/* Generate code from machine description to emit insns as rtl.
Copyright (C) 1987-2024 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
#include "bconfig.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "errors.h"
#include "read-md.h"
#include "gensupport.h"
/* Data structure for recording the patterns of insns that have CLOBBERs.
We use this to output a function that adds these CLOBBERs to a
previously-allocated PARALLEL expression. */
struct clobber_pat
{
struct clobber_ent *insns;
rtx pattern;
int first_clobber;
struct clobber_pat *next;
int has_hard_reg;
} *clobber_list;
/* Records one insn that uses the clobber list. */
struct clobber_ent
{
int code_number; /* Counts only insns. */
struct clobber_ent *next;
};
static void output_peephole2_scratches (rtx, FILE*);
/* True for _optab if that optab isn't allowed to fail. */
static bool nofail_optabs[NUM_OPTABS];
static void
print_code (RTX_CODE code, FILE *file)
{
const char *p1;
for (p1 = GET_RTX_NAME (code); *p1; p1++)
fprintf (file, "%c", TOUPPER (*p1));
}
static void
gen_rtx_scratch (rtx x, enum rtx_code subroutine_type, FILE *file)
{
if (subroutine_type == DEFINE_PEEPHOLE2)
{
fprintf (file, "operand%d", XINT (x, 0));
}
else
{
fprintf (file, "gen_rtx_SCRATCH (%smode)", GET_MODE_NAME (GET_MODE (x)));
}
}
/* Print a C expression to construct an RTX just like X,
substituting any operand references appearing within. */
static void
gen_exp (rtx x, enum rtx_code subroutine_type, char *used, md_rtx_info *info,
FILE *file)
{
RTX_CODE code;
int i;
int len;
const char *fmt;
const char *sep = "";
if (x == 0)
{
fprintf (file, "NULL_RTX");
return;
}
code = GET_CODE (x);
switch (code)
{
case MATCH_OPERAND:
case MATCH_DUP:
if (used)
{
if (used[XINT (x, 0)])
{
fprintf (file, "copy_rtx (operand%d)", XINT (x, 0));
return;
}
used[XINT (x, 0)] = 1;
}
fprintf (file, "operand%d", XINT (x, 0));
return;
case MATCH_OP_DUP:
fprintf (file, "gen_rtx_fmt_");
for (i = 0; i < XVECLEN (x, 1); i++)
fprintf (file, "e");
fprintf (file, " (GET_CODE (operand%d), ", XINT (x, 0));
if (GET_MODE (x) == VOIDmode)
fprintf (file, "GET_MODE (operand%d)", XINT (x, 0));
else
fprintf (file, "%smode", GET_MODE_NAME (GET_MODE (x)));
for (i = 0; i < XVECLEN (x, 1); i++)
{
fprintf (file, ",\n\t\t");
gen_exp (XVECEXP (x, 1, i), subroutine_type, used, info, file);
}
fprintf (file, ")");
return;
case MATCH_OPERATOR:
fprintf (file, "gen_rtx_fmt_");
for (i = 0; i < XVECLEN (x, 2); i++)
fprintf (file, "e");
fprintf (file, " (GET_CODE (operand%d)", XINT (x, 0));
fprintf (file, ", %smode", GET_MODE_NAME (GET_MODE (x)));
for (i = 0; i < XVECLEN (x, 2); i++)
{
fprintf (file, ",\n\t\t");
gen_exp (XVECEXP (x, 2, i), subroutine_type, used, info, file);
}
fprintf (file, ")");
return;
case MATCH_PARALLEL:
case MATCH_PAR_DUP:
fprintf (file, "operand%d", XINT (x, 0));
return;
case MATCH_SCRATCH:
gen_rtx_scratch (x, subroutine_type, file);
return;
case PC:
