/* Gcov.c: prepend line execution counts and branch probabilities to a source file. Copyright (C) 1990, 1991, 1992, 1993, 1994, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. Contributed by James E. Wilson of Cygnus Support. Mangled by Bob Manson of Cygnus Support. Mangled further by Nathan Sidwell Gcov is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. Gcov is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Gcov; see the file COPYING3. If not see . */ /* ??? Print a list of the ten blocks with the highest execution counts, and list the line numbers corresponding to those blocks. Also, perhaps list the line numbers with the highest execution counts, only printing the first if there are several which are all listed in the same block. */ /* ??? Should have an option to print the number of basic blocks, and the percent of them that are covered. */ /* Need an option to show individual block counts, and show probabilities of fall through arcs. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "intl.h" #include "diagnostic.h" #include "version.h" #include #define IN_GCOV 1 #include "gcov-io.h" #include "gcov-io.c" /* The gcno file is generated by -ftest-coverage option. The gcda file is generated by a program compiled with -fprofile-arcs. Their formats are documented in gcov-io.h. */ /* The functions in this file for creating and solution program flow graphs are very similar to functions in the gcc source file profile.c. In some places we make use of the knowledge of how profile.c works to select particular algorithms here. */ /* The code validates that the profile information read in corresponds to the code currently being compiled. Rather than checking for identical files, the code below computes a checksum on the CFG (based on the order of basic blocks and the arcs in the CFG). If the CFG checksum in the gcda file match the CFG checksum for the code currently being compiled, the profile data will be used. */ /* This is the size of the buffer used to read in source file lines. */ #define STRING_SIZE 200 struct function_info; struct block_info; struct source_info; /* Describes an arc between two basic blocks. */ typedef struct arc_info { /* source and destination blocks. */ struct block_info *src; struct block_info *dst; /* transition counts. */ gcov_type count; /* used in cycle search, so that we do not clobber original counts. */ gcov_type cs_count; unsigned int count_valid : 1; unsigned int on_tree : 1; unsigned int fake : 1; unsigned int fall_through : 1; /* Arc is for a function that abnormally returns. */ unsigned int is_call_non_return : 1; /* Arc is for catch/setjmp. */ unsigned int is_nonlocal_return : 1; /* Is an unconditional branch. */ unsigned int is_unconditional : 1; /* Loop making arc. */ unsigned int cycle : 1; /* Next branch on line. */ struct arc_info *line_next; /* Links to next arc on src and dst lists. */ struct arc_info *succ_next; struct arc_info *pred_next; } arc_t; /* Describes a basic block. Contains lists of arcs to successor and predecessor blocks. */ typedef struct block_info { /* Chain of exit and entry arcs. */ arc_t *succ; arc_t *pred; /* Number of unprocessed exit and entry arcs. */ gcov_type num_succ; gcov_type num_pred; /* Block execution count. */ gcov_type count; unsigned flags : 13; unsigned count_valid : 1; unsigned valid_chain : 1; unsigned invalid_chain : 1; /* Block is a call instrumenting site. */ unsigned is_call_site : 1; /* Does the call. */ unsigned is_call_return : 1; /* Is the return. */ /* Block is a landing pad for longjmp or throw. */ unsigned is_nonlocal_return : 1; union { struct { /* Array of line numbers and source files. source files are introduced by a linenumber of zero, the next 'line number' is the number of the source file. Always starts with a source file. */ unsigned *encoding; unsigned num; } line; /* Valid until blocks are linked onto lines */ struct { /* Single line graph cycle workspace. Used for all-blocks mode. */ arc_t *arc; unsigned ident; } cycle; /* Used in all-blocks mode, after blocks are linked onto lines. */ } u; /* Temporary chain for solving graph, and for chaining blocks on one line. */ struct block_info *chain; } block_t; /* Describes a single function. Contains an array of basic blocks. */ typedef struct function_info { /* Name of function. */ char *name; unsigned ident; unsigned lineno_checksum; unsigned cfg_checksum; /* Array of basic blocks. */ block_t *blocks; unsigned num_blocks; unsigned blocks_executed; /* Raw arc coverage counts. */ gcov_type *counts; unsigned num_counts; /* First line number & file. */ unsigned line; unsigned src; /* Next function in same source file. */ struct function_info *line_next; /* Next function. */ struct function_info *next; } function_t; /* Describes coverage of a file or function. */ typedef struct coverage_info { int lines; int lines_executed; int branches; int branches_executed; int branches_taken; int calls; int calls_executed; char *name; } coverage_t; /* Describes a single line of source. Contains a chain of basic blocks with code on it. */ typedef struct line_info { gcov_type count; /* execution count */ union { arc_t *branches; /* branches from blocks that end on this line. Used for branch-counts when not all-blocks mode. */ block_t *blocks; /* blocks which start on this line. Used in all-blocks mode. */ } u; unsigned exists : 1; } line_t; /* Describes a file mentioned in the block graph. Contains an array of line info. */ typedef struct source_info { /* Canonical name of source file. */ char *name; time_t file_time; /* Array of line information. */ line_t *lines; unsigned num_lines; coverage_t coverage; /* Functions in this source file. These are in ascending line number order. */ function_t *functions; } source_t; typedef struct name_map { char *name; /* Source file name */ unsigned src; /* Source file */ } name_map_t; /* Holds a list of function basic block graphs. */ static function_t *functions; static function_t **fn_end = &functions; static source_t *sources; /* Array of source files */ static unsigned n_sources; /* Number of sources */ static unsigned a_sources; /* Allocated sources */ static name_map_t *names; /* Mapping of file names to sources */ static unsigned n_names; /* Number of names */ static unsigned a_names; /* Allocated names */ /* This holds data summary information. */ static unsigned object_runs; static unsigned program_count; /* Modification time of graph file. */ static time_t bbg_file_time; /* Name and file pointer of the input file for the basic block graph. */ static char *bbg_file_name; /* Stamp of the bbg file */ static unsigned bbg_stamp; /* Name and file pointer of the input file for the arc count data. */ static char *da_file_name; /* Data file is missing. */ static int no_data_file; /* If there is several input files, compute and display results after reading all data files. This way if two or more gcda file refer to the same source file (eg inline subprograms in a .h file), the counts are added. */ static int multiple_files = 0; /* Output branch probabilities. */ static int flag_branches = 0; /* Show unconditional branches too. */ static int flag_unconditional = 0; /* Output a gcov file if this is true. This is on by default, and can be turned off by the -n option. */ static int flag_gcov_file = 1; /* Output progress indication if this is true. This is off by default and can be turned on by the -d option. */ static int flag_display_progress = 0; /* For included files, make the gcov output file name include the name of the input source file. For example, if x.h is included in a.c, then the output file name is a.c##x.h.gcov instead of x.h.gcov. */ static int flag_long_names = 0; /* Output count information for every basic block, not merely those that contain line number information. */ static int flag_all_blocks = 0; /* Output summary info for each function. */ static int flag_function_summary = 0; /* Object directory file prefix. This is the directory/file where the graph and data files are looked for, if nonzero. */ static char *object_directory = 0; /* Preserve all pathname components. Needed when object files and source files are in subdirectories. '/' is mangled as '#', '.' is elided and '..' mangled to '^'. */ static int flag_preserve_paths = 0; /* Output the number of times a branch was taken as opposed to the percentage of times it was taken. */ static int flag_counts = 0; /* Forward declarations. */ static int process_args (int, char **); static void print_usage (int) ATTRIBUTE_NORETURN; static void print_version (void) ATTRIBUTE_NORETURN; static void process_file (const char *); static void generate_results (const char *); static void create_file_names (const char *); static int name_search (const void *, const void *); static int name_sort (const void *, const void *); static char *canonicalize_name (const char *); static unsigned find_source (const char *); static function_t *read_graph_file (void); static int read_count_file (function_t *); static void solve_flow_graph (function_t *); static void add_branch_counts (coverage_t *, const arc_t *); static void add_line_counts (coverage_t *, function_t *); static void function_summary (const coverage_t *, const char *); static const char *format_gcov (gcov_type, gcov_type, int); static void accumulate_line_counts (source_t *); static int output_branch_count (FILE *, int, const arc_t *); static void output_lines (FILE *, const source_t *); static char *make_gcov_file_name (const char *, const char *); static char *mangle_name (const char *, char *); static void release_structures (void); static void release_function (function_t *); extern int main (int, char **); int main (int argc, char **argv) { int argno; int first_arg; const char *p; p = argv[0] + strlen (argv[0]); while (p != argv[0] && !IS_DIR_SEPARATOR (p[-1])) --p; progname = p; xmalloc_set_program_name (progname); /* Unlock the stdio streams. */ unlock_std_streams (); gcc_init_libintl (); diagnostic_initialize (global_dc, 0); /* Handle response files. */ expandargv (&argc, &argv); argno = process_args (argc, argv); if (optind == argc) print_usage (true); if (argc - argno > 1) multiple_files = 1; first_arg = argno; for (; argno != argc; argno++) { if (flag_display_progress) printf("Processing file %d out of %d\n", argno - first_arg + 1, argc - first_arg); process_file (argv[argno]); } generate_results (multiple_files ? NULL : argv[argc - 1]); release_structures (); return 0; } /* Print a usage message and exit. If ERROR_P is nonzero, this is an error, otherwise the output of --help. */ static void print_usage (int error_p) { FILE *file = error_p ? stderr : stdout; int status = error_p ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE; fnotice (file, "Usage: gcov [OPTION]... SOURCE|OBJ...\n\n"); fnotice (file, "Print code coverage information.