/* Generate code from machine description to emit insns as rtl. Copyright (C) 1987-2023 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "bconfig.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "errors.h" #include "read-md.h" #include "gensupport.h" /* Data structure for recording the patterns of insns that have CLOBBERs. We use this to output a function that adds these CLOBBERs to a previously-allocated PARALLEL expression. */ struct clobber_pat { struct clobber_ent *insns; rtx pattern; int first_clobber; struct clobber_pat *next; int has_hard_reg; } *clobber_list; /* Records one insn that uses the clobber list. */ struct clobber_ent { int code_number; /* Counts only insns. */ struct clobber_ent *next; }; static void output_peephole2_scratches (rtx, FILE*); /* True for _optab if that optab isn't allowed to fail. */ static bool nofail_optabs[NUM_OPTABS]; static void print_code (RTX_CODE code, FILE *file) { const char *p1; for (p1 = GET_RTX_NAME (code); *p1; p1++) fprintf (file, "%c", TOUPPER (*p1)); } static void gen_rtx_scratch (rtx x, enum rtx_code subroutine_type, FILE *file) { if (subroutine_type == DEFINE_PEEPHOLE2) { fprintf (file, "operand%d", XINT (x, 0)); } else { fprintf (file, "gen_rtx_SCRATCH (%smode)", GET_MODE_NAME (GET_MODE (x))); } } /* Print a C expression to construct an RTX just like X, substituting any operand references appearing within. */ static void gen_exp (rtx x, enum rtx_code subroutine_type, char *used, md_rtx_info *info, FILE *file) { RTX_CODE code; int i; int len; const char *fmt; const char *sep = ""; if (x == 0) { fprintf (file, "NULL_RTX"); return; } code = GET_CODE (x); switch (code) { case MATCH_OPERAND: case MATCH_DUP: if (used) { if (used[XINT (x, 0)]) { fprintf (file, "copy_rtx (operand%d)", XINT (x, 0)); return; } used[XINT (x, 0)] = 1; } fprintf (file, "operand%d", XINT (x, 0)); return; case MATCH_OP_DUP: fprintf (file, "gen_rtx_fmt_"); for (i = 0; i < XVECLEN (x, 1); i++) fprintf (file, "e"); fprintf (file, " (GET_CODE (operand%d), ", XINT (x, 0)); if (GET_MODE (x) == VOIDmode) fprintf (file, "GET_MODE (operand%d)", XINT (x, 0)); else fprintf (file, "%smode", GET_MODE_NAME (GET_MODE (x))); for (i = 0; i < XVECLEN (x, 1); i++) { fprintf (file, ",\n\t\t"); gen_exp (XVECEXP (x, 1, i), subroutine_type, used, info, file); } fprintf (file, ")"); return; case MATCH_OPERATOR: fprintf (file, "gen_rtx_fmt_"); for (i = 0; i < XVECLEN (x, 2); i++) fprintf (file, "e"); fprintf (file, " (GET_CODE (operand%d)", XINT (x, 0)); fprintf (file, ", %smode", GET_MODE_NAME (GET_MODE (x))); for (i = 0; i < XVECLEN (x, 2); i++) { fprintf (file, ",\n\t\t"); gen_exp (XVECEXP (x, 2, i), subroutine_type, used, info, file); } fprintf (file, ")"); return; case MATCH_PARALLEL: case MATCH_PAR_DUP: fprintf (file, "operand%d", XINT (x, 0)); return; case MATCH_SCRATCH: gen_rtx_scratch (x, subroutine_type, file); return; case PC: fprintf (file, "pc_rtx"); return; case RETURN: fprintf (file, "ret_rtx"); return; case SIMPLE_RETURN: fprintf (file, "simple_return_rtx"); return; case CLOBBER: if (REG_P (XEXP (x, 0))) { fprintf (file, "gen_hard_reg_clobber (%smode, %i)", GET_MODE_NAME (GET_MODE (XEXP (x, 0))), REGNO (XEXP (x, 0))); return; } break; case CONST_INT: if (INTVAL (x) == 0) fprintf (file, "const0_rtx"); else if (INTVAL (x) == 1) fprintf (file, "const1_rtx"); else if (INTVAL (x) == -1) fprintf (file, "constm1_rtx"); else if (-MAX_SAVED_CONST_INT <= INTVAL (x) && INTVAL (x) <= MAX_SAVED_CONST_INT) fprintf (file, "const_int_rtx[MAX_SAVED_CONST_INT + (%d)]", (int) INTVAL (x)); else if (INTVAL (x) == STORE_FLAG_VALUE) fprintf (file, "const_true_rtx"); else { fprintf (file, "GEN_INT ("); fprintf (file, HOST_WIDE_INT_PRINT_DEC_C, INTVAL (x)); fprintf (file, ")"); } return; case CONST_DOUBLE: /* Handle `const_double_zero' rtx. */ if (CONST_DOUBLE_REAL_VALUE (x)->cl == rvc_zero) { fprintf (file, "CONST_DOUBLE_ATOF (\"0\", %smode)", GET_MODE_NAME (GET_MODE (x))); return; } /* Fall through. */ case CONST_FIXED: case CONST_WIDE_INT: /* These shouldn't be written in MD files. Instead, the appropriate routines in varasm.cc should be called. */ gcc_unreachable (); default: break; } fprintf (file, "gen_rtx_"); print_code (code, file); fprintf (file, " ("); if (!always_void_p (code)) { fprintf (file, "%smode", GET_MODE_NAME (GET_MODE (x))); sep = ",\n\t"; } fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { if (fmt[i] == '0') break; fputs (sep, file); switch (fmt[i]) { case 'e': case 'u': gen_exp (XEXP (x, i), subroutine_type, used, info, file); break; case 'i': fprintf (file, "%u", XINT (x, i)); break; case 'r': fprintf (file, "%u", REGNO (x)); break; case 'p': /* We don't have a way of parsing polynomial offsets yet, and hopefully never will. */ fprintf (file, "%d", SUBREG_BYTE (x).to_constant ()); break; case 's': fprintf (file, "\"%s\"", XSTR (x, i)); break; case 'E': { int j; fprintf (file, "gen_rtvec (%d", XVECLEN (x, i)); for (j = 0; j < XVECLEN (x, i); j++) { fprintf (file, ",\n\t\t"); gen_exp (XVECEXP (x, i, j), subroutine_type, used, info, file); } fprintf (file, ")"); break; } default: gcc_unreachable (); } sep = ",\n\t"; } fprintf (file, ")"); } /* Output code to emit the instruction patterns in VEC, with each element becoming a separate instruction. USED is as for gen_exp. */ static void gen_emit_seq (rtvec vec, char *used, md_rtx_info *info, FILE *file) { for (int i = 0, len = GET_NUM_ELEM (vec); i < len; ++i) { bool last_p = (i == len - 1); rtx next = RTVEC_ELT (vec, i); if (const char *name = get_emit_function (next)) { fprintf (file, " %s (", name); gen_exp (next, DEFINE_EXPAND, used, info, file); fprintf (file, ");\n"); if (!last_p && needs_barrier_p (next)) fprintf (file, " emit_barrier ();"); } else { fprintf (file, " emit ("); gen_exp (next, DEFINE_EXPAND, used, info, file); fprintf (file, ", %s);\n", last_p ? "false" : "true"); } } } /* Emit the given C code to the output file. The code is allowed to fail if CAN_FAIL_P. NAME describes what we're generating, for use in error messages. */ static void emit_c_code (const char *code, bool can_fail_p, const char *name, FILE *file) { if (can_fail_p) fprintf (file, "#define FAIL return (end_sequence (), _val)\n"); else fprintf (file, "#define FAIL _Pragma (\"GCC error \\\"%s cannot FAIL\\\"\")" " (void)0\n", name); fprintf (file, "#define DONE return (_val = get_insns (), " "end_sequence (), _val)\n"); rtx_reader_ptr->print_md_ptr_loc (code, file); fprintf (file, "%s\n", code); fprintf (file, "#undef DONE\n"); fprintf (file, "#undef FAIL\n"); } /* Generate the `gen_...' function for a DEFINE_INSN. */ static void gen_insn (md_rtx_info *info, FILE *file) { struct pattern_stats stats; int i; /* See if the pattern for this insn ends with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes. If so, store away the information for later. */ rtx insn = info->def; if (XVEC (insn, 1)) { int has_hard_reg = 0; for (i = XVECLEN (insn, 1) - 1; i > 0; i--) { if (GET_CODE (XVECEXP (insn, 1, i)) != CLOBBER) break; if (REG_P (XEXP (XVECEXP (insn, 1, i), 0))) has_hard_reg = 1; else if (GET_CODE (XEXP (XVECEXP (insn, 1, i), 0)) != MATCH_SCRATCH) break; } if (i != XVECLEN (insn, 1) - 1) { struct clobber_pat *p; struct clobber_ent *link = XNEW (struct clobber_ent); int j; link->code_number = info->index; /* See if any previous CLOBBER_LIST entry is the same as this one. */ for (p = clobber_list; p; p = p->next) { if (p->first_clobber != i + 1 || XVECLEN (p->pattern, 1) != XVECLEN (insn, 1)) continue; for (j = i + 1; j < XVECLEN (insn, 1); j++) { rtx old_rtx = XEXP (XVECEXP (p->pattern, 1, j), 0); rtx new_rtx = XEXP (XVECEXP (insn, 1, j), 0); /* OLD and NEW_INSN are the same if both are to be a SCRATCH of the same mode, or if both are registers of the same mode and number. */ if (! (GET_CODE (old_rtx) == GET_CODE (new_rtx) && GET_MODE (old_rtx) == GET_MODE (new_rtx) && ((GET_CODE (old_rtx) == MATCH_SCRATCH && GET_CODE (new_rtx) == MATCH_SCRATCH) || (REG_P (old_rtx) && REG_P (new_rtx) && REGNO (old_rtx) == REGNO (new_rtx))))) break; } if (j == XVECLEN (insn, 1)) break; } if (p == 0) { p = XNEW (struct clobber_pat); p->insns = 0; p->pattern = insn; p->first_clobber = i + 1; p->next = clobber_list; p->has_hard_reg = has_hard_reg; clobber_list = p; } link->next = p->insns; p->insns = link; } } /* Don't mention instructions whose names are the null string or begin with '*'. They are in the machine description just to be recognized. */ if (XSTR (insn, 0)[0] == 0 || XSTR (insn, 0)[0] == '*') return; fprintf (file, "/* %s:%d */\n", info->loc.filename, info->loc.lineno); /* Find out how many operands this function has. */ get_pattern_stats (&stats, XVEC (insn, 1)); if (stats.max_dup_opno > stats.max_opno) fatal_at (info->loc, "match_dup operand number has no match_operand"); /* Output the function name and argument declarations. */ fprintf (file, "rtx\ngen_%s (", XSTR (insn, 0)); if (stats.num_generator_args) for (i = 0; i < stats.num_generator_args; i++) if (i) fprintf (file, ",\n\trtx operand%d ATTRIBUTE_UNUSED", i); else fprintf (file, "rtx operand%d ATTRIBUTE_UNUSED", i); else fprintf (file, "void"); fprintf (file, ")\n"); fprintf (file, "{\n"); /* Output code to construct and return the rtl for the instruction body. */ rtx pattern = add_implicit_parallel (XVEC (insn, 1)); /* ??? This is the traditional behavior, but seems suspect. */ char *used = (XVECLEN (insn, 1) == 1 ? NULL : XCNEWVEC (char, stats.num_generator_args)); fprintf (file, " return "); gen_exp (pattern, DEFINE_INSN, used, info, file); fprintf (file, ";\n}\n\n"); XDELETEVEC (used); } /* Generate the `gen_...' function for a DEFINE_EXPAND. */ static void gen_expand (md_rtx_info *info, FILE *file) { struct pattern_stats stats; int i; char *used; rtx expand = info->def; if (strlen (XSTR (expand, 0)) == 0) fatal_at (info->loc, "define_expand lacks a name"); if (XVEC (expand, 1) == 0) fatal_at (info->loc, "define_expand for %s lacks a pattern", XSTR (expand, 0)); /* Find out how many operands this function has. */ get_pattern_stats (&stats, XVEC (expand, 1)); if (stats.min_scratch_opno != -1 && stats.min_scratch_opno <= MAX (stats.max_opno, stats.max_dup_opno)) fatal_at (info->loc, "define_expand for %s needs to have match_scratch " "numbers above all other operands", XSTR (expand, 0)); /* Output the function name and argument declarations. */ fprintf (file, "rtx\ngen_%s (", XSTR (expand, 0)); if (stats.num_generator_args) for (i = 0; i < stats.num_generator_args; i++) if (i) fprintf (file, ",\n\trtx operand%d", i); else fprintf (file, "rtx operand%d", i); else fprintf (file, "void"); fprintf (file, ")\n"); fprintf (file, "{\n"); /* If we don't have any C code to write, only one insn is being written, and no MATCH_DUPs are present, we can just return the desired insn like we do for a DEFINE_INSN. This saves memory. */ if ((XSTR (expand, 3) == 0 || *XSTR (expand, 3) == '\0') && stats.max_opno >= stats.max_dup_opno && XVECLEN (expand, 1) == 1) { fprintf (file, " return "); gen_exp (XVECEXP (expand, 1, 0), DEFINE_EXPAND, NULL, info, file); fprintf (file, ";\n}\n\n"); return; } /* For each operand referred to only with MATCH_DUPs, make a local variable. */ for (i = stats.num_generator_args; i <= stats.max_dup_opno; i++) fprintf (file, " rtx operand%d;\n", i); fprintf (file, " rtx_insn *_val = 0;\n"); fprintf (file, " start_sequence ();\n"); /* The fourth operand of DEFINE_EXPAND is some code to be executed before the actual construction. This code expects to refer to `operands' just as the output-code in a DEFINE_INSN does, but here `operands' is an automatic array. So copy the operand values there before executing it. */ if (XSTR (expand, 3) && *XSTR (expand, 3)) { fprintf (file, " {\n"); if (stats.num_operand_vars > 0) fprintf (file, " rtx operands[%d];\n", stats.num_operand_vars); /* Output code to copy the arguments into `operands'. */ for (i = 0; i < stats.num_generator_args; i++) fprintf (file, " operands[%d] = operand%d;\n", i, i); /* Output the special code to be executed before the sequence is generated. */ optab_pattern p; bool can_fail_p = true; if (find_optab (&p, XSTR (expand, 0))) { gcc_assert (p.op < NUM_OPTABS); if (nofail_optabs[p.op]) can_fail_p = false; } emit_c_code (XSTR (expand, 3), can_fail_p, XSTR (expand, 0), file); /* Output code to copy the arguments back out of `operands' (unless we aren't going to use them at all). */ if (XVEC (expand, 1) != 0) { for (i = 0; i <= MAX (stats.max_opno, stats.max_dup_opno); i++) { fprintf (file, " operand%d = operands[%d];\n", i, i); fprintf (file, " (void) operand%d;\n", i); } } fprintf (file, " }\n"); } used = XCNEWVEC (char, stats.num_operand_vars); gen_emit_seq (XVEC (expand, 1), used, info, file); XDELETEVEC (used); /* Call `get_insns' to extract the list of all the insns emitted within this gen_... function. */ fprintf (file, " _val = get_insns ();\n"); fprintf (file, " end_sequence ();\n"); fprintf (file, " return _val;\n}\n\n"); } /* Like gen_expand, but generates insns resulting from splitting SPLIT. */ static void gen_split (md_rtx_info *info, FILE *file) { struct pattern_stats stats; int i; rtx split = info->def; const char *const name = ((GET_CODE (split) == DEFINE_PEEPHOLE2) ? "peephole2" : "split"); const char *unused; char *used; if (XVEC (split, 0) == 0) fatal_at (info->loc, "%s lacks a pattern", GET_RTX_NAME (GET_CODE (split))); else if (XVEC (split, 2) == 0) fatal_at (info->loc, "%s lacks a replacement pattern", GET_RTX_NAME (GET_CODE (split))); /* Find out how many operands this function has. */ get_pattern_stats (&stats, XVEC (split, 2)); unused = (stats.num_operand_vars == 0 ? " ATTRIBUTE_UNUSED" : ""); used = XCNEWVEC (char, stats.num_operand_vars); /* Output the prototype, function name and argument declarations. */ if (GET_CODE (split) == DEFINE_PEEPHOLE2) { fprintf (file, "extern rtx_insn *gen_%s_%d (rtx_insn *, rtx *);\n", name, info->index); fprintf (file, "rtx_insn *\ngen_%s_%d (rtx_insn *curr_insn ATTRIBUTE_UNUSED," " rtx *operands%s)\n", name, info->index, unused); } else { fprintf (file, "extern rtx_insn *gen_split_%d (rtx_insn *, rtx *);\n", info->index); fprintf (file, "rtx_insn *\ngen_split_%d " "(rtx_insn *curr_insn ATTRIBUTE_UNUSED, rtx *operands%s)\n", info->index, unused); } fprintf (file, "{\n"); /* Declare all local variables. */ for (i = 0; i < stats.num_operand_vars; i++) fprintf (file, " rtx operand%d;\n", i); fprintf (file, " rtx_insn *_val = NULL;\n"); if (GET_CODE (split) == DEFINE_PEEPHOLE2) output_peephole2_scratches (split, file); const char *fn = info->loc.filename; for (const char *p = fn; *p; p++) if (*p == '/') fn = p + 1; fprintf (file, " if (dump_file)\n"); fprintf (file, " fprintf (dump_file, \"Splitting with gen_%s_%d (%s:%d)\\n\");\n", name, info->index, fn, info->loc.lineno); fprintf (file, " start_sequence ();\n"); /* The fourth operand of DEFINE_SPLIT is some code to be executed before the actual construction. */ if (XSTR (split, 3)) emit_c_code (XSTR (split, 3), true, name, file); /* Output code to copy the arguments back out of `operands' */ for (i = 0; i < stats.num_operand_vars; i++) { fprintf (file, " operand%d = operands[%d];\n", i, i); fprintf (file, " (void) operand%d;\n", i); } gen_emit_seq (XVEC (split, 2), used, info, file); /* Call `get_insns' to make a list of all the insns emitted within this gen_... function. */ fprintf (file, " _val = get_insns ();\n"); fprintf (file, " end_sequence ();\n"); fprintf (file, " return _val;\n}\n\n"); free (used); } /* Write a function, `add_clobbers', that is given a PARALLEL of sufficient size for the insn and an INSN_CODE, and inserts the required CLOBBERs at the end of the vector. */ static void output_add_clobbers (md_rtx_info *info, FILE *file) { struct clobber_pat *clobber; struct clobber_ent *ent; int i; fprintf (file, "\n\nvoid\nadd_clobbers (rtx pattern ATTRIBUTE_UNUSED, int insn_code_number)\n"); fprintf (file, "{\n"); fprintf (file, " switch (insn_code_number)\n"); fprintf (file, " {\n"); for (clobber = clobber_list; clobber; clobber = clobber->next) { for (ent = clobber->insns; ent; ent = ent->next) fprintf (file, " case %d:\n", ent->code_number); for (i = clobber->first_clobber; i < XVECLEN (clobber->pattern, 1); i++) { fprintf (file, " XVECEXP (pattern, 0, %d) = ", i); gen_exp (XVECEXP (clobber->pattern, 1, i), GET_CODE (clobber->pattern), NULL, info, file); fprintf (file, ";\n"); } fprintf (file, " break;\n\n"); } fprintf (file, " default:\n"); fprintf (file, " gcc_unreachable ();\n"); fprintf (file, " }\n"); fprintf (file, "}\n"); } /* Write a function, `added_clobbers_hard_reg_p' that is given an insn_code number that will have clobbers added (as indicated by `recog') and returns 1 if those include a clobber of a hard reg or 0 if all of them just clobber SCRATCH. */ static void output_added_clobbers_hard_reg_p (FILE *file) { struct clobber_pat *clobber; struct clobber_ent *ent; int clobber_p; bool used; fprintf (file, "\n\nbool\nadded_clobbers_hard_reg_p (int insn_code_number)\n"); fprintf (file, "{\n"); fprintf (file, " switch (insn_code_number)\n"); fprintf (file, " {\n"); for (clobber_p = 0; clobber_p <= 1; clobber_p++) { used = false; for (clobber = clobber_list; clobber; clobber = clobber->next) if (clobber->has_hard_reg == clobber_p) for (ent = clobber->insns; ent; ent = ent->next) { fprintf (file, " case %d:\n", ent->code_number); used = true; } if (used) fprintf (file, " return %s;\n\n", clobber_p ? "true" : "false"); } fprintf (file, " default:\n"); fprintf (file, " gcc_unreachable ();\n"); fprintf (file, " }\n"); fprintf (file, "}\n"); } /* Generate code to invoke find_free_register () as needed for the scratch registers used by the peephole2 pattern in SPLIT. */ static void output_peephole2_scratches (rtx split, FILE *file) { int i; int insn_nr = 0; bool first = true; for (i = 0; i < XVECLEN (split, 0); i++) { rtx elt = XVECEXP (split, 0, i); if (GET_CODE (elt) == MATCH_SCRATCH) { int last_insn_nr = insn_nr; int cur_insn_nr = insn_nr; int j; for (j = i + 1; j < XVECLEN (split, 0); j++) if (GET_CODE (XVECEXP (split, 0, j)) == MATCH_DUP) { if (XINT (XVECEXP (split, 0, j), 0) == XINT (elt, 0)) last_insn_nr = cur_insn_nr; } else if (GET_CODE (XVECEXP (split, 0, j)) != MATCH_SCRATCH) cur_insn_nr++; if (first) { fprintf (file, " HARD_REG_SET _regs_allocated;\n"); fprintf (file, " CLEAR_HARD_REG_SET (_regs_allocated);\n"); first = false; } fprintf (file, " if ((operands[%d] = peep2_find_free_register (%d, %d, \"%s\", %smode, &_regs_allocated)) == NULL_RTX)\n\ return NULL;\n", XINT (elt, 0), insn_nr, last_insn_nr, XSTR (elt, 1), GET_MODE_NAME (GET_MODE (elt))); } else if (GET_CODE (elt) != MATCH_DUP) insn_nr++; } } /* Print "arg" parameter declarations for each argument N of ONAME. */ static void print_overload_arguments (overloaded_name *oname, FILE *file) { for (unsigned int i = 0; i < oname->arg_types.length (); ++i) fprintf (file, "%s%s arg%d", i == 0 ? "" : ", ", oname->arg_types[i], i); } /* Print code to test whether INSTANCE should be chosen, given that argument N of the overload is available as "arg". */ static void print_overload_test (overloaded_instance *instance, FILE *file) { for (unsigned int i = 0; i < instance->arg_values.length (); ++i) fprintf (file, "%sarg%d == %s", i == 0 ? " if (" : "\n && ", i, instance->arg_values[i]); fprintf (file, ")\n"); } /* Emit a maybe_code_for_* function for ONAME. */ static void handle_overloaded_code_for (overloaded_name *oname, FILE *file) { /* Print the function prototype. */ fprintf (file, "\ninsn_code\nmaybe_code_for_%s (", oname->name); print_overload_arguments (oname, file); fprintf (file, ")\n{\n"); /* Use a sequence of "if" statements for each instance. */ for (overloaded_instance *instance = oname->first_instance; instance; instance = instance->next) { print_overload_test (instance, file); fprintf (file, " return CODE_FOR_%s;\n", instance->name); } /* Return null if no match was found. */ fprintf (file, " return CODE_FOR_nothing;\n}\n"); } /* Emit a maybe_gen_* function for ONAME. */ static void handle_overloaded_gen (overloaded_name *oname, FILE *file) { unsigned HOST_WIDE_INT seen = 0; /* All patterns must have the same number of operands. */ for (overloaded_instance *instance = oname->first_instance->next; instance; instance = instance->next) { pattern_stats stats; get_pattern_stats (&stats, XVEC (instance->insn, 1)); unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_1U << stats.num_generator_args; if (seen & mask) continue; seen |= mask; /* Print the function prototype. */ fprintf (file, "\nrtx\nmaybe_gen_%s (", oname->name); print_overload_arguments (oname, file); for (int i = 0; i < stats.num_generator_args; ++i) fprintf (file, ", rtx x%d", i); fprintf (file, ")\n{\n"); /* Use maybe_code_for_*, instead of duplicating the selection logic here. */ fprintf (file, " insn_code code = maybe_code_for_%s (", oname->name); for (unsigned int i = 0; i < oname->arg_types.length (); ++i) fprintf (file, "%sarg%d", i == 0 ? "" : ", ", i); fprintf (file, ");\n" " if (code != CODE_FOR_nothing)\n" " {\n" " gcc_assert (insn_data[code].n_generator_args == %d);\n" " return GEN_FCN (code) (", stats.num_generator_args); for (int i = 0; i < stats.num_generator_args; ++i) fprintf (file, "%sx%d", i == 0 ? "" : ", ", i); fprintf (file, ");\n" " }\n" " else\n" " return NULL_RTX;\n" "}\n"); } } void print_header (FILE *file) { fprintf (file, "/* Generated automatically by the program `genemit'\n\ from the machine description file `md'. */\n\n"); fprintf (file, "#define IN_TARGET_CODE 1\n"); fprintf (file, "#include \"config.h\"\n"); fprintf (file, "#include \"system.h\"\n"); fprintf (file, "#include \"coretypes.h\"\n"); fprintf (file, "#include \"backend.h\"\n"); fprintf (file, "#include \"predict.h\"\n"); fprintf (file, "#include \"tree.h\"\n"); fprintf (file, "#include \"rtl.h\"\n"); fprintf (file, "#include \"alias.h\"\n"); fprintf (file, "#include \"varasm.h\"\n"); fprintf (file, "#include \"stor-layout.h\"\n"); fprintf (file, "#include \"calls.h\"\n"); fprintf (file, "#include \"memmodel.h\"\n"); fprintf (file, "#include \"tm_p.h\"\n"); fprintf (file, "#include \"flags.h\"\n"); fprintf (file, "#include \"insn-config.h\"\n"); fprintf (file, "#include \"expmed.h\"\n"); fprintf (file, "#include \"dojump.h\"\n"); fprintf (file, "#include \"explow.h\"\n"); fprintf (file, "#include \"emit-rtl.h\"\n"); fprintf (file, "#include \"stmt.h\"\n"); fprintf (file, "#include \"expr.h\"\n"); fprintf (file, "#include \"insn-codes.h\"\n"); fprintf (file, "#include \"optabs.h\"\n"); fprintf (file, "#include \"dfp.h\"\n"); fprintf (file, "#include \"output.h\"\n"); fprintf (file, "#include \"recog.h\"\n"); fprintf (file, "#include \"df.h\"\n"); fprintf (file, "#include \"resource.h\"\n"); fprintf (file, "#include \"reload.h\"\n"); fprintf (file, "#include \"diagnostic-core.h\"\n"); fprintf (file, "#include \"regs.h\"\n"); fprintf (file, "#include \"tm-constrs.h\"\n"); fprintf (file, "#include \"ggc.h\"\n"); fprintf (file, "#include \"target.h\"\n\n"); } auto_vec output_files; static bool handle_arg (const char *arg) { if (arg[1] == 'O') { output_files.safe_push (&arg[2]); return true; } return false; } int main (int argc, const char **argv) { progname = "genemit"; if (!init_rtx_reader_args_cb (argc, argv, handle_arg)) return (FATAL_EXIT_CODE); #define DEF_INTERNAL_OPTAB_FN(NAME, FLAGS, OPTAB, TYPE) \ nofail_optabs[OPTAB##_optab] = true; #include "internal-fn.def" /* Assign sequential codes to all entries in the machine description in parallel with the tables in insn-output.cc. */ int npatterns = count_patterns (); md_rtx_info info; bool to_stdout = false; int npatterns_per_file = npatterns; if (!output_files.is_empty ()) npatterns_per_file = npatterns / output_files.length () + 1; else to_stdout = true; gcc_assert (npatterns_per_file > 1); /* Reverse so we can pop the first-added element. */ output_files.reverse (); int count = 0; FILE *file = NULL; /* Read the machine description. */ while (read_md_rtx (&info)) { if (count == 0 || count == npatterns_per_file) { bool is_last = !to_stdout && output_files.is_empty (); if (file && !is_last) if (fclose (file) != 0) return FATAL_EXIT_CODE; if (!output_files.is_empty ()) { const char *const filename = output_files.pop (); file = fopen (filename, "w"); } else if (to_stdout) file = stdout; else break; print_header (file); count = 0; } switch (GET_CODE (info.def)) { case DEFINE_INSN: gen_insn (&info, file); break; case DEFINE_EXPAND: fprintf (file, "/* %s:%d */\n", info.loc.filename, info.loc.lineno); gen_expand (&info, file); break; case DEFINE_SPLIT: fprintf (file, "/* %s:%d */\n", info.loc.filename, info.loc.lineno); gen_split (&info, file); break; case DEFINE_PEEPHOLE2: fprintf (file, "/* %s:%d */\n", info.loc.filename, info.loc.lineno); gen_split (&info, file); break; default: break; } count++; } /* Write out the routines to add CLOBBERs to a pattern and say whether they clobber a hard reg. */ output_add_clobbers (&info, file); output_added_clobbers_hard_reg_p (file); for (overloaded_name *oname = rtx_reader_ptr->get_overloads (); oname; oname = oname->next) { handle_overloaded_code_for (oname, file); handle_overloaded_gen (oname, file); } return (fclose (file) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE); }