/* Shared code for before and after reload gcse implementations. Copyright (C) 1997-2021 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. It is expected that more hunks of gcse.c and postreload-gcse.c should migrate into this file. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "rtl.h" #include "df.h" #include "gcse-common.h" /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn. Note we store a pair of elements in the list, so they have to be taken off pairwise. */ void canon_list_insert (rtx dest, const_rtx x ATTRIBUTE_UNUSED, void *data) { rtx dest_addr; int bb; modify_pair pair; while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART) dest = XEXP (dest, 0); /* If DEST is not a MEM, then it will not conflict with a load. Note that function calls are assumed to clobber memory, but are handled elsewhere. */ if (! MEM_P (dest)) return; dest_addr = get_addr (XEXP (dest, 0)); dest_addr = canon_rtx (dest_addr); rtx_insn *insn = ((struct gcse_note_stores_info *)data)->insn; bb = BLOCK_FOR_INSN (insn)->index; pair.dest = dest; pair.dest_addr = dest_addr; vec<modify_pair> *canon_mem_list = ((struct gcse_note_stores_info *)data)->canon_mem_list; canon_mem_list[bb].safe_push (pair); } /* Record memory modification information for INSN. We do not actually care about the memory location(s) that are set, or even how they are set (consider a CALL_INSN). We merely need to record which insns modify memory. */ void record_last_mem_set_info_common (rtx_insn *insn, vec<rtx_insn *> *modify_mem_list, vec<modify_pair> *canon_modify_mem_list, bitmap modify_mem_list_set, bitmap blocks_with_calls) { int bb; bb = BLOCK_FOR_INSN (insn)->index; modify_mem_list[bb].safe_push (insn); bitmap_set_bit (modify_mem_list_set, bb); if (CALL_P (insn)) bitmap_set_bit (blocks_with_calls, bb); else { struct gcse_note_stores_info data; data.insn = insn; data.canon_mem_list = canon_modify_mem_list; note_stores (insn, canon_list_insert, (void*) &data); } } /* For each block, compute whether X is transparent. X is either an expression or an assignment [though we don't care which, for this context an assignment is treated as an expression]. For each block where an element of X is modified, reset the INDX bit in BMAP. BLOCKS_WITH_CALLS indicates which blocks contain CALL_INSNs which kill memory. MODIFY_MEM_LIST_SET indicates which blocks have memory stores which might kill a particular memory location. CANON_MODIFY_MEM_LIST is the canonicalized list of memory locations modified for each block. */ void compute_transp (const_rtx x, int indx, sbitmap *bmap, bitmap blocks_with_calls, bitmap modify_mem_list_set, vec<modify_pair> *canon_modify_mem_list) { int i, j; enum rtx_code code; const char *fmt; /* repeat is used to turn tail-recursion into iteration since GCC can't do it when there's no return value. */ repeat: if (x == 0) return; code = GET_CODE (x); switch (code) { case REG: { df_ref def; for (def = DF_REG_DEF_CHAIN (REGNO (x)); def; def = DF_REF_NEXT_REG (def)) bitmap_clear_bit (bmap[DF_REF_BB (def)->index], indx); } return; case MEM: if (! MEM_READONLY_P (x)) { bitmap_iterator bi; unsigned bb_index; rtx x_addr; x_addr = get_addr (XEXP (x, 0)); x_addr = canon_rtx (x_addr); /* First handle all the blocks with calls. We don't need to do any list walking for them. */ EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi) { bitmap_clear_bit (bmap[bb_index], indx); } /* Now iterate over the blocks which have memory modifications but which do not have any calls. */ EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set, blocks_with_calls, 0, bb_index, bi) { vec<modify_pair> list = canon_modify_mem_list[bb_index]; modify_pair *pair; unsigned ix; FOR_EACH_VEC_ELT_REVERSE (list, ix, pair) { rtx dest = pair->dest; rtx dest_addr = pair->dest_addr; if (canon_true_dependence (dest, GET_MODE (dest), dest_addr, x, x_addr)) { bitmap_clear_bit (bmap[bb_index], indx); break; } } } } x = XEXP (x, 0); goto repeat; case PC: case CONST: CASE_CONST_ANY: case SYMBOL_REF: case LABEL_REF: case ADDR_VEC: case ADDR_DIFF_VEC: return; default: break; } for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--) { if (fmt[i] == 'e') { /* If we are about to do the last recursive call needed at this level, change it into iteration. This function is called enough to be worth it. */ if (i == 0) { x = XEXP (x, i); goto repeat; } compute_transp (XEXP (x, i), indx, bmap, blocks_with_calls, modify_mem_list_set, canon_modify_mem_list); } else if (fmt[i] == 'E') for (j = 0; j < XVECLEN (x, i); j++) compute_transp (XVECEXP (x, i, j), indx, bmap, blocks_with_calls, modify_mem_list_set, canon_modify_mem_list); } }