\n\n"); fnotice (file, " -h, --help Print this help, then exit\n"); fnotice (file, " -v, --version Print version number, then exit\n"); fnotice (file, " -a, --all-blocks Show information for every basic block\n"); fnotice (file, " -b, --branch-probabilities Include branch probabilities in output\n"); fnotice (file, " -c, --branch-counts Given counts of branches taken\n\ rather than percentages\n"); fnotice (file, " -n, --no-output Do not create an output file\n"); fnotice (file, " -l, --long-file-names Use long output file names for included\n\ source files\n"); fnotice (file, " -f, --function-summaries Output summaries for each function\n"); fnotice (file, " -o, --object-directory DIR|FILE Search for object files in DIR or called FILE\n"); fnotice (file, " -p, --preserve-paths Preserve all pathname components\n"); fnotice (file, " -u, --unconditional-branches Show unconditional branch counts too\n"); fnotice (file, " -d, --display-progress Display progress information\n"); fnotice (file, "\nFor bug reporting instructions, please see:\n%s.\n", bug_report_url); exit (status); } /* Print version information and exit. */ static void print_version (void) { fnotice (stdout, "gcov %s%s\n", pkgversion_string, version_string); fprintf (stdout, "Copyright %s 2011 Free Software Foundation, Inc.\n", _("(C)")); fnotice (stdout, _("This is free software; see the source for copying conditions.\n" "There is NO warranty; not even for MERCHANTABILITY or \n" "FITNESS FOR A PARTICULAR PURPOSE.\n\n")); exit (SUCCESS_EXIT_CODE); } static const struct option options[] = { { "help", no_argument, NULL, 'h' }, { "version", no_argument, NULL, 'v' }, { "all-blocks", no_argument, NULL, 'a' }, { "branch-probabilities", no_argument, NULL, 'b' }, { "branch-counts", no_argument, NULL, 'c' }, { "no-output", no_argument, NULL, 'n' }, { "long-file-names", no_argument, NULL, 'l' }, { "function-summaries", no_argument, NULL, 'f' }, { "preserve-paths", no_argument, NULL, 'p' }, { "object-directory", required_argument, NULL, 'o' }, { "object-file", required_argument, NULL, 'o' }, { "unconditional-branches", no_argument, NULL, 'u' }, { "display-progress", no_argument, NULL, 'd' }, { 0, 0, 0, 0 } }; /* Process args, return index to first non-arg. */ static int process_args (int argc, char **argv) { int opt; while ((opt = getopt_long (argc, argv, "abcdfhlno:puv", options, NULL)) != -1) { switch (opt) { case 'a': flag_all_blocks = 1; break; case 'b': flag_branches = 1; break; case 'c': flag_counts = 1; break; case 'f': flag_function_summary = 1; break; case 'h': print_usage (false); /* print_usage will exit. */ case 'l': flag_long_names = 1; break; case 'n': flag_gcov_file = 0; break; case 'o': object_directory = optarg; break; case 'p': flag_preserve_paths = 1; break; case 'u': flag_unconditional = 1; break; case 'd': flag_display_progress = 1; break; case 'v': print_version (); /* print_version will exit. */ default: print_usage (true); /* print_usage will exit. */ } } return optind; } /* Process a single input file. */ static void process_file (const char *file_name) { function_t *fns; create_file_names (file_name); fns = read_graph_file (); if (!fns) return; read_count_file (fns); while (fns) { function_t *fn = fns; fns = fn->next; fn->next = NULL; if (fn->counts) { unsigned src = fn->src; unsigned line = fn->line; unsigned block_no; function_t *probe, **prev; /* Now insert it into the source file's list of functions. Normally functions will be encountered in ascending order, so a simple scan is quick. Note we're building this list in reverse order. */ for (prev = &sources[src].functions; (probe = *prev); prev = &probe->line_next) if (probe->line <= line) break; fn->line_next = probe; *prev = fn; /* Mark last line in files touched by function. */ for (block_no = 0; block_no != fn->num_blocks; block_no++) { unsigned *enc = fn->blocks[block_no].u.line.encoding; unsigned num = fn->blocks[block_no].u.line.num; for (; num--; enc++) if (!*enc) { if (enc[1] != src) { if (line >= sources[src].num_lines) sources[src].num_lines = line + 1; line = 0; src = enc[1]; } enc++; num--; } else if (*enc > line) line = *enc; } if (line >= sources[src].num_lines) sources[src].num_lines = line + 1; solve_flow_graph (fn); *fn_end = fn; fn_end = &fn->next; } else /* The function was not in the executable -- some other instance must have been selected. */ release_function (fn); } } static void generate_results (const char *file_name) { unsigned ix; source_t *src; function_t *fn; for (ix = n_sources, src = sources; ix--; src++) if (src->num_lines) src->lines = XCNEWVEC (line_t, src->num_lines); for (fn = functions; fn; fn = fn->next) { coverage_t coverage; memset (&coverage, 0, sizeof (coverage)); coverage.name = fn->name; add_line_counts (flag_function_summary ? &coverage : NULL, fn); if (flag_function_summary) { function_summary (&coverage, "Function"); fnotice (stdout, "\n"); } } if (file_name) { name_map_t *name_map = (name_map_t *)bsearch (file_name, names, n_names, sizeof (*names), name_search); if (name_map) file_name = sources[name_map->src].name; else file_name = canonicalize_name (file_name); } for (ix = n_sources, src = sources; ix--; src++) { accumulate_line_counts (src); function_summary (&src->coverage, "File"); if (flag_gcov_file && src->coverage.lines) { char *gcov_file_name = make_gcov_file_name (file_name, src->name); FILE *gcov_file = fopen (gcov_file_name, "w"); if (gcov_file) { fnotice (stdout, "%s:creating '%s'\n", src->name, gcov_file_name); output_lines (gcov_file, src); if (ferror (gcov_file)) fnotice (stderr, "%s:error writing output file '%s'\n", src->name, gcov_file_name); fclose (gcov_file); } else fnotice (stderr, "%s:could not open output file '%s'\n", src->name, gcov_file_name); free (gcov_file_name); } fnotice (stdout, "\n"); } } /* Release a function structure */ static void release_function (function_t *fn) { unsigned ix; block_t *block; for (ix = fn->num_blocks, block = fn->blocks; ix--; block++) { arc_t *arc, *arc_n; for (arc = block->succ; arc; arc = arc_n) { arc_n = arc->succ_next; free (arc); } } free (fn->blocks); free (fn->counts); } /* Release all memory used. */ static void release_structures (void) { unsigned ix; function_t *fn; for (ix = n_sources; ix--;) free (sources[ix].lines); free (sources); for (ix = n_names; ix--;) free (names[ix].name); free (names); while ((fn = functions)) { functions = fn->next; release_function (fn); } } /* Generate the names of the graph and data files. If OBJECT_DIRECTORY is not specified, these are named from FILE_NAME sans extension. If OBJECT_DIRECTORY is specified and is a directory, the files are in that directory, but named from the basename of the FILE_NAME, sans extension. Otherwise OBJECT_DIRECTORY is taken to be the name of the object *file* and the data files are named from that. */ static void create_file_names (const char *file_name) { char *cptr; char *name; int length = strlen (file_name); int base; /* Free previous file names. */ free (bbg_file_name); free (da_file_name); da_file_name = bbg_file_name = NULL; bbg_file_time = 0; bbg_stamp = 0; if (object_directory && object_directory[0]) { struct stat status; length += strlen (object_directory) + 2; name = XNEWVEC (char, length); name[0] = 0; base = !stat (object_directory, &status) && S_ISDIR (status.st_mode); strcat (name, object_directory); if (base && (! IS_DIR_SEPARATOR (name[strlen (name) - 1]))) strcat (name, "/"); } else { name = XNEWVEC (char, length + 1); strcpy (name, file_name); base = 0; } if (base) { /* Append source file name. */ const char *cptr = lbasename (file_name); strcat (name, cptr ? cptr : file_name); } /* Remove the extension. */ cptr = strrchr (name, '.'); if (cptr) *cptr = 0; length = strlen (name); bbg_file_name = XNEWVEC (char, length + strlen (GCOV_NOTE_SUFFIX) + 1); strcpy (bbg_file_name, name); strcpy (bbg_file_name + length, GCOV_NOTE_SUFFIX); da_file_name = XNEWVEC (char, length + strlen (GCOV_DATA_SUFFIX) + 1); strcpy (da_file_name, name); strcpy (da_file_name + length, GCOV_DATA_SUFFIX); free (name); return; } /* A is a string and B is a pointer to name_map_t. Compare for file name orderability. */ static int name_search (const void *a_, const void *b_) { const char *a = (const char *)a_; const name_map_t *b = (const name_map_t *)b_; #if HAVE_DOS_BASED_FILE_SYSTEM return strcasecmp (a, b->name); #else return strcmp (a, b->name); #endif } /* A and B are a pointer to name_map_t. Compare for file name orderability. */ static int name_sort (const void *a_, const void *b_) { const name_map_t *a = (const name_map_t *)a_; return name_search (a->name, b_); } /* Find or create a source file structure for FILE_NAME. Copies FILE_NAME on creation */ static unsigned find_source (const char *file_name) { name_map_t *name_map; char *canon; unsigned idx; struct stat status; if (!file_name) file_name = ""; name_map = (name_map_t *)bsearch (file_name, names, n_names, sizeof (*names), name_search); if (name_map) { idx = name_map->src; goto check_date; } if (n_names + 2 > a_names) { /* Extend the name map array -- we'll be inserting one or two entries. */ if (!a_names) a_names = 10; a_names *= 2; name_map = XNEWVEC (name_map_t, a_names); memcpy (name_map, names, n_names * sizeof (*names)); free (names); names = name_map; } /* Not found, try the canonical name. */ canon = canonicalize_name (file_name); name_map = (name_map_t *)bsearch (canon, names, n_names, sizeof (*names), name_search); if (!name_map) { /* Not found with canonical name, create a new source. */ source_t *src; if (n_sources == a_sources) { if (!a_sources) a_sources = 10; a_sources *= 2; src = XNEWVEC (source_t, a_sources); memcpy (src, sources, n_sources * sizeof (*sources)); free (sources); sources = src; } idx = n_sources; name_map = &names[n_names++]; name_map->name = canon; name_map->src = idx; src = &sources[n_sources++]; memset (src, 0, sizeof (*src)); src->name = canon; src->coverage.name = src->name; if (!stat (src->name, &status)) src->file_time = status.st_mtime; } else idx = name_map->src; if (name_search (file_name, name_map)) { /* Append the non-canonical name. */ name_map = &names[n_names++]; name_map->name = xstrdup (file_name); name_map->src = idx; } /* Resort the name map. */ qsort (names, n_names, sizeof (*names), name_sort); check_date: if (sources[idx].file_time > bbg_file_time) { static int info_emitted; fnotice (stderr, "%s:source file is newer than graph file '%s'\n", file_name, bbg_file_name); if (!info_emitted) { fnotice (stderr, "(the message is only displayed one per source file)\n"); info_emitted = 1; } sources[idx].file_time = 0; } return idx; } /* Read the graph file. Return list of functions read -- in reverse order. */ static function_t * read_graph_file (void) { unsigned version; unsigned current_tag = 0; function_t *fn = NULL; function_t *fns = NULL; function_t **fns_end = &fns; unsigned src_idx = 0; unsigned ix; unsigned tag; if (!gcov_open (bbg_file_name, 1)) { fnotice (stderr, "%s:cannot open graph file\n", bbg_file_name); return fns; } bbg_file_time = gcov_time (); if (!gcov_magic (gcov_read_unsigned (), GCOV_NOTE_MAGIC)) { fnotice (stderr, "%s:not a gcov graph file\n", bbg_file_name); gcov_close (); return fns; } version = gcov_read_unsigned (); if (version != GCOV_VERSION) { char v[4], e[4]; GCOV_UNSIGNED2STRING (v, version); GCOV_UNSIGNED2STRING (e, GCOV_VERSION); fnotice (stderr, "%s:version '%.4s', prefer '%.4s'\n", bbg_file_name, v, e); } bbg_stamp = gcov_read_unsigned (); while ((tag = gcov_read_unsigned ())) { unsigned length = gcov_read_unsigned (); gcov_position_t base = gcov_position (); if (tag == GCOV_TAG_FUNCTION) { char *function_name; unsigned ident, lineno; unsigned lineno_checksum, cfg_checksum; ident = gcov_read_unsigned (); lineno_checksum = gcov_read_unsigned (); cfg_checksum = gcov_read_unsigned (); function_name = xstrdup (gcov_read_string ()); src_idx = find_source (gcov_read_string ()); lineno = gcov_read_unsigned (); fn = XCNEW (function_t); fn->name = function_name; fn->ident = ident; fn->lineno_checksum = lineno_checksum; fn->cfg_checksum = cfg_checksum; fn->src = src_idx; fn->line = lineno; fn->line_next = NULL; fn->next = NULL; *fns_end = fn; fns_end = &fn->next; current_tag = tag; } else if (fn && tag == GCOV_TAG_BLOCKS) { if (fn->blocks) fnotice (stderr, "%s:already seen blocks for '%s'\n", bbg_file_name, fn->name); else { unsigned ix, num_blocks = GCOV_TAG_BLOCKS_NUM (length); fn->num_blocks = num_blocks; fn->blocks = XCNEWVEC (block_t, fn->num_blocks); for (ix = 0; ix != num_blocks; ix++) fn->blocks[ix].flags = gcov_read_unsigned (); } } else if (fn && tag == GCOV_TAG_ARCS) { unsigned src = gcov_read_unsigned (); unsigned num_dests = GCOV_TAG_ARCS_NUM (length); if (src >= fn->num_blocks || fn->blocks[src].succ) goto corrupt; while (num_dests--) { struct arc_info *arc; unsigned dest = gcov_read_unsigned (); unsigned flags = gcov_read_unsigned (); if (dest >= fn->num_blocks) goto corrupt; arc = XCNEW (arc_t); arc->dst = &fn->blocks[dest]; arc->src = &fn->blocks[src]; arc->count = 0; arc->count_valid = 0; arc->on_tree = !!(flags & GCOV_ARC_ON_TREE); arc->fake = !!(flags & GCOV_ARC_FAKE); arc->fall_through = !!(flags & GCOV_ARC_FALLTHROUGH); arc->succ_next = fn->blocks[src].succ; fn->blocks[src].succ = arc; fn->blocks[src].num_succ++; arc->pred_next = fn->blocks[dest].pred; fn->blocks[dest].pred = arc; fn->blocks[dest].num_pred++; if (arc->fake) { if (src) { /* Exceptional exit from this function, the source block must be a call. */ fn->blocks[src].is_call_site = 1; arc->is_call_non_return = 1; } else { /* Non-local return from a callee of this function. The destination block is a catch or setjmp. */ arc->is_nonlocal_return = 1; fn->blocks[dest].is_nonlocal_return = 1; } } if (!arc->on_tree) fn->num_counts++; } } else if (fn && tag == GCOV_TAG_LINES) { unsigned blockno = gcov_read_unsigned (); unsigned *line_nos = XCNEWVEC (unsigned, length - 1); if (blockno >= fn->num_blocks || fn->blocks[blockno].u.line.encoding) goto corrupt; for (ix = 0; ; ) { unsigned lineno = gcov_read_unsigned (); if (lineno) { if (!ix) { line_nos[ix++] = 0; line_nos[ix++] = src_idx; } line_nos[ix++] = lineno; } else { const char *file_name = gcov_read_string (); if (!file_name) break; src_idx = find_source (file_name); line_nos[ix++] = 0; line_nos[ix++] = src_idx; } } fn->blocks[blockno].u.line.encoding = line_nos; fn->blocks[blockno].u.line.num = ix; } else if (current_tag && !GCOV_TAG_IS_SUBTAG (current_tag, tag)) { fn = NULL; current_tag = 0; } gcov_sync (base, length); if (gcov_is_error ()) { corrupt:; fnotice (stderr, "%s:corrupted\n", bbg_file_name); break; } } gcov_close (); if (!fns) fnotice (stderr, "%s:no functions found\n", bbg_file_name); return fns; } /* Reads profiles from the count file and attach to each function. Return nonzero if fatal error. */ static int read_count_file (function_t *fns) { unsigned ix; unsigned version; unsigned tag; function_t *fn = NULL; int error = 0; if (!gcov_open (da_file_name, 1)) { fnotice (stderr, "%s:cannot open data file, assuming not executed\n", da_file_name); no_data_file = 1; return 0; } if (!gcov_magic (gcov_read_unsigned (), GCOV_DATA_MAGIC)) { fnotice (stderr, "%s:not a gcov data file\n", da_file_name); cleanup:; gcov_close (); return 1; } version = gcov_read_unsigned (); if (version != GCOV_VERSION) { char v[4], e[4]; GCOV_UNSIGNED2STRING (v, version); GCOV_UNSIGNED2STRING (e, GCOV_VERSION); fnotice (stderr, "%s:version '%.4s', prefer version '%.4s'\n", da_file_name, v, e); } tag = gcov_read_unsigned (); if (tag != bbg_stamp) { fnotice (stderr, "%s:stamp mismatch with graph file\n", da_file_name); goto cleanup; } while ((tag = gcov_read_unsigned ())) { unsigned length = gcov_read_unsigned (); unsigned long base = gcov_position (); if (tag == GCOV_TAG_PROGRAM_SUMMARY) { struct gcov_summary summary; gcov_read_summary (&summary); object_runs += summary.ctrs[GCOV_COUNTER_ARCS].runs; program_count++; } else if (tag == GCOV_TAG_FUNCTION && !length) ; /* placeholder */ else if (tag == GCOV_TAG_FUNCTION && length == GCOV_TAG_FUNCTION_LENGTH) { unsigned ident; struct function_info *fn_n; /* Try to find the function in the list. To speed up the search, first start from the last function found. */ ident = gcov_read_unsigned (); fn_n = fns; for (fn = fn ? fn->next : NULL; ; fn = fn->next) { if (fn) ; else if ((fn = fn_n)) fn_n = NULL; else { fnotice (stderr, "%s:unknown function '%u'\n", da_file_name, ident); break; } if (fn->ident == ident) break; } if (!fn) ; else if (gcov_read_unsigned () != fn->lineno_checksum || gcov_read_unsigned () != fn->cfg_checksum) { mismatch:; fnotice (stderr, "%s:profile mismatch for '%s'\n", da_file_name, fn->name); goto cleanup; } } else if (tag == GCOV_TAG_FOR_COUNTER (GCOV_COUNTER_ARCS) && fn) { if (length != GCOV_TAG_COUNTER_LENGTH (fn->num_counts)) goto mismatch; if (!fn->counts) fn->counts = XCNEWVEC (gcov_type, fn->num_counts); for (ix = 0; ix != fn->num_counts; ix++) fn->counts[ix] += gcov_read_counter (); } gcov_sync (base, length); if ((error = gcov_is_error ())) { fnotice (stderr, error < 0 ? "%s:overflowed\n" : "%s:corrupted\n", da_file_name); goto