fprintf (file, "pc_rtx");
return;
case RETURN:
fprintf (file, "ret_rtx");
return;
case SIMPLE_RETURN:
fprintf (file, "simple_return_rtx");
return;
case CLOBBER:
if (REG_P (XEXP (x, 0)))
{
fprintf (file, "gen_hard_reg_clobber (%smode, %i)",
GET_MODE_NAME (GET_MODE (XEXP (x, 0))),
REGNO (XEXP (x, 0)));
return;
}
break;
case CONST_INT:
if (INTVAL (x) == 0)
fprintf (file, "const0_rtx");
else if (INTVAL (x) == 1)
fprintf (file, "const1_rtx");
else if (INTVAL (x) == -1)
fprintf (file, "constm1_rtx");
else if (-MAX_SAVED_CONST_INT <= INTVAL (x)
&& INTVAL (x) <= MAX_SAVED_CONST_INT)
fprintf (file, "const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
(int) INTVAL (x));
else if (INTVAL (x) == STORE_FLAG_VALUE)
fprintf (file, "const_true_rtx");
else
{
fprintf (file, "GEN_INT (");
fprintf (file, HOST_WIDE_INT_PRINT_DEC_C, INTVAL (x));
fprintf (file, ")");
}
return;
case CONST_DOUBLE:
/* Handle `const_double_zero' rtx. */
if (CONST_DOUBLE_REAL_VALUE (x)->cl == rvc_zero)
{
fprintf (file, "CONST_DOUBLE_ATOF (\"0\", %smode)",
GET_MODE_NAME (GET_MODE (x)));
return;
}
/* Fall through. */
case CONST_FIXED:
case CONST_WIDE_INT:
/* These shouldn't be written in MD files. Instead, the appropriate
routines in varasm.cc should be called. */
gcc_unreachable ();
default:
break;
}
fprintf (file, "gen_rtx_");
print_code (code, file);
fprintf (file, " (");
if (!always_void_p (code))
{
fprintf (file, "%smode", GET_MODE_NAME (GET_MODE (x)));
sep = ",\n\t";
}
fmt = GET_RTX_FORMAT (code);
len = GET_RTX_LENGTH (code);
for (i = 0; i < len; i++)
{
if (fmt[i] == '0')
break;
fputs (sep, file);
switch (fmt[i])
{
case 'e': case 'u':
gen_exp (XEXP (x, i), subroutine_type, used, info, file);
break;
case 'i':
fprintf (file, "%u", XINT (x, i));
break;
case 'r':
fprintf (file, "%u", REGNO (x));
break;
case 'p':
/* We don't have a way of parsing polynomial offsets yet,
and hopefully never will. */
fprintf (file, "%d", SUBREG_BYTE (x).to_constant ());
break;
case 's':
fprintf (file, "\"%s\"", XSTR (x, i));
break;
case 'E':
{
int j;
fprintf (file, "gen_rtvec (%d", XVECLEN (x, i));
for (j = 0; j < XVECLEN (x, i); j++)
{
fprintf (file, ",\n\t\t");
gen_exp (XVECEXP (x, i, j), subroutine_type, used, info, file);
}
fprintf (file, ")");
break;
}
default:
gcc_unreachable ();
}
sep = ",\n\t";
}
fprintf (file, ")");
}
/* Output code to emit the instruction patterns in VEC, with each element
becoming a separate instruction. USED is as for gen_exp. */
static void
gen_emit_seq (rtvec vec, char *used, md_rtx_info *info, FILE *file)
{
for (int i = 0, len = GET_NUM_ELEM (vec); i < len; ++i)
{
bool last_p = (i == len - 1);
rtx next = RTVEC_ELT (vec, i);
if (const char *name = get_emit_function (next))
{
fprintf (file, " %s (", name);
gen_exp (next, DEFINE_EXPAND, used, info, file);
fprintf (file, ");\n");
if (!last_p && needs_barrier_p (next))
fprintf (file, " emit_barrier ();");
}
else
{
fprintf (file, " emit (");
