/* Generate code from machine description to recognize rtl as insns. Copyright (C) 1987-2023 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ /* This program is used to produce insn-recog.cc, which contains a function called `recog' plus its subroutines. These functions contain a decision tree that recognizes whether an rtx, the argument given to recog, is a valid instruction. recog returns -1 if the rtx is not valid. If the rtx is valid, recog returns a nonnegative number which is the insn code number for the pattern that matched. This is the same as the order in the machine description of the entry that matched. This number can be used as an index into various insn_* tables, such as insn_template, insn_outfun, and insn_n_operands (found in insn-output.cc). The third argument to recog is an optional pointer to an int. If present, recog will accept a pattern if it matches except for missing CLOBBER expressions at the end. In that case, the value pointed to by the optional pointer will be set to the number of CLOBBERs that need to be added (it should be initialized to zero by the caller). If it is set nonzero, the caller should allocate a PARALLEL of the appropriate size, copy the initial entries, and call add_clobbers (found in insn-emit.cc) to fill in the CLOBBERs. This program also generates the function `split_insns', which returns 0 if the rtl could not be split, or it returns the split rtl as an INSN list. This program also generates the function `peephole2_insns', which returns 0 if the rtl could not be matched. If there was a match, the new rtl is returned in an INSN list, and LAST_INSN will point to the last recognized insn in the old sequence. At a high level, the algorithm used in this file is as follows: 1. Build up a decision tree for each routine, using the following approach to matching an rtx: - First determine the "shape" of the rtx, based on GET_CODE, XVECLEN and XINT. This phase examines SET_SRCs before SET_DESTs since SET_SRCs tend to be more distinctive. It examines other operands in numerical order, since the canonicalization rules prefer putting complex operands of commutative operators first. - Next check modes and predicates. This phase examines all operands in numerical order, even for SETs, since the mode of a SET_DEST is exact while the mode of a SET_SRC can be VOIDmode for constant integers. - Next check match_dups. - Finally check the C condition and (where appropriate) pnum_clobbers. 2. Try to optimize the tree by removing redundant tests, CSEing tests, folding tests together, etc. 3. Look for common subtrees and split them out into "pattern" routines. These common subtrees can be identical or they can differ in mode, code, or integer (usually an UNSPEC or UNSPEC_VOLATILE code). In the latter case the users of the pattern routine pass the appropriate mode, etc., as argument. For example, if two patterns contain: (plus:SI (match_operand:SI 1 "register_operand") (match_operand:SI 2 "register_operand")) we can split the associated matching code out into a subroutine. If a pattern contains: (minus:DI (match_operand:DI 1 "register_operand") (match_operand:DI 2 "register_operand")) then we can consider using the same matching routine for both the plus and minus expressions, passing PLUS and SImode in the former case and MINUS and DImode in the latter case. The main aim of this phase is to reduce the compile time of the insn-recog.cc code and to reduce the amount of object code in insn-recog.o. 4. Split the matching trees into functions, trying to limit the size of each function to a sensible amount. Again, the main aim of this phase is to reduce the compile time of insn-recog.cc. (It doesn't help with the size of insn-recog.o.) 5. Write out C++ code for each function. */ #include "bconfig.h" #define INCLUDE_ALGORITHM #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "errors.h" #include "read-md.h" #include "gensupport.h" #undef GENERATOR_FILE enum true_rtx_doe { #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) TRUE_##ENUM, #include "rtl.def" #undef DEF_RTL_EXPR FIRST_GENERATOR_RTX_CODE }; #define NUM_TRUE_RTX_CODE ((int) FIRST_GENERATOR_RTX_CODE) #define GENERATOR_FILE 1 /* Debugging variables to control which optimizations are performed. Note that disabling merge_states_p leads to very large output. */ static const bool merge_states_p = true; static const bool collapse_optional_decisions_p = true; static const bool cse_tests_p = true; static const bool simplify_tests_p = true; static const bool use_operand_variables_p = true; static const bool use_subroutines_p = true; static const bool use_pattern_routines_p = true; /* Whether to add comments for optional tests that we decided to keep. Can be useful when debugging the generator itself but is noise when debugging the generated code. */ static const bool mark_optional_transitions_p = false; /* Whether pattern routines should calculate positions relative to their rtx parameter rather than use absolute positions. This e.g. allows a pattern routine to be shared between a plain SET and a PARALLEL that includes a SET. In principle it sounds like this should be useful, especially for recog_for_combine, where the plain SET form is generated automatically from a PARALLEL of a single SET and some CLOBBERs. In practice it doesn't seem to help much and leads to slightly bigger object files. */ static const bool relative_patterns_p = false; /* Whether pattern routines should be allowed to test whether pnum_clobbers is null. This requires passing pnum_clobbers around as a parameter. */ static const bool pattern_have_num_clobbers_p = true; /* Whether pattern routines should be allowed to test .md file C conditions. This requires passing insn around as a parameter, in case the C condition refers to it. In practice this tends to lead to bigger object files. */ static const bool pattern_c_test_p = false; /* Whether to require each parameter passed to a pattern routine to be unique. Disabling this check for example allows unary operators with matching modes (like NEG) and unary operators with mismatched modes (like ZERO_EXTEND) to be matched by a single pattern. However, we then often have cases where the same value is passed too many times. */ static const bool force_unique_params_p = true; /* The maximum (approximate) depth of block nesting that an individual routine or subroutine should have. This limit is about keeping the output readable rather than reducing compile time. */ static const unsigned int MAX_DEPTH = 6; /* The minimum number of pseudo-statements that a state must have before we split it out into a subroutine. */ static const unsigned int MIN_NUM_STATEMENTS = 5; /* The number of pseudo-statements a state can have before we consider splitting out substates into subroutines. This limit is about avoiding compile-time problems with very big functions (and also about keeping functions within --param optimization limits, etc.). */ static const unsigned int MAX_NUM_STATEMENTS = 200; /* The minimum number of pseudo-statements that can be used in a pattern routine. */ static const unsigned int MIN_COMBINE_COST = 4; /* The maximum number of arguments that a pattern routine can have. The idea is to prevent one pattern getting a ridiculous number of arguments when it would be more beneficial to have a separate pattern routine instead. */ static const unsigned int MAX_PATTERN_PARAMS = 5; /* The maximum operand number plus one. */ int num_operands; /* Ways of obtaining an rtx to be tested. */ enum position_type { /* PATTERN (peep2_next_insn (ARG)). */ POS_PEEP2_INSN, /* XEXP (BASE, ARG). */ POS_XEXP, /* XVECEXP (BASE, 0, ARG). */ POS_XVECEXP0 }; /* The position of an rtx relative to X0. Each useful position is represented by exactly one instance of this structure. */ struct position { /* The parent rtx. This is the root position for POS_PEEP2_INSNs. */ struct position *base; /* A position with the same BASE and TYPE, but with the next value of ARG. */ struct position *next; /* A list of all POS_XEXP positions that use this one as their base, chained by NEXT fields. The first entry represents XEXP (this, 0), the second represents XEXP (this, 1), and so on. */ struct position *xexps; /* A list of POS_XVECEXP0 positions that use this one as their base, chained by NEXT fields. The first entry represents XVECEXP (this, 0, 0), the second represents XVECEXP (this, 0, 1), and so on. */ struct position *xvecexp0s; /* The type of position. */ enum position_type type; /* The argument to TYPE (shown as ARG in the position_type comments). */ int arg; /* The instruction to which the position belongs. */ unsigned int insn_id; /* The depth of this position relative to the instruction pattern. E.g. if the instruction pattern is a SET, the SET itself has a depth of 0 while the SET_DEST and SET_SRC have depths of 1. */ unsigned int depth; /* A unique identifier for this position. */ unsigned int id; }; enum routine_type { SUBPATTERN, RECOG, SPLIT, PEEPHOLE2 }; /* The root position (x0). */ static struct position root_pos; /* The number of positions created. Also one higher than the maximum position id. */ static unsigned int num_positions = 1; /* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position, since we are given that instruction's pattern as x0. */ static struct position *peep2_insn_pos_list = &root_pos; /* Return a position with the given BASE, TYPE and ARG. NEXT_PTR points to where the unique object that represents the position should be stored. Create the object if it doesn't already exist, otherwise reuse the object that is already there. */ static struct position * next_position (struct position **next_ptr, struct position *base, enum position_type type, int arg) { struct position *pos; pos = *next_ptr; if (!pos) { pos = XCNEW (struct position); pos->type = type; pos->arg = arg; if (type == POS_PEEP2_INSN) { pos->base = 0; pos->insn_id = arg; pos->depth = base->depth; } else { pos->base = base; pos->insn_id = base->insn_id; pos->depth = base->depth + 1; } pos->id = num_positions++; *next_ptr = pos; } return pos; } /* Compare positions POS1 and POS2 lexicographically. */ static int compare_positions (struct position *pos1, struct position *pos2) { int diff; diff = pos1->depth - pos2->depth; if (diff < 0) do pos2 = pos2->base; while (pos1->depth != pos2->depth); else if (diff > 0) do pos1 = pos1->base; while (pos1->depth != pos2->depth); while (pos1 != pos2) { diff = (int) pos1->type - (int) pos2->type; if (diff == 0) diff = pos1->arg - pos2->arg; pos1 = pos1->base; pos2 = pos2->base; } return diff; } /* Return the most deeply-nested position that is common to both POS1 and POS2. If the positions are from different instructions, return the one with the lowest insn_id. */ static struct position * common_position (struct position *pos1, struct position *pos2) { if (pos1->insn_id != pos2->insn_id) return pos1->insn_id < pos2->insn_id ? pos1 : pos2; if (pos1->depth > pos2->depth) std::swap (pos1, pos2); while (pos1->depth != pos2->depth) pos2 = pos2->base; while (pos1 != pos2) { pos1 = pos1->base; pos2 = pos2->base; } return pos1; } /* Search for and return operand N, stop when reaching node STOP. */ static rtx find_operand (rtx pattern, int n, rtx stop) { const char *fmt; RTX_CODE code; int i, j, len; rtx r; if (pattern == stop) return stop; code = GET_CODE (pattern); if ((code == MATCH_SCRATCH || code == MATCH_OPERAND || code == MATCH_OPERATOR || code == MATCH_PARALLEL) && XINT (pattern, 0) == n) return pattern; fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { switch (fmt[i]) { case 'e': case 'u': if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX) return r; break; case 'V': if (! XVEC (pattern, i)) break; /* Fall through. */ case 'E': for (j = 0; j < XVECLEN (pattern, i); j++) if ((r = find_operand (XVECEXP (pattern, i, j), n, stop)) != NULL_RTX) return r; break; case 'r': case 'p': case 'i': case 'w': case '0': case 's': break; default: gcc_unreachable (); } } return NULL; } /* Search for and return operand M, such that it has a matching constraint for operand N. */ static rtx find_matching_operand (rtx pattern, int n) { const char *fmt; RTX_CODE code; int i, j, len; rtx r; code = GET_CODE (pattern); if (code == MATCH_OPERAND && (XSTR (pattern, 2)[0] == '0' + n || (XSTR (pattern, 2)[0] == '%' && XSTR (pattern, 2)[1] == '0' + n))) return pattern; fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { switch (fmt[i]) { case 'e': case 'u': if ((r = find_matching_operand (XEXP (pattern, i), n))) return r; break; case 'V': if (! XVEC (pattern, i)) break; /* Fall through. */ case 'E': for (j = 0; j < XVECLEN (pattern, i); j++) if ((r = find_matching_operand (XVECEXP (pattern, i, j), n))) return r; break; case 'r': case 'p': case 'i': case 'w': case '0': case 's': break; default: gcc_unreachable (); } } return NULL; } /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we don't use the MATCH_OPERAND constraint, only the predicate. This is confusing to folks doing new ports, so help them not make the mistake. */ static bool constraints_supported_in_insn_p (rtx insn) { return !(GET_CODE (insn) == DEFINE_EXPAND || GET_CODE (insn) == DEFINE_SPLIT || GET_CODE (insn) == DEFINE_PEEPHOLE2); } /* Return the name of the predicate matched by MATCH_RTX. */ static const char * predicate_name (rtx match_rtx) { if (GET_CODE (match_rtx) == MATCH_SCRATCH) return "scratch_operand"; else return XSTR (match_rtx, 1); } /* Return true if OPERAND is a MATCH_OPERAND using a special predicate function. */ static bool special_predicate_operand_p (rtx operand) { if (GET_CODE (operand) == MATCH_OPERAND) { const char *pred_name = predicate_name (operand); if (pred_name[0] != 0) { const struct pred_data *pred; pred = lookup_predicate (pred_name); return pred != NULL && pred->special; } } return false; } /* Check for various errors in PATTERN, which is part of INFO. SET is nonnull for a destination, and is the complete set pattern. SET_CODE is '=' for normal sets, and '+' within a context that requires in-out constraints. */ static void validate_pattern (rtx pattern, md_rtx_info *info, rtx set, int set_code) { const char *fmt; RTX_CODE code; size_t i, len; int j; code = GET_CODE (pattern); switch (code) { case MATCH_SCRATCH: { const char constraints0 = XSTR (pattern, 1)[0]; if (!constraints_supported_in_insn_p (info->def)) { if (constraints0) { error_at (info->loc, "constraints not supported in %s", GET_RTX_NAME (GET_CODE (info->def))); } return; } /* If a MATCH_SCRATCH is used in a context requiring an write-only or read/write register, validate that. */ if (set_code == '=' && constraints0 && constraints0 != '=' && constraints0 != '+') { error_at (info->loc, "operand %d missing output reload", XINT (pattern, 0)); } return; } case MATCH_DUP: case MATCH_OP_DUP: case MATCH_PAR_DUP: if (find_operand (info->def, XINT (pattern, 0), pattern) == pattern) error_at (info->loc, "operand %i duplicated before defined", XINT (pattern, 0)); break; case MATCH_OPERAND: case MATCH_OPERATOR: { const char *pred_name = XSTR (pattern, 1); const struct pred_data *pred; const char *c_test; c_test = get_c_test (info->def); if (pred_name[0] != 0) { pred = lookup_predicate (pred_name); if (!pred) error_at (info->loc, "unknown predicate '%s'", pred_name); } else pred = 0; if (code == MATCH_OPERAND) { const char *constraints = XSTR (pattern, 2); const char constraints0 = constraints[0]; if (!constraints_supported_in_insn_p (info->def)) { if (constraints0) { error_at (info->loc, "constraints not supported in %s", GET_RTX_NAME (GET_CODE (info->def))); } } /* A MATCH_OPERAND that is a SET should have an output reload. */ else if (set && constraints0) { if (set_code == '+') { if (constraints0 == '+') ; /* If we've only got an output reload for this operand, we'd better have a matching input operand. */ else if (constraints0 == '=' && find_matching_operand (info->def, XINT (pattern, 0))) ; else error_at (info->loc, "operand %d missing in-out reload", XINT (pattern, 0)); } else if (constraints0 != '=' && constraints0 != '+') error_at (info->loc, "operand %d missing output reload", XINT (pattern, 0)); } /* For matching constraint in MATCH_OPERAND, the digit must be a smaller number than the number of the operand that uses it in the constraint. */ while (1) { while (constraints[0] && (constraints[0] == ' ' || constraints[0] == ',')) constraints++; if (!constraints[0]) break; if (constraints[0] >= '0' && constraints[0] <= '9') { int val; sscanf (constraints, "%d", &val); if (val >= XINT (pattern, 0)) error_at (info->loc, "constraint digit %d is not" " smaller than operand %d", val, XINT (pattern, 0)); } while (constraints[0] && constraints[0] != ',') constraints++; } } /* Allowing non-lvalues in destinations -- particularly CONST_INT -- while not likely to occur at runtime, results in less efficient code from insn-recog.cc. */ if (set && pred && pred->allows_non_lvalue) error_at (info->loc, "destination operand %d allows non-lvalue", XINT (pattern, 0)); /* A modeless MATCH_OPERAND can be handy when we can check for multiple modes in the c_test. In most other cases, it is a mistake. Only DEFINE_INSN is eligible, since SPLIT and PEEP2 can FAIL within the output pattern. Exclude special predicates, which check the mode themselves. Also exclude predicates that allow only constants. Exclude the SET_DEST of a call instruction, as that is a common idiom. */ if (GET_MODE (pattern) == VOIDmode && code == MATCH_OPERAND && GET_CODE (info->def) == DEFINE_INSN && pred && !pred->special && pred->allows_non_const && strstr (c_test, "operands") == NULL && ! (set && GET_CODE (set) == SET && GET_CODE (SET_SRC (set)) == CALL)) message_at (info->loc, "warning: operand %d missing mode?", XINT (pattern, 0)); return; } case SET: { machine_mode dmode, smode; rtx dest, src; dest = SET_DEST (pattern); src = SET_SRC (pattern); /* STRICT_LOW_PART is a wrapper. Its argument is the real destination, and it's mode should match the source. */ if (GET_CODE (dest) == STRICT_LOW_PART) dest = XEXP (dest, 0); /* Find the referent for a DUP. */ if (GET_CODE (dest) == MATCH_DUP || GET_CODE (dest) == MATCH_OP_DUP || GET_CODE (dest) == MATCH_PAR_DUP) dest = find_operand (info->def, XINT (dest, 0), NULL); if (GET_CODE (src) == MATCH_DUP || GET_CODE (src) == MATCH_OP_DUP || GET_CODE (src) == MATCH_PAR_DUP) src = find_operand (info->def, XINT (src, 0), NULL); dmode = GET_MODE (dest); smode = GET_MODE (src); /* Mode checking is not performed for special predicates. */ if (special_predicate_operand_p (src) || special_predicate_operand_p (dest)) ; /* The operands of a SET must have the same mode