) : \ (b) == I ? ((a) == Y ? Y : I) : \ (a) || (b)) #define TRISTATE_NOT(a) \ ((a) == I ? I : !(a)) /* 0 means no warning about that code yet, 1 means warned. */ static char did_you_mean_codes[NUM_RTX_CODE]; /* Recursively calculate the set of rtx codes accepted by the predicate expression EXP, writing the result to CODES. LOC is the .md file location of the directive containing EXP. */ void compute_test_codes (rtx exp, file_location loc, char *codes) { char op0_codes[NUM_RTX_CODE]; char op1_codes[NUM_RTX_CODE]; char op2_codes[NUM_RTX_CODE]; int i; switch (GET_CODE (exp)) { case AND: compute_test_codes (XEXP (exp, 0), loc, op0_codes); compute_test_codes (XEXP (exp, 1), loc, op1_codes); for (i = 0; i < NUM_RTX_CODE; i++) codes[i] = TRISTATE_AND (op0_codes[i], op1_codes[i]); break; case IOR: compute_test_codes (XEXP (exp, 0), loc, op0_codes); compute_test_codes (XEXP (exp, 1), loc, op1_codes); for (i = 0; i < NUM_RTX_CODE; i++) codes[i] = TRISTATE_OR (op0_codes[i], op1_codes[i]); break; case NOT: compute_test_codes (XEXP (exp, 0), loc, op0_codes); for (i = 0; i < NUM_RTX_CODE; i++) codes[i] = TRISTATE_NOT (op0_codes[i]); break; case IF_THEN_ELSE: /* a ? b : c accepts the same codes as (a & b) | (!a & c). */ compute_test_codes (XEXP (exp, 0), loc, op0_codes); compute_test_codes (XEXP (exp, 1), loc, op1_codes); compute_test_codes (XEXP (exp, 2), loc, op2_codes); for (i = 0; i < NUM_RTX_CODE; i++) codes[i] = TRISTATE_OR (TRISTATE_AND (op0_codes[i], op1_codes[i]), TRISTATE_AND (TRISTATE_NOT (op0_codes[i]), op2_codes[i])); break; case MATCH_CODE: /* MATCH_CODE allows a specified list of codes. However, if it does not apply to the top level of the expression, it does not constrain the set of codes for the top level. */ if (XSTR (exp, 1)[0] != '\0') { memset (codes, Y, NUM_RTX_CODE); break; } memset (codes, N, NUM_RTX_CODE); { const char *next_code = XSTR (exp, 0); const char *code; if (*next_code == '\0') { error_at (loc, "empty match_code expression"); break; } while ((code = scan_comma_elt (&next_code)) != 0) { size_t n = next_code - code; int found_it = 0; for (i = 0; i < NUM_RTX_CODE; i++) if (!strncmp (code, GET_RTX_NAME (i), n) && GET_RTX_NAME (i)[n] == '\0') { codes[i] = Y; found_it = 1; break; } if (!found_it) { error_at (loc, "match_code \"%.*s\" matches nothing", (int) n, code); for (i = 0; i < NUM_RTX_CODE; i++) if (!strncasecmp (code, GET_RTX_NAME (i), n) && GET_RTX_NAME (i)[n] == '\0' && !did_you_mean_codes[i]) { did_you_mean_codes[i] = 1; message_at (loc, "(did you mean \"%s\"?)", GET_RTX_NAME (i)); } } } } break; case MATCH_OPERAND: /* MATCH_OPERAND disallows the set of codes that the named predicate disallows, and is indeterminate for the codes that it does allow. */ { struct pred_data *p = lookup_predicate (XSTR (exp, 1)); if (!p) { error_at (loc, "reference to unknown predicate '%s'", XSTR (exp, 1)); break; } for (i = 0; i < NUM_RTX_CODE; i++) codes[i] = p->codes[i] ? I : N; } break; case MATCH_TEST: /* (match_test WHATEVER) is completely indeterminate. */ memset (codes, I, NUM_RTX_CODE); break; default: error_at (loc, "'%s' cannot be used in predicates or constraints", GET_RTX_NAME (GET_CODE (exp))); memset (codes, I, NUM_RTX_CODE); break; } } #undef TRISTATE_OR #undef TRISTATE_AND #undef TRISTATE_NOT /* Return true if NAME is a valid predicate name. */ static bool valid_predicate_name_p (const char *name) { const char *p; if (!ISALPHA (name[0]) && name[0] != '_') return false; for (p = name + 1; *p; p++) if (!ISALNUM (*p) && *p != '_') return false; return true; } /* Process define_predicate directive DESC, which appears at location LOC. Compute the set of codes that can be matched, and record this as a known predicate. */ static void process_define_predicate (rtx desc, file_location loc) { struct pred_data *pred; char codes[NUM_RTX_CODE]; int i; if (!valid_predicate_name_p (XSTR (desc, 0))) { error_at (loc, "%s: predicate name must be a valid C function name", XSTR (desc, 0)); return; } pred = XCNEW (struct pred_data); pred->name = XSTR (desc, 0); pred->exp = XEXP (desc, 1); pred->c_block = XSTR (desc, 2); if (GET_CODE (desc) == DEFINE_SPECIAL_PREDICATE) pred->special = true; compute_test_codes (XEXP (desc, 1), loc, codes); for (i = 0; i < NUM_RTX_CODE; i++) if (codes[i] != N) add_predicate_code (pred, (enum rtx_code) i); add_predicate (pred); } #undef I #undef N #undef Y /* Maps register filter conditions to the associated filter identifier. */ static hash_map<nofree_string_hash, unsigned int> register_filter_map; /* All register filter conditions, indexed by identifier. */ vec<const char *> register_filters; /* Return the unique identifier for filter condition FILTER. Identifiers are assigned automatically when the define_register_constraint is parsed. */ unsigned int get_register_filter_id (const char *filter) { unsigned int *slot = register_filter_map.get (filter); gcc_assert (slot); return *slot; } /* Process define_register_constraint directive DESC, at location LOC. */ static void process_define_register_constraint (rtx desc, file_location loc) { /* Assign identifiers to each unique register filter condition. */ if (const char *filter = XSTR (desc, 3)) { bool existed = false; unsigned int &id = register_filter_map.get_or_insert (filter, &existed); if (!existed) { id = register_filters.length (); if (id == 32) fatal_at (loc, "too many distinct register filters, maximum" " is 32"); register_filters.safe_push (filter); } } } /* Queue PATTERN on LIST_TAIL. Return the address of the new queue element. */ static class queue_elem * queue_pattern (rtx pattern, class queue_elem ***list_tail, file_location loc) { class queue_elem *e = XNEW (class queue_elem); e->data = pattern; e->loc = loc; e->next = NULL; e->split = NULL; **list_tail = e; *list_tail = &e->next; return e; } /* Remove element ELEM from QUEUE. */ static void remove_from_queue (class queue_elem *elem, class queue_elem **queue) { class queue_elem *prev, *e; prev = NULL; for (e = *queue; e ; e = e->next) { if (e == elem) break; prev = e; } if (e == NULL) return; if (prev) prev->next = elem->next; else *queue = elem->next; } /* Build a define_attr for an binary attribute with name NAME and possible values "yes" and "no", and queue it. */ static void add_define_attr (const char *name) { class queue_elem *e = XNEW (class queue_elem); rtx t1 = rtx_alloc (DEFINE_ATTR); XSTR (t1, 0) = name; XSTR (t1, 1) = "no,yes"; XEXP (t1, 2) = rtx_alloc (CONST_STRING); XSTR (XEXP (t1, 2), 0) = "yes"; e->data = t1; e->loc = file_location ("built-in", -1, -1); e->next = define_attr_queue; define_attr_queue = e; } /* Recursively remove constraints from an rtx. */ static void remove_constraints (rtx part) { int i, j; const char *format_ptr; if (part == 0) return; if (GET_CODE (part) == MATCH_OPERAND) XSTR (part, 2) = ""; else if (GET_CODE (part) == MATCH_SCRATCH) XSTR (part, 1) = ""; format_ptr = GET_RTX_FORMAT (GET_CODE (part)); for (i = 0; i < GET_RTX_LENGTH (GET_CODE (part)); i++) switch (*format_ptr++) { case 'e': case 'u': remove_constraints (XEXP (part, i)); break; case 'E': if (XVEC (part, i) != NULL) for (j = 0; j < XVECLEN (part, i); j++) remove_constraints (XVECEXP (part, i, j)); break; } } /* Recursively replace MATCH_OPERANDs with MATCH_DUPs and MATCH_OPERATORs with MATCH_OP_DUPs in X. */ static rtx replace_operands_with_dups (rtx x) { if (x == 0) return x; rtx newx; if (GET_CODE (x) == MATCH_OPERAND) { newx = rtx_alloc (MATCH_DUP); XINT (newx, 0) = XINT (x, 0); x = newx; } else if (GET_CODE (x) == MATCH_OPERATOR) { newx = rtx_alloc (MATCH_OP_DUP); XINT (newx, 0) = XINT (x, 0); XVEC (newx, 1) = XVEC (x, 2); x = newx; } else newx = shallow_copy_rtx (x); const char *format_ptr = GET_RTX_FORMAT (GET_CODE (x)); for (int i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++) switch (*format_ptr++) { case 'e': case 'u': XEXP (newx, i) = replace_operands_with_dups (XEXP (x, i)); break; case 'E': if (XVEC (x, i) != NULL) { XVEC (newx, i) = rtvec_alloc (XVECLEN (x, i)); for (int j = 0; j < XVECLEN (x, i); j++) XVECEXP (newx, i, j) = replace_operands_with_dups (XVECEXP (x, i, j)); } break; } return newx; } /* Convert matching pattern VEC from a DEFINE_INSN_AND_REWRITE into a sequence that should be generated by the splitter. */ static rtvec gen_rewrite_sequence (rtvec vec) { rtvec new_vec = rtvec_alloc (1); rtx x = add_implicit_parallel (vec); RTVEC_ELT (new_vec, 0) = replace_operands_with_dups (x); return new_vec; } /* The following is for handling the compact syntax for constraints and attributes. The normal syntax looks like this: ... (match_operand: 0 "s_register_operand" "r,I,k") (match_operand: 2 "s_register_operand" "r,k,I") ... "@ <asm> <asm> <asm>" ... (set_attr "length" "4,8,8") The compact syntax looks like this: ... (match_operand: 0 "s_register_operand") (match_operand: 2 "s_register_operand") ... {@ [cons: 0, 2; attrs: length] [r,r; 4] <asm> [I,k; 8] <asm> [k,I; 8] <asm> } ... [<other attributes>] This is the only place where this syntax needs to be handled. Relevant patterns are transformed from compact to the normal syntax before they are queued, so none of the gen* programs need to know about this syntax at all. Conversion process (convert_syntax): 0) Check that pattern actually uses new syntax (check for {@ ... }). 1) Get the "layout", i.e. the "[cons: 0 2; attrs: length]" from the above example. cons must come first; both are optional. Set up two vecs, convec and attrvec, for holding the results of the transformation. 