gen_exp (next, DEFINE_EXPAND, used, info, file);
fprintf (file, ", %s);\n", last_p ? "false" : "true");
}
}
}
/* Emit the given C code to the output file. The code is allowed to
fail if CAN_FAIL_P. NAME describes what we're generating,
for use in error messages. */
static void
emit_c_code (const char *code, bool can_fail_p, const char *name, FILE *file)
{
if (can_fail_p)
fprintf (file, "#define FAIL return (end_sequence (), _val)\n");
else
fprintf (file, "#define FAIL _Pragma (\"GCC error \\\"%s cannot FAIL\\\"\")"
" (void)0\n", name);
fprintf (file, "#define DONE return (_val = get_insns (), "
"end_sequence (), _val)\n");
rtx_reader_ptr->print_md_ptr_loc (code, file);
fprintf (file, "%s\n", code);
fprintf (file, "#undef DONE\n");
fprintf (file, "#undef FAIL\n");
}
/* Generate the `gen_...' function for a DEFINE_INSN. */
static void
gen_insn (md_rtx_info *info, FILE *file)
{
struct pattern_stats stats;
int i;
/* See if the pattern for this insn ends with a group of CLOBBERs of (hard)
registers or MATCH_SCRATCHes. If so, store away the information for
later. */
rtx insn = info->def;
if (XVEC (insn, 1))
{
int has_hard_reg = 0;
for (i = XVECLEN (insn, 1) - 1; i > 0; i--)
{
if (GET_CODE (XVECEXP (insn, 1, i)) != CLOBBER)
break;
if (REG_P (XEXP (XVECEXP (insn, 1, i), 0)))
has_hard_reg = 1;
else if (GET_CODE (XEXP (XVECEXP (insn, 1, i), 0)) != MATCH_SCRATCH)
break;
}
if (i != XVECLEN (insn, 1) - 1)
{
struct clobber_pat *p;
struct clobber_ent *link = XNEW (struct clobber_ent);
int j;
link->code_number = info->index;
/* See if any previous CLOBBER_LIST entry is the same as this
one. */
for (p = clobber_list; p; p = p->next)
{
if (p->first_clobber != i + 1
|| XVECLEN (p->pattern, 1) != XVECLEN (insn, 1))
continue;
for (j = i + 1; j < XVECLEN (insn, 1); j++)
{
rtx old_rtx = XEXP (XVECEXP (p->pattern, 1, j), 0);
rtx new_rtx = XEXP (XVECEXP (insn, 1, j), 0);
/* OLD and NEW_INSN are the same if both are to be a SCRATCH
of the same mode,
or if both are registers of the same mode and number. */
if (! (GET_CODE (old_rtx) == GET_CODE (new_rtx)
&& GET_MODE (old_rtx) == GET_MODE (new_rtx)
&& ((GET_CODE (old_rtx) == MATCH_SCRATCH
&& GET_CODE (new_rtx) == MATCH_SCRATCH)
|| (REG_P (old_rtx) && REG_P (new_rtx)
&& REGNO (old_rtx) == REGNO (new_rtx)))))
break;
}
if (j == XVECLEN (insn, 1))
break;
}
if (p == 0)
{
p = XNEW (struct clobber_pat);
p->insns = 0;
p->pattern = insn;
p->first_clobber = i + 1;
p->next = clobber_list;
p->has_hard_reg = has_hard_reg;
clobber_list = p;
}
link->next = p->insns;
p->insns = link;
}
}
/* Don't mention instructions whose names are the null string
or begin with '*'. They are in the machine description just
to be recognized. */
if (XSTR (insn, 0)[0] == 0 || XSTR (insn, 0)[0] == '*')
return;
fprintf (file, "/* %s:%d */\n", info->loc.filename, info->loc.lineno);
/* Find out how many operands this function has. */
get_pattern_stats (&stats, XVEC (insn, 1));