unless one is VOIDmode. */ else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode) error_at (info->loc, "mode mismatch in set: %smode vs %smode", GET_MODE_NAME (dmode), GET_MODE_NAME (smode)); /* If only one of the operands is VOIDmode, and PC is not involved, it's probably a mistake. */ else if (dmode != smode && GET_CODE (dest) != PC && GET_CODE (src) != PC && !CONST_INT_P (src) && !CONST_WIDE_INT_P (src) && GET_CODE (src) != CALL) { const char *which; which = (dmode == VOIDmode ? "destination" : "source"); message_at (info->loc, "warning: %s missing a mode?", which); } if (dest != SET_DEST (pattern)) validate_pattern (dest, info, pattern, '='); validate_pattern (SET_DEST (pattern), info, pattern, '='); validate_pattern (SET_SRC (pattern), info, NULL_RTX, 0); return; } case CLOBBER: validate_pattern (SET_DEST (pattern), info, pattern, '='); return; case ZERO_EXTRACT: validate_pattern (XEXP (pattern, 0), info, set, set ? '+' : 0); validate_pattern (XEXP (pattern, 1), info, NULL_RTX, 0); validate_pattern (XEXP (pattern, 2), info, NULL_RTX, 0); return; case STRICT_LOW_PART: validate_pattern (XEXP (pattern, 0), info, set, set ? '+' : 0); return; case LABEL_REF: if (GET_MODE (XEXP (pattern, 0)) != VOIDmode) error_at (info->loc, "operand to label_ref %smode not VOIDmode", GET_MODE_NAME (GET_MODE (XEXP (pattern, 0)))); break; case VEC_SELECT: if (GET_MODE (pattern) != VOIDmode) { machine_mode mode = GET_MODE (pattern); machine_mode imode = GET_MODE (XEXP (pattern, 0)); machine_mode emode = VECTOR_MODE_P (mode) ? GET_MODE_INNER (mode) : mode; if (GET_CODE (XEXP (pattern, 1)) == PARALLEL) { int expected = 1; unsigned int nelems; if (VECTOR_MODE_P (mode) && !GET_MODE_NUNITS (mode).is_constant (&expected)) error_at (info->loc, "vec_select with variable-sized mode %s", GET_MODE_NAME (mode)); else if (XVECLEN (XEXP (pattern, 1), 0) != expected) error_at (info->loc, "vec_select parallel with %d elements, expected %d", XVECLEN (XEXP (pattern, 1), 0), expected); else if (VECTOR_MODE_P (imode) && GET_MODE_NUNITS (imode).is_constant (&nelems)) { int i; for (i = 0; i < expected; ++i) if (CONST_INT_P (XVECEXP (XEXP (pattern, 1), 0, i)) && (UINTVAL (XVECEXP (XEXP (pattern, 1), 0, i)) >= nelems)) error_at (info->loc, "out of bounds selector %u in vec_select, " "expected at most %u", (unsigned) UINTVAL (XVECEXP (XEXP (pattern, 1), 0, i)), nelems - 1); } } if (imode != VOIDmode && !VECTOR_MODE_P (imode)) error_at (info->loc, "%smode of first vec_select operand is not a " "vector mode", GET_MODE_NAME (imode)); else if (imode != VOIDmode && GET_MODE_INNER (imode) != emode) error_at (info->loc, "element mode mismatch between vec_select " "%smode and its operand %smode", GET_MODE_NAME (emode), GET_MODE_NAME (GET_MODE_INNER (imode))); } break; default: break; } fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { switch (fmt[i]) { case 'e': case 'u': validate_pattern (XEXP (pattern, i), info, NULL_RTX, 0); break; case 'E': for (j = 0; j < XVECLEN (pattern, i); j++) validate_pattern (XVECEXP (pattern, i, j), info, NULL_RTX, 0); break; case 'r': case 'p': case 'i': case 'w': case '0': case 's': break; default: gcc_unreachable (); } } } /* Simple list structure for items of type T, for use when being part of a list is an inherent property of T. T must have members equivalent to "T *prev, *next;" and a function "void set_parent (list_head <T> *)" to set the parent list. */ template <typename T> class list_head { public: /* A range of linked items. */ class range { public: range (T *); range (T *, T *); T *start, *end; void set_parent (list_head *); }; list_head (); range release (); void push_back (range); range remove (range); void replace (range, range); T *singleton () const; T *first, *last; }; /* Create a range [START_IN, START_IN]. */ template <typename T> list_head <T>::range::range (T *start_in) : start (start_in), end (start_in) {} /* Create a range [START_IN, END_IN], linked by next and prev fields. */ template <typename T> list_head <T>::range::range (T *start_in, T *end_in) : start (start_in), end (end_in) {} template <typename T> void list_head <T>::range::set_parent (list_head <T> *owner) { for (T *item = start; item != end; item = item->next) item->set_parent (owner); end->set_parent (owner); } template <typename T> list_head <T>::list_head () : first (0), last (0) {} /* Add R to the end of the list. */ template <typename T> void list_head <T>::push_back (range r) { if (last) last->next = r.start; else first = r.start; r.start->prev = last; last = r.end; r.set_parent (this); } /* Remove R from the list. R remains valid and can be inserted into other lists. */ template <typename T> typename list_head <T>::range list_head <T>::remove (range r) { if (r.start->prev) r.start->prev->next = r.end->next; else first = r.end->next; if (r.end->next) r.end->next->prev = r.start->prev; else last = r.start->prev; r.start->prev = 0; r.end->next = 0; r.set_parent (0); return r; } /* Replace OLDR with NEWR. OLDR remains valid and can be inserted into other lists. */ template <typename T> void list_head <T>::replace (range oldr, range newr) { newr.start->prev = oldr.start->prev; newr.end->next = oldr.end->next; oldr.start->prev = 0; oldr.end->next = 0; oldr.set_parent (0); if (newr.start->prev) newr.start->prev->next = newr.start; else first = newr.start; if (newr.end->next) newr.end->next->prev = newr.end; else last = newr.end; newr.set_parent (this); } /* Empty the list and return the previous contents as a range that can be inserted into other lists. */ template <typename T> typename list_head <T>::range list_head <T>::release () { range r (first, last); first = 0; last = 0; r.set_parent (0); return r; } /* If the list contains a single item, return that item, otherwise return null. */ template <typename T> T * list_head <T>::singleton () const { return first == last ? first : 0; } class state; /* Describes a possible successful return from a routine. */ struct acceptance_type { /* The type of routine we're returning from. */ routine_type type : 16; /* True if this structure only really represents a partial match, and if we must call a subroutine of type TYPE to complete the match. In this case we'll call the subroutine and, if it succeeds, return whatever the subroutine returned. False if this structure presents a full match. */ unsigned int partial_p : 1; union { /* If PARTIAL_P, this is the number of the subroutine to call. */ int subroutine_id; /* Valid if !PARTIAL_P. */ struct { /* The identifier of the matching pattern. For SUBPATTERNs this value belongs to an ad-hoc routine-specific enum. For the others it's the number of an .md file pattern. */ int code; union { /* For RECOG, the number of clobbers that must be added to the pattern in order for it to match CODE. */ int num_clobbers; /* For PEEPHOLE2, the number of additional instructions that were included in the optimization. */ int match_len; } u; } full; } u; }; bool operator == (const acceptance_type &a, const acceptance_type &b) { if (a.partial_p != b.partial_p) return false; if (a.partial_p) return a.u.subroutine_id == b.u.subroutine_id; else return a.u.full.code == b.u.full.code; } bool operator != (const acceptance_type &a, const acceptance_type &b) { return !operator == (a, b); } /* Represents a parameter to a pattern routine. */ class parameter { public: /* The C type of parameter. */ enum type_enum { /* Represents an invalid parameter. */ UNSET, /* A machine_mode parameter. */ MODE, /* An rtx_code parameter. */ CODE, /* An int parameter. */ INT, /* An unsigned int parameter. */ UINT, /* A HOST_WIDE_INT parameter. */ WIDE_INT }; parameter (); parameter (type_enum, bool, uint64_t); /* The type of the parameter. */ type_enum type; /* True if the value passed is variable, false if it is constant. */ bool is_param; /* If IS_PARAM, this is the number of the variable passed, for an "i%d" format string. If !IS_PARAM, this is the constant value passed. */ uint64_t value; }; parameter::parameter () : type (UNSET), is_param (false), value (0) {} parameter::parameter (type_enum type_in, bool is_param_in, uint64_t value_in) : type (type_in), is_param (is_param_in), value (value_in) {} bool operator == (const parameter ¶m1, const parameter ¶m2) { return (param1.type == param2.type && param1.is_param == param2.is_param && param1.value == param2.value); } bool operator != (const parameter ¶m1, const parameter ¶m2) { return !operator == (param1, param2); } /* Represents a routine that matches a partial rtx pattern, returning an ad-hoc enum value on success and -1 on failure. The routine can be used by any subroutine type. The match can be parameterized by things like mode, code and UNSPEC number. */ class pattern_routine { public: /* The state that implements the pattern. */ state *s; /* The deepest root position from which S can access all the rtxes it needs. This is NULL if the pattern doesn't need an rtx input, usually because all matching is done on operands[] instead. */ position *pos; /* A unique identifier for the routine. */ unsigned int pattern_id; /* True if the routine takes pnum_clobbers as argument. */ bool pnum_clobbers_p; /* True if the routine takes the enclosing instruction as argument. */ bool insn_p; /* The types of the other parameters to the routine, if any. */ auto_vec <parameter::type_enum, MAX_PATTERN_PARAMS> param_types; }; /* All defined patterns. */ static vec <pattern_routine *> patterns; /* Represents one use of a pattern routine. */ class pattern_use { public: /* The pattern routine to use. */ pattern_routine *routine; /* The values to pass as parameters. This vector has the same length as ROUTINE->PARAM_TYPES. */ auto_vec <parameter, MAX_PATTERN_PARAMS> params; }; /* Represents a test performed by a decision. */ class rtx_test { public: rtx_test (); /* The types of test that can be performed. Most of them take as input an rtx X. Some also take as input a transition label LABEL; the others are booleans for which the transition label is always "true". The order of the enum isn't important. */ enum kind_enum { /* Check GET_CODE (X) == LABEL. */ CODE, /* Check GET_MODE (X) == LABEL. */ MODE, /* Check REGNO (X) == LABEL. */ REGNO_FIELD, /* Check known_eq (SUBREG_BYTE (X), LABEL). */ SUBREG_FIELD, /* Check XINT (X, u.opno) == LABEL. */ INT_FIELD, /* Check XWINT (X, u.opno) == LABEL. */ WIDE_INT_FIELD, /* Check XVECLEN (X, 0) == LABEL. */ VECLEN, /* Check peep2_current_count >= u.min_len. */ PEEP2_COUNT, /* Check XVECLEN (X, 0) >= u.min_len. */ VECLEN_GE, /* Check whether X is a cached const_int with value u.integer. */ SAVED_CONST_INT, /* Check u.predicate.data (X, u.predicate.mode). */ PREDICATE, /* Check rtx_equal_p (X, operands[u.opno]). */ DUPLICATE, /* Check whether X matches pattern u.pattern. */ PATTERN, /* Check whether pnum_clobbers is nonnull (RECOG only). */ HAVE_NUM_CLOBBERS, /* Check whether general C test u.string holds. In general the condition needs access to "insn" and the full operand list. */ C_TEST, /* Execute operands[u.opno] = X. (Always succeeds.) */ SET_OP, /* Accept u.acceptance. Always succeeds for SUBPATTERN, RECOG and SPLIT. May fail for PEEPHOLE2 if the define_peephole2 C code executes FAIL. */ ACCEPT }; /* The position of rtx X in the above description, relative to the incoming instruction "insn". The position is null if the test doesn't take an X as input. */ position *pos; /* Which element of operands[] already contains POS, or -1 if no element is known to hold POS. */ int pos_operand; /* The type of test and its parameters, as described above. */ kind_enum kind; union { int opno; int min_len; struct { bool is_param; int value; } integer; struct { const struct pred_data *data; /* True if the mode is taken from a machine_mode parameter to the routine rather than a constant machine_mode. If true, MODE is the number of the parameter (for an "i%d" format string), otherwise it is the mode itself. */ bool mode_is_param; unsigned int mode; } predicate; pattern_use *pattern; const char *string; acceptance_type acceptance; } u; static rtx_test code (position *); static rtx_test mode (position *); static rtx_test regno_field (position *); static rtx_test subreg_field (position *); static rtx_test int_field (position *, int); static rtx_test wide_int_field (position *, int); static rtx_test veclen (position *); static rtx_test peep2_count (int); static rtx_test veclen_ge (position *, int); static rtx_test predicate (position *, const pred_data *, machine_mode); static rtx_test duplicate (position *, int); static rtx_test pattern (position *, pattern_use *); static rtx_test have_num_clobbers (); static rtx_test c_test (const char *); static rtx_test set_op (position *, int); static rtx_test accept (const acceptance_type &); bool terminal_p () const; bool single_outcome_p () const; private: rtx_test (position *, kind_enum); }; rtx_test::rtx_test () {} rtx_test::rtx_test (position *pos_in, kind_enum kind_in) : pos (pos_in), pos_operand (-1), kind (kind_in) {} rtx_test rtx_test::code (position *pos) { return rtx_test (pos, rtx_test::CODE); } rtx_test rtx_test::mode (position *pos) { return rtx_test (pos, rtx_test::MODE); } rtx_test rtx_test::regno_field (position *pos) { rtx_test res (pos, rtx_test::REGNO_FIELD); return res; } rtx_test rtx_test::subreg_field (position *pos) { rtx_test res (pos, rtx_test::SUBREG_FIELD); return res; } rtx_test rtx_test::int_field (position *pos, int opno) { rtx_test res (pos, rtx_test::INT_FIELD); res.u.opno = opno; return res; } rtx_test rtx_test::wide_int_field (position *pos, int opno) { rtx_test res (pos, rtx_test::WIDE_INT_FIELD); res.u.opno = opno; return res; } rtx_test rtx_test::veclen (position *pos) { return rtx_test (pos, rtx_test::VECLEN); } rtx_test rtx_test::peep2_count (int min_len) { rtx_test res (0, rtx_test::PEEP2_COUNT); res.u.min_len = min_len; return res; } rtx_test rtx_test::veclen_ge (position *pos, int min_len) { rtx_test res (pos, rtx_test::VECLEN_GE); res.u.min_len = min_len; return res; } rtx_test rtx_test::predicate (position *pos, const struct pred_data *data, machine_mode mode) { rtx_test res (pos, rtx_test::PREDICATE); res.u.predicate.data = data; res.u.predicate.mode_is_param = false; res.u.predicate.mode = mode; return res; } rtx_test rtx_test::duplicate (position *pos, int opno) { rtx_test res (pos, rtx_test::DUPLICATE); res.u.opno = opno; return res; } rtx_test rtx_test::pattern (position *pos, pattern_use *pattern) { rtx_test res (pos, rtx_test::PATTERN); res.u.pattern = pattern; return res; } rtx_test rtx_test::have_num_clobbers () { return rtx_test (0, rtx_test::HAVE_NUM_CLOBBERS); } rtx_test rtx_test::c_test (const char *string) { rtx_test res (0, rtx_test::C_TEST); res.u.string = string; return res; } rtx_test rtx_test::set_op (position *pos, int opno) { rtx_test res (pos, rtx_test::SET_OP); res.u.opno = opno; return res; } rtx_test rtx_test::accept (const acceptance_type &acceptance) { rtx_test res (0, rtx_test::ACCEPT); res.u.acceptance = acceptance; return res; } /* Return true if the test represents an unconditionally successful match. */ bool rtx_test::terminal_p () const { return kind == rtx_test::ACCEPT && u.acceptance.type != PEEPHOLE2; } /* Return true if the test is a boolean that is always true. */ bool rtx_test::single_outcome_p () const { return terminal_p () || kind == rtx_test::SET_OP; } bool operator == (const rtx_test &a, const rtx_test &b) { if (a.pos != b.pos || a.kind != b.kind) return false; switch (a.kind) { case rtx_test::CODE: case rtx_test::MODE: case rtx_test::REGNO_FIELD: case rtx_test::SUBREG_FIELD: case rtx_test::VECLEN: case rtx_test::HAVE_NUM_CLOBBERS: return true; case rtx_test::PEEP2_COUNT: case rtx_test::VECLEN_GE: return a.u.min_len == b.u.min_len; case rtx_test::INT_FIELD: case rtx_test::WIDE_INT_FIELD: case rtx_test::DUPLICATE: case rtx_test::SET_OP: return a.u.opno == b.u.opno; case rtx_test::SAVED_CONST_INT: return (a.u.integer.is_param == b.u.integer.is_param && a.u.integer.value == b.u.integer.value); case rtx_test::PREDICATE: return (a.u.predicate.data == b.u.predicate.data && a.u.predicate.mode_is_param == b.u.predicate.mode_is_param && a.u.predicate.mode == b.u.predicate.mode); case rtx_test::PATTERN: return (a.u.pattern->routine == b.u.pattern->routine && a.u.pattern->params == b.u.pattern->params); case rtx_test::C_TEST: return strcmp (a.u.string, b.u.string) == 0; case rtx_test::ACCEPT: return a.u.acceptance == b.u.acceptance; } gcc_unreachable (); } bool operator != (const rtx_test &a, const rtx_test &b) { return !operator == (a, b); } /* A simple set of transition labels. Most transitions have a singleton label, so try to make that case as efficient as possible. */ class int_set : public auto_vec <uint64_t, 1> { public: typedef uint64_t *iterator; int_set (); int_set (uint64_t); int_set (const int_set &); int_set &operator = (const int_set &); iterator begin (); iterator end (); }; int_set::int_set () : auto_vec<uint64_t, 1> () {} int_set::int_set (uint64_t label) : auto_vec<uint64_t, 1> () { safe_push (label); } int_set::int_set (const int_set &other) : auto_vec<uint64_t, 1> () { safe_splice (other); } int_set & int_set::operator = (const int_set &other) { truncate (0); safe_splice (other); return *this; } int_set::iterator int_set::begin () { return address (); } int_set::iterator int_set::end () { return address () + length (); } bool operator == (const int_set &a, const int_set &b) { if (a.length () != b.length ()) return false; for (unsigned int i = 0; i < a.length (); ++i) if (a[i] != b[i]) return false; return true; } bool operator != (const int_set &a, const int_set &b) { return !operator == (a, b); } class decision; /* Represents a transition between states, dependent on the result of a test T. */ class transition { public: transition (const int_set &, state *, bool); void set_parent (list_head <transition> *); /* Links to other transitions for T. Always null for boolean tests. */ transition *prev, *next; /* The transition should be taken when T has one of these values. E.g. for rtx_test::CODE this is a set of codes, while for booleans like rtx_test::PREDICATE it is always a singleton "true". The labels are sorted in ascending order. */ int_set labels; /* The source decision. */ decision *from; /* The target state. */ state *to; /* True if TO would function correctly even if TEST wasn't performed. E.g. it isn't necessary to check whether GET_MODE (x1) is SImode before calling register_operand (x1, SImode), since register_operand performs its own mode check. However, checking GET_MODE can be a cheap way of disambiguating SImode and DImode register operands. */ bool