cleanup; } } gcov_close (); return 0; } /* Solve the flow graph. Propagate counts from the instrumented arcs to the blocks and the uninstrumented arcs. */ static void solve_flow_graph (function_t *fn) { unsigned ix; arc_t *arc; gcov_type *count_ptr = fn->counts; block_t *blk; block_t *valid_blocks = NULL; /* valid, but unpropagated blocks. */ block_t *invalid_blocks = NULL; /* invalid, but inferable blocks. */ /* The arcs were built in reverse order. Fix that now. */ for (ix = fn->num_blocks; ix--;) { arc_t *arc_p, *arc_n; for (arc_p = NULL, arc = fn->blocks[ix].succ; arc; arc_p = arc, arc = arc_n) { arc_n = arc->succ_next; arc->succ_next = arc_p; } fn->blocks[ix].succ = arc_p; for (arc_p = NULL, arc = fn->blocks[ix].pred; arc; arc_p = arc, arc = arc_n) { arc_n = arc->pred_next; arc->pred_next = arc_p; } fn->blocks[ix].pred = arc_p; } if (fn->num_blocks < 2) fnotice (stderr, "%s:'%s' lacks entry and/or exit blocks\n", bbg_file_name, fn->name); else { if (fn->blocks[0].num_pred) fnotice (stderr, "%s:'%s' has arcs to entry block\n", bbg_file_name, fn->name); else /* We can't deduce the entry block counts from the lack of predecessors. */ fn->blocks[0].num_pred = ~(unsigned)0; if (fn->blocks[fn->num_blocks - 1].num_succ) fnotice (stderr, "%s:'%s' has arcs from exit block\n", bbg_file_name, fn->name); else /* Likewise, we can't deduce exit block counts from the lack of its successors. */ fn->blocks[fn->num_blocks - 1].num_succ = ~(unsigned)0; } /* Propagate the measured counts, this must be done in the same order as the code in profile.c */ for (ix = 0, blk = fn->blocks; ix != fn->num_blocks; ix++, blk++) { block_t const *prev_dst = NULL; int out_of_order = 0; int non_fake_succ = 0; for (arc = blk->succ; arc; arc = arc->succ_next) { if (!arc->fake) non_fake_succ++; if (!arc->on_tree) { if (count_ptr) arc->count = *count_ptr++; arc->count_valid = 1; blk->num_succ--; arc->dst->num_pred--; } if (prev_dst && prev_dst > arc->dst) out_of_order = 1; prev_dst = arc->dst; } if (non_fake_succ == 1) { /* If there is only one non-fake exit, it is an unconditional branch. */ for (arc = blk->succ; arc; arc = arc->succ_next) if (!arc->fake) { arc->is_unconditional = 1; /* If this block is instrumenting a call, it might be an artificial block. It is not artificial if it has a non-fallthrough exit, or the destination of this arc has more than one entry. Mark the destination block as a return site, if none of those conditions hold. */ if (blk->is_call_site && arc->fall_through && arc->dst->pred == arc && !arc->pred_next) arc->dst->is_call_return = 1; } } /* Sort the successor arcs into ascending dst order. profile.c normally produces arcs in the right order, but sometimes with one or two out of order. We're not using a particularly smart sort. */ if (out_of_order) { arc_t *start = blk->succ; unsigned changes = 1; while (changes) { arc_t *arc, *arc_p, *arc_n; changes = 0; for (arc_p = NULL, arc = start; (arc_n = arc->succ_next);) { if (arc->dst > arc_n->dst) { changes = 1; if (arc_p) arc_p->succ_next = arc_n; else start = arc_n; arc->succ_next = arc_n->succ_next; arc_n->succ_next = arc; arc_p = arc_n; } else { arc_p = arc; arc = arc_n; } } } blk->succ = start; } /* Place it on the invalid chain, it will be ignored if that's wrong. */ blk->invalid_chain = 1; blk->chain = invalid_blocks; invalid_blocks = blk; } while (invalid_blocks || valid_blocks) { while ((blk = invalid_blocks)) { gcov_type total = 0; const arc_t *arc; invalid_blocks = blk->chain; blk->invalid_chain = 0; if (!blk->num_succ) for (arc = blk->succ; arc; arc = arc->succ_next) total += arc->count; else if (!blk->num_pred) for (arc = blk->pred; arc; arc = arc->pred_next) total += arc->count; else continue; blk->count = total; blk->count_valid = 1; blk->chain = valid_blocks; blk->valid_chain = 1; valid_blocks = blk; } while ((blk = valid_blocks)) { gcov_type total; arc_t *arc, *inv_arc; valid_blocks = blk->chain; blk->valid_chain = 0; if (blk->num_succ == 1) { block_t *dst; total = blk->count; inv_arc = NULL; for (arc = blk->succ; arc; arc = arc->succ_next) { total -= arc->count; if (!arc->count_valid) inv_arc = arc; } dst = inv_arc->dst; inv_arc->count_valid = 1; inv_arc->count = total; blk->num_succ--; dst->num_pred--; if (dst->count_valid) { if (dst->num_pred == 1 && !dst->valid_chain) { dst->chain = valid_blocks; dst->valid_chain = 1; valid_blocks = dst; } } else { if (!dst->num_pred && !dst->invalid_chain) { dst->chain = invalid_blocks; dst->invalid_chain = 1; invalid_blocks = dst; } } } if (blk->num_pred == 1) { block_t *src; total = blk->count; inv_arc = NULL; for (arc = blk->pred; arc; arc = arc->pred_next) { total -= arc->count; if (!arc->count_valid) inv_arc = arc; } src = inv_arc->src; inv_arc->count_valid = 1; inv_arc->count = total; blk->num_pred--; src->num_succ--; if (src->count_valid) { if (src->num_succ == 1 && !src->valid_chain) { src->chain = valid_blocks; src->valid_chain = 1; valid_blocks = src; } } else { if (!src->num_succ && !src->invalid_chain) { src->chain = invalid_blocks; src->invalid_chain = 1; invalid_blocks = src; } } } } } /* If the graph has been correctly solved, every block will have a valid count. */ for (ix = 0; ix < fn->num_blocks; ix++) if (!fn->blocks[ix].count_valid) { fnotice (stderr, "%s:graph is unsolvable for '%s'\n", bbg_file_name, fn->name); break; } } /* Increment totals in COVERAGE according to arc ARC. */ static void add_branch_counts (coverage_t *coverage, const arc_t *arc) { if (arc->is_call_non_return) { coverage->calls++; if (arc->src->count) coverage->calls_executed++; } else if (!arc->is_unconditional) { coverage->branches++; if (arc->src->count) coverage->branches_executed++; if (arc->count) coverage->branches_taken++; } } /* Format a HOST_WIDE_INT as either a percent ratio, or absolute count. If dp >= 0, format TOP/BOTTOM * 100 to DP decimal places. If DP is zero, no decimal point is printed. Only print 100% when TOP==BOTTOM and only print 0% when TOP=0. If dp < 0, then simply format TOP. Return pointer to a static string. */ static char const * format_gcov (gcov_type top, gcov_type bottom, int dp) { static char buffer[20]; if (dp >= 0) { float ratio = bottom ? (float)top / bottom : 0; int ix; unsigned limit = 100; unsigned percent; for (ix = dp; ix--; ) limit *= 10; percent = (unsigned) (ratio * limit + (float)0.5); if (percent <= 0 && top) percent = 1; else if (percent >= limit && top != bottom) percent = limit - 1; ix = sprintf (buffer, "%.*u%%", dp + 1, percent); if (dp) { dp++; do { buffer[ix+1] = buffer[ix]; ix--; } while (dp--); buffer[ix + 1] = '.'; } } else sprintf (buffer, HOST_WIDEST_INT_PRINT_DEC, (HOST_WIDEST_INT)top); return buffer; } /* Output summary info for a function. */ static void function_summary (const coverage_t *coverage, const char *title) { fnotice (stdout, "%s '%s'\n", title, coverage->name); if (coverage->lines) fnotice (stdout, "Lines executed:%s of %d\n", format_gcov (coverage->lines_executed, coverage->lines, 2), coverage->lines); else fnotice (stdout, "No executable lines\n"); if (flag_branches) { if (coverage->branches) { fnotice (stdout, "Branches executed:%s of %d\n", format_gcov (coverage->branches_executed, coverage->branches, 2), coverage->branches); fnotice (stdout, "Taken at least once:%s of %d\n", format_gcov (coverage->branches_taken, coverage->branches, 2), coverage->branches); } else fnotice (stdout, "No branches\n"); if (coverage->calls) fnotice (stdout, "Calls executed:%s of %d\n", format_gcov (coverage->calls_executed, coverage->calls, 2), coverage->calls); else fnotice (stdout, "No calls\n"); } } /* Canonicalize the filename NAME by canonicalizing directory separators, eliding . components and resolving .. components appropriately. Always returns a unique string. */ static char * canonicalize_name (const char *name) { /* The canonical name cannot be longer than the incoming name. */ char *result = XNEWVEC (char, strlen (name) + 1); const char *base = name, *probe; char *ptr = result; char *dd_base; int slash = 0; #if HAVE_DOS_BASED_FILE_SYSTEM if (base[0] && base[1] == ':') { result[0] = base[0]; result[1] = ':'; base += 2; ptr += 2; } #endif for (dd_base = ptr; *base; base = probe) { size_t len; for (probe = base; *probe; probe++) if (IS_DIR_SEPARATOR (*probe)) break; len = probe - base; if (len == 1 && base[0] == '.') /* Elide a '.' directory */ ; else if (len == 2 && base[0] == '.' && base[1] == '.') { /* '..', we can only elide it and the previous directory, if we're not a symlink. */ struct stat buf; *ptr = 0; if (dd_base == ptr || stat (result, &buf) || S_ISLNK (buf.st_mode)) { /* Cannot elide, or unreadable or a symlink. */ dd_base = ptr + 2 + slash; goto regular; } while (ptr != dd_base && *ptr != '/') ptr--; slash = ptr != result; } else { regular: /* Regular pathname component. */ if (slash) *ptr++ = '/'; memcpy (ptr, base, len); ptr += len; slash = 1; } for (; IS_DIR_SEPARATOR (*probe); probe++) continue; } *ptr = 0; return result; } /* Generate an output file name. INPUT_NAME is the canonicalized main input file and SRC_NAME is the canonicalized file name. LONG_OUTPUT_NAMES and PRESERVE_PATHS affect name generation. With long_output_names we prepend the processed name of the input file to each output name (except when the current source file is the input file, so you don't get a double concatenation). The two components are separated by '##'. With preserve_paths we create a filename from all path components of the source file, replacing '/' with '#', and .. with '^', without it we simply take the basename component. (Remember, the canonicalized name will already have elided '.' components and converted \\ separators.) */ static char * make_gcov_file_name (const char *input_name, const char *src_name) { char *ptr; char *result; if (flag_long_names && input_name && strcmp (src_name, input_name)) { /* Generate the input filename part. */ result = XNEWVEC (char, strlen (input_name) + strlen (src_name) + 10); ptr = result; ptr = mangle_name (input_name, ptr); ptr[0] = ptr[1] = '#'; ptr += 2; } else { result = XNEWVEC (char, strlen (src_name) + 10); ptr = result; } ptr = mangle_name (src_name, ptr); strcpy (ptr, ".gcov"); return result; } static char * mangle_name (char const *base, char *ptr) { size_t len; /* Generate the source filename part. */ if (!flag_preserve_paths) { base = lbasename (base); len = strlen (base); memcpy (ptr, base, len); ptr += len; } else { /* Convert '/' to '#', convert '..' to '^', convert ':' to '~' on DOS based file system. */ const char *probe; #if HAVE_DOS_BASED_FILE_SYSTEM if (base[0] && base[1] == ':') { ptr[0] = base[0]; ptr[1] = '~'; ptr += 2; base += 2; } #endif for (; *base; base = probe) { size_t len; for (probe = base; *probe; probe++) if (*probe == '/') break; len = probe - base; if (len == 2 && base[0] == '.' && base[1] == '.') *ptr++ = '^'; else { memcpy (ptr, base, len); ptr += len; } if (*probe) { *ptr++ = '#'; probe++; } } } return ptr; } /* Scan through the bb_data for each line in the block, increment the line number execution count indicated by the execution count of the appropriate basic block. */ static void add_line_counts (coverage_t *coverage, function_t *fn) { unsigned ix; line_t *line = NULL; /* This is propagated from one iteration to the next. */ /* Scan each basic block. */ for (ix = 0; ix != fn->num_blocks; ix++) { block_t *block = &fn->blocks[ix]; unsigned *encoding; const source_t *src = NULL; unsigned jx; if (block->count && ix && ix + 1 != fn->num_blocks) fn->blocks_executed++; for (jx = 0, encoding = block->u.line.encoding; jx != block->u.line.num; jx++, encoding++) if (!