if (stats.max_dup_opno > stats.max_opno)
fatal_at (info->loc, "match_dup operand number has no match_operand");
/* Output the function name and argument declarations. */
fprintf (file, "rtx\ngen_%s (", XSTR (insn, 0));
if (stats.num_generator_args)
for (i = 0; i < stats.num_generator_args; i++)
if (i)
fprintf (file, ",\n\trtx operand%d ATTRIBUTE_UNUSED", i);
else
fprintf (file, "rtx operand%d ATTRIBUTE_UNUSED", i);
else
fprintf (file, "void");
fprintf (file, ")\n");
fprintf (file, "{\n");
/* Output code to construct and return the rtl for the instruction body. */
rtx pattern = add_implicit_parallel (XVEC (insn, 1));
/* ??? This is the traditional behavior, but seems suspect. */
char *used = (XVECLEN (insn, 1) == 1
? NULL
: XCNEWVEC (char, stats.num_generator_args));
fprintf (file, " return ");
gen_exp (pattern, DEFINE_INSN, used, info, file);
fprintf (file, ";\n}\n\n");
XDELETEVEC (used);
}
/* Generate the `gen_...' function for a DEFINE_EXPAND. */
static void
gen_expand (md_rtx_info *info, FILE *file)
{
struct pattern_stats stats;
int i;
char *used;
rtx expand = info->def;
if (strlen (XSTR (expand, 0)) == 0)
fatal_at (info->loc, "define_expand lacks a name");
if (XVEC (expand, 1) == 0)
fatal_at (info->loc, "define_expand for %s lacks a pattern",
XSTR (expand, 0));
/* Find out how many operands this function has. */
get_pattern_stats (&stats, XVEC (expand, 1));
if (stats.min_scratch_opno != -1
&& stats.min_scratch_opno <= MAX (stats.max_opno, stats.max_dup_opno))
fatal_at (info->loc, "define_expand for %s needs to have match_scratch "
"numbers above all other operands", XSTR (expand, 0));
/* Output the function name and argument declarations. */
fprintf (file, "rtx\ngen_%s (", XSTR (expand, 0));
if (stats.num_generator_args)
for (i = 0; i < stats.num_generator_args; i++)
if (i)
fprintf (file, ",\n\trtx operand%d", i);
else
fprintf (file, "rtx operand%d", i);
else
fprintf (file, "void");
fprintf (file, ")\n");
fprintf (file, "{\n");
/* If we don't have any C code to write, only one insn is being written,
and no MATCH_DUPs are present, we can just return the desired insn
like we do for a DEFINE_INSN. This saves memory. */
if ((XSTR (expand, 3) == 0 || *XSTR (expand, 3) == '\0')
&& stats.max_opno >= stats.max_dup_opno
&& XVECLEN (expand, 1) == 1)
{
fprintf (file, " return ");
gen_exp (XVECEXP (expand, 1, 0), DEFINE_EXPAND, NULL, info, file);
fprintf (file, ";\n}\n\n");
return;
}
/* For each operand referred to only with MATCH_DUPs,
make a local variable. */
for (i = stats.num_generator_args; i <= stats.max_dup_opno; i++)
fprintf (file, " rtx operand%d;\n", i);
fprintf (file, " rtx_insn *_val = 0;\n");
fprintf (file, " start_sequence ();\n");
/* The fourth operand of DEFINE_EXPAND is some code to be executed
before the actual construction.
This code expects to refer to `operands'
just as the output-code in a DEFINE_INSN does,
but here `operands' is an automatic array.