optional; /* True if LABELS contains parameter numbers rather than constants. E.g. if this is true for a rtx_test::CODE, the label is the number of an rtx_code parameter rather than an rtx_code itself. LABELS is always a singleton when this variable is true. */ bool is_param; }; /* Represents a test and the action that should be taken on the result. If a transition exists for the test outcome, the machine switches to the transition's target state. If no suitable transition exists, the machine either falls through to the next decision or, if there are no more decisions to try, fails the match. */ class decision : public list_head <transition> { public: decision (const rtx_test &); void set_parent (list_head <decision> *s); bool if_statement_p (uint64_t * = 0) const; /* The state to which this decision belongs. */ state *s; /* Links to other decisions in the same state. */ decision *prev, *next; /* The test to perform. */ rtx_test test; }; /* Represents one machine state. For each state the machine tries a list of decisions, in order, and acts on the first match. It fails without further backtracking if no decisions match. */ class state : public list_head <decision> { public: void set_parent (list_head <state> *) {} }; transition::transition (const int_set &labels_in, state *to_in, bool optional_in) : prev (0), next (0), labels (labels_in), from (0), to (to_in), optional (optional_in), is_param (false) {} /* Set the source decision of the transition. */ void transition::set_parent (list_head <transition> *from_in) { from = static_cast <decision *> (from_in); } decision::decision (const rtx_test &test_in) : prev (0), next (0), test (test_in) {} /* Set the state to which this decision belongs. */ void decision::set_parent (list_head <decision> *s_in) { s = static_cast <state *> (s_in); } /* Return true if the decision has a single transition with a single label. If so, return the label in *LABEL if nonnull. */ inline bool decision::if_statement_p (uint64_t *label) const { if (singleton () && first->labels.length () == 1) { if (label) *label = first->labels[0]; return true; } return false; } /* Add to FROM a decision that performs TEST and has a single transition TRANS. */ static void add_decision (state *from, const rtx_test &test, transition *trans) { decision *d = new decision (test); from->push_back (d); d->push_back (trans); } /* Add a transition from FROM to a new, empty state that is taken when TEST == LABELS. OPTIONAL says whether the new transition should be optional. Return the new state. */ static state * add_decision (state *from, const rtx_test &test, int_set labels, bool optional) { state *to = new state; add_decision (from, test, new transition (labels, to, optional)); return to; } /* Insert a decision before decisions R to make them dependent on TEST == LABELS. OPTIONAL says whether the new transition should be optional. */ static decision * insert_decision_before (state::range r, const rtx_test &test, const int_set &labels, bool optional) { decision *newd = new decision (test); state *news = new state; newd->push_back (new transition (labels, news, optional)); r.start->s->replace (r, newd); news->push_back (r); return newd; } /* Remove any optional transitions from S that turned out not to be useful. */ static void collapse_optional_decisions (state *s) { decision *d = s->first; while (d) { decision *next = d->next; for (transition *trans = d->first; trans; trans = trans->next) collapse_optional_decisions (trans->to); /* A decision with a single optional transition doesn't help partition the potential matches and so is unlikely to be worthwhile. In particular, if the decision that performs the test is the last in the state, the best it could do is reject an invalid pattern slightly earlier. If instead the decision is not the last in the state, the condition it tests could hold even for the later decisions in the state. The best it can do is save work in some cases where only the later decisions can succeed. In both cases the optional transition would add extra work to successful matches when the tested condition holds. */ if (transition *trans = d->singleton ()) if (trans->optional) s->replace (d, trans->to->release ()); d = next; } } /* Try to squash several separate tests into simpler ones. */ static void simplify_tests (state *s) { for (decision *d = s->first; d; d = d->next) { uint64_t label; /* Convert checks for GET_CODE (x) == CONST_INT and XWINT (x, 0) == N into checks for const_int_rtx[N'], if N is suitably small. */ if (d->test.kind == rtx_test::CODE && d->if_statement_p (&label) && label == CONST_INT) if (decision *second = d->first->to->singleton ()) if (d->test.pos == second->test.pos && second->test.kind == rtx_test::WIDE_INT_FIELD && second->test.u.opno == 0 && second->if_statement_p (&label) && IN_RANGE (int64_t (label), -MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT)) { d->test.kind = rtx_test::SAVED_CONST_INT; d->test.u.integer.is_param = false; d->test.u.integer.value = label; d->replace (d->first, second->release ()); d->first->labels[0] = true; } /* If we have a CODE test followed by a PREDICATE test, rely on the predicate to test the code. This case exists for match_operators. We initially treat the CODE test for a match_operator as non-optional so that we can safely move down to its operands. It may turn out that all paths that reach that code test require the same predicate to be true. cse_tests will then put the predicate test in series with the code test. */ if (d->test.kind == rtx_test::CODE) if (transition *trans = d->singleton ()) { state *s = trans->to; while (decision *d2 = s->singleton ()) { if (d->test.pos != d2->test.pos) break; transition *trans2 = d2->singleton (); if (!trans2) break; if (d2->test.kind == rtx_test::PREDICATE) { d->test = d2->test; trans->labels = int_set (true); s->replace (d2, trans2->to->release ()); break; } s = trans2->to; } } for (transition *trans = d->first; trans; trans = trans->next) simplify_tests (trans->to); } } /* Return true if all successful returns passing through D require the condition tested by COMMON to be true. When returning true, add all transitions like COMMON in D to WHERE. WHERE may contain a partial result on failure. */ static bool common_test_p (decision *d, transition *common, vec <transition *> *where) { if (d->test.kind == rtx_test::ACCEPT) /* We found a successful return that didn't require COMMON. */ return false; if (d->test == common->from->test) { transition *trans = d->singleton (); if (!trans || trans->optional != common->optional || trans->labels != common->labels) return false; where->safe_push (trans); return true; } for (transition *trans = d->first; trans; trans = trans->next) for (decision *subd = trans->to->first; subd; subd = subd->next) if (!common_test_p (subd, common, where)) return false; return true; } /* Indicates that we have tested GET_CODE (X) for a particular rtx X. */ const unsigned char TESTED_CODE = 1; /* Indicates that we have tested XVECLEN (X, 0) for a particular rtx X. */ const unsigned char TESTED_VECLEN = 2; /* Represents a set of conditions that are known to hold. */ class known_conditions { public: /* A mask of TESTED_ values for each position, indexed by the position's id field. */ auto_vec <unsigned char> position_tests; /* Index N says whether operands[N] has been set. */ auto_vec <bool> set_operands; /* A guranteed lower bound on the value of peep2_current_count. */ int peep2_count; }; /* Return true if TEST can safely be performed at D, where the conditions in KC hold. TEST is known to occur along the first path from D (i.e. always following the first transition of the first decision). Any intervening tests can be used as negative proof that hoisting isn't safe, but only KC can be used as positive proof. */ static bool safe_to_hoist_p (decision *d, const rtx_test &test, known_conditions *kc) { switch (test.kind) { case rtx_test::C_TEST: /* In general, C tests require everything else to have been verified and all operands to have been set up. */ return false; case rtx_test::ACCEPT: /* Don't accept something before all conditions have been tested. */ return false; case rtx_test::PREDICATE: /* Don't move a predicate over a test for VECLEN_GE, since the predicate used in a match_parallel can legitimately expect the length to be checked first. */ for (decision *subd = d; subd->test != test; subd = subd->first->to->first) if (subd->test.pos == test.pos && subd->test.kind == rtx_test::VECLEN_GE) return false; goto any_rtx; case rtx_test::DUPLICATE: /* Don't test for a match_dup until the associated operand has been set. */ if (!kc->set_operands[test.u.opno]) return false; goto any_rtx; case rtx_test::CODE: case rtx_test::MODE: case rtx_test::SAVED_CONST_INT: case rtx_test::SET_OP: any_rtx: /* Check whether it is safe to access the rtx under test. */ switch (test.pos->type) { case POS_PEEP2_INSN: return test.pos->arg < kc->peep2_count; case POS_XEXP: return kc->position_tests[test.pos->base->id] & TESTED_CODE; case POS_XVECEXP0: return kc->position_tests[test.pos->base->id] & TESTED_VECLEN; } gcc_unreachable (); case rtx_test::REGNO_FIELD: case rtx_test::SUBREG_FIELD: case rtx_test::INT_FIELD: case rtx_test::WIDE_INT_FIELD: case rtx_test::VECLEN: case rtx_test::VECLEN_GE: /* These tests access a specific part of an rtx, so are only safe once we know what the rtx is. */ return kc->position_tests[test.pos->id] & TESTED_CODE; case rtx_test::PEEP2_COUNT: case rtx_test::HAVE_NUM_CLOBBERS: /* These tests can be performed anywhere. */ return true; case rtx_test::PATTERN: gcc_unreachable (); } gcc_unreachable (); } /* Look for a transition that is taken by all successful returns from a range of decisions starting at OUTER and that would be better performed by OUTER's state instead. On success, store all instances of that transition in WHERE and return the last decision in the range. The range could just be OUTER, or it could include later decisions as well. WITH_POSITION_P is true if only tests with position POS should be tried, false if any test should be tried. WORTHWHILE_SINGLE_P is true if the result is useful even when the range contains just a single decision with a single transition. KC are the conditions that are known to hold at OUTER. */ static decision * find_common_test (decision *outer, bool with_position_p, position *pos, bool worthwhile_single_p, known_conditions *kc, vec <transition *> *where) { /* After this, WORTHWHILE_SINGLE_P indicates whether a range that contains just a single decision is useful, regardless of the number of transitions it has. */ if (!outer->singleton ()) worthwhile_single_p = true; /* Quick exit if we don't have enough decisions to form a worthwhile range. */ if (!worthwhile_single_p && !outer->next) return 0; /* Follow the first chain down, as one example of a path that needs to contain the common test. */ for (decision *d = outer; d; d = d->first->to->first) { transition *trans = d->singleton (); if (trans && (!with_position_p || d->test.pos == pos) && safe_to_hoist_p (outer, d->test, kc)) { if (common_test_p (outer, trans, where)) { if (!outer->next) /* We checked above whether the move is worthwhile. */ return outer; /* See how many decisions in OUTER's chain could reuse the same test. */ decision *outer_end = outer; do { unsigned int length = where->length (); if (!common_test_p (outer_end->next, trans, where)) { where->truncate (length); break; } outer_end = outer_end->next; } while (outer_end->next); /* It is worth moving TRANS if it can be shared by more than one decision. */ if (outer_end != outer || worthwhile_single_p) return outer_end; } where->truncate (0); } } return 0; } /* Try to promote common subtests in S to a single, shared decision. Also try to bunch tests for the same position together. POS is the position of the rtx tested before reaching S. KC are the conditions that are known to hold on entry to S. */ static void cse_tests (position *pos, state *s, known_conditions *kc) { for (decision *d = s->first; d; d = d->next) { auto_vec <transition *, 16> where; if (d->test.pos) { /* Try to find conditions that don't depend on a particular rtx, such as pnum_clobbers != NULL or peep2_current_count >= X. It's usually better to check these conditions as soon as possible, so the change is worthwhile even if there is only one copy of the test. */ decision *endd = find_common_test (d, true, 0, true, kc, &where); if (!endd && d->test.pos != pos) /* Try to find other conditions related to position POS before moving to the new position. Again, this is worthwhile even if there is only one copy of the test, since it means that fewer position variables are live at a given time. */ endd = find_common_test (d, true, pos, true, kc, &where); if (!endd) /* Try to find any condition that is used more than once. */ endd = find_common_test (d, false, 0, false, kc, &where); if (endd) { transition *common = where[0]; /* Replace [D, ENDD] with a test like COMMON. We'll recurse on the common test and see the original D again next time. */ d = insert_decision_before (state::range (d, endd), common->from->test, common->labels, common->optional); /* Remove the old tests. */ while (!where.is_empty ()) { transition *trans = where.pop (); trans->from->s->replace (trans->from, trans->to->release ()); } } } /* Make sure that safe_to_hoist_p isn't being overly conservative. It should realize that D's test is safe in the current environment. */ gcc_assert (d->test.kind == rtx_test::C_TEST || d->test.kind == rtx_test::ACCEPT || safe_to_hoist_p (d, d->test, kc)); /* D won't be changed any further by the current optimization. Recurse with the state temporarily updated to include D. */ int prev = 0; switch (d->test.kind) { case rtx_test::CODE: prev = kc->position_tests[d->test.pos->id]; kc->position_tests[d->test.pos->id] |= TESTED_CODE; break; case rtx_test::VECLEN: case rtx_test::VECLEN_GE: prev = kc->position_tests[d->test.pos->id]; kc->position_tests[d->test.pos->id] |= TESTED_VECLEN; break; case rtx_test::SET_OP: prev = kc->set_operands[d->test.u.opno]; gcc_assert (!prev); kc->set_operands[d->test.u.opno] = true; break; case rtx_test::PEEP2_COUNT: prev = kc->peep2_count; kc->peep2_count = MAX (prev, d->test.u.min_len); break; default: break; } for (transition *trans = d->first; trans; trans = trans->next) cse_tests (d->test.pos ? d->test.pos : pos, trans->to, kc); switch (d->test.kind) { case rtx_test::CODE: case rtx_test::VECLEN: case rtx_test::VECLEN_GE: kc->position_tests[d->test.pos->id] = prev; break; case rtx_test::SET_OP: kc->set_operands[d->test.u.opno] = prev; break; case rtx_test::PEEP2_COUNT: kc->peep2_count = prev; break; default: break; } } } /* Return the type of value that can be used to parameterize test KIND, or parameter::UNSET if none. */ parameter::type_enum transition_parameter_type (rtx_test::kind_enum kind) { switch (kind) { case rtx_test::CODE: return parameter::CODE; case rtx_test::MODE: return parameter::MODE; case rtx_test::REGNO_FIELD: case rtx_test::SUBREG_FIELD: return parameter::UINT; case rtx_test::INT_FIELD: case rtx_test::VECLEN: case rtx_test::PATTERN: return parameter::INT; case rtx_test::WIDE_INT_FIELD: return parameter::WIDE_INT; case rtx_test::PEEP2_COUNT: case rtx_test::VECLEN_GE: case rtx_test::SAVED_CONST_INT: case rtx_test::PREDICATE: case rtx_test::DUPLICATE: case rtx_test::HAVE_NUM_CLOBBERS: case rtx_test::C_TEST: case rtx_test::SET_OP: case rtx_test::ACCEPT: return parameter::UNSET; } gcc_unreachable (); } /* Initialize the pos_operand fields of each state reachable from S. If OPERAND_POS[ID] >= 0, the position with id ID is stored in operands[OPERAND_POS[ID]] on entry to S. */ static void find_operand_positions (state *s, vec <int> &operand_pos) { for (decision *d = s->first; d; d = d->next) { int this_operand = (d->test.pos ? operand_pos[d->test.pos->id] : -1); if (this_operand >= 0) d->test.pos_operand = this_operand; if (d->test.kind == rtx_test::SET_OP) operand_pos[d->test.pos->id] = d->test.u.opno; for (transition *trans = d->first; trans; trans = trans->next) find_operand_positions (trans->to, operand_pos); if (d->test.kind == rtx_test::SET_OP) operand_pos[d->test.pos->id] = this_operand; } } /* Statistics about a matching routine. */ class stats { public: stats (); /* The total number of decisions in the routine, excluding trivial ones that never fail. */ unsigned int num_decisions; /* The number of non-trivial decisions on the longest path through the routine, and the return value that contributes most to that long path. */ unsigned int longest_path; int longest_path_code; /* The maximum number of times that a single call to the routine can backtrack, and the value returned at the end of that path. "Backtracking" here means failing one decision in state and going onto to the next. */ unsigned int longest_backtrack; int longest_backtrack_code; }; stats::stats () : num_decisions (0), longest_path (0), longest_path_code (-1), longest_backtrack (0), longest_backtrack_code (-1) {} /* Return statistics about S. */ static stats get_stats (state *s) { stats for_s; unsigned int longest_path = 0; for (decision *d = s->first; d; d = d->next) { /* Work out the statistics for D. */ stats for_d; for (transition *trans = d->first; trans; trans = trans->next) { stats for_trans = get_stats (trans->to); for_d.num_decisions += for_trans.num_decisions; /* Each transition is mutually-exclusive, so just pick the longest of the individual paths. */ if (for_d.longest_path <= for_trans.longest_path) { for_d.longest_path = for_trans.longest_path; for_d.longest_path_code = for_trans.longest_path_code; } /* Likewise for backtracking. */ if (for_d.longest_backtrack <= for_trans.longest_backtrack) { for_d.longest_backtrack = for_trans.longest_backtrack; for_d.longest_backtrack_code = for_trans.longest_backtrack_code; } } /* Account for D's test in its statistics. */ if (!d->test.single_outcome_p ()) { for_d.num_decisions += 1; for_d.longest_path += 1; } if (d->test.kind == rtx_test::ACCEPT) { for_d.longest_path_code = d->test.u.acceptance.u.full.code; for_d.longest_backtrack_code = d->test.u.acceptance.u.full.code; } /* Keep a running count of the number of backtracks. */ if (d->prev) for_s.longest_backtrack += 1; /* Accumulate D's statistics into S's. */ for_s.num_decisions += for_d.num_decisions; for_s.longest_path += for_d.longest_path; for_s.longest_backtrack += for_d.longest_backtrack; /* Use the code from the decision with the longest individual path, since that's more likely to be useful if trying to make the path shorter. In the event of a tie, pick the later decision, since that's