2) For each alternative: parse the list of constraints and/or attributes, and enqueue them in the relevant lists in convec and attrvec. By the end of this process, convec[N].con and attrvec[N].con should contain regular syntax constraint/attribute lists like "r,I,k". Copy the asm to a string as we go. 3) Search the rtx and write the constraint and attribute lists into the correct places. Write the asm back into the template. */ /* Helper class for shuffling constraints/attributes in convert_syntax and add_constraints/add_attributes. This includes commas but not whitespace. */ class conlist { private: std::string con; public: std::string name; int idx = -1; conlist () = default; /* [ns..ns + len) should be a string with the id of the rtx to match i.e. if rtx is the relevant match_operand or match_scratch then [ns..ns + len) should equal itoa (XINT (rtx, 0)), and if set_attr then [ns..ns + len) should equal XSTR (rtx, 0). */ conlist (const char *ns, unsigned int len, bool numeric) { /* Trim leading whitespaces. */ while (len > 0 && ISBLANK (*ns)) { ns++; len--; } /* Trim trailing whitespace. */ for (int i = len - 1; i >= 0; i--, len--) if (!ISBLANK (ns[i])) break; /* Parse off any modifiers. */ while (len > 0 && !ISALNUM (*ns)) { con += *(ns++); len--; } name.assign (ns, len); if (numeric) idx = strtol (name.c_str (), (char **)NULL, 10); } /* Adds a character to the end of the string. */ void add (char c) { con += c; } /* Output the string in the form of a brand-new char *, then effectively clear the internal string by resetting len to 0. */ char *out () { /* Final character is always a trailing comma, so strip it out. */ char *q = xstrndup (con.c_str (), con.size () - 1); con.clear (); return q; } }; typedef std::vector<conlist> vec_conlist; /* Add constraints to an rtx. This function is similar to remove_constraints. Errors if adding the constraints would overwrite existing constraints. */ static void add_constraints (rtx part, file_location loc, vec_conlist &cons) { const char *format_ptr; if (part == NULL_RTX) return; /* If match_op or match_scr, check if we have the right one, and if so, copy over the constraint list. */ if (GET_CODE (part) == MATCH_OPERAND || GET_CODE (part) == MATCH_SCRATCH) { int field = GET_CODE (part) == MATCH_OPERAND ? 2 : 1; unsigned id = XINT (part, 0); if (id >= cons.size () || cons[id].idx == -1) return; if (XSTR (part, field)[0] != '\0') { error_at (loc, "can't mix normal and compact constraint syntax"); return; } XSTR (part, field) = cons[id].out (); cons[id].idx = -1; } format_ptr = GET_RTX_FORMAT (GET_CODE (part)); /* Recursively search the rtx. */ for (int i = 0; i < GET_RTX_LENGTH (GET_CODE (part)); i++) switch (*format_ptr++) { case 'e': case 'u': add_constraints (XEXP (part, i), loc, cons); break; case 'E': if (XVEC (part, i) != NULL) for (int j = 0; j < XVECLEN (part, i); j++) add_constraints (XVECEXP (part, i, j), loc, cons); break; default: continue; } } /* Add ATTRS to definition X's attribute list. */ static void add_attributes (rtx x, vec_conlist &attrs) { unsigned int attr_index = GET_CODE (x) == DEFINE_INSN ? 4 : 3; rtvec orig = XVEC (x, attr_index); if (orig) { size_t n_curr = XVECLEN (x, attr_index); rtvec copy = rtvec_alloc (n_curr + attrs.size ()); /* Create a shallow copy of existing entries. */ memcpy (©->elem[attrs.size ()], &orig->elem[0], sizeof (rtx) * n_curr); XVEC (x, attr_index) = copy; } else XVEC (x, attr_index) = rtvec_alloc (attrs.size ()); /* Create the new elements. */ for (unsigned i = 0; i < attrs.size (); i++) { rtx attr = rtx_alloc (SET_ATTR); XSTR (attr, 0) = xstrdup (attrs[i].name.c_str ()); XSTR (attr, 1) = attrs[i].out (); XVECEXP (x, attr_index, i) = attr; } } /* Consumes spaces and tabs. */ static inline void skip_spaces (const char **str) { while (ISBLANK (**str)) (*str)++; } /* Consumes the given character, if it's there. */ static inline bool expect_char (const char **str, char c) { if (**str != c) return false; (*str)++; return true; } /* Parses the section layout that follows a "{@" if using new syntax. Builds a vector for a single section. E.g. if we have "attrs: length, arch]..." then list will have two elements, the first for "length" and the second for "arch". */ static void parse_section_layout (file_location loc, const char **templ, const char *label, vec_conlist &list, bool numeric) { const char *name_start; size_t label_len = strlen (label); if (strncmp (label, *templ, label_len) == 0) { *templ += label_len; /* Gather the names. */ while (**templ != ';' && **templ != ']') { skip_spaces (templ); name_start = *templ; int len = 0; char val = (*templ)[len]; while (val != ',' && val != ';' && val != ']') { if (val == 0 || val == '\n') fatal_at (loc, "missing ']'"); val = (*templ)[++len]; } *templ += len; if (val == ',') (*templ)++; list.push_back (conlist (name_start, len, numeric)); } } } /* Parse a section, a section is defined as a named space separated list, e.g. foo: a, b, c is a section named "foo" with entries a, b and c. */ static void parse_section (const char **templ, unsigned int n_elems, unsigned int alt_no, vec_conlist &list, file_location loc, const char *name) { unsigned int i; /* Go through the list, one character at a time, adding said character to the correct string. */ for (i = 0; **templ != ']' && **templ != ';'; (*templ)++) if (!ISBLANK (**templ)) { if (**templ == 0 || **templ == '\n') fatal_at (loc, "missing ']'"); list[i].add (**templ); if (**templ == ',') { ++i; if (i == n_elems) fatal_at (loc, "too many %ss in alternative %d: expected %d", name, alt_no, n_elems); } } if (i + 1 < n_elems) fatal_at (loc, "too few %ss in alternative %d: expected %d, got %d", name, alt_no, n_elems, i); list[i].add (','); } /* The compact syntax has more convience syntaxes. As such we post process the lines to get them back to something the normal syntax understands. */ static void preprocess_compact_syntax (file_location loc, int alt_no, std::string &line, std::string &last_line) { /* Check if we're copying the last statement. */ if (line.find ("^") == 0 && line.size () == 1) { if (last_line.empty ()) fatal_at (loc, "found instruction to copy previous line (^) in" "alternative %d but no previous line to copy", alt_no); line = last_line; return; } std::string result; std::string buffer; /* Check if we have << which means return c statement. */ if (line.find ("<<") == 0) { result.append ("* return "); const char *chunk = line.c_str () + 2; skip_spaces (&chunk); result.append (chunk); } else result.append (line); line = result; return; } /* Converts an rtx from compact syntax to normal syntax if possible. */ static void convert_syntax (rtx x, file_location loc) { int alt_no; unsigned int templ_index; const char *templ; vec_conlist tconvec, convec, attrvec; templ_index = 3; gcc_assert (GET_CODE (x) == DEFINE_INSN); templ = XTMPL (x, templ_index); /* Templates with constraints start with "{@". */ if (strncmp ("*{@", templ, 3)) return; /* Get the layout for the template. */ templ += 3; skip_spaces (&templ); if (!expect_char (&templ, '[')) fatal_at (loc, "expecing `[' to begin section list"); skip_spaces (&templ); parse_section_layout (loc, &templ, "cons:", tconvec, true); if (*templ != ']') { if (*templ == ';') skip_spaces (&(++templ)); parse_section_layout (loc, &templ, "attrs:", attrvec, false); } if (!expect_char (&templ, ']')) fatal_at (loc, "expecting `]` to end section list - section list must have " "cons first, attrs second"); /* We will write the un-constrainified template into new_templ. */ std::string new_templ; new_templ.append ("@"); /* Skip to the first proper line. */ skip_spaces (&templ); if (*templ == 0) fatal_at (loc, "'{@...}' blocks must have at least one alternative"); if (*templ != '\n') fatal_at (loc, "unexpected character '%c' after ']'", *templ); templ++; alt_no = 0; std::string last_line; /* Process the alternatives. */ while (*(templ - 1) != '\0') { /* Skip leading whitespace. */ std::string buffer; skip_spaces (&templ); /* Check if we're at the end. */ if (templ[0] == '}' && templ[1] == '\0') break; if (expect_char (&templ, '[')) { new_templ += '\n'; new_templ.append (buffer); /* Parse the constraint list, then the attribute list. */ if (tconvec.size () > 0) parse_section (&templ, tconvec.size (), alt_no, tconvec, loc, "constraint"); if (attrvec.size () > 0) { if (tconvec.size () > 0 && !expect_char (&templ, ';')) fatal_at (loc, "expected `;' to separate constraints " "and attributes in alternative %d", alt_no); parse_section (&templ, attrvec.size (), alt_no, attrvec, loc, "attribute"); } if (!expect_char (&templ, ']')) fatal_at (loc, "expected end of constraint/attribute list but " "missing an ending `]' in alternative %d", alt_no); } else if (templ[0] == '/' && templ[1] == '/') { templ += 2; /* Glob till newline or end of string. */ while (*templ != '\n' || *templ != '\0') templ++; /* Skip any newlines or whitespaces needed. */ while (ISSPACE(*templ)) templ++; continue; } else if (templ[0] == '/' && templ[1] == '*') { templ += 2; /* Glob till newline or end of multiline comment. */ while (templ[0] != 0 && templ[0] != '*' && templ[1] != '/') templ++; while (templ[0] != '*' || templ[1] != '/') { if (templ[0] == 0) fatal_at (loc, "unterminated '/*'"); templ++; } templ += 2; /* Skip any newlines or whitespaces needed. */ while (ISSPACE(*templ)) templ++; continue; } else fatal_at (loc, "expected constraint/attribute list at beginning of " "alternative %d but missing a starting `['", alt_no); /* Skip whitespace between list and asm. */ skip_spaces (&templ); /* Copy asm to new template. */ std::string line; while (*templ != '\n' && *templ != '\0') line += *templ++; /* Apply any pre-processing needed to the line. */ preprocess_compact_syntax (loc, alt_no, line, last_line); new_templ.append (line); last_line = line; /* Normal "*..." syntax expects the closing quote to be on the final line of asm, whereas we allow the closing "}" to be on its own line. Postpone copying the '\n' until we know that there is another alternative in the list. */ while (ISSPACE (*templ)) templ++; ++alt_no; } /* Check for any duplicate cons entries and sort based on i. */ for (auto e : tconvec) { unsigned idx = e.idx; if (idx >= convec.size ()) convec.resize (idx + 1); if (convec[idx].idx >= 0) fatal_at (loc, "duplicate cons number found: %d", idx); convec[idx] = e; } tconvec.clear (); /* Write the constraints and attributes into their proper places. */ if (convec.size () > 0) add_constraints (x, loc, convec); if (attrvec.size () > 0) add_attributes (x, attrvec); /* Copy over the new un-constrainified template. */ XTMPL (x, templ_index) = xstrdup (new_templ.c_str ()); /* Register for later checks during iterator expansions. */ compact_syntax.add (x); } /* Process a top level rtx in some way, queuing as appropriate. */ static void process_rtx (rtx desc, file_location loc) { switch (GET_CODE (desc)) { case DEFINE_INSN: convert_syntax (desc, loc); queue_pattern (desc, &define_insn_tail, loc); break; case DEFINE_COND_EXEC: queue_pattern (desc, &define_cond_exec_tail, loc); break; case DEFINE_SUBST: queue_pattern (desc, &define_subst_tail, loc); break; case DEFINE_SUBST_ATTR: queue_pattern (desc, &define_subst_attr_tail, loc); break; case DEFINE_ATTR: case DEFINE_ENUM_ATTR: queue_pattern (desc, &define_attr_tail, loc); break; case DEFINE_PREDICATE: case DEFINE_SPECIAL_PREDICATE: process_define_predicate (desc, loc); queue_pattern (desc, &define_pred_tail, loc); break; case DEFINE_REGISTER_CONSTRAINT: process_define_register_constraint (desc, loc); queue_pattern (desc, &define_pred_tail, loc); break; case DEFINE_CONSTRAINT: case DEFINE_MEMORY_CONSTRAINT: case DEFINE_SPECIAL_MEMORY_CONSTRAINT: case DEFINE_RELAXED_MEMORY_CONSTRAINT: case DEFINE_ADDRESS_CONSTRAINT: queue_pattern (desc, &define_pred_tail, loc); break; case DEFINE_INSN_AND_SPLIT: case DEFINE_INSN_AND_REWRITE: { const char *split_cond; rtx split; rtvec attr; int i; class queue_elem *insn_elem; class queue_elem *split_elem; int split_code = (GET_CODE (desc) == DEFINE_INSN_AND_REWRITE ? 