So copy the operand values there before executing it. */
if (XSTR (expand, 3) && *XSTR (expand, 3))
{
fprintf (file, " {\n");
if (stats.num_operand_vars > 0)
fprintf (file, " rtx operands[%d];\n", stats.num_operand_vars);
/* Output code to copy the arguments into `operands'. */
for (i = 0; i < stats.num_generator_args; i++)
fprintf (file, " operands[%d] = operand%d;\n", i, i);
/* Output the special code to be executed before the sequence
is generated. */
optab_pattern p;
bool can_fail_p = true;
if (find_optab (&p, XSTR (expand, 0)))
{
gcc_assert (p.op < NUM_OPTABS);
if (nofail_optabs[p.op])
can_fail_p = false;
}
emit_c_code (XSTR (expand, 3), can_fail_p, XSTR (expand, 0), file);
/* Output code to copy the arguments back out of `operands'
(unless we aren't going to use them at all). */
if (XVEC (expand, 1) != 0)
{
for (i = 0; i <= MAX (stats.max_opno, stats.max_dup_opno); i++)
{
fprintf (file, " operand%d = operands[%d];\n", i, i);
fprintf (file, " (void) operand%d;\n", i);
}
}
fprintf (file, " }\n");
}
used = XCNEWVEC (char, stats.num_operand_vars);
gen_emit_seq (XVEC (expand, 1), used, info, file);
XDELETEVEC (used);
/* Call `get_insns' to extract the list of all the
insns emitted within this gen_... function. */
fprintf (file, " _val = get_insns ();\n");
fprintf (file, " end_sequence ();\n");
fprintf (file, " return _val;\n}\n\n");
}
/* Like gen_expand, but generates insns resulting from splitting SPLIT. */
static void
gen_split (md_rtx_info *info, FILE *file)
{
struct pattern_stats stats;
int i;
rtx split = info->def;
const char *const name =
((GET_CODE (split) == DEFINE_PEEPHOLE2) ? "peephole2" : "split");
const char *unused;
char *used;
if (XVEC (split, 0) == 0)
fatal_at (info->loc, "%s lacks a pattern",
GET_RTX_NAME (GET_CODE (split)));
else if (XVEC (split, 2) == 0)
fatal_at (info->loc, "%s lacks a replacement pattern",
GET_RTX_NAME (GET_CODE (split)));
/* Find out how many operands this function has. */
get_pattern_stats (&stats, XVEC (split, 2));
unused = (stats.num_operand_vars == 0 ? " ATTRIBUTE_UNUSED" : "");
used = XCNEWVEC (char, stats.num_operand_vars);
/* Output the prototype, function name and argument declarations. */
if (GET_CODE (split) == DEFINE_PEEPHOLE2)
{
fprintf (file, "extern rtx_insn *gen_%s_%d (rtx_insn *, rtx *);\n",
name, info->index);
fprintf (file, "rtx_insn *\ngen_%s_%d (rtx_insn *curr_insn ATTRIBUTE_UNUSED,"
" rtx *operands%s)\n",
name, info->index, unused);
}
else
{
fprintf (file, "extern rtx_insn *gen_split_%d (rtx_insn *, rtx *);\n",
info->index);
fprintf (file, "rtx_insn *\ngen_split_%d "
"(rtx_insn *curr_insn ATTRIBUTE_UNUSED, rtx *operands%s)\n",
info->index, unused);
}
fprintf (file, "{\n");
/* Declare all local variables. */
for (i = 0; i < stats.num_operand_vars; i++)
fprintf (file, " rtx operand%d;\n", i);
fprintf (file, " rtx_insn *_val = NULL;\n");
if (GET_CODE (split) == DEFINE_PEEPHOLE2)
output_peephole2_scratches (split, file);
const char *fn = info->loc.filename;
for (const char *p = fn; *p; p++)
if (*p == '/')
fn = p + 1;
fprintf (file, " if (dump_file)\n");
fprintf (file, " fprintf (dump_file, \"Splitting with gen_%s_%d (%s:%d)\\n\");\n",
name, info->index, fn, info->loc.lineno);
fprintf (file, " start_sequence ();\n");
/* The fourth operand of DEFINE_SPLIT is some code to be executed
before the actual construction. */
if (XSTR (split, 3))
emit_c_code (XSTR (split, 3), true, name, file);