closer to the end of the path. */ if (longest_path <= for_d.longest_path) { longest_path = for_d.longest_path; for_s.longest_path_code = for_d.longest_path_code; } /* Later decisions in a state are necessarily in a longer backtrack than earlier decisions. */ for_s.longest_backtrack_code = for_d.longest_backtrack_code; } return for_s; } /* Optimize ROOT. Use TYPE to describe ROOT in status messages. */ static void optimize_subroutine_group (const char *type, state *root) { /* Remove optional transitions that turned out not to be worthwhile. */ if (collapse_optional_decisions_p) collapse_optional_decisions (root); /* Try to remove duplicated tests and to rearrange tests into a more logical order. */ if (cse_tests_p) { known_conditions kc; kc.position_tests.safe_grow_cleared (num_positions, true); kc.set_operands.safe_grow_cleared (num_operands, true); kc.peep2_count = 1; cse_tests (&root_pos, root, &kc); } /* Try to simplify two or more tests into one. */ if (simplify_tests_p) simplify_tests (root); /* Try to use operands[] instead of xN variables. */ if (use_operand_variables_p) { auto_vec <int> operand_pos (num_positions); for (unsigned int i = 0; i < num_positions; ++i) operand_pos.quick_push (-1); find_operand_positions (root, operand_pos); } /* Print a summary of the new state. */ stats st = get_stats (root); fprintf (stderr, "Statistics for %s:\n", type); fprintf (stderr, " Number of decisions: %6d\n", st.num_decisions); fprintf (stderr, " longest path: %6d (code: %6d)\n", st.longest_path, st.longest_path_code); fprintf (stderr, " longest backtrack: %6d (code: %6d)\n", st.longest_backtrack, st.longest_backtrack_code); } class merge_pattern_info; /* Represents a transition from one pattern to another. */ class merge_pattern_transition { public: merge_pattern_transition (merge_pattern_info *); /* The target pattern. */ merge_pattern_info *to; /* The parameters that the source pattern passes to the target pattern. "parameter (TYPE, true, I)" represents parameter I of the source pattern. */ auto_vec <parameter, MAX_PATTERN_PARAMS> params; }; merge_pattern_transition::merge_pattern_transition (merge_pattern_info *to_in) : to (to_in) { } /* Represents a pattern that can might match several states. The pattern may replace parts of the test with a parameter value. It may also replace transition labels with parameters. */ class merge_pattern_info { public: merge_pattern_info (unsigned int); /* If PARAM_TEST_P, the state's singleton test should be generalized to use the runtime value of PARAMS[PARAM_TEST]. */ unsigned int param_test : 8; /* If PARAM_TRANSITION_P, the state's single transition label should be replaced by the runtime value of PARAMS[PARAM_TRANSITION]. */ unsigned int param_transition : 8; /* True if we have decided to generalize the root decision's test, as per PARAM_TEST. */ unsigned int param_test_p : 1; /* Likewise for the root decision's transition, as per PARAM_TRANSITION. */ unsigned int param_transition_p : 1; /* True if the contents of the structure are completely filled in. */ unsigned int complete_p : 1; /* The number of pseudo-statements in the pattern. Used to decide whether it's big enough to break out into a subroutine. */ unsigned int num_statements; /* The number of states that use this pattern. */ unsigned int num_users; /* The number of distinct success values that the pattern returns. */ unsigned int num_results; /* This array has one element for each runtime parameter to the pattern. PARAMS[I] gives the default value of parameter I, which is always constant. These default parameters are used in cases where we match the pattern against some state S1, then add more parameters while matching against some state S2. S1 is then left passing fewer parameters than S2. The array gives us enough informatino to construct a full parameter list for S1 (see update_parameters). If we decide to create a subroutine for this pattern, PARAMS[I].type determines the C type of parameter I. */ auto_vec <parameter, MAX_PATTERN_PARAMS> params; /* All states that match this pattern must have the same number of transitions. TRANSITIONS[I] describes the subpattern for transition number I; it is null if transition I represents a successful return from the pattern. */ auto_vec <merge_pattern_transition *, 1> transitions; /* The routine associated with the pattern, or null if we haven't generated one yet. */ pattern_routine *routine; }; merge_pattern_info::merge_pattern_info (unsigned int num_transitions) : param_test (0), param_transition (0), param_test_p (false), param_transition_p (false), complete_p (false), num_statements (0), num_users (0), num_results (0), routine (0) { transitions.safe_grow_cleared (num_transitions, true); } /* Describes one way of matching a particular state to a particular pattern. */ class merge_state_result { public: merge_state_result (merge_pattern_info *, position *, merge_state_result *); /* A pattern that matches the state. */ merge_pattern_info *pattern; /* If we decide to use this match and create a subroutine for PATTERN, the state should pass the rtx at position ROOT to the pattern's rtx parameter. A null root means that the pattern doesn't need an rtx parameter; all the rtxes it matches come from elsewhere. */ position *root; /* The parameters that should be passed to PATTERN for this state. If the array is shorter than PATTERN->params, the missing entries should be taken from the corresponding element of PATTERN->params. */ auto_vec <parameter, MAX_PATTERN_PARAMS> params; /* An earlier match for the same state, or null if none. Patterns matched by earlier entries are smaller than PATTERN. */ merge_state_result *prev; }; merge_state_result::merge_state_result (merge_pattern_info *pattern_in, position *root_in, merge_state_result *prev_in) : pattern (pattern_in), root (root_in), prev (prev_in) {} /* Information about a state, used while trying to match it against a pattern. */ class merge_state_info { public: merge_state_info (state *); /* The state itself. */ state *s; /* Index I gives information about the target of transition I. */ merge_state_info *to_states; /* The number of transitions in S. */ unsigned int num_transitions; /* True if the state has been deleted in favor of a call to a pattern routine. */ bool merged_p; /* The previous state that might be a merge candidate for S, or null if no previous states could be merged with S. */ merge_state_info *prev_same_test; /* A list of pattern matches for this state. */ merge_state_result *res; }; merge_state_info::merge_state_info (state *s_in) : s (s_in), to_states (0), num_transitions (0), merged_p (false), prev_same_test (0), res (0) {} /* True if PAT would be useful as a subroutine. */ static bool useful_pattern_p (merge_pattern_info *pat) { return pat->num_statements >= MIN_COMBINE_COST; } /* PAT2 is a subpattern of PAT1. Return true if PAT2 should be inlined into PAT1's C routine. */ static bool same_pattern_p (merge_pattern_info *pat1, merge_pattern_info *pat2) { return pat1->num_users == pat2->num_users || !useful_pattern_p (pat2); } /* PAT was previously matched against SINFO based on tentative matches for the target states of SINFO's state. Return true if the match still holds; that is, if the target states of SINFO's state still match the corresponding transitions of PAT. */ static bool valid_result_p (merge_pattern_info *pat, merge_state_info *sinfo) { for (unsigned int j = 0; j < sinfo->num_transitions; ++j) if (merge_pattern_transition *ptrans = pat->transitions[j]) { merge_state_result *to_res = sinfo->to_states[j].res; if (!to_res || to_res->pattern != ptrans->to) return false; } return true; } /* Remove any matches that are no longer valid from the head of SINFO's list of matches. */ static void prune_invalid_results (merge_state_info *sinfo) { while (sinfo->res && !valid_result_p (sinfo->res->pattern, sinfo)) { sinfo->res = sinfo->res->prev; gcc_assert (sinfo->res); } } /* Return true if PAT represents the biggest posssible match for SINFO; that is, if the next action of SINFO's state on return from PAT will be something that cannot be merged with any other state. */ static bool complete_result_p (merge_pattern_info *pat, merge_state_info *sinfo) { for (unsigned int j = 0; j < sinfo->num_transitions; ++j) if (sinfo->to_states[j].res && !pat->transitions[j]) return false; return true; } /* Update TO for any parameters that have been added to FROM since TO was last set. The extra parameters in FROM will be constants or instructions to duplicate earlier parameters. */ static void update_parameters (vec <parameter> &to, const vec <parameter> &from) { for (unsigned int i = to.length (); i < from.length (); ++i) to.quick_push (from[i]); } /* Return true if A and B can be tested by a single test. If the test can be parameterised, store the parameter value for A in *PARAMA and the parameter value for B in *PARAMB, otherwise leave PARAMA and PARAMB alone. */ static bool compatible_tests_p (const rtx_test &a, const rtx_test &b, parameter *parama, parameter *paramb) { if (a.kind != b.kind) return false; switch (a.kind) { case rtx_test::PREDICATE: if (a.u.predicate.data != b.u.predicate.data) return false; *parama = parameter (parameter::MODE, false, a.u.predicate.mode); *paramb = parameter (parameter::MODE, false, b.u.predicate.mode); return true; case rtx_test::SAVED_CONST_INT: *parama = parameter (parameter::INT, false, a.u.integer.value); *paramb = parameter (parameter::INT, false, b.u.integer.value); return true; default: return a == b; } } /* PARAMS is an array of the parameters that a state is going to pass to a pattern routine. It is still incomplete; index I has a kind of parameter::UNSET if we don't yet know what the state will pass as parameter I. Try to make parameter ID equal VALUE, returning true on success. */ static bool set_parameter (vec <parameter> ¶ms, unsigned int id, const parameter &value) { if (params[id].type == parameter::UNSET) { if (force_unique_params_p) for (unsigned int i = 0; i < params.length (); ++i) if (params[i] == value) return false; params[id] = value; return true; } return params[id] == value; } /* PARAMS2 is the "params" array for a pattern and PARAMS1 is the set of parameters that a particular state is going to pass to that pattern. Try to extend PARAMS1 and PARAMS2 so that there is a parameter that is equal to PARAM1 for the state and has a default value of PARAM2. Parameters beginning at START were added as part of the same match and so may be reused. */ static bool add_parameter (vec <parameter> ¶ms1, vec <parameter> ¶ms2, const parameter ¶m1, const parameter ¶m2, unsigned int start, unsigned int *res) { gcc_assert (params1.length () == params2.length ()); gcc_assert (!param1.is_param && !param2.is_param); for (unsigned int i = start; i < params2.length (); ++i) if (params1[i] == param1 && params2[i] == param2) { *res = i; return true; } if (force_unique_params_p) for (unsigned int i = 0; i < params2.length (); ++i) if (params1[i] == param1 || params2[i] == param2) return false; if (params2.length () >= MAX_PATTERN_PARAMS) return false; *res = params2.length (); params1.quick_push (param1); params2.quick_push (param2); return true; } /* If *ROOTA is nonnull, return true if the same sequence of steps are required to reach A from *ROOTA as to reach B from ROOTB. If *ROOTA is null, update it if necessary in order to make the condition hold. */ static bool merge_relative_positions (position **roota, position *a, position *rootb, position *b) { if (!relative_patterns_p) { if (a != b) return false; if (!*roota) { *roota = rootb; return true; } return *roota == rootb; } /* If B does not belong to the same instruction as ROOTB, we don't start with ROOTB but instead start with a call to peep2_next_insn. In that case the sequences for B and A are identical iff B and A are themselves identical. */ if (rootb->insn_id != b->insn_id) return a == b; while (rootb != b) { if (!a || b->type != a->type || b->arg != a->arg) return false; b = b->base; a = a->base; } if (!*roota) *roota = a; return *roota == a; } /* A hasher of states that treats two states as "equal" if they might be merged (but trying to be more discriminating than "return true"). */ struct test_pattern_hasher : nofree_ptr_hash <merge_state_info> { static inline hashval_t hash (const value_type &); static inline bool equal (const value_type &, const compare_type &); }; hashval_t test_pattern_hasher::hash (merge_state_info *const &sinfo) { inchash::hash h; decision *d = sinfo->s->singleton (); h.add_int (d->test.pos_operand + 1); if (!relative_patterns_p) h.add_int (d->test.pos ? d->test.pos->id + 1 : 0); h.add_int (d->test.kind); h.add_int (sinfo->num_transitions); return h.end (); } bool test_pattern_hasher::equal (merge_state_info *const &sinfo1, merge_state_info *const &sinfo2) { decision *d1 = sinfo1->s->singleton (); decision *d2 = sinfo2->s->singleton (); gcc_assert (d1 && d2); parameter new_param1, new_param2; return (d1->test.pos_operand == d2->test.pos_operand && (relative_patterns_p || d1->test.pos == d2->test.pos) && compatible_tests_p (d1->test, d2->test, &new_param1, &new_param2) && sinfo1->num_transitions == sinfo2->num_transitions); } /* Try to make the state described by SINFO1 use the same pattern as the state described by SINFO2. Return true on success. SINFO1 and SINFO2 are known to have the same hash value. */ static bool merge_patterns (merge_state_info *sinfo1, merge_state_info *sinfo2) { merge_state_result *res2 = sinfo2->res; merge_pattern_info *pat = res2->pattern; /* Write to temporary arrays while matching, in case we have to abort half way through. */ auto_vec <parameter, MAX_PATTERN_PARAMS> params1; auto_vec <parameter, MAX_PATTERN_PARAMS> params2; params1.quick_grow_cleared (pat->params.length ()); params2.splice (pat->params); unsigned int start_param = params2.length (); /* An array for recording changes to PAT->transitions[?].params. All changes involve replacing a constant parameter with some PAT->params[N], where N is the second element of the pending_param. */ typedef std::pair <parameter *, unsigned int> pending_param; auto_vec <pending_param, 32> pending_params; decision *d1 = sinfo1->s->singleton (); decision *d2 = sinfo2->s->singleton (); gcc_assert (d1 && d2); /* If D2 tests a position, SINFO1's root relative to D1 is the same as SINFO2's root relative to D2. */ position *root1 = 0; position *root2 = res2->root; if (d2->test.pos_operand < 0 && d1->test.pos && !merge_relative_positions (&root1, d1->test.pos, root2, d2->test.pos)) return false; /* Check whether the patterns have the same shape. */ unsigned int num_transitions = sinfo1->num_transitions; gcc_assert (num_transitions == sinfo2->num_transitions); for (unsigned int i = 0; i < num_transitions; ++i) if (merge_pattern_transition *ptrans = pat->transitions[i]) { merge_state_result *to1_res = sinfo1->to_states[i].res; merge_state_result *to2_res = sinfo2->to_states[i].res; merge_pattern_info *to_pat = ptrans->to; gcc_assert (to2_res && to2_res->pattern == to_pat); if (!to1_res || to1_res->pattern != to_pat) return false; if (to2_res->root && !merge_relative_positions (&root1, to1_res->root, root2, to2_res->root)) return false; /* Match the parameters that TO1_RES passes to TO_PAT with the parameters that PAT passes to TO_PAT. */ update_parameters (to1_res->params, to_pat->params); for (unsigned int j = 0; j < to1_res->params.length (); ++j) { const parameter ¶m1 = to1_res->params[j]; const parameter ¶m2 = ptrans->params[j]; gcc_assert (!param1.is_param); if (param2.is_param) { if (!set_parameter (params1, param2.value, param1)) return false; } else if (param1 != param2) { unsigned int id; if (!add_parameter (params1, params2, param1, param2, start_param, &id)) return false; /* Record that PAT should now pass parameter ID to TO_PAT, instead of the current contents of *PARAM2. We only make the change if the rest of the match succeeds. */ pending_params.safe_push (pending_param (&ptrans->params[j], id)); } } } unsigned int param_test = pat->param_test; unsigned int param_transition = pat->param_transition; bool param_test_p = pat->param_test_p; bool param_transition_p = pat->param_transition_p; /* If the tests don't match exactly, try to parameterize them. */ parameter new_param1, new_param2; if (!compatible_tests_p (d1->test, d2->test, &new_param1, &new_param2)) gcc_unreachable (); if (new_param1.type != parameter::UNSET) { /* If the test has not already been parameterized, all existing matches use constant NEW_PARAM2. */ if (param_test_p) { if (!set_parameter (params1, param_test, new_param1)) return false; } else if (new_param1 != new_param2) { if (!add_parameter (params1, params2, new_param1, new_param2, start_param, ¶m_test)) return false; param_test_p = true; } } /* Match the transitions. */ transition *trans1 = d1->first; transition *trans2 = d2->first; for (unsigned int i = 0; i < num_transitions; ++i) { if (param_transition_p || trans1->labels != trans2->labels) { /* We can only generalize a single transition with a single label. */ if (num_transitions != 1 || trans1->labels.length () != 1 || trans2->labels.length () != 1) return false; /* Although we can match wide-int fields, in practice it leads to some odd results for const_vectors. We end up parameterizing the first N const_ints of the vector and then (once we reach the maximum number of parameters) we go on to match the other elements exactly. */ if (d1->test.kind == rtx_test::WIDE_INT_FIELD) return false; /* See whether the label has a generalizable type. */ parameter::type_enum param_type = transition_parameter_type (d1->test.kind); if (param_type == parameter::UNSET) return false; /* Match the labels using parameters. */ new_param1 = parameter (param_type, false, trans1->labels[0]); if (param_transition_p) { if (!set_parameter (params1, param_transition, new_param1)) return false; } else { new_param2 = parameter (param_type, false, trans2->labels[0]); if (!add_parameter (params1, params2, new_param1, new_param2, start_param, ¶m_transition)) return false; param_transition_p = true; } } trans1 = trans1->next; trans2 = trans2->next; } /* Set any unset parameters to their default values. This occurs if some other state needed something to be parameterized in order to match SINFO2, but SINFO1 on its own does not. */ for (unsigned int i = 0; i < params1.length (); ++i) if (params1[i].type == parameter::UNSET) params1[i] = params2[i]; /* The match was successful. Commit all pending changes to PAT. */ update_parameters (pat->params, params2); { pending_param *pp; unsigned int i; FOR_EACH_VEC_ELT (pending_params, i, pp) *pp->first = parameter (pp->first->type, true, pp->second); } pat->param_test = param_test; pat->param_transition = param_transition; pat->param_test_p = param_test_p; pat->param_transition_p = param_transition_p; /* Record the match of SINFO1. */ merge_state_result *new_res1 = new merge_state_result (pat, root1, sinfo1->res); new_res1->params.splice (params1); sinfo1->res = new_res1; return true; } /* The number of states that were removed by calling pattern routines. */ static unsigned int pattern_use_states; /* The number of states used while defining pattern routines. */ static unsigned int pattern_def_states; /* Information used while constructing a use or definition of a pattern routine. */ struct create_pattern_info { /* The routine itself. */ pattern_routine *routine; /* The first unclaimed return value for this particular use or definition. We walk the substates of uses and definitions in the same order so each return value always refers to the same position within the pattern. */ unsigned int next_result; }; static void populate_pattern_routine (create_pattern_info *, merge_state_info *, state *, const vec <parameter> &); /* SINFO matches a pattern for which we've decided to create a C routine. Return a decision that performs a call to the pattern routine, but leave the caller to add the transitions to it. Initialize CPI for this purpose. Also create a definition for the pattern routine, if it doesn't already have one. PARAMS are the parameters that SINFO passes to its pattern. */ static decision * init_pattern_use (create_pattern_info *cpi, merge_state_info *sinfo, const vec <parameter> ¶ms) { state *s = sinfo->s; merge_state_result *res = sinfo->res; merge_pattern_info *pat = res->pattern; cpi->routine = pat->routine; if (!cpi->routine) { /* We haven't defined the pattern routine yet, so create a definition now. */ pattern_routine *routine = new pattern_routine; pat->routine = routine; cpi->routine = routine; routine->s = new state; routine->insn_p = false; routine->pnum_clobbers_p = false; /* Create an "idempotent" mapping of parameter I to parameter I. Also record the C type of each parameter to the routine. */ auto_vec <parameter, MAX_PATTERN_PARAMS> def_params; for (unsigned int i = 0; i < pat->params.length (); ++i) { def_params.quick_push (parameter (pat->params[i].type, true, i)); routine->param_types.quick_push (pat->params[i].type); } /* Any of the states that match the pattern could be used to create the routine definition. We might as well use SINFO since it's already to hand. This means that all positions in the definition will be relative to RES->root. */ routine->pos = res->root; cpi->next_result = 0; populate_pattern_routine (cpi, sinfo, routine->s, def_params); gcc_assert (cpi->next_result == pat->num_results); /* Add the routine to the global list, after the subroutines that it calls. */ routine->pattern_id = patterns.length (); patterns.safe_push (routine); } /* Create a decision to call the routine, passing PARAMS to it. */ pattern_use *use = new pattern_use; use->routine = pat->routine; use->params.splice (params); decision *d = new decision (rtx_test::pattern (res->root, use)); /* If the original decision could use an element of operands[] instead of an rtx variable, try to transfer it to the new decision. */ if (s->first->test.pos && res->root == s->first->test.pos) d->test.pos_operand = s->first->test.pos_operand; cpi->next_result = 0; return d; } /* Make S return the next unclaimed pattern routine result for CPI. */ static void add_pattern_acceptance (create_pattern_info *cpi, state *s) { acceptance_type acceptance; acceptance.type = SUBPATTERN; acceptance.partial_p = false; acceptance.u.full.code = cpi->next_result; add_decision (s, rtx_test::accept (acceptance), true, false); cpi->next_result += 1; } /* Initialize new empty state NEWS so that it implements SINFO's pattern (here referred to as "P"). P may be the top level of a pattern routine or a subpattern that should be inlined into its parent pattern's routine (as per same_pattern_p). The choice of SINFO for a top-level pattern is arbitrary; it could be any of the states that use P. The choice for subpatterns follows the choice for the parent pattern. PARAMS gives the value of each parameter to P in terms of the parameters to the top-level pattern. If P itself is the top level pattern, PARAMS[I] is always "parameter (TYPE, true, I)". */ static void populate_pattern_routine (create_pattern_info *cpi, merge_state_info *sinfo, state *news, const vec <parameter> ¶ms) { pattern_def_states += 1; decision *d = sinfo->s->singleton (); merge_pattern_info *pat = sinfo->res->pattern; pattern_routine *routine = cpi->routine; /* Create a copy of D's test for the pattern routine and generalize it as appropriate. */ decision *newd = new decision (d->test); gcc_assert (newd->test.pos_operand >= 0 || !newd->test.pos || common_position (newd->test.pos, routine->pos) == routine->pos); if (pat->param_test_p) { const parameter ¶m = params[pat->param_test]; switch (newd->test.kind) { case rtx_test::PREDICATE: newd->test.u.predicate.mode_is_param = param.is_param; newd->test.u.predicate.mode = param.value; break; case rtx_test::SAVED_CONST_INT: newd->test.u.integer.is_param = param.is_param; newd->test.u.integer.value = param.value; break; default: gcc_unreachable (); break; } } if (d->test.kind == rtx_test::C_TEST) routine->insn_p = true; else if (d->test.kind == rtx_test::HAVE_NUM_CLOBBERS) routine->pnum_clobbers_p = true; news->push_back (newd); /* Fill in the transitions of NEWD. */ unsigned int i = 0; for (transition *trans = d->first; trans; trans = trans->next) { /* Create a new state to act as the target of the new transition. */ state *to_news = new state; if (merge_pattern_transition *ptrans = pat->transitions[i]) { /* The pattern hasn't finished matching yet. Get the target pattern and the corresponding target state of SINFO. */ merge_pattern_info *to_pat = ptrans->to; merge_state_info *to = sinfo->to_states + i; gcc_assert (to->res->pattern == to_pat); gcc_assert (ptrans->params.length () == to_pat->params.length ()); /* Express the parameters to TO_PAT in terms of the parameters to the top-level pattern. */ auto_vec <parameter, MAX_PATTERN_PARAMS> to_params; for (unsigned int j = 0; j < ptrans->params.length (); ++j) { const parameter ¶m = ptrans->params[j]; to_params.quick_push (param.is_param ? params[param.value] : param); } if (same_pattern_p (pat, to_pat)) /* TO_PAT is part of the current routine, so just recurse. */ populate_pattern_routine (cpi, to, to_news, to_params); else { /* TO_PAT should be matched by calling a separate routine. */ create_pattern_info sub_cpi; decision *subd = init_pattern_use (&sub_cpi, to, to_params); routine->insn_p |= sub_cpi.routine->insn_p; routine->pnum_clobbers_p |= sub_cpi.routine->pnum_clobbers_p; /* Add the pattern routine call to the new target state. */ to_news->push_back (subd); /* Add a transition for each successful call result. */ for (unsigned int j = 0; j < to_pat->num_results; ++j) { state *res = new state; add_pattern_acceptance (cpi, res); subd->push_back (new transition (j, res, false)); } } } else /* This transition corresponds to a successful match. */ add_pattern_acceptance (cpi, to_news); /* Create the transition itself, generalizing as necessary. */ transition *new_trans = new transition (trans->labels, to_news, trans->optional); if (pat->param_transition_p) { const parameter ¶m = params[pat->param_transition]; new_trans->is_param = param.is_param; new_trans->labels[0] = param.value; } newd->push_back (new_trans); i += 1; } } /* USE is a decision that calls a pattern routine and SINFO is part of the original state tree that the call is supposed to replace. Add the transitions for SINFO and its substates to USE. */ static void populate_pattern_use (create_pattern_info *cpi, decision *use, merge_state_info *sinfo) { pattern_use_states += 1; gcc_assert (!sinfo->merged_p); sinfo->merged_p = true; merge_state_result *res = sinfo->res; merge_pattern_info *pat = res->pattern; decision *d = sinfo->s->singleton (); unsigned int i = 0; for (transition *trans = d->first; trans; trans = trans->next) { if (pat->transitions[i]) /* The target state is also part of the pattern. */ populate_pattern_use (cpi, use, sinfo->to_states + i); else { /* The transition corresponds to a successful return from the pattern routine. */ use->push_back (new transition (cpi->next_result, trans->to, false)); cpi->next_result += 1; } i += 1; } } /* We have decided to replace SINFO's state with a call to a pattern routine. Make the change, creating a definition of the pattern routine if it doesn't have one already. */ static void use_pattern (merge_state_info *sinfo) { merge_state_result *res = sinfo->res; merge_pattern_info *pat = res->pattern; state *s = sinfo->s; /* The pattern may have acquired new parameters after it was matched against SINFO. Update the parameters that SINFO passes accordingly. */ update_parameters (res->params, pat->params); create_pattern_info cpi; decision *d = init_pattern_use (&cpi, sinfo, res->params); populate_pattern_use (&cpi, d, sinfo); s->release (); s->push_back (d); } /* Look through the state trees in STATES for common patterns and split them into subroutines. */ static void split_out_patterns (vec <merge_state_info> &states) { unsigned int first_transition = states.length (); hash_table <test_pattern_hasher> hashtab (128); /* Stage 1: Create an order in which parent states come before their child states and in which sibling states are at consecutive locations. Having consecutive sibling states allows merge_state_info to have a single to_states pointer. */ for (unsigned int i = 0; i < states.length (); ++i) for (decision *d = states[i].s->first; d; d = d->next) for (transition *trans = d->first; trans; trans = trans->next) { states.safe_push (trans->to); states[i].num_transitions += 1; } /* Stage 2: Now that the addresses are stable, set up the to_states pointers. Look for states that might be merged and enter them into the hash table. */ for (unsigned int i = 0; i < states.length (); ++i) { merge_state_info *sinfo = &states[i]; if (sinfo->num_transitions) { sinfo->to_states = &states[first_transition]; first_transition += sinfo->num_transitions; } /* For simplicity, we only try to merge states that have a single decision. This is in any case the best we can do for peephole2, since whether a peephole2 ACCEPT succeeds or not depends on the specific peephole2 pattern (which is unique to each ACCEPT and so couldn't be shared between states). */ if (decision *d = sinfo->s->singleton ()) /* ACCEPT states are unique, so don't even try to merge them. */ if (d->test.kind != rtx_test::ACCEPT && (pattern_have_num_clobbers_p || d->test.kind != rtx_test::HAVE_NUM_CLOBBERS) && (pattern_c_test_p || d->test.kind != rtx_test::C_TEST)) { merge_state_info **slot = hashtab.find_slot (sinfo, INSERT); sinfo->prev_same_test = *slot; *slot = sinfo; } } /* Stage 3: Walk backwards through the list of states and try to merge them. This is a greedy, bottom-up match; parent nodes can only start a new leaf pattern if they fail to match when combined with all child nodes that have matching patterns. For each state we keep a list of potential matches, with each potential match being larger (and deeper) than the next match in the list. The final element in the list is a leaf pattern that matches just a single state. Each candidate pattern created in this loop is unique -- it won't have been seen by an earlier iteration. We try to match each pattern with every state that appears earlier in STATES. Because the patterns created in the loop are unique, any state that already has a match must have a final potential match that is different from any new leaf pattern. Therefore, when matching leaf patterns, we need only consider states whose list of matches is empty. The non-leaf patterns that we try are as deep as possible and are an extension of the state's previous best candidate match (PB). We need only consider states whose current potential match is also PB; any states that don't match as much as PB cannnot match the new pattern, while any states that already match more than PB must be different from the new pattern. */ for (unsigned int i2 = states.length (); i2-- > 0; ) { merge_state_info *sinfo2 = &states[i2]; /* Enforce the bottom-upness of the match: remove matches with later states if SINFO2's child states ended up finding a better match. */ prune_invalid_results (sinfo2); /* Do nothing if the state doesn't match a later one and if there are no earlier states it could match. */ if (!sinfo2->res && !sinfo2->prev_same_test) continue; merge_state_result *res2 = sinfo2->res; decision *d2 = sinfo2->s->singleton (); position *root2 = (d2->test.pos_operand < 0 ? d2->test.pos : 0); unsigned int num_transitions = sinfo2->num_transitions; /* If RES2 is null then SINFO2's test in isolation has not been seen before. First try matching that on its own. */ if (!res2) { merge_pattern_info *new_pat = new merge_pattern_info (num_transitions); merge_state_result *new_res2 = new merge_state_result (new_pat, root2, res2); sinfo2->res = new_res2; new_pat->num_statements = !d2->test.single_outcome_p (); new_pat->num_results = num_transitions; bool matched_p = false; /* Look for states that don't currently match anything but can be made to match SINFO2 on its own. */ for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1; sinfo1 = sinfo1->prev_same_test) if (!sinfo1->res && merge_patterns (sinfo1, sinfo2)) matched_p = true; if (!matched_p) { /* No other states match. */ sinfo2->res = res2; delete new_pat; delete new_res2; continue; } else res2 = new_res2; } /* Keep the existing pattern if it's as good as anything we'd create for SINFO2. */ if (complete_result_p (res2->pattern, sinfo2)) { res2->pattern->num_users += 1; continue; } /* Create a new pattern for SINFO2. */ merge_pattern_info *new_pat = new merge_pattern_info (num_transitions); merge_state_result *new_res2 = new merge_state_result (new_pat, root2, res2); sinfo2->res = new_res2; /* Fill in details about the pattern. */ new_pat->num_statements = !d2->test.single_outcome_p (); new_pat->num_results = 0; for (unsigned int j = 0; j < num_transitions; ++j) if (merge_state_result *to_res = sinfo2->to_states[j].res) { /* Count the target state as part of this pattern. First update the root position so that it can reach the target state's root. */ if (to_res->root) { if (new_res2->root) new_res2->root = common_position (new_res2->root, to_res->root); else new_res2->root = to_res->root; } merge_pattern_info *to_pat = to_res->pattern; merge_pattern_transition *ptrans = new merge_pattern_transition (to_pat); /* TO_PAT may have acquired more parameters when matching states earlier in STATES than TO_RES's, but the list is now final. Make sure that TO_RES is up to date. */ update_parameters (to_res->params, to_pat->params); /* Start out by assuming that every user of NEW_PAT will want to pass the same (constant) parameters as TO_RES. */ update_parameters (ptrans->params, to_res->params); new_pat->transitions[j] = ptrans; new_pat->num_statements += to_pat->num_statements; new_pat->num_results += to_pat->num_results; } else /* The target state doesn't match anything and so is not part of the pattern. */ new_pat->num_results += 1; /* See if any earlier states that match RES2's pattern also match NEW_PAT. */ bool matched_p = false; for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1; sinfo1 = sinfo1->prev_same_test) { prune_invalid_results (sinfo1); if (sinfo1->res && sinfo1->res->pattern == res2->pattern && merge_patterns (sinfo1, sinfo2)) matched_p = true; } if (!matched_p) { /* Nothing else matches NEW_PAT, so go back to the previous pattern (possibly just a single-state one). */ sinfo2->res = res2; delete new_pat; delete new_res2; } /* Assume that SINFO2 will use RES. At this point we don't know whether earlier states that match the same pattern will use that match or a different one. */ sinfo2->res->pattern->num_users += 1; } /* Step 4: Finalize the choice of pattern for each state, ignoring patterns that were only used once. Update each pattern's size so that it doesn't include subpatterns that are going to be split out into subroutines. */ for (unsigned int i = 0; i < states.length (); ++i) { merge_state_info *sinfo = &states[i]; merge_state_result *res = sinfo->res; /* Wind past patterns that are only used by SINFO. */ while (res && res->pattern->num_users == 1) { res = res->prev; sinfo->res = res; if (res) res->pattern->num_users += 1; } if (!res) continue; /* We have a shared pattern and are now committed to the match. */ merge_pattern_info *pat = res->pattern; gcc_assert (valid_result_p (pat, sinfo)); if (!pat->complete_p) { /* Look for subpatterns that are going to be split out and remove them from the number of statements. */ for (unsigned int j = 0; j < sinfo->num_transitions; ++j) if (merge_pattern_transition *ptrans = pat->transitions[j]) { merge_pattern_info *to_pat = ptrans->to; if (!same_pattern_p (pat, to_pat)) pat->num_statements -= to_pat->num_statements; } pat->complete_p = true; } } /* Step 5: Split out the patterns. */ for (unsigned int i = 0; i < states.length (); ++i) { merge_state_info *sinfo = &states[i]; merge_state_result *res = sinfo->res; if (!sinfo->merged_p && res && useful_pattern_p (res->pattern)) use_pattern (sinfo); } fprintf (stderr, "Shared %d out of %d states by creating %d new states," " saving %d\n", pattern_use_states, states.length (), pattern_def_states, pattern_use_states - pattern_def_states); } /* Information about a state tree that we're considering splitting into a subroutine. */ struct state_size { /* The number of pseudo-statements in the state tree. */ unsigned int num_statements; /* The approximate number of nested "if" and "switch" statements that would be required if control could fall through to a later state. */ unsigned int depth; }; /* Pairs a transition with information about its target state. */ typedef std::pair <transition *, state_size> subroutine_candidate; /* Sort two subroutine_candidates so that the one with the largest number of statements comes last. */ static int subroutine_candidate_cmp (const void *a, const void *b) { return int (((const subroutine_candidate *) a)->second.num_statements - ((const subroutine_candidate *) b)->second.num_statements); } /* Turn S into a subroutine of type TYPE and add it to PROCS. Return a new state that performs a subroutine call to S. */ static state * create_subroutine (routine_type type, state *s, vec <state *> &procs) { procs.safe_push (s); acceptance_type acceptance; acceptance.type = type; acceptance.partial_p = true; acceptance.u.subroutine_id = procs.length (); state *news = new state; add_decision (news, rtx_test::accept (acceptance), true, false); return news; } /* Walk state tree S, of type TYPE, and look for subtrees that would be better split into subroutines. Accumulate all such subroutines in PROCS. Return the size of the new state tree (excluding subroutines). */ static state_size find_subroutines (routine_type type, state *s, vec <state *> &procs) { auto_vec <subroutine_candidate, 16> candidates; state_size size; size.num_statements = 0; size.depth = 0; for (decision *d = s->first; d; d = d->next) { if (!d->test.single_outcome_p ()) size.num_statements += 1; for (transition *trans = d->first; trans; trans = trans->next) { /* Keep chains of simple decisions together if we know that no change of position is required. We'll output this chain as a single "if" statement, so it counts as a single nesting level. */ if (d->test.pos && d->if_statement_p ()) for (;;) { decision *newd = trans->to->singleton (); if (!newd || (newd->test.pos && newd->test.pos_operand < 0 && newd->test.pos != d->test.pos) || !newd->if_statement_p ()) break; if (!newd->test.single_outcome_p ()) size.num_statements += 1; trans = newd->singleton (); if (newd->test.kind == rtx_test::SET_OP || newd->test.kind == rtx_test::ACCEPT) break; } /* The target of TRANS is a subroutine candidate. First recurse on it to see how big it is after subroutines have been split out. */ state_size to_size = find_subroutines (type, trans->to, procs); if (d->next && to_size.depth > MAX_DEPTH) /* Keeping the target state in the same routine would lead to an excessive nesting of "if" and "switch" statements. Split it out into a subroutine so that it can use inverted tests that return early on failure. */ trans->to = create_subroutine (type, trans->to, procs); else { size.num_statements += to_size.num_statements; if (to_size.num_statements < MIN_NUM_STATEMENTS) /* The target state is too small to be worth splitting. Keep it in the same routine as S. */ size.depth = MAX (size.depth, to_size.depth); else /* Assume for now that we'll keep the target state in the same routine as S, but record it as a subroutine candidate if S grows too big. */ candidates.safe_push (subroutine_candidate (trans, to_size)); } } } if (size.num_statements > MAX_NUM_STATEMENTS) { /* S is too big. Sort the subroutine candidates so that bigger ones are nearer the end. */ candidates.qsort (subroutine_candidate_cmp); while (!candidates.is_empty () && size.num_statements > MAX_NUM_STATEMENTS) { /* Peel off a candidate and force it into a subroutine. */ subroutine_candidate cand = candidates.pop (); size.num_statements -= cand.second.num_statements; cand.first->to = create_subroutine (type, cand.first->to, procs); } } /* Update the depth for subroutine candidates that we decided not to split out. */ for (unsigned int i = 0; i < candidates.length (); ++i) size.depth = MAX (size.depth, candidates[i].second.depth); size.depth += 1; return size; } /* Return true if, for all X, PRED (X, MODE) implies that X has mode MODE. */ static bool safe_predicate_mode (const struct pred_data *pred, machine_mode mode) { /* Scalar integer constants have VOIDmode. */ if (GET_MODE_CLASS (mode) == MODE_INT && (pred->codes[CONST_INT] || pred->codes[CONST_DOUBLE] || pred->codes[CONST_WIDE_INT] || pred->codes[LABEL_REF])) return false; return !pred->special && mode != VOIDmode; } /* Fill CODES with the set of codes that could be matched by PRED. */ static void get_predicate_codes (const struct pred_data *pred, int_set *codes) { for (int i = 0; i < NUM_TRUE_RTX_CODE; ++i) if (!pred || pred->codes[i]) codes->safe_push (i); } /* Return true if the first path through D1 tests the same thing as D2. */ static bool has_same_test_p (decision *d1, decision *d2) { do { if (d1->test == d2->test) return true; d1 = d1->first->to->first; } while (d1); return false; } /* Return true if D1 and D2 cannot match the same rtx. All states reachable from D2 have single decisions and all those decisions have single transitions. */ static bool mutually_exclusive_p (decision *d1, decision *d2) { /* If one path through D1 fails to test the same thing as D2, assume that D2's test could be true for D1 and look for a later, more useful, test. This isn't as expensive as it looks in practice. */ while (!has_same_test_p (d1, d2)) { d2 = d2->singleton ()->to->singleton (); if (!d2) return false; } if (d1->test == d2->test) { /* Look for any transitions from D1 that have the same labels as the transition from D2. */ transition *trans2 = d2->singleton (); for (transition *trans1 = d1->first; trans1; trans1 = trans1->next) { int_set::iterator i1 = trans1->labels.begin (); int_set::iterator end1 = trans1->labels.end (); int_set::iterator i2 = trans2->labels.begin (); int_set::iterator end2 = trans2->labels.end (); while (i1 != end1 && i2 != end2) if (*i1 < *i2) ++i1; else if (*i2 < *i1) ++i2; else { /* TRANS1 has some labels in common with TRANS2. Assume that D1 and D2 could match the same rtx if the target of TRANS1 could match the same rtx as D2. */ for (decision *subd1 = trans1->to->first; subd1; subd1 = subd1->next) if (!mutually_exclusive_p (subd1, d2)) return false; break; } } return true; } for (transition *trans1 = d1->first; trans1; trans1 = trans1->next) for (decision *subd1 = trans1->to->first; subd1; subd1 = subd1->next) if (!mutually_exclusive_p (subd1, d2)) return false; return true; } /* Try to merge S2's decision into D1, given that they have the same test. Fail only if EXCLUDE is nonnull and the new transition would have the same labels as *EXCLUDE. When returning true, set *NEXT_S1, *NEXT_S2 and *NEXT_EXCLUDE as for merge_into_state_1, or set *NEXT_S2 to null if the merge is complete. */ static bool merge_into_decision (decision *d1, state *s2, const int_set *exclude, state **next_s1, state **next_s2, const int_set **next_exclude) { decision *d2 = s2->singleton (); transition *trans2 = d2->singleton (); /* Get a list of the transitions that intersect TRANS2. */ auto_vec <transition *, 32> intersecting; for (transition *trans1 = d1->first; trans1; trans1 = trans1->next) { int_set::iterator i1 = trans1->labels.begin (); int_set::iterator end1 = trans1->labels.end (); int_set::iterator i2 = trans2->labels.begin (); int_set::iterator end2 = trans2->labels.end (); bool trans1_is_subset = true; bool trans2_is_subset = true; bool intersect_p = false; while (i1 != end1 && i2 != end2) if (*i1 < *i2) { trans1_is_subset = false; ++i1; } else if (*i2 < *i1) { trans2_is_subset = false; ++i2; } else { intersect_p = true; ++i1; ++i2; } if (i1 != end1) trans1_is_subset = false; if (i2 != end2) trans2_is_subset = false; if (trans1_is_subset && trans2_is_subset) { /* There's already a transition that matches exactly. Merge the target states. */ trans1->optional &= trans2->optional; *next_s1 = trans1->to; *next_s2 = trans2->to; *next_exclude = 0; return true; } if (trans2_is_subset) { /* TRANS1 has all the labels that TRANS2 needs. Merge S2 into the target of TRANS1, but (to avoid infinite recursion) make sure that we don't end up creating another transition like TRANS1. */ *next_s1 = trans1->to; *next_s2 = s2; *next_exclude = &trans1->labels; return true; } if (intersect_p) intersecting.safe_push (trans1); } if (intersecting.is_empty ()) { /* No existing labels intersect the new ones. We can just add TRANS2 itself. */ d1->push_back (d2->release ()); *next_s1 = 0; *next_s2 = 0; *next_exclude = 0; return true; } /* Take the union of the labels in INTERSECTING and TRANS2. Store the result in COMBINED and use NEXT as a temporary. */ int_set tmp1 = trans2->labels, tmp2; int_set *combined = &tmp1, *next = &tmp2; for (unsigned int i = 0; i < intersecting.length (); ++i) { transition *trans1 = intersecting[i]; next->truncate (0); next->safe_grow (trans1->labels.length () + combined->length (), true); int_set::iterator end = std::set_union (trans1->labels.begin (), trans1->labels.end (), combined->begin (), combined->end (), next->begin ()); next->truncate (end - next->begin ()); std::swap (next, combined); } /* Stop now if we've been told not to create a transition with these labels. */ if (exclude && *combined == *exclude) return false; /* Get the transition that should carry the new labels. */ transition *new_trans = intersecting[0]; if (intersecting.length () == 1) { /* We're merging with one existing transition whose labels are a subset of those required. If both transitions are optional, we can just expand the set of labels so that it's suitable for both transitions. It isn't worth preserving the original transitions since we know that they can't be merged; we would need to backtrack to S2 if TRANS1->to fails. In contrast, we might be able to merge the targets of the transitions without any backtracking. If instead the existing transition is not optional, ensure that all target decisions are suitably protected. Some decisions might already have a more specific requirement than NEW_TRANS, in which case there's no point testing NEW_TRANS as well. E.g. this would have happened if a test for an (eq ...) rtx had been added to a decision that tested whether the code is suitable for comparison_operator. The original comparison_operator transition would have been non-optional and the (eq ...) test would be performed by a second decision in the target of that transition. The remaining case -- keeping the original optional transition when adding a non-optional TRANS2 -- is a wash. Preserving the optional transition only helps if we later merge another state S3 that is mutually exclusive with S2 and whose labels belong to *COMBINED - TRANS1->labels. We can then test the original NEW_TRANS and S3 in the same decision. We keep the optional transition around for that case, but it occurs very rarely. */ gcc_assert (new_trans->labels != *combined); if (!new_trans->optional || !trans2->optional) { decision *start = 0; for (decision *end = new_trans->to->first; end; end = end->next) { if (!start && end->test != d1->test) /* END belongs to a range of decisions that need to be protected by NEW_TRANS. */ start = end; if (start && (!end->next || end->next->test == d1->test)) { /* Protect [START, END] with NEW_TRANS. The decisions move to NEW_S and NEW_D becomes part of NEW_TRANS->to. */ state *new_s = new state; decision *new_d = new decision (d1->test); new_d->push_back (new transition (new_trans->labels, new_s, new_trans->optional)); state::range r (start, end); new_trans->to->replace (r, new_d); new_s->push_back (r); /* Continue with an empty range. */ start = 0; /* Continue from the decision after NEW_D. */ end = new_d; } } } new_trans->optional = true; new_trans->labels = *combined; } else { /* We're merging more than one existing transition together. Those transitions are successfully dividing the matching space and so we want to preserve them, even if they're optional. Create a new transition with the union set of labels and make it go to a state that has the original transitions. */ decision *new_d = new decision (d1->test); for (unsigned int i = 0; i < intersecting.length (); ++i) new_d->push_back (d1->remove (intersecting[i])); state *new_s = new state; new_s->push_back (new_d); new_trans = new transition (*combined, new_s, true); d1->push_back (new_trans); } /* We now have an optional transition with labels *COMBINED. Decide whether we can use it as TRANS2 or whether we need to merge S2 into the target of NEW_TRANS. */ gcc_assert (new_trans->optional); if (new_trans->labels == trans2->labels) { /* NEW_TRANS matches TRANS2. Just merge the target states. */ new_trans->optional = trans2->optional; *next_s1 = new_trans->to; *next_s2 = trans2->to; *next_exclude = 0; } else { /* Try to merge TRANS2 into the target of the overlapping transition, but (to prevent infinite recursion or excessive redundancy) without creating another transition of the same type. */ *next_s1 = new_trans->to; *next_s2 = s2; *next_exclude = &new_trans->labels; } return true; } /* Make progress in merging S2 into S1, given that each state in S2 has a single decision. If EXCLUDE is nonnull, avoid creating a new transition with the same test as S2's decision and with the labels in *EXCLUDE. Return true if there is still work to do. When returning true, set *NEXT_S1, *NEXT_S2 and *NEXT_EXCLUDE to the values that S1, S2 and EXCLUDE should have next time round. If S1 and S2 both match a particular rtx, give priority to S1. */ static bool merge_into_state_1 (state *s1, state *s2, const int_set *exclude, state **next_s1, state **next_s2, const int_set **next_exclude) { decision *d2 = s2->singleton (); if (decision *d1 = s1->last) { if (d1->test.terminal_p ()) /* D1 is an unconditional return, so S2 can never match. This can sometimes be a bug in the .md description, but might also happen if genconditions forces some conditions to true for certain configurations. */ return false; /* Go backwards through the decisions in S1, stopping once we find one that could match the same thing as S2. */ while (d1->prev && mutually_exclusive_p (d1, d2)) d1 = d1->prev; /* Search forwards from that point, merging D2 into the first decision we can. */ for (; d1; d1 = d1->next) { /* If S2 performs some optional tests before testing the same thing as D1, those tests do not help to distinguish D1 and S2, so it's better to drop them. Search through such optional decisions until we find something that tests the same thing as D1. */ state *sub_s2 = s2; for (;;) { decision *sub_d2 = sub_s2->singleton (); if (d1->test == sub_d2->test) { /* Only apply EXCLUDE if we're testing the same thing as D2. */ const int_set *sub_exclude = (d2 == sub_d2 ? exclude : 0); /* Try to merge SUB_S2 into D1. This can only fail if it would involve creating a new transition with labels SUB_EXCLUDE. */ if (merge_into_decision (d1, sub_s2, sub_exclude, next_s1, next_s2, next_exclude)) return *next_s2 != 0; /* Can't merge with D1; try a later decision. */ break; } transition *sub_trans2 = sub_d2->singleton (); if (!sub_trans2->optional) /* Can't merge with D1; try a later decision. */ break; sub_s2 = sub_trans2->to; } } } /* We can't merge D2 with any existing decision. Just add it to the end. */ s1->push_back (s2->release ()); return false; } /* Merge S2 into S1. If they both match a particular rtx, give priority to S1. Each state in S2 has a single decision. */ static void merge_into_state (state *s1, state *s2) { const int_set *exclude = 0; while (s2 && merge_into_state_1 (s1, s2, exclude, &s1, &s2, &exclude)) continue; } /* Pairs a pattern that needs to be matched with the rtx position at which the pattern should occur. */ class pattern_pos { public: pattern_pos () {} pattern_pos (rtx, position *); rtx pattern; position *pos; }; pattern_pos::pattern_pos (rtx pattern_in, position *pos_in) : pattern (pattern_in), pos (pos_in) {} /* Compare entries according to their depth-first order. There shouldn't be two entries at the same position. */ bool operator < (const pattern_pos &e1, const pattern_pos &e2) { int diff = compare_positions (e1.pos, e2.pos); gcc_assert (diff != 0 || e1.pattern == e2.pattern); return diff < 0; } /* Add new decisions to S that check whether the rtx at position POS matches PATTERN. Return the state that is reached in that case. TOP_PATTERN is the overall pattern, as passed to match_pattern_1. */ static state * match_pattern_2 (state *s, md_rtx_info *info, position *pos, rtx pattern) { auto_vec <pattern_pos, 32> worklist; auto_vec <pattern_pos, 32> pred_and_mode_tests; auto_vec <pattern_pos, 32> dup_tests; worklist.safe_push (pattern_pos (pattern, pos)); while (!worklist.is_empty ()) { pattern_pos next = worklist.pop (); pattern = next.pattern; pos = next.pos; unsigned int reverse_s = worklist.length (); enum rtx_code code = GET_CODE (pattern); switch (code) { case MATCH_OP_DUP: case MATCH_DUP: case MATCH_PAR_DUP: /* Add a test that the rtx matches the earlier one, but only after the structure and predicates have been checked. */ dup_tests.safe_push (pattern_pos (pattern, pos)); /* Use the same code check as the original operand. */ pattern = find_operand (info->def, XINT (pattern, 0), NULL_RTX); /* Fall through. */ case MATCH_PARALLEL: case MATCH_OPERAND: case MATCH_SCRATCH: case MATCH_OPERATOR: { const char *pred_name = predicate_name (pattern); const struct pred_data *pred = 0; if (pred_name[0] != 0) { pred = lookup_predicate (pred_name); /* Only report errors once per rtx. */ if (code == GET_CODE (pattern)) { if (!pred) error_at (info->loc, "unknown predicate '%s' used in %s", pred_name, GET_RTX_NAME (code)); else if (code == MATCH_PARALLEL && pred->singleton != PARALLEL) error_at (info->loc, "predicate '%s' used in" " match_parallel does not allow only PARALLEL", pred->name); } } if (code == MATCH_PARALLEL || code == MATCH_PAR_DUP) { /* Check that we have a parallel with enough elements. */ s = add_decision (s, rtx_test::code (pos), PARALLEL, false); int min_len = XVECLEN (pattern, 2); s = add_decision (s, rtx_test::veclen_ge (pos, min_len), true, false); } else { /* Check that the rtx has one of codes accepted by the predicate. This is necessary when matching suboperands of a MATCH_OPERATOR or MATCH_OP_DUP, since we can't call XEXP (X, N) without checking that X has at least N+1 operands. */ int_set codes; get_predicate_codes (pred, &codes); bool need_codes = (pred && (code == MATCH_OPERATOR || code == MATCH_OP_DUP)); s = add_decision (s, rtx_test::code (pos), codes, !need_codes); } /* Postpone the predicate check until we've checked the rest of the rtx structure. */ if (code == GET_CODE (pattern)) pred_and_mode_tests.safe_push (pattern_pos (pattern, pos)); /* If we need to match suboperands, add them to the worklist. */ if (code == MATCH_OPERATOR || code == MATCH_PARALLEL) { position **subpos_ptr; enum position_type pos_type; int i; if (code == MATCH_OPERATOR || code == MATCH_OP_DUP) { pos_type = POS_XEXP; subpos_ptr = &pos->xexps; i = (code == MATCH_OPERATOR ? 