5 : 6); /* Create a split with values from the insn_and_split. */ split = rtx_alloc (DEFINE_SPLIT); i = XVECLEN (desc, 1); XVEC (split, 0) = rtvec_alloc (i); while (--i >= 0) { XVECEXP (split, 0, i) = copy_rtx (XVECEXP (desc, 1, i)); remove_constraints (XVECEXP (split, 0, i)); } /* If the split condition starts with "&&", append it to the insn condition to create the new split condition. */ split_cond = XSTR (desc, 4); if (split_cond[0] == '&' && split_cond[1] == '&') { rtx_reader_ptr->copy_md_ptr_loc (split_cond + 2, split_cond); split_cond = rtx_reader_ptr->join_c_conditions (XSTR (desc, 2), split_cond + 2); } else if (GET_CODE (desc) == DEFINE_INSN_AND_REWRITE) error_at (loc, "the rewrite condition must start with `&&'"); XSTR (split, 1) = split_cond; if (GET_CODE (desc) == DEFINE_INSN_AND_REWRITE) XVEC (split, 2) = gen_rewrite_sequence (XVEC (desc, 1)); else XVEC (split, 2) = XVEC (desc, 5); XSTR (split, 3) = XSTR (desc, split_code); /* Fix up the DEFINE_INSN. */ attr = XVEC (desc, split_code + 1); PUT_CODE (desc, DEFINE_INSN); XVEC (desc, 4) = attr; convert_syntax (desc, loc); /* Queue them. */ insn_elem = queue_pattern (desc, &define_insn_tail, loc); split_elem = queue_pattern (split, &other_tail, loc); insn_elem->split = split_elem; break; } default: queue_pattern (desc, &other_tail, loc); break; } } /* Return true if attribute PREDICABLE is true for ELEM, which holds a DEFINE_INSN. */ static int is_predicable (class queue_elem *elem) { rtvec vec = XVEC (elem->data, 4); const char *value; int i; if (! vec) return predicable_default; for (i = GET_NUM_ELEM (vec) - 1; i >= 0; --i) { rtx sub = RTVEC_ELT (vec, i); switch (GET_CODE (sub)) { case SET_ATTR: if (strcmp (XSTR (sub, 0), "predicable") == 0) { value = XSTR (sub, 1); goto found; } break; case SET_ATTR_ALTERNATIVE: if (strcmp (XSTR (sub, 0), "predicable") == 0) { error_at (elem->loc, "multiple alternatives for `predicable'"); return 0; } break; case SET: if (GET_CODE (SET_DEST (sub)) != ATTR || strcmp (XSTR (SET_DEST (sub), 0), "predicable") != 0) break; sub = SET_SRC (sub); if (GET_CODE (sub) == CONST_STRING) { value = XSTR (sub, 0); goto found; } /* ??? It would be possible to handle this if we really tried. It's not easy though, and I'm not going to bother until it really proves necessary. */ error_at (elem->loc, "non-constant value for `predicable'"); return 0; default: gcc_unreachable (); } } return predicable_default; found: /* Find out which value we're looking at. Multiple alternatives means at least one is predicable. */ if (strchr (value, ',') != NULL) return 1; if (strcmp (value, predicable_true) == 0) return 1; if (strcmp (value, predicable_false) == 0) return 0; error_at (elem->loc, "unknown value `%s' for `predicable' attribute", value); return 0; } /* Find attribute SUBST in ELEM and assign NEW_VALUE to it. */ static void change_subst_attribute (class queue_elem *elem, class queue_elem *subst_elem, const char *new_value) { rtvec attrs_vec = XVEC (elem->data, 4); const char *subst_name = XSTR (subst_elem->data, 0); int i; if (! attrs_vec) return; for (i = GET_NUM_ELEM (attrs_vec) - 1; i >= 0; --i) { rtx cur_attr = RTVEC_ELT (attrs_vec, i); if (GET_CODE (cur_attr) != SET_ATTR) continue; if (strcmp (XSTR (cur_attr, 0), subst_name) == 0) { XSTR (cur_attr, 1) = new_value; return; } } } /* Return true if ELEM has the attribute with the name of DEFINE_SUBST represented by SUBST_ELEM and this attribute has value SUBST_TRUE. DEFINE_SUBST isn't applied to patterns without such attribute. In other words, we suppose the default value of the attribute to be 'no' since it is always generated automatically in read-rtl.cc. */ static bool has_subst_attribute (class queue_elem *elem, class queue_elem *subst_elem) { rtvec attrs_vec = XVEC (elem->data, 4); const char *value, *subst_name = XSTR (subst_elem->data, 0); int i; if (! attrs_vec) return false; for (i = GET_NUM_ELEM (attrs_vec) - 1; i >= 0; --i) { rtx cur_attr = RTVEC_ELT (attrs_vec, i); switch (GET_CODE (cur_attr)) { case SET_ATTR: if (strcmp (XSTR (cur_attr, 0), subst_name) == 0) { value = XSTR (cur_attr, 1); goto found; } break; case SET: if (GET_CODE (SET_DEST (cur_attr)) != ATTR || strcmp (XSTR (SET_DEST (cur_attr), 0), subst_name) != 0) break; cur_attr = SET_SRC (cur_attr); if (GET_CODE (cur_attr) == CONST_STRING) { value = XSTR (cur_attr, 0); goto found; } /* Only (set_attr "subst" "yes/no") and (set (attr "subst" (const_string "yes/no"))) are currently allowed. */ error_at (elem->loc, "unsupported value for `%s'", subst_name); return false; case SET_ATTR_ALTERNATIVE: if (strcmp (XSTR (cur_attr, 0), subst_name) == 0) error_at (elem->loc, "%s: `set_attr_alternative' is unsupported by " "`define_subst'", XSTR (elem->data, 0)); return false; default: gcc_unreachable (); } } return false; found: if (strcmp (value, subst_true) == 0) return true; if (strcmp (value, subst_false) == 0) return false; error_at (elem->loc, "unknown value `%s' for `%s' attribute", value, subst_name); return false; } /* Compare RTL-template of original define_insn X to input RTL-template of define_subst PT. Return 1 if the templates match, 0 otherwise. During the comparison, the routine also fills global_array OPERAND_DATA. */ static bool subst_pattern_match (rtx x, rtx pt, file_location loc) { RTX_CODE code, code_pt; int i, j, len; const char *fmt, *pred_name; code = GET_CODE (x); code_pt = GET_CODE (pt); if (code_pt == MATCH_OPERAND) { /* MATCH_DUP, and MATCH_OP_DUP don't have a specified mode, so we always accept them. */ if (GET_MODE (pt) != VOIDmode && GET_MODE (x) != GET_MODE (pt) && (code != MATCH_DUP && code != MATCH_OP_DUP)) return false; /* Modes don't match. */ if (code == MATCH_OPERAND) { pred_name = XSTR (pt, 1); if (pred_name[0] != 0) { const struct pred_data *pred_pt = lookup_predicate (pred_name); if (!pred_pt || pred_pt != lookup_predicate (XSTR (x, 1))) return false; /* Predicates don't match. */ } } gcc_assert (XINT (pt, 0) >= 0 && XINT (pt, 0) < MAX_OPERANDS); operand_data[XINT (pt, 0)] = x; return true; } if (code_pt == MATCH_OPERATOR) { int x_vecexp_pos = -1; /* Compare modes. */ if (GET_MODE (pt) != VOIDmode && GET_MODE (x) != GET_MODE (pt)) return false; /* In case X is also match_operator, compare predicates. */ if (code == MATCH_OPERATOR) { pred_name = XSTR (pt, 1); if (pred_name[0] != 0) { const struct pred_data *pred_pt = lookup_predicate (pred_name); if (!pred_pt || pred_pt != lookup_predicate (XSTR (x, 1))) return false; } } /* Compare operands. MATCH_OPERATOR in input template could match in original template either 1) MATCH_OPERAND, 2) UNSPEC, 3) ordinary operation (like PLUS). In the first case operands are at (XVECEXP (x, 2, j)), in the second - at (XVECEXP (x, 0, j)), in the last one - (XEXP (x, j)). X_VECEXP_POS variable shows, where to look for these operands. */ if (code == UNSPEC || code == UNSPEC_VOLATILE) x_vecexp_pos = 0; else if (code == MATCH_OPERATOR) x_vecexp_pos = 2; else x_vecexp_pos = -1; /* MATCH_OPERATOR or UNSPEC case. */ if (x_vecexp_pos >= 0) { /* Compare operands number in X and PT. */ if (XVECLEN (x, x_vecexp_pos) != XVECLEN (pt, 2)) return false; for (j = 0; j < XVECLEN (pt, 2); j++) if (!subst_pattern_match (XVECEXP (x, x_vecexp_pos, j), XVECEXP (pt, 2, j), loc)) return false; } /* Ordinary operator. */ else { /* Compare operands number in X and PT. We count operands differently for X and PT since we compare an operator (with operands directly in RTX) and MATCH_OPERATOR (that has a vector with operands). */ if (GET_RTX_LENGTH (code) != XVECLEN (pt, 2)) return false; for (j = 0; j < XVECLEN (pt, 2); j++) if (!subst_pattern_match (XEXP (x, j), XVECEXP (pt, 2, j), loc)) return false; } /* Store the operand to OPERAND_DATA array. */ gcc_assert (XINT (pt, 0) >= 0 && XINT (pt, 0) < MAX_OPERANDS); operand_data[XINT (pt, 0)] = x; return true; } if (code_pt == MATCH_PAR_DUP || code_pt == MATCH_DUP || code_pt == MATCH_OP_DUP || code_pt == MATCH_SCRATCH || code_pt == MATCH_PARALLEL) { /* Currently interface for these constructions isn't defined - probably they aren't needed in input template of define_subst at all. So, for now their usage in define_subst is forbidden. */ error_at (loc, "%s cannot be used in define_subst", GET_RTX_NAME (code_pt)); } gcc_assert (code != MATCH_PAR_DUP && code_pt != MATCH_DUP && code_pt != MATCH_OP_DUP && code_pt != MATCH_SCRATCH && code_pt != MATCH_PARALLEL && code_pt != MATCH_OPERAND && code_pt != MATCH_OPERATOR); /* If PT is none of the handled above, then we match only expressions with the same code in X. */ if (code != code_pt) return false; fmt = GET_RTX_FORMAT (code_pt); len = GET_RTX_LENGTH (code_pt); for (i = 0; i < len; i++) { if (fmt[i] == '0') break; switch (fmt[i]) { case 'r': case 'p': case 'i': case 'w': case 's': continue; case 'e': case 'u': if (!subst_pattern_match (XEXP (x, i), XEXP (pt, i), loc)) return false; break; case 'E': { if (XVECLEN (x, i) != XVECLEN (pt, i)) return false; for (j = 0; j < XVECLEN (pt, i); j++) if (!subst_pattern_match (XVECEXP (x, i, j), XVECEXP (pt, i, j), loc)) return false; break; } default: gcc_unreachable (); } } return true; } /* Examine the attribute "predicable"; discover its boolean values and its default. */ static void identify_predicable_attribute (void) { class queue_elem *elem; char *p_true, *p_false; const char *value; /* Look for the DEFINE_ATTR for `predicable', which must exist. */ for (elem = define_attr_queue; elem ; elem = elem->next) if (strcmp (XSTR (elem->data, 0), "predicable") == 0) goto found; error_at (define_cond_exec_queue->loc, "attribute `predicable' not defined"); return; found: value = XSTR (elem->data, 1); p_false = xstrdup (value); p_true = strchr (p_false, ','); if (p_true == NULL || strchr (++p_true, ',') != NULL) { error_at (elem->loc, "attribute `predicable' is not a boolean"); free (p_false); return; } p_true[-1] = '\0'; predicable_true = p_true; predicable_false = p_false; switch (GET_CODE (XEXP (elem->data, 2))) { case CONST_STRING: value = XSTR (XEXP (elem->data, 2), 0); break; case CONST: error_at (elem->loc, "attribute `predicable' cannot be const"); free (p_false); return; default: error_at (elem->loc, "attribute `predicable' must have a constant default"); free (p_false); return; } if (strcmp (value, p_true) == 0) predicable_default = 1; else if (strcmp (value, p_false) == 0) predicable_default = 0; else { error_at (elem->loc, "unknown value `%s' for `predicable' attribute", value); free (p_false); } } /* Return the number of alternatives in constraint S. */ static int n_alternatives (const char *s) { int n = 1; if (s) while (*s) n += (*s++ == ','); return n; } /* The routine scans rtl PATTERN, find match_operand in it and counts number of alternatives. If PATTERN contains several match_operands with different number of alternatives, error is emitted, and the routine returns 0. If all match_operands in PATTERN have the same number of alternatives, it's stored in N_ALT, and the routine returns 1. LOC is the location of PATTERN, for error reporting. */ static int get_alternatives_number (rtx pattern, int *n_alt, file_location loc) { const char *fmt; enum rtx_code code; int i, j, len; if (!n_alt) return 0; code = GET_CODE (pattern); switch (code) { case MATCH_OPERAND: i = n_alternatives (XSTR (pattern, 2)); /* n_alternatives returns 1 if constraint string is empty - here we fix it up. */ if (!