/* Output code to copy the arguments back out of `operands' */
for (i = 0; i < stats.num_operand_vars; i++)
{
fprintf (file, " operand%d = operands[%d];\n", i, i);
fprintf (file, " (void) operand%d;\n", i);
}
gen_emit_seq (XVEC (split, 2), used, info, file);
/* Call `get_insns' to make a list of all the
insns emitted within this gen_... function. */
fprintf (file, " _val = get_insns ();\n");
fprintf (file, " end_sequence ();\n");
fprintf (file, " return _val;\n}\n\n");
free (used);
}
/* Write a function, `add_clobbers', that is given a PARALLEL of sufficient
size for the insn and an INSN_CODE, and inserts the required CLOBBERs at
the end of the vector. */
static void
output_add_clobbers (md_rtx_info *info, FILE *file)
{
struct clobber_pat *clobber;
struct clobber_ent *ent;
int i;
fprintf (file, "\n\nvoid\nadd_clobbers (rtx pattern ATTRIBUTE_UNUSED, int insn_code_number)\n");
fprintf (file, "{\n");
fprintf (file, " switch (insn_code_number)\n");
fprintf (file, " {\n");
for (clobber = clobber_list; clobber; clobber = clobber->next)
{
for (ent = clobber->insns; ent; ent = ent->next)
fprintf (file, " case %d:\n", ent->code_number);
for (i = clobber->first_clobber; i < XVECLEN (clobber->pattern, 1); i++)
{
fprintf (file, " XVECEXP (pattern, 0, %d) = ", i);
gen_exp (XVECEXP (clobber->pattern, 1, i),
GET_CODE (clobber->pattern), NULL, info, file);
fprintf (file, ";\n");
}
fprintf (file, " break;\n\n");
}
fprintf (file, " default:\n");
fprintf (file, " gcc_unreachable ();\n");
fprintf (file, " }\n");
fprintf (file, "}\n");
}
/* Write a function, `added_clobbers_hard_reg_p' that is given an insn_code
number that will have clobbers added (as indicated by `recog') and returns
1 if those include a clobber of a hard reg or 0 if all of them just clobber
SCRATCH. */
static void
output_added_clobbers_hard_reg_p (FILE *file)
{
struct clobber_pat *clobber;
struct clobber_ent *ent;
int clobber_p;
bool used;
fprintf (file, "\n\nbool\nadded_clobbers_hard_reg_p (int insn_code_number)\n");
fprintf (file, "{\n");
fprintf (file, " switch (insn_code_number)\n");
fprintf (file, " {\n");
for (clobber_p = 0; clobber_p <= 1; clobber_p++)
{
used = false;
for (clobber = clobber_list; clobber; clobber = clobber->next)
if (clobber->has_hard_reg == clobber_p)
for (ent = clobber->insns; ent; ent = ent->next)
{
fprintf (file, " case %d:\n", ent->code_number);
used = true;
}
if (used)
fprintf (file, " return %s;\n\n", clobber_p ? "true" : "false");
}
fprintf (file, " default:\n");
fprintf (file, " gcc_unreachable ();\n");
fprintf (file, " }\n");
fprintf (file, "}\n");
}
/* Generate code to invoke find_free_register () as needed for the
scratch registers used by the peephole2 pattern in SPLIT. */
static void
output_peephole2_scratches (rtx split, FILE *file)
{
int i;
int insn_nr = 0;
bool first = true;
for (i = 0; i < XVECLEN (split, 0); i++)
{
rtx elt = XVECEXP (split, 0, i);
if (GET_CODE (elt) == MATCH_SCRATCH)
{
int last_insn_nr = insn_nr;
int cur_insn_nr = insn_nr;
int j;
for (j = i + 1; j < XVECLEN (split, 0); j++)
if (GET_CODE (XVECEXP (split, 0, j)) == MATCH_DUP)
{
if (XINT (XVECEXP (split, 0, j), 0) == XINT (elt, 0))
last_insn_nr = cur_insn_nr;
}
else if (GET_CODE (XVECEXP (split, 0, j)) != MATCH_SCRATCH)
cur_insn_nr++;
if (first)
{
fprintf (file, " HARD_REG_SET _regs_allocated;\n");
fprintf (file, " CLEAR_HARD_REG_SET (_regs_allocated);\n");
first = false;
}