2 : 1); } else { pos_type = POS_XVECEXP0; subpos_ptr = &pos->xvecexp0s; i = 2; } for (int j = 0; j < XVECLEN (pattern, i); ++j) { position *subpos = next_position (subpos_ptr, pos, pos_type, j); worklist.safe_push (pattern_pos (XVECEXP (pattern, i, j), subpos)); subpos_ptr = &subpos->next; } } break; } default: { /* Check that the rtx has the right code. */ s = add_decision (s, rtx_test::code (pos), code, false); /* Queue a test for the mode if one is specified. */ if (GET_MODE (pattern) != VOIDmode) pred_and_mode_tests.safe_push (pattern_pos (pattern, pos)); /* Push subrtxes onto the worklist. Match nonrtx operands now. */ const char *fmt = GET_RTX_FORMAT (code); position **subpos_ptr = &pos->xexps; for (size_t i = 0; fmt[i]; ++i) { position *subpos = next_position (subpos_ptr, pos, POS_XEXP, i); switch (fmt[i]) { case 'e': case 'u': worklist.safe_push (pattern_pos (XEXP (pattern, i), subpos)); break; case 'E': { /* Make sure the vector has the right number of elements. */ int length = XVECLEN (pattern, i); s = add_decision (s, rtx_test::veclen (pos), length, false); position **subpos2_ptr = &pos->xvecexp0s; for (int j = 0; j < length; j++) { position *subpos2 = next_position (subpos2_ptr, pos, POS_XVECEXP0, j); rtx x = XVECEXP (pattern, i, j); worklist.safe_push (pattern_pos (x, subpos2)); subpos2_ptr = &subpos2->next; } break; } case 'i': /* Make sure that XINT (X, I) has the right value. */ s = add_decision (s, rtx_test::int_field (pos, i), XINT (pattern, i), false); break; case 'r': /* Make sure that REGNO (X) has the right value. */ gcc_assert (i == 0); s = add_decision (s, rtx_test::regno_field (pos), REGNO (pattern), false); break; case 'w': /* Make sure that XWINT (X, I) has the right value. */ s = add_decision (s, rtx_test::wide_int_field (pos, i), XWINT (pattern, 0), false); break; case 'p': /* We don't have a way of parsing polynomial offsets yet, and hopefully never will. */ s = add_decision (s, rtx_test::subreg_field (pos), SUBREG_BYTE (pattern).to_constant (), false); break; case '0': break; default: gcc_unreachable (); } subpos_ptr = &subpos->next; } } break; } /* Operands are pushed onto the worklist so that later indices are nearer the top. That's what we want for SETs, since a SET_SRC is a better discriminator than a SET_DEST. In other cases it's usually better to match earlier indices first. This is especially true of PARALLELs, where the first element tends to be the most individual. It's also true for commutative operators, where the canonicalization rules say that the more complex operand should come first. */ if (code != SET && worklist.length () > reverse_s) std::reverse (&worklist[0] + reverse_s, &worklist[0] + worklist.length ()); } /* Sort the predicate and mode tests so that they're in depth-first order. The main goal of this is to put SET_SRC match_operands after SET_DEST match_operands and after mode checks for the enclosing SET_SRC operators (such as the mode of a PLUS in an addition instruction). The latter two types of test can determine the mode exactly, whereas a SET_SRC match_operand often has to cope with the possibility of the operand being a modeless constant integer. E.g. something that matches register_operand (x, SImode) never matches register_operand (x, DImode), but a const_int that matches immediate_operand (x, SImode) also matches immediate_operand (x, DImode). The register_operand cases can therefore be distinguished by a switch on the mode, but the immediate_operand cases can't. */ if (pred_and_mode_tests.length () > 1) std::sort (&pred_and_mode_tests[0], &pred_and_mode_tests[0] + pred_and_mode_tests.length ()); /* Add the mode and predicate tests. */ pattern_pos *e; unsigned int i; FOR_EACH_VEC_ELT (pred_and_mode_tests, i, e) { switch (GET_CODE (e->pattern)) { case MATCH_PARALLEL: case MATCH_OPERAND: case MATCH_SCRATCH: case MATCH_OPERATOR: { int opno = XINT (e->pattern, 0); num_operands = MAX (num_operands, opno + 1); const char *pred_name = predicate_name (e->pattern); if (pred_name[0]) { const struct pred_data *pred = lookup_predicate (pred_name); /* Check the mode first, to distinguish things like SImode and DImode register_operands, as described above. */ machine_mode mode = GET_MODE (e->pattern); if (pred && safe_predicate_mode (pred, mode)) s = add_decision (s, rtx_test::mode (e->pos), mode, true); /* Assign to operands[] first, so that the rtx usually doesn't need to be live across the call to the predicate. This shouldn't cause a problem with dirtying the page, since we fully expect to assign to operands[] at some point, and since the caller usually writes to other parts of recog_data anyway. */ s = add_decision (s, rtx_test::set_op (e->pos, opno), true, false); s = add_decision (s, rtx_test::predicate (e->pos, pred, mode), true, false); } else /* Historically we've ignored the mode when there's no predicate. Just set up operands[] unconditionally. */ s = add_decision (s, rtx_test::set_op (e->pos, opno), true, false); break; } default: s = add_decision (s, rtx_test::mode (e->pos), GET_MODE (e->pattern), false); break; } } /* Finally add rtx_equal_p checks for duplicated operands. */ FOR_EACH_VEC_ELT (dup_tests, i, e) s = add_decision (s, rtx_test::duplicate (e->pos, XINT (e->pattern, 0)), true, false); return s; } /* Add new decisions to S that make it return ACCEPTANCE if: (1) the rtx doesn't match anything already matched by S (2) the rtx matches TOP_PATTERN and (3) the C test required by INFO->def is true For peephole2, TOP_PATTERN is a SEQUENCE of the instruction patterns to match, otherwise it is a single instruction pattern. */ static void match_pattern_1 (state *s, md_rtx_info *info, rtx pattern, acceptance_type acceptance) { if (acceptance.type == PEEPHOLE2) { /* Match each individual instruction. */ position **subpos_ptr = &peep2_insn_pos_list; int count = 0; for (int i = 0; i < XVECLEN (pattern, 0); ++i) { rtx x = XVECEXP (pattern, 0, i); position *subpos = next_position (subpos_ptr, &root_pos, POS_PEEP2_INSN, count); if (count > 0) s = add_decision (s, rtx_test::peep2_count (count + 1), true, false); s = match_pattern_2 (s, info, subpos, x); subpos_ptr = &subpos->next; count += 1; } acceptance.u.full.u.match_len = count - 1; } else { /* Make the rtx itself. */ s = match_pattern_2 (s, info, &root_pos, pattern); /* If the match is only valid when extra clobbers are added, make sure we're able to pass that information to the caller. */ if (acceptance.type == RECOG && acceptance.u.full.u.num_clobbers) s = add_decision (s, rtx_test::have_num_clobbers (), true, false); } /* Make sure that the C test is true. */ const char *c_test = get_c_test (info->def); if (maybe_eval_c_test (c_test) != 1) s = add_decision (s, rtx_test::c_test (c_test), true, false); /* Accept the pattern. */ add_decision (s, rtx_test::accept (acceptance), true, false); } /* Like match_pattern_1, but (if merge_states_p) try to merge the decisions with what's already in S, to reduce the amount of backtracking. */ static void match_pattern (state *s, md_rtx_info *info, rtx pattern, acceptance_type acceptance) { if (merge_states_p) { state root; /* Add the decisions to a fresh state and then merge the full tree into the existing one. */ match_pattern_1 (&root, info, pattern, acceptance); merge_into_state (s, &root); } else match_pattern_1 (s, info, pattern, acceptance); } /* Begin the output file. */ static void write_header (void) { puts ("\ /* Generated automatically by the program `genrecog' from the target\n\ machine description file. */\n\ \n\ #define IN_TARGET_CODE 1\n\ \n\ #include \"config.h\"\n\ #include \"system.h\"\n\ #include \"coretypes.h\"\n\ #include \"backend.h\"\n\ #include \"predict.h\"\n\ #include \"rtl.h\"\n\ #include \"memmodel.h\"\n\ #include \"tm_p.h\"\n\ #include \"emit-rtl.h\"\n\ #include \"insn-config.h\"\n\ #include \"recog.h\"\n\ #include \"output.h\"\n\ #include \"flags.h\"\n\ #include \"df.h\"\n\ #include \"resource.h\"\n\ #include \"diagnostic-core.h\"\n\ #include \"reload.h\"\n\ #include \"regs.h\"\n\ #include \"tm-constrs.h\"\n\ \n"); puts ("\n\ /* `recog' contains a decision tree that recognizes whether the rtx\n\ X0 is a valid instruction.\n\ \n\ recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\ returns a nonnegative number which is the insn code number for the\n\ pattern that matched. This is the same as the order in the machine\n\ description of the entry that matched. This number can be used as an\n\ index into `insn_data' and other tables.\n"); puts ("\ The third parameter to recog is an optional pointer to an int. If\n\ present, recog will accept a pattern if it matches except for missing\n\ CLOBBER expressions at the end. In that case, the value pointed to by\n\ the optional pointer will be set to the number of CLOBBERs that need\n\ to be added (it should be initialized to zero by the caller). If it"); puts ("\ is set nonzero, the caller should allocate a PARALLEL of the\n\ appropriate size, copy the initial entries, and call add_clobbers\n\ (found in insn-emit.cc) to fill in the CLOBBERs.\n\ "); puts ("\n\ The function split_insns returns 0 if the rtl could not\n\ be split or the split rtl as an INSN list if it can be.\n\ \n\ The function peephole2_insns returns 0 if the rtl could not\n\ be matched. If there was a match, the new rtl is returned in an INSN list,\n\ and LAST_INSN will point to the last recognized insn in the old sequence.\n\ */\n\n"); } /* Return the C type of a parameter with type TYPE. */ static const char * parameter_type_string (parameter::type_enum type) { switch (type) { case parameter::UNSET: break; case parameter::CODE: return "rtx_code"; case parameter::MODE: return "machine_mode"; case parameter::INT: return "int"; case parameter::UINT: return "unsigned int"; case parameter::WIDE_INT: return "HOST_WIDE_INT"; } gcc_unreachable (); } /* Return true if ACCEPTANCE requires only a single C statement even in a backtracking context. */ static bool single_statement_p (const acceptance_type &acceptance) { if (acceptance.partial_p) /* We need to handle failures of the subroutine. */ return false; switch (acceptance.type) { case SUBPATTERN: case SPLIT: return true; case RECOG: /* False if we need to assign to pnum_clobbers. */ return acceptance.u.full.u.num_clobbers == 0; case PEEPHOLE2: /* We need to assign to pmatch_len_ and handle null returns from the peephole2 routine. */ return false; } gcc_unreachable (); } /* Return the C failure value for a routine of type TYPE. */ static const char * get_failure_return (routine_type type) { switch (type) { case SUBPATTERN: case RECOG: return "-1"; case SPLIT: case PEEPHOLE2: return "NULL"; } gcc_unreachable (); } /* Indicates whether a block of code always returns or whether it can fall through. */ enum exit_state { ES_RETURNED, ES_FALLTHROUGH }; /* Information used while writing out code. */ class output_state { public: /* The type of routine that we're generating. */ routine_type type; /* Maps position ids to xN variable numbers. The entry is only valid if it is less than the length of VAR_TO_ID, but this holds for every position tested by a state when writing out that state. */ auto_vec <unsigned int> id_to_var; /* Maps xN variable numbers to position ids. */ auto_vec <unsigned int> var_to_id; /* Index N is true if variable xN has already been set. */ auto_vec <bool> seen_vars; }; /* Return true if D is a call to a pattern routine and if there is some X such that the transition for pattern result N goes to a successful return with code X+N. When returning true, set *BASE_OUT to this X and *COUNT_OUT to the number of return values. (We know that every PATTERN decision has a transition for every successful return.) */ static bool terminal_pattern_p (decision *d, unsigned int *base_out, unsigned int *count_out) { if (d->test.kind != rtx_test::PATTERN) return false; unsigned int base = 0; unsigned int count = 0; for (transition *trans = d->first; trans; trans = trans->next) { if (trans->is_param || trans->labels.length () != 1) return false; decision *subd = trans->to->singleton (); if (!subd || subd->test.kind != rtx_test::ACCEPT) return false; unsigned int this_base = (subd->test.u.acceptance.u.full.code - trans->labels[0]); if (trans == d->first) base = this_base; else if (base != this_base) return false; count += 1; } *base_out = base; *count_out = count; return true; } /* Return true if TEST doesn't test an rtx or if the rtx it tests is already available in state OS. */ static bool test_position_available_p (output_state *os, const rtx_test &test) { return (!test.pos || test.pos_operand >= 0 || os->seen_vars[os->id_to_var[test.pos->id]]); } /* Like printf, but print INDENT spaces at the beginning. */ static void ATTRIBUTE_PRINTF_2 printf_indent (unsigned int indent, const char *format, ...) { va_list ap; va_start (ap, format); printf ("%*s", indent, ""); vprintf (format, ap); va_end (ap); } /* Emit code to initialize the variable associated with POS, if it isn't already valid in state OS. Indent each line by INDENT spaces. Update OS with the new state. */ static void change_state (output_state *os, position *pos, unsigned int indent) { unsigned int var = os->id_to_var[pos->id]; gcc_assert (var < os->var_to_id.length () && os->var_to_id[var] == pos->id); if (os->seen_vars[var]) return; switch (pos->type) { case POS_PEEP2_INSN: printf_indent (indent, "x%d = PATTERN (peep2_next_insn (%d));\n", var, pos->arg); break; case POS_XEXP: change_state (os, pos->base, indent); printf_indent (indent, "x%d = XEXP (x%d, %d);\n", var, os->id_to_var[pos->base->id], pos->arg); break; case POS_XVECEXP0: change_state (os, pos->base, indent); printf_indent (indent, "x%d = XVECEXP (x%d, 0, %d);\n", var, os->id_to_var[pos->base->id], pos->arg); break; } os->seen_vars[var] = true; } /* Print the enumerator constant for CODE -- the upcase version of the name. */ static void print_code (enum rtx_code code) { const char *p; for (p = GET_RTX_NAME (code); *p; p++) putchar (TOUPPER (*p)); } /* Emit a uint64_t as an integer constant expression. We need to take special care to avoid "decimal constant is so large that it is unsigned" warnings in the resulting code. */ static void print_host_wide_int (uint64_t val) { uint64_t min = uint64_t (1) << (HOST_BITS_PER_WIDE_INT - 1); if (val == min) printf ("(" HOST_WIDE_INT_PRINT_DEC_C " - 1)", val + 1); else printf (HOST_WIDE_INT_PRINT_DEC_C, val); } /* Print the C expression for actual parameter PARAM. */ static void print_parameter_value (const parameter ¶m) { if (param.is_param) printf ("i%d", (int) param.value + 1); else switch (param.type) { case parameter::UNSET: gcc_unreachable (); break; case parameter::CODE: print_code ((enum rtx_code) param.value); break; case parameter::MODE: printf ("E_%smode", GET_MODE_NAME ((machine_mode) param.value)); break; case parameter::INT: printf ("%d", (int) param.value); break; case parameter::UINT: printf ("%u", (unsigned int) param.value); break; case parameter::WIDE_INT: print_host_wide_int (param.value); break; } } /* Print the C expression for the rtx tested by TEST. */ static void print_test_rtx (output_state *os, const rtx_test &test) { if (test.pos_operand >= 0) printf ("operands[%d]", test.pos_operand); else printf ("x%d", os->id_to_var[test.pos->id]); } /* Print the C expression for non-boolean test TEST. */ static void print_nonbool_test (output_state *os, const rtx_test &test) { switch (test.kind) { case rtx_test::CODE: printf ("GET_CODE ("); print_test_rtx (os, test); printf (")"); break; case rtx_test::MODE: printf ("GET_MODE ("); print_test_rtx (os, test); printf (")"); break; case rtx_test::VECLEN: printf ("XVECLEN ("); print_test_rtx (os, test); printf (", 0)"); break; case rtx_test::INT_FIELD: printf ("XINT ("); print_test_rtx (os, test); printf (", %d)", test.u.opno); break; case rtx_test::REGNO_FIELD: printf ("REGNO ("); print_test_rtx (os, test); printf (")"); break; case rtx_test::SUBREG_FIELD: printf ("SUBREG_BYTE ("); print_test_rtx (os, test); printf (")"); break; case rtx_test::WIDE_INT_FIELD: printf ("XWINT ("); print_test_rtx (os, test); printf (", %d)", test.u.opno); break; case rtx_test::PATTERN: { pattern_routine *routine = test.u.pattern->routine; printf ("pattern%d (", routine->pattern_id); const char *sep = ""; if (test.pos) { print_test_rtx (os, test); sep = ", "; } if (routine->insn_p) { printf ("%sinsn", sep); sep = ", "; } if (routine->pnum_clobbers_p) { printf ("%spnum_clobbers", sep); sep = ", "; } for (unsigned int i = 0; i < test.u.pattern->params.length (); ++i) { fputs (sep, stdout); print_parameter_value (test.u.pattern->params[i]); sep = ", "; } printf (")"); break; } case rtx_test::PEEP2_COUNT: case rtx_test::VECLEN_GE: case rtx_test::SAVED_CONST_INT: case rtx_test::DUPLICATE: case rtx_test::PREDICATE: case rtx_test::SET_OP: case rtx_test::HAVE_NUM_CLOBBERS: case rtx_test::C_TEST: case rtx_test::ACCEPT: gcc_unreachable (); } } /* IS_PARAM and LABEL are taken from a transition whose source decision performs TEST. Print the C code for the label. */ static void print_label_value (const rtx_test &test, bool is_param, uint64_t value) { print_parameter_value (parameter (transition_parameter_type (test.kind), is_param, value)); } /* If IS_PARAM, print code to compare TEST with the C variable i<VALUE+1>. If !IS_PARAM, print code to compare TEST with the C constant VALUE. Test for inequality if INVERT_P, otherwise test for equality. */ static void print_test (output_state *os, const rtx_test &test, bool is_param, uint64_t value, bool invert_p) { switch (test.kind) { /* Handle the non-boolean TESTs. */ case rtx_test::CODE: case rtx_test::MODE: case rtx_test::VECLEN: case rtx_test::REGNO_FIELD: case rtx_test::INT_FIELD: case rtx_test::WIDE_INT_FIELD: case rtx_test::PATTERN: print_nonbool_test (os, test); printf (" %s ", invert_p ? "!=" : "=="); print_label_value (test, is_param, value); break; case rtx_test::SUBREG_FIELD: printf ("%s (", invert_p ? "maybe_ne" : "known_eq"); print_nonbool_test (os, test); printf (", "); print_label_value (test, is_param, value); printf (")"); break; case rtx_test::SAVED_CONST_INT: gcc_assert (!is_param && value == 1); print_test_rtx (os, test); printf (" %s const_int_rtx[MAX_SAVED_CONST_INT + ", invert_p ? "!=" : "=="); print_parameter_value (parameter (parameter::INT, test.u.integer.is_param, test.u.integer.value)); printf ("]"); break; case rtx_test::PEEP2_COUNT: gcc_assert (!is_param && value == 1); printf ("peep2_current_count %s %d", invert_p ? "<" : ">=", test.u.min_len); break; case rtx_test::VECLEN_GE: gcc_assert (!is_param && value == 1); printf ("XVECLEN ("); print_test_rtx (os, test); printf (", 0) %s %d", invert_p ? "<" : ">=", test.u.min_len); break; case rtx_test::PREDICATE: gcc_assert (!is_param && value == 1); printf ("%s%s (", invert_p ? "!" : "", test.u.predicate.data->name); print_test_rtx (os, test); printf (", "); print_parameter_value (parameter (parameter::MODE, test.u.predicate.mode_is_param, test.u.predicate.mode)); printf (")"); break; case rtx_test::DUPLICATE: gcc_assert (!is_param && value == 1); printf ("%srtx_equal_p (", invert_p ? "!" : ""); print_test_rtx (os, test); printf (", operands[%d])", test.u.opno); break; case rtx_test::HAVE_NUM_CLOBBERS: gcc_assert (!is_param && value == 1); printf ("pnum_clobbers %s NULL", invert_p ? "==" : "!