*(XSTR (pattern, 2))) i = 0; if (*n_alt <= 0) *n_alt = i; else if (i && i != *n_alt) { error_at (loc, "wrong number of alternatives in operand %d", XINT (pattern, 0)); return 0; } default: break; } fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { switch (fmt[i]) { case 'e': case 'u': if (!get_alternatives_number (XEXP (pattern, i), n_alt, loc)) return 0; break; case 'V': if (XVEC (pattern, i) == NULL) break; /* FALLTHRU */ case 'E': for (j = XVECLEN (pattern, i) - 1; j >= 0; --j) if (!get_alternatives_number (XVECEXP (pattern, i, j), n_alt, loc)) return 0; break; case 'r': case 'p': case 'i': case 'w': case '0': case 's': case 'S': case 'T': break; default: gcc_unreachable (); } } return 1; } /* Determine how many alternatives there are in INSN, and how many operands. */ static void collect_insn_data (rtx pattern, int *palt, int *pmax) { const char *fmt; enum rtx_code code; int i, j, len; code = GET_CODE (pattern); switch (code) { case MATCH_OPERAND: case MATCH_SCRATCH: i = n_alternatives (XSTR (pattern, code == MATCH_SCRATCH ? 1 : 2)); *palt = (i > *palt ? i : *palt); /* Fall through. */ case MATCH_OPERATOR: case MATCH_PARALLEL: i = XINT (pattern, 0); if (i > *pmax) *pmax = i; break; default: break; } fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { switch (fmt[i]) { case 'e': case 'u': collect_insn_data (XEXP (pattern, i), palt, pmax); break; case 'V': if (XVEC (pattern, i) == NULL) break; /* Fall through. */ case 'E': for (j = XVECLEN (pattern, i) - 1; j >= 0; --j) collect_insn_data (XVECEXP (pattern, i, j), palt, pmax); break; case 'r': case 'p': case 'i': case 'w': case '0': case 's': case 'S': case 'T': break; default: gcc_unreachable (); } } } static rtx alter_predicate_for_insn (rtx pattern, int alt, int max_op, file_location loc) { const char *fmt; enum rtx_code code; int i, j, len; code = GET_CODE (pattern); switch (code) { case MATCH_OPERAND: { const char *c = XSTR (pattern, 2); if (n_alternatives (c) != 1) { error_at (loc, "too many alternatives for operand %d", XINT (pattern, 0)); return NULL; } /* Replicate C as needed to fill out ALT alternatives. */ if (c && *c && alt > 1) { size_t c_len = strlen (c); size_t len = alt * (c_len + 1); char *new_c = XNEWVEC (char, len); memcpy (new_c, c, c_len); for (i = 1; i < alt; ++i) { new_c[i * (c_len + 1) - 1] = ','; memcpy (&new_c[i * (c_len + 1)], c, c_len); } new_c[len - 1] = '\0'; XSTR (pattern, 2) = new_c; } } /* Fall through. */ case MATCH_OPERATOR: case MATCH_SCRATCH: case MATCH_PARALLEL: case MATCH_DUP: XINT (pattern, 0) += max_op; break; default: break; } fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { rtx r; switch (fmt[i]) { case 'e': case 'u': r = alter_predicate_for_insn (XEXP (pattern, i), alt, max_op, loc); if (r == NULL) return r; break; case 'E': for (j = XVECLEN (pattern, i) - 1; j >= 0; --j) { r = alter_predicate_for_insn (XVECEXP (pattern, i, j), alt, max_op, loc); if (r == NULL) return r; } break; case 'r': case 'p': case 'i': case 'w': case '0': case 's': break; default: gcc_unreachable (); } } return pattern; } /* Duplicate constraints in PATTERN. If pattern is from original rtl-template, we need to duplicate each alternative - for that we need to use duplicate_each_alternative () as a functor ALTER. If pattern is from output-pattern of define_subst, we need to duplicate constraints in another way - with duplicate_alternatives (). N_DUP is multiplication factor. */ static rtx alter_constraints (rtx pattern, int n_dup, constraints_handler_t alter) { const char *fmt; enum rtx_code code; int i, j, len; code = GET_CODE (pattern); switch (code) { case MATCH_OPERAND: XSTR (pattern, 2) = alter (XSTR (pattern, 2), n_dup); break; case MATCH_SCRATCH: XSTR (pattern, 1) = alter (XSTR (pattern, 1), n_dup); break; default: break; } fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { rtx r; switch (fmt[i]) { case 'e': case 'u': r = alter_constraints (XEXP (pattern, i), n_dup, alter); if (r == NULL) return r; break; case 'E': for (j = XVECLEN (pattern, i) - 1; j >= 0; --j) { r = alter_constraints (XVECEXP (pattern, i, j), n_dup, alter); if (r == NULL) return r; } break; case 'r': case 'p': case 'i': case 'w': case '0': case 's': break; default: break; } } return pattern; } static const char * alter_test_for_insn (class queue_elem *ce_elem, class queue_elem *insn_elem) { return rtx_reader_ptr->join_c_conditions (XSTR (ce_elem->data, 1), XSTR (insn_elem->data, 2)); } /* Modify VAL, which is an attribute expression for the "enabled" attribute, to take "ce_enabled" into account. Return the new expression. */ static rtx modify_attr_enabled_ce (rtx val) { rtx eq_attr, str; rtx ite; eq_attr = rtx_alloc (EQ_ATTR); ite = rtx_alloc (IF_THEN_ELSE); str = rtx_alloc (CONST_STRING); XSTR (eq_attr, 0) = "ce_enabled"; XSTR (eq_attr, 1) = "yes"; XSTR (str, 0) = "no"; XEXP (ite, 0) = eq_attr; XEXP (ite, 1) = val; XEXP (ite, 2) = str; return ite; } /* Alter the attribute vector of INSN, which is a COND_EXEC variant created from a define_insn pattern. We must modify the "predicable" attribute to be named "ce_enabled", and also change any "enabled" attribute that's present so that it takes ce_enabled into account. We rely on the fact that INSN was created with copy_rtx, and modify data in-place. */ static void alter_attrs_for_insn (rtx insn) { static bool global_changes_made = false; rtvec vec = XVEC (insn, 4); rtvec new_vec; rtx val, set; int num_elem; int predicable_idx = -1; int enabled_idx = -1; int i; if (! vec) return; num_elem = GET_NUM_ELEM (vec); for (i = num_elem - 1; i >= 0; --i) { rtx sub = RTVEC_ELT (vec, i); switch (GET_CODE (sub)) { case SET_ATTR: if (strcmp (XSTR (sub, 0), "predicable") == 0) { predicable_idx = i; XSTR (sub, 0) = "ce_enabled"; } else if (strcmp (XSTR (sub, 0), "enabled") == 0) { enabled_idx = i; XSTR (sub, 0) = "nonce_enabled"; } break; case SET_ATTR_ALTERNATIVE: if (strcmp (XSTR (sub, 0), "predicable") == 0) /* We already give an error elsewhere. */ return; else if (strcmp (XSTR (sub, 0), "enabled") == 0) { enabled_idx = i; XSTR (sub, 0) = "nonce_enabled"; } break; case SET: if (GET_CODE (SET_DEST (sub)) != ATTR) break; if (strcmp (XSTR (SET_DEST (sub), 0), "predicable") == 0) { sub = SET_SRC (sub); if (GET_CODE (sub) == CONST_STRING) { predicable_idx = i; XSTR (sub, 0) = "ce_enabled"; } else /* We already give an error elsewhere. */ return; break; } if (strcmp (XSTR (SET_DEST (sub), 0), "enabled") == 0) { enabled_idx = i; XSTR (SET_DEST (sub), 0) = "nonce_enabled"; } break; default: gcc_unreachable (); } } if (predicable_idx == -1) return; if (!global_changes_made) { class queue_elem *elem; global_changes_made = true; add_define_attr ("ce_enabled"); add_define_attr ("nonce_enabled"); for (elem = define_attr_queue; elem ; elem = elem->next) if (strcmp (XSTR (elem->data, 0), "enabled") == 0) { XEXP (elem->data, 2) = modify_attr_enabled_ce (XEXP (elem->data, 2)); } } if (enabled_idx == -1) return; new_vec = rtvec_alloc (num_elem + 1); for (i = 0; i < num_elem; i++) RTVEC_ELT (new_vec, i) = RTVEC_ELT (vec, i); val = rtx_alloc (IF_THEN_ELSE); XEXP (val, 0) = rtx_alloc (EQ_ATTR); XEXP (val, 1) = rtx_alloc (CONST_STRING); XEXP (val, 2) = rtx_alloc (CONST_STRING); XSTR (XEXP (val, 0), 0) = "nonce_enabled"; XSTR (XEXP (val, 0), 1) = "yes"; XSTR (XEXP (val, 1), 0) = "yes"; XSTR (XEXP (val, 2), 0) = "no"; set = rtx_alloc (SET); SET_DEST (set) = rtx_alloc (ATTR); XSTR (SET_DEST (set), 0) = "enabled"; SET_SRC (set) = modify_attr_enabled_ce (val); RTVEC_ELT (new_vec, i) = set; XVEC (insn, 4) = new_vec; } /* As number of constraints is changed after define_subst, we need to process attributes as well - we need to duplicate them the same way that we duplicated constraints in original pattern ELEM is a queue element, containing our rtl-template, N_DUP - multiplication factor. */ static void alter_attrs_for_subst_insn (class queue_elem * elem, int n_dup) { rtvec vec = XVEC (elem->data, 4); int num_elem; int i; if (n_dup < 2 || ! vec) return; num_elem = GET_NUM_ELEM (vec); for (i = num_elem - 1; i >= 0; --i) { rtx sub = RTVEC_ELT (vec, i); switch (GET_CODE (sub)) { case SET_ATTR: if (strchr (XSTR (sub, 1), ',') != NULL) XSTR (sub, 1) = duplicate_alternatives (XSTR (sub, 1), n_dup); break; case SET_ATTR_ALTERNATIVE: case SET: error_at (elem->loc, "%s: `define_subst' does not support attributes " "assigned by `set' and `set_attr_alternative'", XSTR (elem->data, 0)); return; default: gcc_unreachable (); } } } /* Adjust all of the operand numbers in SRC to match the shift they'll get from an operand displacement of DISP. Return a pointer after the adjusted string. */ static char * shift_output_template (char *dest, const char *src, int disp) { while (*src) { char c = *src++; *dest++ = c; if (c == '%') { c = *src++; if (ISDIGIT ((unsigned char) c)) c += disp; else if (ISALPHA (c)) { *dest++ = c; c = *src++ + disp; } *dest++ = c; } } return dest; } static const char * alter_output_for_insn (class queue_elem *ce_elem, class queue_elem *insn_elem, int alt, int max_op) { const char *ce_out, *insn_out; char *result, *p; size_t len, ce_len, insn_len; /* ??? Could coordinate with genoutput to not duplicate code here. */ ce_out = XSTR (ce_elem->data, 2); insn_out = XTMPL (insn_elem->data, 3); if (!ce_out || *ce_out == '\0') return insn_out; ce_len = strlen (ce_out); insn_len = strlen (insn_out); if (*insn_out == '*') /* You must take care of the predicate yourself. */ return insn_out; if (*insn_out == '@') { len = (ce_len + 1) * alt + insn_len + 1; p = result = XNEWVEC (char, len); do { do *p++ = *insn_out++; while (ISSPACE ((unsigned char) *insn_out)); if (*insn_out != '#') { p = shift_output_template (p, ce_out, max_op); *p++ = ' '; } do *p++ = *insn_out++; while (*insn_out && *insn_out != '\n'); } while (*insn_out); *p = '\0'; } else { len = ce_len + 1 + insn_len + 1; result = XNEWVEC (char, len); p = shift_output_template (result, ce_out, max_op); *p++ = ' '; memcpy (p, insn_out, insn_len + 1); } return result; } /* From string STR "a,b,c" produce "a,b,c,a,b,c,a,b,c", i.e. original string, duplicated N_DUP times. */ static const char * duplicate_alternatives (const char * str, int n_dup) { int i, len, new_len; char *result, *sp; const char *cp; if (n_dup < 2) return str; while (ISSPACE (*str)) str++; if (*str == '\0') return str; cp = str; len = strlen (str); new_len = (len + 1) * n_dup; sp = result = XNEWVEC (char, new_len); /* Global modifier characters mustn't be duplicated: skip if found. */ if (*cp == '=' || *cp == '+' || *cp == '%') { *sp++ = *cp++; len--; } /* Copy original constraints N_DUP times. */ for (i = 0; i < n_dup; i++, sp += len+1) { memcpy (sp, cp, len); *(sp+len) = (i == n_dup - 1) ? '\0' : ','; } return result; } /* From string STR "a,b,c" produce "a,a,a,b,b,b,c,c,c", i.e. string where each alternative from the original string is duplicated N_DUP times. */ static const char * duplicate_each_alternative (const char * str, int n_dup) { int i, len, new_len; char *result, *sp, *ep, *cp; if (n_dup < 2) return str; while (ISSPACE (*str)) str++; if (*str == '\0') return str; cp = xstrdup (str); new_len = (strlen (cp) + 1) * n_dup; sp = result = XNEWVEC (char, new_len); /* Global modifier characters mustn't be duplicated: skip if found. */ if (*cp == '=' || *cp == '+' || *cp == '%') *sp++ = *cp++; do { if ((ep = strchr (cp, ',')) != NULL) *ep++ = '\0'; len = strlen (cp); /* Copy a constraint N_DUP times. */ for (i = 0; i < n_dup; i++, sp += len + 1) { memcpy (sp, cp, len); *(sp+len) = (ep == NULL && i == n_dup - 1) ? '\0' : ','; } cp = ep; } while (cp != NULL); return result; } /* Alter the output of INSN whose pattern was modified by DEFINE_SUBST. We must replicate output strings according to the new number of alternatives ALT in substituted pattern. If ALT equals 1, output has one alternative or defined by C code, then output is returned without any changes. */ static const char * alter_output_for_subst_insn (rtx insn, int alt) { const char *insn_out, *old_out; char *new_out, *cp; size_t old_len, new_len; int j; insn_out = XTMPL (insn, 3); if (alt < 2 || *insn_out != '@') return insn_out; old_out = insn_out + 1; while (ISSPACE (*old_out)) old_out++; old_len = strlen (old_out); new_len = alt * (old_len + 1) + 1; new_out = XNEWVEC (char, new_len); new_out[0] = '@'; for (j = 0, cp = new_out + 1; j < alt; j++, cp += old_len + 1) { memcpy (cp, old_out, old_len); cp[old_len] = (j == alt - 1) ? '\0' : '\n'; } return new_out; } /* Replicate insns as appropriate for the given DEFINE_COND_EXEC. */ static void process_one_cond_exec (class queue_elem *ce_elem) { class queue_elem *insn_elem; for (insn_elem = define_insn_queue; insn_elem ; insn_elem = insn_elem->next) { int alternatives, max_operand; rtx pred, insn, pattern, split; char *new_name; int i; if (! is_predicable (insn_elem)) continue; alternatives = 1; max_operand = -1; collect_insn_data (insn_elem->data, &alternatives, &max_operand); max_operand += 1; if (XVECLEN (ce_elem->data, 0) != 1) { error_at (ce_elem->loc, "too many patterns in predicate"); return; } pred = copy_rtx (XVECEXP (ce_elem->data, 0, 0)); pred = alter_predicate_for_insn (pred, alternatives, max_operand, ce_elem->loc); if (pred == NULL) return; /* Construct a new pattern for the new insn. */ insn = copy_rtx (insn_elem->data); new_name = XNEWVAR (char, strlen XSTR (insn_elem->data, 0) + 4); sprintf (new_name, "*p %s", XSTR (insn_elem->data, 0)); XSTR (insn, 0) = new_name; pattern = rtx_alloc (COND_EXEC); XEXP (pattern, 0) = pred; XEXP (pattern, 1) = add_implicit_parallel (XVEC (insn, 1)); XVEC (insn, 1) = rtvec_alloc (1); XVECEXP (insn, 1, 0) = pattern; if (XVEC (ce_elem->data, 3) != NULL) { rtvec attributes = rtvec_alloc (XVECLEN (insn, 4) + XVECLEN (ce_elem->data, 3)); int i = 0; int j = 0; for (i = 0; i < XVECLEN (insn, 4); i++) RTVEC_ELT (attributes, i) = XVECEXP (insn, 4, i); for (j = 0; j < XVECLEN (ce_elem->data, 3); j++, i++) RTVEC_ELT (attributes, i) = XVECEXP (ce_elem->data, 3, j); XVEC (insn, 4) = attributes; } XSTR (insn, 2) = alter_test_for_insn (ce_elem, insn_elem); XTMPL (insn, 3) = alter_output_for_insn (ce_elem, insn_elem, alternatives, max_operand); alter_attrs_for_insn (insn); /* Put the new pattern on the `other' list so that it (a) is not reprocessed by other define_cond_exec patterns (b) appears after all normal define_insn patterns. ??? B is debatable. If one has normal insns that match cond_exec patterns, they will be preferred over these generated patterns. Whether this matters in practice, or if it's a good thing, or whether we should thread these new patterns into the define_insn chain just after their generator is something we'll have to experiment with. */ queue_pattern (insn, &other_tail, insn_elem->loc); if (!insn_elem->split) continue; /* If the original insn came from a define_insn_and_split, generate a new split to handle the predicated insn. */ split = copy_rtx (insn_elem->split->data); /* Predicate the pattern matched by the split. */ pattern = rtx_alloc (COND_EXEC); XEXP (pattern, 0) = pred; XEXP (pattern, 1) = add_implicit_parallel (XVEC (split, 0)); XVEC (split, 0) = rtvec_alloc (1); XVECEXP (split, 0, 0) = pattern; /* Predicate all of the insns generated by the split. */ for (i = 0; i < XVECLEN (split, 2); i++) { pattern = rtx_alloc (COND_EXEC); XEXP (pattern, 0) = pred; XEXP (pattern, 1) = XVECEXP (split, 2, i); XVECEXP (split, 2, i) = pattern; } /* Add the new split to the queue. */ queue_pattern (split, &other_tail, insn_elem->split->loc); } } /* Try to apply define_substs to the given ELEM. Only define_substs, specified via attributes would be applied. If attribute, requiring define_subst, is set, but no define_subst was applied, ELEM would be deleted. */ static void process_substs_on_one_elem (class queue_elem *elem, class queue_elem *queue) { class queue_elem *subst_elem; int i, j, patterns_match; for (subst_elem = define_subst_queue; subst_elem; subst_elem = subst_elem->next) { int alternatives, alternatives_subst; rtx subst_pattern; rtvec subst_pattern_vec; if (!has_subst_attribute (elem, subst_elem)) continue; /* Compare original rtl-pattern from define_insn with input pattern from define_subst. Also, check if numbers of alternatives are the same in all match_operands. */ if (XVECLEN (elem->data, 1) != XVECLEN (subst_elem->data, 1)) continue; patterns_match = 1; alternatives = -1; alternatives_subst = -1; for (j = 0; j < XVECLEN (elem->data, 1); j++) { if (!subst_pattern_match (XVECEXP (elem->data, 1, j), XVECEXP (subst_elem->data, 1, j), subst_elem->loc)) { patterns_match = 0; break; } if (!get_alternatives_number (XVECEXP (elem->data, 1, j), &alternatives, subst_elem->loc)) { patterns_match = 0; break; } } /* Check if numbers of alternatives are the same in all match_operands in output template of define_subst. */ for (j = 0; j < XVECLEN (subst_elem->data, 3); j++) { if (!get_alternatives_number (XVECEXP (subst_elem->data, 3, j), &alternatives_subst, subst_elem->loc)) { patterns_match = 0; break; } } if (!patterns_match) continue; /* Clear array in which we save occupied indexes of operands. */ memset (used_operands_numbers, 0, sizeof (used_operands_numbers)); /* Create a pattern, based on the output one from define_subst. */ subst_pattern_vec = rtvec_alloc (XVECLEN (subst_elem->data, 3)); for (j = 0; j < XVECLEN (subst_elem->data, 3); j++) { subst_pattern = copy_rtx (XVECEXP (subst_elem->data, 3, j)); /* Duplicate constraints in substitute-pattern. */ subst_pattern = alter_constraints (subst_pattern, alternatives, duplicate_each_alternative); subst_pattern = adjust_operands_numbers (subst_pattern); /* Substitute match_dup and match_op_dup in the new pattern and duplicate constraints. */ subst_pattern = subst_dup (subst_pattern, alternatives, alternatives_subst); replace_duplicating_operands_in_pattern (subst_pattern); /* We don't need any constraints in DEFINE_EXPAND. */ if (GET_CODE (elem->data) == DEFINE_EXPAND) remove_constraints (subst_pattern); RTVEC_ELT (subst_pattern_vec, j) = subst_pattern; } XVEC (elem->data, 1) = subst_pattern_vec; for (i = 0; i < MAX_OPERANDS; i++) match_operand_entries_in_pattern[i] = NULL; if (GET_CODE (elem->data) == DEFINE_INSN) { XTMPL (elem->data, 3) = alter_output_for_subst_insn (elem->data, alternatives_subst); alter_attrs_for_subst_insn (elem, alternatives_subst); } /* Recalculate condition, joining conditions from original and DEFINE_SUBST input patterns. */ XSTR (elem->data, 2) = rtx_reader_ptr->join_c_conditions (XSTR (subst_elem->data, 2), XSTR (elem->data, 2)); /* Mark that subst was applied by changing attribute from "yes" to "no". */ change_subst_attribute (elem, subst_elem, subst_false); } /* If ELEM contains a subst attribute with value "yes", then we expected that a subst would be applied, but it wasn't - so, we need to remove that elementto avoid duplicating. */ for (subst_elem = define_subst_queue; subst_elem; subst_elem = subst_elem->next) { if (has_subst_attribute (elem, subst_elem)) { remove_from_queue (elem, &queue); return; } } } /* This is a subroutine of mark_operands_used_in_match_dup. This routine is marks all MATCH_OPERANDs inside PATTERN as occupied. */ static void mark_operands_from_match_dup (rtx pattern) { const char *fmt; int i, j, len, opno; if (GET_CODE (pattern) == MATCH_OPERAND || GET_CODE (pattern) == MATCH_OPERATOR || GET_CODE (pattern) == MATCH_PARALLEL) { opno = XINT (pattern, 0); gcc_assert (opno >= 0 && opno < MAX_OPERANDS); used_operands_numbers [opno] = 1; } fmt = GET_RTX_FORMAT (GET_CODE (pattern)); len = GET_RTX_LENGTH (GET_CODE (pattern)); for (i = 0; i < len; i++) { switch (fmt[i]) { case 'e': case 'u': mark_operands_from_match_dup (XEXP (pattern, i)); break; case 'E': for (j = XVECLEN (pattern, i) - 1; j >= 0; --j) mark_operands_from_match_dup (XVECEXP (pattern, i, j)); break; } } } /* This is a subroutine of adjust_operands_numbers. It goes through all expressions in PATTERN and when MATCH_DUP is met, all MATCH_OPERANDs inside it is marked as occupied. The process of marking is done by routin mark_operands_from_match_dup. */ static void mark_operands_used_in_match_dup (rtx pattern) { const char *fmt; int i, j, len, opno; if (GET_CODE (pattern) == MATCH_DUP) { opno = XINT (pattern, 0); gcc_assert (opno >= 0 && opno < MAX_OPERANDS); mark_operands_from_match_dup (operand_data[opno]); return; } fmt = GET_RTX_FORMAT (GET_CODE (pattern)); len = GET_RTX_LENGTH (GET_CODE (pattern)); for (i = 0; i < len; i++) { switch (fmt[i]) { case 'e': case 'u': mark_operands_used_in_match_dup (XEXP (pattern, i)); break; case 'E': for (j = XVECLEN (pattern, i) - 1; j >= 0; --j) mark_operands_used_in_match_dup (XVECEXP (pattern, i, j)); break; } } } /* This is subroutine of renumerate_operands_in_pattern. It finds first not-occupied operand-index. */ static int find_first_unused_number_of_operand () { int i; for (i = 0; i < MAX_OPERANDS; i++) if (!used_operands_numbers[i]) return i; return MAX_OPERANDS; } /* This is subroutine of adjust_operands_numbers. It visits all expressions in PATTERN and assigns not-occupied operand indexes to MATCH_OPERANDs and MATCH_OPERATORs of this PATTERN. */ static void renumerate_operands_in_pattern (rtx pattern) { const char *fmt; enum rtx_code code; int i, j, len, new_opno; code = GET_CODE (pattern); if (code == MATCH_OPERAND || code == MATCH_OPERATOR) { new_opno = find_first_unused_number_of_operand (); gcc_assert (new_opno >= 0 && new_opno < MAX_OPERANDS); XINT (pattern, 0) = new_opno; used_operands_numbers [new_opno] = 1; } fmt = GET_RTX_FORMAT (GET_CODE (pattern)); len = GET_RTX_LENGTH (GET_CODE (pattern)); for (i = 0; i < len; i++) { switch (fmt[i]) { case 'e': case 'u': renumerate_operands_in_pattern (XEXP (pattern, i)); break; case 'E': for (j = XVECLEN (pattern, i) - 1; j >= 0; --j) renumerate_operands_in_pattern (XVECEXP (pattern, i, j)); break; } } } /* If output pattern of define_subst contains MATCH_DUP, then this expression would be replaced with the pattern, matched with MATCH_OPERAND from input pattern. This pattern could contain any number of MATCH_OPERANDs, MATCH_OPERATORs etc., so it's possible that a MATCH_OPERAND from output_pattern (if any) would have the same number, as MATCH_OPERAND from copied pattern. To avoid such indexes overlapping, we assign new indexes to MATCH_OPERANDs, laying in the output pattern outside of MATCH_DUPs. */ static rtx adjust_operands_numbers (rtx pattern) { mark_operands_used_in_match_dup (pattern); renumerate_operands_in_pattern (pattern); return pattern; } /* Generate RTL expression (match_dup OPNO) */ static rtx generate_match_dup (int opno) { rtx return_rtx = rtx_alloc (MATCH_DUP); PUT_CODE (return_rtx, MATCH_DUP); XINT (return_rtx, 0) = opno; return return_rtx; } /* This routine checks all match_operands in PATTERN and if some of have the same index, it replaces all of them except the first one to match_dup. Usually, match_operands with the same indexes are forbidden, but after define_subst copy an RTL-expression from original template, indexes of existed and just-copied match_operands could coincide. To fix it, we replace one of them with match_dup. */ static rtx replace_duplicating_operands_in_pattern (rtx pattern) { const char *fmt; int i, j, len, opno; rtx mdup; if (GET_CODE (pattern) == MATCH_OPERAND) { opno = XINT (pattern, 0); gcc_assert (opno >= 0 && opno < MAX_OPERANDS); if (match_operand_entries_in_pattern[opno] == NULL) { match_operand_entries_in_pattern[opno] = pattern; return NULL; } else { /* Compare predicates before replacing with match_dup. */ if (strcmp (XSTR (pattern, 1), XSTR (match_operand_entries_in_pattern[opno], 1))) { error ("duplicated match_operands with different predicates were" " found."); return NULL; } return generate_match_dup (opno); } } fmt = GET_RTX_FORMAT (GET_CODE (pattern)); len = GET_RTX_LENGTH (GET_CODE (pattern)); for (i = 0; i < len; i++) { switch (fmt[i]) { case 'e': case 'u': mdup = replace_duplicating_operands_in_pattern (XEXP (pattern, i)); if (mdup) XEXP (pattern, i) = mdup; break; case 'E': for (j = XVECLEN (pattern, i) - 1; j >= 0; --j) { mdup = replace_duplicating_operands_in_pattern (XVECEXP (pattern, i, j)); if (mdup) XVECEXP (pattern, i, j) = mdup; } break; } } return NULL; } /* The routine modifies given input PATTERN of define_subst, replacing MATCH_DUP and MATCH_OP_DUP with operands from define_insn original pattern, whose operands are stored in OPERAND_DATA array. It also duplicates constraints in operands - constraints from define_insn operands are duplicated N_SUBST_ALT times, constraints from define_subst operands are duplicated N_ALT times. After the duplication, returned output rtl-pattern contains every combination of input constraints Vs constraints from define_subst output. */ static rtx subst_dup (rtx pattern, int n_alt, int n_subst_alt) { const char *fmt; enum rtx_code code; int i, j, len, opno; code = GET_CODE (pattern); switch (code) { case MATCH_DUP: case MATCH_OP_DUP: opno = XINT (pattern, 0); gcc_assert (opno >= 0 && opno < MAX_OPERANDS); if (operand_data[opno]) { pattern = copy_rtx (operand_data[opno]); /* Duplicate constraints. */ pattern = alter_constraints (pattern, n_subst_alt, duplicate_alternatives); } break; default: break; } fmt = GET_RTX_FORMAT (GET_CODE (pattern)); len = GET_RTX_LENGTH (GET_CODE (pattern)); for (i = 0; i < len; i++) { switch (fmt[i]) { case 'e': case 'u': if (code != MATCH_DUP && code != MATCH_OP_DUP) XEXP (pattern, i) = subst_dup (XEXP (pattern, i), n_alt, n_subst_alt); break; case 'V': if (XVEC (pattern, i) == NULL) break; /* FALLTHRU */ case 'E': if (code != MATCH_DUP && code != MATCH_OP_DUP) for (j = XVECLEN (pattern, i) - 1; j >= 0; --j) XVECEXP (pattern, i, j) = subst_dup (XVECEXP (pattern, i, j), n_alt, n_subst_alt); break; case 'r': case 'p': case 'i': case 'w': case '0': case 's': case 'S': case 'T': break; default: gcc_unreachable (); } } return pattern; } /* If we have any DEFINE_COND_EXEC patterns, expand the DEFINE_INSN patterns appropriately. */ static void process_define_cond_exec (void) { class queue_elem *elem; identify_predicable_attribute (); if (have_error) return; for (elem = define_cond_exec_queue; elem ; elem = elem->next) process_one_cond_exec (elem); } /* If we have any DEFINE_SUBST patterns, expand DEFINE_INSN and DEFINE_EXPAND patterns appropriately. */ static void process_define_subst (void) { class queue_elem *elem, *elem_attr; /* Check if each define_subst has corresponding define_subst_attr. */ for (elem = define_subst_queue; elem ; elem = elem->next) { for (elem_attr = define_subst_attr_queue; elem_attr; elem_attr = elem_attr->next) if (strcmp (XSTR (elem->data, 0), XSTR (elem_attr->data, 1)) == 0) goto found; error_at (elem->loc, "%s: `define_subst' must have at least one " "corresponding `define_subst_attr'", XSTR (elem->data, 0)); return; found: continue; } for (elem = define_insn_queue; elem ; elem = elem->next) process_substs_on_one_elem (elem, define_insn_queue); for (elem = other_queue; elem ; elem = elem->next) { if (GET_CODE (elem->data) != DEFINE_EXPAND) continue; process_substs_on_one_elem (elem, other_queue); } } /* A subclass of rtx_reader which reads .md files and calls process_rtx on the top-level elements. */ class gen_reader : public rtx_reader { public: gen_reader () : rtx_reader (false) {} void handle_unknown_directive (file_location, const char *) final override; }; void gen_reader::handle_unknown_directive (file_location loc, const char *rtx_name) { auto_vec<rtx, 32> subrtxs; if (!read_rtx (rtx_name, &subrtxs)) return; rtx x; unsigned int i; FOR_EACH_VEC_ELT (subrtxs, i, x) process_rtx (x, loc); } /* Add mnemonic STR with length LEN to the mnemonic hash table MNEMONIC_HTAB. A trailing zero end character is appended to STR and a permanent heap copy of STR is created. */ static void add_mnemonic_string (htab_t mnemonic_htab, const char *str, size_t len) { char *new_str; void **slot; char *str_zero = (char*)alloca (len + 1); memcpy (str_zero, str, len); str_zero[len] = '\0'; slot = htab_find_slot (mnemonic_htab, str_zero, INSERT); if (*slot) return; /* Not found; create a permanent copy and add it to the hash table. */ new_str = XNEWVAR (char, len + 1); memcpy (new_str, str_zero, len + 1); *slot = new_str; } /* Scan INSN for mnemonic strings and add them to the mnemonic hash table in MNEMONIC_HTAB. The mnemonics cannot be found if they are emitted using C code. If a mnemonic string contains ';' or a newline the string assumed to consist of more than a single instruction. The attribute value will then be set to the user defined default value. */ static void gen_mnemonic_setattr (htab_t mnemonic_htab, rtx insn) { const char *template_code, *cp; int i; int vec_len; rtx set_attr; char *attr_name; rtvec new_vec; struct obstack *string_obstack = rtx_reader_ptr->get_string_obstack (); template_code = XTMPL (insn, 3); /* Skip patterns which use C code to emit the template. */ if (template_code[0] == '*') return; if (template_code[0] == '@') cp = &template_code[1]; else cp = &template_code[0]; for (i = 0; *cp; ) { const char *ep, *sp; size_t size = 0; while (ISSPACE (*cp)) cp++; for (ep = sp = cp; !IS_VSPACE (*ep) && *ep != '\0'; ++ep) if (!ISSPACE (*ep)) sp = ep + 1; if (i > 0) obstack_1grow (string_obstack, ','); while (cp < sp && ((*cp >= '0' && *cp <= '9') || (*cp >= 'a' && *cp <= 'z'))) { obstack_1grow (string_obstack, *cp); cp++; size++; } while (cp < sp) { if (*cp == ';' || (*cp == '\\' && cp[1] == 'n')) { /* Don't set a value if there are more than one instruction in the string. */ obstack_blank_fast (string_obstack, -size); size = 0; cp = sp; break; } cp++; } if (size == 0) obstack_1grow (string_obstack, '*'); else add_mnemonic_string (mnemonic_htab, (char *) obstack_next_free (string_obstack) - size, size); i++; } /* An insn definition might emit an empty string. */ if (obstack_object_size (string_obstack) == 0) return; obstack_1grow (string_obstack, '\0'); set_attr = rtx_alloc (SET_ATTR); XSTR (set_attr, 1) = XOBFINISH (string_obstack, char *); attr_name = XNEWVAR (char, strlen (MNEMONIC_ATTR_NAME) + 1); strcpy (attr_name, MNEMONIC_ATTR_NAME); XSTR (set_attr, 0) = attr_name; if (!XVEC (insn, 4)) vec_len = 0; else vec_len = XVECLEN (insn, 4); new_vec = rtvec_alloc (vec_len + 1); for (i = 0; i < vec_len; i++) RTVEC_ELT (new_vec, i) = XVECEXP (insn, 4, i); RTVEC_ELT (new_vec, vec_len) = set_attr; XVEC (insn, 4) = new_vec; } /* This function is called for the elements in the mnemonic hashtable and generates a comma separated list of the mnemonics. */ static int mnemonic_htab_callback (void **slot, void *info ATTRIBUTE_UNUSED) { struct obstack *string_obstack = rtx_reader_ptr->get_string_obstack (); obstack_grow (string_obstack, (char*) *slot, strlen ((char*) *slot)); obstack_1grow (string_obstack, ','); return 1; } /* Generate (set_attr "mnemonic" "..") RTXs and append them to every insn definition in case the back end requests it by defining the mnemonic attribute. The values for the attribute will be extracted from the output patterns of the insn definitions as far as possible. */ static void gen_mnemonic_attr (void) { class queue_elem *elem; rtx mnemonic_attr = NULL; htab_t mnemonic_htab; const char *str, *p; int i; struct obstack *string_obstack = rtx_reader_ptr->get_string_obstack (); if (have_error) return; /* Look for the DEFINE_ATTR for `mnemonic'. */ for (elem = define_attr_queue; elem != *define_attr_tail; elem = elem->next) if (GET_CODE (elem->data) == DEFINE_ATTR && strcmp (XSTR (elem->data, 0), MNEMONIC_ATTR_NAME) == 0) { mnemonic_attr = elem->data; break; } /* A (define_attr "mnemonic" "...") indicates that the back-end wants a mnemonic attribute to be generated. */ if (!mnemonic_attr) return; mnemonic_htab = htab_create_alloc (MNEMONIC_HTAB_SIZE, htab_hash_string, htab_eq_string, 0, xcalloc, free); for (elem = define_insn_queue; elem; elem = elem->next) { rtx insn = elem->data; bool found = false; /* Check if the insn definition already has (set_attr "mnemonic" ...) or (set (attr "mnemonic") ...). */ if (XVEC (insn, 4)) for (i = 0; i < XVECLEN (insn, 4); i++) { rtx set_attr = XVECEXP (insn, 4, i); switch (GET_CODE (set_attr)) { case SET_ATTR: case SET_ATTR_ALTERNATIVE: if (strcmp (XSTR (set_attr, 0), MNEMONIC_ATTR_NAME) == 0) found = true; break; case SET: if (GET_CODE (SET_DEST (set_attr)) == ATTR && strcmp (XSTR (SET_DEST (set_attr), 0), MNEMONIC_ATTR_NAME) == 0) found = true; break; default: break; } } if (!found) gen_mnemonic_setattr (mnemonic_htab, insn); } /* Add the user defined values to the hash table. */ str = XSTR (mnemonic_attr, 1); while ((p = scan_comma_elt (&str)) != NULL) add_mnemonic_string (mnemonic_htab, p, str - p); htab_traverse (mnemonic_htab, mnemonic_htab_callback, NULL); /* Replace the last ',' with the zero end character. */ *((char *) obstack_next_free (string_obstack) - 1) = '\0'; XSTR (mnemonic_attr, 1) = XOBFINISH (string_obstack, char *); } /* Check if there are DEFINE_ATTRs with the same name. */ static void check_define_attr_duplicates () { class queue_elem *elem; htab_t attr_htab; char * attr_name; void **slot; attr_htab = htab_create (500, htab_hash_string, htab_eq_string, NULL); for (elem = define_attr_queue; elem; elem = elem->next) { attr_name = xstrdup (XSTR (elem->data, 0)); slot = htab_find_slot (attr_htab, attr_name, INSERT); /* Duplicate. */ if (*slot) { error_at (elem->loc, "redefinition of attribute '%s'", attr_name); htab_delete (attr_htab); return; } *slot = attr_name; } htab_delete (attr_htab); } /* The entry point for initializing the reader. */ rtx_reader * init_rtx_reader_args_cb (int argc, const char **argv, bool (*parse_opt) (const char *)) { /* Prepare to read input. */ condition_table = htab_create (500, hash_c_test, cmp_c_test, NULL); init_predicate_table (); obstack_init (rtl_obstack); /* Start at 1, to make 0 available for CODE_FOR_nothing. */ insn_sequence_num = 1; /* These sequences are not used as indices, so can start at 1 also. */ split_sequence_num = 1; peephole2_sequence_num = 1; gen_reader *reader = new gen_reader (); reader->read_md_files (argc, argv, parse_opt); if (define_attr_queue != NULL) check_define_attr_duplicates (); /* Process define_cond_exec patterns. */ if (define_cond_exec_queue != NULL) process_define_cond_exec (); /* Process define_subst patterns. */ if (define_subst_queue != NULL) process_define_subst (); if (define_attr_queue != NULL) gen_mnemonic_attr (); if (have_error) { delete reader; return NULL; } return reader; } /* Programs that don't have their own options can use this entry point instead. */ rtx_reader * init_rtx_reader_args (int argc, const char **argv) { return init_rtx_reader_args_cb (argc, argv, 0); } /* Count the number of patterns in all queues and return the count. */ int count_patterns () { int count = 0, truth = 1; rtx def; class queue_elem *cur = define_attr_queue; while (cur) { def = cur->data; truth = maybe_eval_c_test (get_c_test (def)); if (truth || !insn_elision) count++; cur = cur->next; } cur = define_pred_queue; while (cur) { def = cur->data; truth = maybe_eval_c_test (get_c_test (def)); if (truth || !insn_elision) count++; cur = cur->next; } cur = define_insn_queue; truth = 1; while (cur) { def = cur->data; truth = maybe_eval_c_test (get_c_test (def)); if (truth || !insn_elision) count++; cur = cur->next; } cur = other_queue; truth = 1; while (cur) { def = cur->data; truth = maybe_eval_c_test (get_c_test (def)); if (truth || !insn_elision) count++; cur = cur->next; } return count; } /* Try to read a single rtx from the file. Return true on success, describing it in *INFO. */ bool read_md_rtx (md_rtx_info *info) { int truth, *counter; rtx def; /* Discard insn patterns which we know can never match (because their C test is provably always false). If insn_elision is false, our caller needs to see all the patterns. Note that the elided patterns are never counted by the sequence numbering; it is the caller's responsibility, when insn_elision is false, not to use elided pattern numbers for anything. */ do { class queue_elem **queue, *elem; /* Read all patterns from a given queue before moving on to the next. */ if (define_attr_queue != NULL) queue = &define_attr_queue; else if (define_pred_queue != NULL) queue = &define_pred_queue; else if (define_insn_queue != NULL) queue = &define_insn_queue; else if (other_queue != NULL) queue = &other_queue; else return false; elem = *queue; *queue = elem->next; def = elem->data; info->def = def; info->loc = elem->loc; free (elem); truth = maybe_eval_c_test (get_c_test (def)); } while (truth == 0 && insn_elision); /* Perform code-specific processing and pick the appropriate sequence number counter. */ switch (GET_CODE (def)) { case DEFINE_INSN: case DEFINE_EXPAND: /* insn_sequence_num is used here so the name table will match caller's idea of insn numbering, whether or not elision is active. */ record_insn_name (insn_sequence_num, XSTR (def, 0)); /* Fall through. */ case DEFINE_PEEPHOLE: counter = &insn_sequence_num; break; case DEFINE_SPLIT: counter = &split_sequence_num; break; case DEFINE_PEEPHOLE2: counter = &peephole2_sequence_num; break; default: counter = NULL; break; } if (counter) { info->index = *counter; if (truth != 0) *counter += 1; } else info->index = -1; if (!rtx_locs) rtx_locs = new hash_map <rtx, file_location>; rtx_locs->put (info->def, info->loc); return true; } /* Return the file location of DEFINE_* rtx X, which was previously returned by read_md_rtx. */ file_location get_file_location (rtx x) { gcc_assert (rtx_locs); file_location *entry = rtx_locs->get (x); gcc_assert (entry); return *entry; } /* Return the number of possible INSN_CODEs. Only meaningful once the whole file has been processed. */ unsigned int get_num_insn_codes () { return insn_sequence_num; } /* Return the C test that says whether definition rtx DEF can be used, or "" if it can be used unconditionally. */ const char * get_c_test (rtx x) { switch (GET_CODE (x)) { case DEFINE_INSN: case DEFINE_EXPAND: case DEFINE_SUBST: return XSTR (x, 2); case DEFINE_SPLIT: case DEFINE_PEEPHOLE: case DEFINE_PEEPHOLE2: return XSTR (x, 1); default: return ""; } } /* Helper functions for insn elision. */ /* Compute a hash function of a c_test structure, which is keyed by its ->expr field. */ hashval_t hash_c_test (const void *x) { const struct c_test *a = (const struct c_test *) x; const unsigned char *base, *s = (const unsigned char *) a->expr; hashval_t hash; unsigned char c; unsigned int len; base = s; hash = 0; while ((c = *s++) != '\0') { hash += c + (c << 17); hash ^= hash >> 2; } len = s - base; hash += len + (len << 17); hash ^= hash >> 2; return hash; } /* Compare two c_test expression structures. */ int cmp_c_test (const void *x, const void *y) { const struct c_test *a = (const struct c_test *) x; const struct c_test *b = (const struct c_test *) y; return !strcmp (a->expr, b->expr); } /* Given a string representing a C test expression, look it up in the condition_table and report whether or not its value is known at compile time. Returns a tristate: 1 for known true, 0 for known false, -1 for unknown. */ int maybe_eval_c_test (const char *expr) { const struct c_test *test; struct c_test dummy; if (expr[0] == 0) return 1; dummy.expr = expr; test = (const struct c_test *)htab_find (condition_table, &dummy); if (!test) return -1; return test->value; } /* Record the C test expression EXPR in the condition_table, with value VAL. Duplicates clobber previous entries. */ void add_c_test (const char *expr, int value) { struct c_test *test; if (expr[0] == 0) return; test = XNEW (struct c_test); test->expr = expr; test->value = value; *(htab_find_slot (condition_table, test, INSERT)) = test; } /* For every C test, call CALLBACK with two arguments: a pointer to the condition structure and INFO. Stops when CALLBACK returns zero. */ void traverse_c_tests (htab_trav callback, void *info) { if (condition_table) htab_traverse (condition_table, callback, info); } /* Helper functions for define_predicate and define_special_predicate processing. Shared between genrecog.cc and genpreds.cc. */ static htab_t predicate_table; struct pred_data *first_predicate; static struct pred_data **last_predicate = &first_predicate; static hashval_t hash_struct_pred_data (const void *ptr) { return htab_hash_string (((const struct pred_data *)ptr)->name); } static int eq_struct_pred_data (const void *a, const void *b) { return !strcmp (((const struct pred_data *)a)->name, ((const struct pred_data *)b)->name); } struct pred_data * lookup_predicate (const char *name) { struct pred_data key; key.name = name; return (struct pred_data *) htab_find (predicate_table, &key); } /* Record that predicate PRED can accept CODE. */ void add_predicate_code (struct pred_data *pred, enum rtx_code code) { if (!pred->codes[code]) { pred->num_codes++; pred->codes[code] = true; if (GET_RTX_CLASS (code) != RTX_CONST_OBJ) pred->allows_non_const = true; if (code != REG && code != SUBREG && code != MEM && code != CONCAT && code != PARALLEL && code != STRICT_LOW_PART && code != ZERO_EXTRACT && code != SCRATCH) pred->allows_non_lvalue = true; if (pred->num_codes == 1) pred->singleton = code; else if (pred->num_codes == 2) pred->singleton = UNKNOWN; } } void add_predicate (struct pred_data *pred) { void **slot = htab_find_slot (predicate_table, pred, INSERT); if (*slot) { error ("duplicate predicate definition for '%s'", pred->name); return; } *slot = pred; *last_predicate = pred; last_predicate = &pred->next; } /* This array gives the initial content of the predicate table. It has entries for all predicates defined in recog.cc. */ struct std_pred_table { const char *name; bool special; bool allows_const_p; RTX_CODE codes[NUM_RTX_CODE]; }; static const struct std_pred_table std_preds[] = { {"general_operand", false, true, {SUBREG, REG, MEM}}, {"address_operand", true, true, {SUBREG, REG, MEM, PLUS, MINUS, MULT, ZERO_EXTEND, SIGN_EXTEND, AND}}, {"register_operand", false, false, {SUBREG, REG}}, {"pmode_register_operand", true, false, {SUBREG, REG}}, {"scratch_operand", false, false, {SCRATCH, REG}}, {"immediate_operand", false, true, {UNKNOWN}}, {"const_int_operand", false, false, {CONST_INT}}, #if TARGET_SUPPORTS_WIDE_INT {"const_scalar_int_operand", false, false, {CONST_INT, CONST_WIDE_INT}}, {"const_double_operand", false, false, {CONST_DOUBLE}}, #else {"const_double_operand", false, false, {CONST_INT, CONST_DOUBLE}}, #endif {"nonimmediate_operand", false, false, {SUBREG, REG, MEM}}, {"nonmemory_operand", false, true, {SUBREG, REG}}, {"push_operand", false, false, {MEM}}, {"pop_operand", false, false, {MEM}}, {"memory_operand", false, false, {SUBREG, MEM}}, {"indirect_operand", false, false, {SUBREG, MEM}}, {"ordered_comparison_operator", false, false, {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU}}, {"comparison_operator", false, false, {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU, UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE, UNLT, LTGT}} }; #define NUM_KNOWN_STD_PREDS ARRAY_SIZE (std_preds) /* Initialize the table of predicate definitions, starting with the information we have on generic predicates. */ static void init_predicate_table (void) { size_t i, j; struct pred_data *pred; predicate_table = htab_create_alloc (37, hash_struct_pred_data, eq_struct_pred_data, 0, xcalloc, free); for (i = 0; i < NUM_KNOWN_STD_PREDS; i++) { pred = XCNEW (struct pred_data); pred->name = std_preds[i].name; pred->special = std_preds[i].special; for (j = 0; std_preds[i].codes[j] != 0; j++) add_predicate_code (pred, std_preds[i].codes[j]); if (std_preds[i].allows_const_p) for (j = 0; j < NUM_RTX_CODE; j++) if (GET_RTX_CLASS (j) == RTX_CONST_OBJ) add_predicate_code (pred, (enum rtx_code) j); add_predicate (pred); } } /* These functions allow linkage with print-rtl.cc. Also, some generators like to annotate their output with insn names. */ /* Holds an array of names indexed by insn_code_number. */ static char **insn_name_ptr = 0; static int insn_name_ptr_size = 0; const char * get_insn_name (int code) { if (code < insn_name_ptr_size) return insn_name_ptr[code]; else return NULL; } static void record_insn_name (int code, const char *name) { static const char *last_real_name = "insn"; static int last_real_code = 0; char *new_name; if (insn_name_ptr_size <= code) { int new_size; new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512); insn_name_ptr = XRESIZEVEC (char *, insn_name_ptr, new_size); memset (insn_name_ptr + insn_name_ptr_size, 0, sizeof (char *) * (new_size - insn_name_ptr_size)); insn_name_ptr_size = new_size; } if (!name || name[0] == '\0') { new_name = XNEWVAR (char, strlen (last_real_name) + 10); sprintf (new_name, "%s+%d", last_real_name, code - last_real_code); } else { last_real_name = new_name = xstrdup (name); last_real_code = code; } insn_name_ptr[code] = new_name; } /* Make STATS describe the operands that appear in rtx X. */ static void get_pattern_stats_1 (struct pattern_stats *stats, rtx x) { RTX_CODE code; int i; int len; const char *fmt; if (x == NULL_RTX) return; code = GET_CODE (x); switch (code) { case MATCH_OPERAND: case MATCH_OPERATOR: case MATCH_PARALLEL: stats->max_opno = MAX (stats->max_opno, XINT (x, 0)); break; case MATCH_DUP: case MATCH_OP_DUP: case MATCH_PAR_DUP: stats->num_dups++; stats->max_dup_opno = MAX (stats->max_dup_opno, XINT (x, 0)); break; case MATCH_SCRATCH: if (stats->min_scratch_opno == -1) stats->min_scratch_opno = XINT (x, 0); else stats->min_scratch_opno = MIN (stats->min_scratch_opno, XINT (x, 0)); stats->max_scratch_opno = MAX (stats->max_scratch_opno, XINT (x, 0)); break; default: break; } fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { if (fmt[i] == 'e' || fmt[i] == 'u') get_pattern_stats_1 (stats, XEXP (x, i)); else if (fmt[i] == 'E') { int j; for (j = 0; j < XVECLEN (x, i); j++) get_pattern_stats_1 (stats, XVECEXP (x, i, j)); } } } /* Make STATS describe the operands that appear in instruction pattern PATTERN. */ void get_pattern_stats (struct pattern_stats *stats, rtvec pattern) { int i, len; stats->max_opno = -1; stats->max_dup_opno = -1; stats->min_scratch_opno = -1; stats->max_scratch_opno = -1; stats->num_dups = 0; len = GET_NUM_ELEM (pattern); for (i = 0; i < len; i++) get_pattern_stats_1 (stats, RTVEC_ELT (pattern, i)); stats->num_generator_args = stats->max_opno + 1; stats->num_insn_operands = MAX (stats->max_opno, stats->max_scratch_opno) + 1; stats->num_operand_vars = MAX (stats->max_opno, MAX (stats->max_dup_opno, stats->max_scratch_opno)) + 1; } /* Return the emit_* function that should be used for pattern X, or NULL if we can't pick a particular type at compile time and should instead fall back to "emit". */ const char * get_emit_function (rtx x) { switch (classify_insn (x)) { case INSN: return "emit_insn"; case CALL_INSN: return "emit_call_insn"; case JUMP_INSN: return "emit_jump_insn"; case UNKNOWN: return NULL; default: gcc_unreachable (); } } /* Return true if we must emit a barrier after pattern X. */ bool needs_barrier_p (rtx x) { return (GET_CODE (x) == SET && GET_CODE (SET_DEST (x)) == PC && GET_CODE (SET_SRC (x)) == LABEL_REF); } #define NS "NULL" #define ZS "'\\0'" #define OPTAB_CL(o, p, c, b, l) { #o, p, #b, ZS, #l, o, c, UNKNOWN, 1 }, #define OPTAB_CX(o, p) { #o, p, NULL, NULL, NULL, o, UNKNOWN, UNKNOWN, 1 }, #define OPTAB_CD(o, p) { #o, p, NS, ZS, NS, o, UNKNOWN, UNKNOWN, 2 }, #define OPTAB_NL(o, p, c, b, s, l) { #o, p, #b, #s, #l, o, c, c, 3 }, #define OPTAB_NC(o, p, c) { #o, p, NS, ZS, NS, o, c, c, 3 }, #define OPTAB_NX(o, p) { #o, p, NULL, NULL, NULL, o, UNKNOWN, UNKNOWN, 3 }, #define OPTAB_VL(o, p, c, b, s, l) { #o, p, #b, #s, #l, o, c, UNKNOWN, 3 }, #define OPTAB_VC(o, p, c) { #o, p, NS, ZS, NS, o, c, UNKNOWN, 3 }, #define OPTAB_VX(o, p) { #o, p, NULL, NULL, NULL, o, UNKNOWN, UNKNOWN, 3 }, #define OPTAB_DC(o, p, c) { #o, p, NS, ZS, NS, o, c, c, 4 }, #define OPTAB_D(o, p) { #o, p, NS, ZS, NS, o, UNKNOWN, UNKNOWN, 4 }, /* An array of all optabs. Note that the same optab can appear more than once, with a different pattern. */ optab_def optabs[] = { { "unknown_optab", NULL, NS, ZS, NS, unknown_optab, UNKNOWN, UNKNOWN, 0 }, #include "optabs.def" }; /* The number of entries in optabs[]. */ unsigned int num_optabs = ARRAY_SIZE (optabs); #undef OPTAB_CL #undef OPTAB_CX #undef OPTAB_CD #undef OPTAB_NL #undef OPTAB_NC #undef OPTAB_NX #undef OPTAB_VL #undef OPTAB_VC #undef OPTAB_VX #undef OPTAB_DC #undef OPTAB_D /* Return true if instruction NAME matches pattern PAT, storing information about the match in P if so. */ static bool match_pattern (optab_pattern *p, const char *name, const char *pat) { bool force_float = false; bool force_int = false; bool force_partial_int = false; bool force_fixed = false; if (pat == NULL) return false; for (; ; ++pat) { if (*pat != '$') { if (*pat != *name++) return false; if (*pat == '\0') return true; continue; } switch (*++pat) { case 'I': force_int = 1; break; case 'P': force_partial_int = 1; break; case 'F': force_float = 1; break; case 'Q': force_fixed = 1; break; case 'a': case 'b': { int i; /* This loop will stop at the first prefix match, so look through the modes in reverse order, in case there are extra CC modes and CC is a prefix of the CC modes (as it should be). */ for (i = (MAX_MACHINE_MODE) - 1; i >= 0; i--) { const char *p, *q; for (p = GET_MODE_NAME (i), q = name; *p; p++, q++) if (TOLOWER (*p) != *q) break; if (*p == 0 && (! force_int || mode_class[i] == MODE_INT || mode_class[i] == MODE_VECTOR_INT) && (! force_partial_int || mode_class[i] == MODE_INT || mode_class[i] == MODE_PARTIAL_INT || mode_class[i] == MODE_VECTOR_INT) && (! force_float || mode_class[i] == MODE_FLOAT || mode_class[i] == MODE_DECIMAL_FLOAT || mode_class[i] == MODE_COMPLEX_FLOAT || mode_class[i] == MODE_VECTOR_FLOAT) && (! force_fixed || mode_class[i] == MODE_FRACT || mode_class[i] == MODE_UFRACT || mode_class[i] == MODE_ACCUM || mode_class[i] == MODE_UACCUM || mode_class[i] == MODE_VECTOR_FRACT || mode_class[i] == MODE_VECTOR_UFRACT || mode_class[i] == MODE_VECTOR_ACCUM || mode_class[i] == MODE_VECTOR_UACCUM)) break; } if (i < 0) return false; name += strlen (GET_MODE_NAME (i)); if (*pat == 'a') p->m1 = i; else p->m2 = i; force_int = false; force_partial_int = false; force_float = false; force_fixed = false; } break; default: gcc_unreachable (); } } } /* Return true if NAME is the name of an optab, describing it in P if so. */ bool find_optab (optab_pattern *p, const char *name) { if (*name == 0 || *name == '*') return false; /* See if NAME matches one of the patterns we have for the optabs we know about. */ for (unsigned int pindex = 0; pindex < ARRAY_SIZE (optabs); pindex++) { p->m1 = p->m2 = 0; if (match_pattern (p, name, optabs[pindex].pattern)) { p->name = name; p->op = optabs[pindex].op; p->sort_num = (p->op << 20) | (p->m2 << 10) | p->m1; return true; } } return false; }