fprintf (file, " if ((operands[%d] = peep2_find_free_register (%d, %d, \"%s\", %smode, &_regs_allocated)) == NULL_RTX)\n\
return NULL;\n",
XINT (elt, 0),
insn_nr, last_insn_nr,
XSTR (elt, 1),
GET_MODE_NAME (GET_MODE (elt)));
}
else if (GET_CODE (elt) != MATCH_DUP)
insn_nr++;
}
}
/* Print "arg" parameter declarations for each argument N of ONAME. */
static void
print_overload_arguments (overloaded_name *oname, FILE *file)
{
for (unsigned int i = 0; i < oname->arg_types.length (); ++i)
fprintf (file, "%s%s arg%d", i == 0 ? "" : ", ", oname->arg_types[i], i);
}
/* Print code to test whether INSTANCE should be chosen, given that
argument N of the overload is available as "arg". */
static void
print_overload_test (overloaded_instance *instance, FILE *file)
{
for (unsigned int i = 0; i < instance->arg_values.length (); ++i)
fprintf (file, "%sarg%d == %s", i == 0 ? " if (" : "\n && ",
i, instance->arg_values[i]);
fprintf (file, ")\n");
}
/* Emit a maybe_code_for_* function for ONAME. */
static void
handle_overloaded_code_for (overloaded_name *oname, FILE *file)
{
/* Print the function prototype. */
fprintf (file, "\ninsn_code\nmaybe_code_for_%s (", oname->name);
print_overload_arguments (oname, file);
fprintf (file, ")\n{\n");
/* Use a sequence of "if" statements for each instance. */
for (overloaded_instance *instance = oname->first_instance;
instance; instance = instance->next)
{
print_overload_test (instance, file);
fprintf (file, " return CODE_FOR_%s;\n", instance->name);
}
/* Return null if no match was found. */
fprintf (file, " return CODE_FOR_nothing;\n}\n");
}
/* Emit a maybe_gen_* function for ONAME. */
static void
handle_overloaded_gen (overloaded_name *oname, FILE *file)
{
unsigned HOST_WIDE_INT seen = 0;
/* All patterns must have the same number of operands. */
for (overloaded_instance *instance = oname->first_instance->next;
instance; instance = instance->next)
{
pattern_stats stats;
get_pattern_stats (&stats, XVEC (instance->insn, 1));
unsigned HOST_WIDE_INT mask
= HOST_WIDE_INT_1U << stats.num_generator_args;
if (seen & mask)
continue;
seen |= mask;
/* Print the function prototype. */
fprintf (file, "\nrtx\nmaybe_gen_%s (", oname->name);
print_overload_arguments (oname, file);
for (int i = 0; i < stats.num_generator_args; ++i)
fprintf (file, ", rtx x%d", i);
fprintf (file, ")\n{\n");
/* Use maybe_code_for_*, instead of duplicating the selection
logic here. */
fprintf (file, " insn_code code = maybe_code_for_%s (", oname->name);
for (unsigned int i = 0; i < oname->arg_types.length (); ++i)
fprintf (file, "%sarg%d", i == 0 ? "" : ", ", i);
fprintf (file, ");\n"
" if (code != CODE_FOR_nothing)\n"
" {\n"
" gcc_assert (insn_data[code].n_generator_args == %d);\n"
" return GEN_FCN (code) (", stats.num_generator_args);
for (int i = 0; i < stats.num_generator_args; ++i)
fprintf (file, "%sx%d", i == 0 ? "" : ", ", i);
fprintf (file, ");\n"
" }\n"
" else\n"
" return NULL_RTX;\n"
"}\n");
}
}
void
print_header (FILE *file)
{
fprintf (file, "/* Generated automatically by the program `genemit'\n\
from the machine description file `md'. */\n\n");
fprintf (file, "#define IN_TARGET_CODE 1\n");
fprintf (file, "#include \"config.h\"\n");
fprintf (file, "#include \"system.h\"\n");
fprintf (file, "#include \"coretypes.h\"\n");
fprintf (file, "#include \"backend.h\"\n");
fprintf (file, "#include \"predict.h\"\n");
fprintf (file, "#include \"tree.h\"\n");
fprintf (file, "#include \"rtl.h\"\n");