="); break; case rtx_test::C_TEST: gcc_assert (!is_param && value == 1); if (invert_p) printf ("!"); rtx_reader_ptr->print_c_condition (test.u.string); break; case rtx_test::ACCEPT: case rtx_test::SET_OP: gcc_unreachable (); } } static exit_state print_decision (output_state *, decision *, unsigned int, bool); /* Print code to perform S, indent each line by INDENT spaces. IS_FINAL is true if there are no fallback decisions to test on failure; if the state fails then the entire routine fails. */ static exit_state print_state (output_state *os, state *s, unsigned int indent, bool is_final) { exit_state es = ES_FALLTHROUGH; for (decision *d = s->first; d; d = d->next) es = print_decision (os, d, indent, is_final && !d->next); if (es != ES_RETURNED && is_final) { printf_indent (indent, "return %s;\n", get_failure_return (os->type)); es = ES_RETURNED; } return es; } /* Print the code for subroutine call ACCEPTANCE (for which partial_p is known to be true). Return the C condition that indicates a successful match. */ static const char * print_subroutine_call (const acceptance_type &acceptance) { switch (acceptance.type) { case SUBPATTERN: gcc_unreachable (); case RECOG: printf ("recog_%d (x1, insn, pnum_clobbers)", acceptance.u.subroutine_id); return ">= 0"; case SPLIT: printf ("split_%d (x1, insn)", acceptance.u.subroutine_id); return "!= NULL_RTX"; case PEEPHOLE2: printf ("peephole2_%d (x1, insn, pmatch_len_)", acceptance.u.subroutine_id); return "!= NULL_RTX"; } gcc_unreachable (); } /* Print code for the successful match described by ACCEPTANCE. INDENT and IS_FINAL are as for print_state. */ static exit_state print_acceptance (const acceptance_type &acceptance, unsigned int indent, bool is_final) { if (acceptance.partial_p) { /* Defer the rest of the match to a subroutine. */ if (is_final) { printf_indent (indent, "return "); print_subroutine_call (acceptance); printf (";\n"); return ES_RETURNED; } else { printf_indent (indent, "res = "); const char *res_test = print_subroutine_call (acceptance); printf (";\n"); printf_indent (indent, "if (res %s)\n", res_test); printf_indent (indent + 2, "return res;\n"); return ES_FALLTHROUGH; } } switch (acceptance.type) { case SUBPATTERN: printf_indent (indent, "return %d;\n", acceptance.u.full.code); return ES_RETURNED; case RECOG: if (acceptance.u.full.u.num_clobbers != 0) printf_indent (indent, "*pnum_clobbers = %d;\n", acceptance.u.full.u.num_clobbers); printf_indent (indent, "return %d; /* %s */\n", acceptance.u.full.code, get_insn_name (acceptance.u.full.code)); return ES_RETURNED; case SPLIT: printf_indent (indent, "return gen_split_%d (insn, operands);\n", acceptance.u.full.code); return ES_RETURNED; case PEEPHOLE2: printf_indent (indent, "*pmatch_len_ = %d;\n", acceptance.u.full.u.match_len); if (is_final) { printf_indent (indent, "return gen_peephole2_%d (insn, operands);\n", acceptance.u.full.code); return ES_RETURNED; } else { printf_indent (indent, "res = gen_peephole2_%d (insn, operands);\n", acceptance.u.full.code); printf_indent (indent, "if (res != NULL_RTX)\n"); printf_indent (indent + 2, "return res;\n"); return ES_FALLTHROUGH; } } gcc_unreachable (); } /* Print code to perform D. INDENT and IS_FINAL are as for print_state. */ static exit_state print_decision (output_state *os, decision *d, unsigned int indent, bool is_final) { uint64_t label; unsigned int base, count; /* Make sure the rtx under test is available either in operands[] or in an xN variable. */ if (d->test.pos && d->test.pos_operand < 0) change_state (os, d->test.pos, indent); /* Look for cases where a pattern routine P1 calls another pattern routine P2 and where P1 returns X + BASE whenever P2 returns X. If IS_FINAL is true and BASE is zero we can simply use: return patternN (...); Otherwise we can use: res = patternN (...); if (res >= 0) return res + BASE; However, if BASE is nonzero and patternN only returns 0 or -1, the usual "return BASE;" is better than "return res + BASE;". If BASE is zero, "return res;" should be better than "return 0;", since no assignment to the return register is required. */ if (os->type == SUBPATTERN && terminal_pattern_p (d, &base, &count) && (base == 0 || count > 1)) { if (is_final && base == 0) { printf_indent (indent, "return "); print_nonbool_test (os, d->test); printf ("; /* [-1, %d] */\n", count - 1); return ES_RETURNED; } else { printf_indent (indent, "res = "); print_nonbool_test (os, d->test); printf (";\n"); printf_indent (indent, "if (res >= 0)\n"); printf_indent (indent + 2, "return res"); if (base != 0) printf (" + %d", base); printf ("; /* [%d, %d] */\n", base, base + count - 1); return ES_FALLTHROUGH; } } else if (d->test.kind == rtx_test::ACCEPT) return print_acceptance (d->test.u.acceptance, indent, is_final); else if (d->test.kind == rtx_test::SET_OP) { printf_indent (indent, "operands[%d] = ", d->test.u.opno); print_test_rtx (os, d->test); printf (";\n"); return print_state (os, d->singleton ()->to, indent, is_final); } /* Handle decisions with a single transition and a single transition label. */ else if (d->if_statement_p (&label)) { transition *trans = d->singleton (); if (mark_optional_transitions_p && trans->optional) printf_indent (indent, "/* OPTIONAL IF */\n"); /* Print the condition associated with TRANS. Invert it if IS_FINAL, so that we return immediately on failure and fall through on success. */ printf_indent (indent, "if ("); print_test (os, d->test, trans->is_param, label, is_final); /* Look for following states that would be handled by this code on recursion. If they don't need any preparatory statements, include them in the current "if" statement rather than creating a new one. */ for (;;) { d = trans->to->singleton (); if (!d || d->test.kind == rtx_test::ACCEPT || d->test.kind == rtx_test::SET_OP || !d->if_statement_p (&label) || !test_position_available_p (os, d->test)) break; trans = d->first; printf ("\n"); if (mark_optional_transitions_p && trans->optional) printf_indent (indent + 4, "/* OPTIONAL IF */\n"); printf_indent (indent + 4, "%s ", is_final ? "||" : "&&"); print_test (os, d->test, trans->is_param, label, is_final); } printf (")\n"); /* Print the conditional code with INDENT + 2 and the fallthrough code with indent INDENT. */ state *to = trans->to; if (is_final) { /* We inverted the condition above, so return failure in the "if" body and fall through to the target of the transition. */ printf_indent (indent + 2, "return %s;\n", get_failure_return (os->type)); return print_state (os, to, indent, is_final); } else if (to->singleton () && to->first->test.kind == rtx_test::ACCEPT && single_statement_p (to->first->test.u.acceptance)) { /* The target of the transition is a simple "return" statement. It doesn't need any braces and doesn't fall through. */ if (print_acceptance (to->first->test.u.acceptance, indent + 2, true) != ES_RETURNED) gcc_unreachable (); return ES_FALLTHROUGH; } else { /* The general case. Output code for the target of the transition in braces. This will not invalidate any of the xN variables that are already valid, but we mustn't rely on any that are set by the "if" body. */ auto_vec <bool, 32> old_seen; old_seen.safe_splice (os->seen_vars); printf_indent (indent + 2, "{\n"); print_state (os, trans->to, indent + 4, is_final); printf_indent (indent + 2, "}\n"); os->seen_vars.truncate (0); os->seen_vars.splice (old_seen); return ES_FALLTHROUGH; } } else { /* Output the decision as a switch statement. */ printf_indent (indent, "switch ("); print_nonbool_test (os, d->test); printf (")\n"); /* Each case statement starts with the same set of valid variables. These are also the only variables will be valid on fallthrough. */ auto_vec <bool, 32> old_seen; old_seen.safe_splice (os->seen_vars); printf_indent (indent + 2, "{\n"); for (transition *trans = d->first; trans; trans = trans->next) { gcc_assert (!trans->is_param); if (mark_optional_transitions_p && trans->optional) printf_indent (indent + 2, "/* OPTIONAL CASE */\n"); for (int_set::iterator j = trans->labels.begin (); j != trans->labels.end (); ++j) { printf_indent (indent + 2, "case "); print_label_value (d->test, trans->is_param, *j); printf (":\n"); } if (print_state (os, trans->to, indent + 4, is_final)) { /* The state can fall through. Add an explicit break. */ gcc_assert (!is_final); printf_indent (indent + 4, "break;\n"); } printf ("\n"); /* Restore the original set of valid variables. */ os->seen_vars.truncate (0); os->seen_vars.splice (old_seen); } /* Add a default case. */ printf_indent (indent + 2, "default:\n"); if (is_final) printf_indent (indent + 4, "return %s;\n", get_failure_return (os->type)); else printf_indent (indent + 4, "break;\n"); printf_indent (indent + 2, "}\n"); return is_final ? ES_RETURNED : ES_FALLTHROUGH; } } /* Make sure that OS has a position variable for POS. ROOT_P is true if POS is the root position for the routine. */ static void assign_position_var (output_state *os, position *pos, bool root_p) { unsigned int idx = os->id_to_var[pos->id]; if (idx < os->var_to_id.length () && os->var_to_id[idx] == pos->id) return; if (!root_p && pos->type != POS_PEEP2_INSN) assign_position_var (os, pos->base, false); os->id_to_var[pos->id] = os->var_to_id.length (); os->var_to_id.safe_push (pos->id); } /* Make sure that OS has the position variables required by S. */ static void assign_position_vars (output_state *os, state *s) { for (decision *d = s->first; d; d = d->next) { /* Positions associated with operands can be read from the operands[] array. */ if (d->test.pos && d->test.pos_operand < 0) assign_position_var (os, d->test.pos, false); for (transition *trans = d->first; trans; trans = trans->next) assign_position_vars (os, trans->to); } } /* Print the open brace and variable definitions for a routine that implements S. ROOT is the deepest rtx from which S can access all relevant parts of the first instruction it matches. Initialize OS so that every relevant position has an rtx variable xN and so that only ROOT's variable has a valid value. */ static void print_subroutine_start (output_state *os, state *s, position *root) { printf ("{\n rtx * const operands ATTRIBUTE_UNUSED" " = &recog_data.operand[0];\n"); os->var_to_id.truncate (0); os->seen_vars.truncate (0); if (root) { /* Create a fake entry for position 0 so that an id_to_var of 0 is always invalid. This also makes the xN variables naturally 1-based rather than 0-based. */ os->var_to_id.safe_push (num_positions); /* Associate ROOT with x1. */ assign_position_var (os, root, true); /* Assign xN variables to all other relevant positions. */ assign_position_vars (os, s); /* Output the variable declarations (except for ROOT's, which is passed in as a parameter). */ unsigned int num_vars = os->var_to_id.length (); if (num_vars > 2) { for (unsigned int i = 2; i < num_vars; ++i) /* Print 8 rtx variables to a line. */ printf ("%s x%d", i == 2 ? " rtx" : (i - 2) % 8 == 0 ? ";\n rtx" : ",", i); printf (";\n"); } /* Say that x1 is valid and the rest aren't. */ os->seen_vars.safe_grow_cleared (num_vars, true); os->seen_vars[1] = true; } if (os->type == SUBPATTERN || os->type == RECOG) printf (" int res ATTRIBUTE_UNUSED;\n"); else printf (" rtx_insn *res ATTRIBUTE_UNUSED;\n"); } /* Output the definition of pattern routine ROUTINE. */ static void print_pattern (output_state *os, pattern_routine *routine) { printf ("\nstatic int\npattern%d (", routine->pattern_id); const char *sep = ""; /* Add the top-level rtx parameter, if any. */ if (routine->pos) { printf ("%srtx x1", sep); sep = ", "; } /* Add the optional parameters. */ if (routine->insn_p) { /* We can't easily tell whether a C condition actually reads INSN, so add an ATTRIBUTE_UNUSED just in case. */ printf ("%srtx_insn *insn ATTRIBUTE_UNUSED", sep); sep = ", "; } if (routine->pnum_clobbers_p) { printf ("%sint *pnum_clobbers", sep); sep = ", "; } /* Add the "i" parameters. */ for (unsigned int i = 0; i < routine->param_types.length (); ++i) { printf ("%s%s i%d", sep, parameter_type_string (routine->param_types[i]), i + 1); sep = ", "; } printf (")\n"); os->type = SUBPATTERN; print_subroutine_start (os, routine->s, routine->pos); print_state (os, routine->s, 2, true); printf ("}\n"); } /* Output a routine of type TYPE that implements S. PROC_ID is the number of the subroutine associated with S, or 0 if S is the main routine. */ static void print_subroutine (output_state *os, state *s, int proc_id) { printf ("\n"); switch (os->type) { case SUBPATTERN: gcc_unreachable (); case RECOG: if (proc_id) printf ("static int\nrecog_%d", proc_id); else printf ("int\nrecog"); printf (" (rtx x1 ATTRIBUTE_UNUSED,\n" "\trtx_insn *insn ATTRIBUTE_UNUSED,\n" "\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n"); break; case SPLIT: if (proc_id) printf ("static rtx_insn *\nsplit_%d", proc_id); else printf ("rtx_insn *\nsplit_insns"); printf (" (rtx x1 ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED)\n"); break; case PEEPHOLE2: if (proc_id) printf ("static rtx_insn *\npeephole2_%d", proc_id); else printf ("rtx_insn *\npeephole2_insns"); printf (" (rtx x1 ATTRIBUTE_UNUSED,\n" "\trtx_insn *insn ATTRIBUTE_UNUSED,\n" "\tint *pmatch_len_ ATTRIBUTE_UNUSED)\n"); break; } print_subroutine_start (os, s, &root_pos); if (proc_id == 0) { printf (" recog_data.insn = NULL;\n"); } print_state (os, s, 2, true); printf ("}\n"); } /* Print out a routine of type TYPE that performs ROOT. */ static void print_subroutine_group (output_state *os, routine_type type, state *root) { os->type = type; if (use_subroutines_p) { /* Split ROOT up into smaller pieces, both for readability and to help the compiler. */ auto_vec <state *> subroutines; find_subroutines (type, root, subroutines); /* Output the subroutines (but not ROOT itself). */ unsigned int i; state *s; FOR_EACH_VEC_ELT (subroutines, i, s) print_subroutine (os, s, i + 1); } /* Output the main routine. */ print_subroutine (os, root, 0); } /* Return the rtx pattern for the list of rtxes in a define_peephole2. */ static rtx get_peephole2_pattern (md_rtx_info *info) { int i, j; rtvec vec = XVEC (info->def, 0); rtx pattern = rtx_alloc (SEQUENCE); XVEC (pattern, 0) = rtvec_alloc (GET_NUM_ELEM (vec)); for (i = j = 0; i < GET_NUM_ELEM (vec); i++) { rtx x = RTVEC_ELT (vec, i); /* Ignore scratch register requirements. */ if (GET_CODE (x) != MATCH_SCRATCH && GET_CODE (x) != MATCH_DUP) { XVECEXP (pattern, 0, j) = x; j++; } } XVECLEN (pattern, 0) = j; if (j == 0) error_at (info->loc, "empty define_peephole2"); return pattern; } /* Return true if *PATTERN_PTR is a PARALLEL in which at least one trailing rtx can be added automatically by add_clobbers. If so, update *ACCEPTANCE_PTR so that its num_clobbers field contains the number of such trailing rtxes and update *PATTERN_PTR so that it contains the pattern without those rtxes. */ static bool remove_clobbers (acceptance_type *acceptance_ptr, rtx *pattern_ptr) { int i; rtx new_pattern; /* Find the last non-clobber in the parallel. */ rtx pattern = *pattern_ptr; for (i = XVECLEN (pattern, 0); i > 0; i--) { rtx x = XVECEXP (pattern, 0, i - 1); if (GET_CODE (x) != CLOBBER || (!REG_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 0)) != MATCH_SCRATCH)) break; } if (i == XVECLEN (pattern, 0)) return false; /* Build a similar insn without the clobbers. */ if (i == 1) new_pattern = XVECEXP (pattern, 0, 0); else { new_pattern = rtx_alloc (PARALLEL); XVEC (new_pattern, 0) = rtvec_alloc (i); for (int j = 0; j < i; ++j) XVECEXP (new_pattern, 0, j) = XVECEXP (pattern, 0, j); } /* Recognize it. */ acceptance_ptr->u.full.u.num_clobbers = XVECLEN (pattern, 0) - i; *pattern_ptr = new_pattern; return true; } int main (int argc, const char **argv) { state insn_root, split_root, peephole2_root; progname = "genrecog"; if (!init_rtx_reader_args (argc, argv)) return (FATAL_EXIT_CODE); write_header (); /* Read the machine description. */ md_rtx_info info; while (read_md_rtx (&info)) { rtx def = info.def; acceptance_type acceptance; acceptance.partial_p = false; acceptance.u.full.code = info.index; rtx pattern; switch (GET_CODE (def)) { case DEFINE_INSN: { /* Match the instruction in the original .md form. */ acceptance.type = RECOG; acceptance.u.full.u.num_clobbers = 0; pattern = add_implicit_parallel (XVEC (def, 1)); validate_pattern (pattern, &info, NULL_RTX, 0); match_pattern (&insn_root, &info, pattern, acceptance); /* If the pattern is a PARALLEL with trailing CLOBBERs, allow recog_for_combine to match without the clobbers. */ if (GET_CODE (pattern) == PARALLEL && remove_clobbers (&acceptance, &pattern)) match_pattern (&insn_root, &info, pattern, acceptance); break; } case DEFINE_SPLIT: acceptance.type = SPLIT; pattern = add_implicit_parallel (XVEC (def, 0)); validate_pattern (pattern, &info, NULL_RTX, 0); match_pattern (&split_root, &info, pattern, acceptance); /* Declare the gen_split routine that we'll call if the pattern matches. The definition comes from insn-emit.cc. */ printf ("extern rtx_insn *gen_split_%d (rtx_insn *, rtx *);\n", info.index); break; case DEFINE_PEEPHOLE2: acceptance.type = PEEPHOLE2; pattern = get_peephole2_pattern (&info); validate_pattern (pattern, &info, NULL_RTX, 0); match_pattern (&peephole2_root, &info, pattern, acceptance); /* Declare the gen_peephole2 routine that we'll call if the pattern matches. The definition comes from insn-emit.cc. */ printf ("extern rtx_insn *gen_peephole2_%d (rtx_insn *, rtx *);\n", info.index); break; default: /* do nothing */; } } if (have_error) return FATAL_EXIT_CODE; puts ("\n\n"); /* Optimize each routine in turn. */ optimize_subroutine_group ("recog", &insn_root); optimize_subroutine_group ("split_insns", &split_root); optimize_subroutine_group ("peephole2_insns", &peephole2_root); output_state os; os.id_to_var.safe_grow_cleared (num_positions, true); if (use_pattern_routines_p) { /* Look for common patterns and split them out into subroutines. */ auto_vec <merge_state_info> states; states.safe_push (&insn_root); states.safe_push (&split_root); states.safe_push (&peephole2_root); split_out_patterns (states); /* Print out the routines that we just created. */ unsigned int i; pattern_routine *routine; FOR_EACH_VEC_ELT (patterns, i, routine) print_pattern (&os, routine); } /* Print out the matching routines. */ print_subroutine_group (&os, RECOG, &insn_root); print_subroutine_group (&os, SPLIT, &split_root); print_subroutine_group (&os, PEEPHOLE2, &peephole2_root); fflush (stdout); return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE); }