fprintf (file, "#include \"alias.h\"\n");
fprintf (file, "#include \"varasm.h\"\n");
fprintf (file, "#include \"stor-layout.h\"\n");
fprintf (file, "#include \"calls.h\"\n");
fprintf (file, "#include \"memmodel.h\"\n");
fprintf (file, "#include \"tm_p.h\"\n");
fprintf (file, "#include \"flags.h\"\n");
fprintf (file, "#include \"insn-config.h\"\n");
fprintf (file, "#include \"expmed.h\"\n");
fprintf (file, "#include \"dojump.h\"\n");
fprintf (file, "#include \"explow.h\"\n");
fprintf (file, "#include \"emit-rtl.h\"\n");
fprintf (file, "#include \"stmt.h\"\n");
fprintf (file, "#include \"expr.h\"\n");
fprintf (file, "#include \"insn-codes.h\"\n");
fprintf (file, "#include \"optabs.h\"\n");
fprintf (file, "#include \"dfp.h\"\n");
fprintf (file, "#include \"output.h\"\n");
fprintf (file, "#include \"recog.h\"\n");
fprintf (file, "#include \"df.h\"\n");
fprintf (file, "#include \"resource.h\"\n");
fprintf (file, "#include \"reload.h\"\n");
fprintf (file, "#include \"diagnostic-core.h\"\n");
fprintf (file, "#include \"regs.h\"\n");
fprintf (file, "#include \"tm-constrs.h\"\n");
fprintf (file, "#include \"ggc.h\"\n");
fprintf (file, "#include \"target.h\"\n\n");
}
auto_vec output_files;
static bool
handle_arg (const char *arg)
{
if (arg[1] == 'O')
{
output_files.safe_push (&arg[2]);
return true;
}
return false;
}
int
main (int argc, const char **argv)
{
progname = "genemit";
if (!init_rtx_reader_args_cb (argc, argv, handle_arg))
return (FATAL_EXIT_CODE);
#define DEF_INTERNAL_OPTAB_FN(NAME, FLAGS, OPTAB, TYPE) \
nofail_optabs[OPTAB##_optab] = true;
#include "internal-fn.def"
/* Assign sequential codes to all entries in the machine description
in parallel with the tables in insn-output.cc. */
int npatterns = count_patterns ();
md_rtx_info info;
bool to_stdout = false;
int npatterns_per_file = npatterns;
if (!output_files.is_empty ())
npatterns_per_file = npatterns / output_files.length () + 1;
else
to_stdout = true;
gcc_assert (npatterns_per_file > 1);
/* Reverse so we can pop the first-added element. */
output_files.reverse ();
int count = 0;
FILE *file = NULL;
/* Read the machine description. */
while (read_md_rtx (&info))
{
if (count == 0 || count == npatterns_per_file)
{
bool is_last = !to_stdout && output_files.is_empty ();
if (file && !is_last)
if (fclose (file) != 0)
return FATAL_EXIT_CODE;
if (!output_files.is_empty ())
{
const char *const filename = output_files.pop ();
file = fopen (filename, "w");
}
else if (to_stdout)
file = stdout;
else
break;
print_header (file);
count = 0;
}
switch (GET_CODE (info.def))
{
case DEFINE_INSN:
gen_insn (&info, file);
break;
case DEFINE_EXPAND:
fprintf (file, "/* %s:%d */\n", info.loc.filename, info.loc.lineno);
gen_expand (&info, file);
break;
case DEFINE_SPLIT:
fprintf (file, "/* %s:%d */\n", info.loc.filename, info.loc.lineno);
gen_split (&info, file);
break;
case DEFINE_PEEPHOLE2:
fprintf (file, "/* %s:%d */\n", info.loc.filename, info.loc.lineno);
gen_split (&info, file);
break;
default:
break;
}
count++;
}
/* Write out the routines to add CLOBBERs to a pattern and say whether they
clobber a hard reg. */
output_add_clobbers (&info, file);
output_added_clobbers_hard_reg_p (file);
for (overloaded_name *oname = rtx_reader_ptr->get_overloads ();
oname; oname = oname->next)
{
handle_overloaded_code_for (oname, file);
handle_overloaded_gen (oname, file);
}
return (fclose (file) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
}