*encoding) { src = &sources[*++encoding]; jx++; } else { line = &src->lines[*encoding]; if (coverage) { if (!line->exists) coverage->lines++; if (!line->count && block->count) coverage->lines_executed++; } line->exists = 1; line->count += block->count; } free (block->u.line.encoding); block->u.cycle.arc = NULL; block->u.cycle.ident = ~0U; if (!ix || ix + 1 == fn->num_blocks) /* Entry or exit block */; else if (flag_all_blocks) { line_t *block_line = line; if (!block_line) block_line = &sources[fn->src].lines[fn->line]; block->chain = block_line->u.blocks; block_line->u.blocks = block; } else if (flag_branches) { arc_t *arc; for (arc = block->succ; arc; arc = arc->succ_next) { arc->line_next = line->u.branches; line->u.branches = arc; if (coverage && !arc->is_unconditional) add_branch_counts (coverage, arc); } } } if (!line) fnotice (stderr, "%s:no lines for '%s'\n", bbg_file_name, fn->name); } /* Accumulate the line counts of a file. */ static void accumulate_line_counts (source_t *src) { line_t *line; function_t *fn, *fn_p, *fn_n; unsigned ix; /* Reverse the function order. */ for (fn = src->functions, fn_p = NULL; fn; fn_p = fn, fn = fn_n) { fn_n = fn->line_next; fn->line_next = fn_p; } src->functions = fn_p; for (ix = src->num_lines, line = src->lines; ix--; line++) { if (!flag_all_blocks) { arc_t *arc, *arc_p, *arc_n; /* Total and reverse the branch information. */ for (arc = line->u.branches, arc_p = NULL; arc; arc_p = arc, arc = arc_n) { arc_n = arc->line_next; arc->line_next = arc_p; add_branch_counts (&src->coverage, arc); } line->u.branches = arc_p; } else if (line->u.blocks) { /* The user expects the line count to be the number of times a line has been executed. Simply summing the block count will give an artificially high number. The Right Thing is to sum the entry counts to the graph of blocks on this line, then find the elementary cycles of the local graph and add the transition counts of those cycles. */ block_t *block, *block_p, *block_n; gcov_type count = 0; /* Reverse the block information. */ for (block = line->u.blocks, block_p = NULL; block; block_p = block, block = block_n) { block_n = block->chain; block->chain = block_p; block->u.cycle.ident = ix; } line->u.blocks = block_p; /* Sum the entry arcs. */ for (block = line->u.blocks; block; block = block->chain) { arc_t *arc; for (arc = block->pred; arc; arc = arc->pred_next) { if (arc->src->u.cycle.ident != ix) count += arc->count; if (flag_branches) add_branch_counts (&src->coverage, arc); } /* Initialize the cs_count. */ for (arc = block->succ; arc; arc = arc->succ_next) arc->cs_count = arc->count; } /* Find the loops. This uses the algorithm described in Tiernan 'An Efficient Search Algorithm to Find the Elementary Circuits of a Graph', CACM Dec 1970. We hold the P array by having each block point to the arc that connects to the previous block. The H array is implicitly held because of the arc ordering, and the block's previous arc pointer. Although the algorithm is O(N^3) for highly connected graphs, at worst we'll have O(N^2), as most blocks have only one or two exits. Most graphs will be small. For each loop we find, locate the arc with the smallest transition count, and add that to the cumulative count. Decrease flow over the cycle and remove the arc from consideration. */ for (block = line->u.blocks; block; block = block->chain) { block_t *head = block; arc_t *arc; next_vertex:; arc = head->succ; current_vertex:; while (arc) { block_t *dst = arc->dst; if (/* Already used that arc. */ arc->cycle /* Not to same graph, or before first vertex. */ || dst->u.cycle.ident != ix /* Already in path. */ || dst->u.cycle.arc) { arc = arc->succ_next; continue; } if (dst == block) { /* Found a closing arc. */ gcov_type cycle_count = arc->cs_count; arc_t *cycle_arc = arc; arc_t *probe_arc; /* Locate the smallest arc count of the loop. */ for (dst = head; (probe_arc = dst->u.cycle.arc); dst = probe_arc->src) if (cycle_count > probe_arc->cs_count) { cycle_count = probe_arc->cs_count; cycle_arc = probe_arc; } count += cycle_count; cycle_arc->cycle = 1; /* Remove the flow from the cycle. */ arc->cs_count -= cycle_count; for (dst = head; (probe_arc = dst->u.cycle.arc); dst = probe_arc->src) probe_arc->cs_count -= cycle_count; /* Unwind to the cyclic arc. */ while (head != cycle_arc->src) { arc = head->u.cycle.arc; head->u.cycle.arc = NULL; head = arc->src; } /* Move on. */ arc = arc->succ_next; continue; } /* Add new block to chain. */ dst->u.cycle.arc = arc; head = dst; goto next_vertex; } /* We could not add another vertex to the path. Remove the last vertex from the list. */ arc = head->u.cycle.arc; if (arc) { /* It was not the first vertex. Move onto next arc. */ head->u.cycle.arc = NULL; head = arc->src; arc = arc->succ_next; goto current_vertex; } /* Mark this block as unusable. */ block->u.cycle.ident = ~0U; } line->count = count; } if (line->exists) { src->coverage.lines++; if (line->count) src->coverage.lines_executed++; } } } /* Output information about ARC number IX. Returns nonzero if anything is output. */ static int output_branch_count (FILE *gcov_file, int ix, const arc_t *arc) { if (arc->is_call_non_return) { if (arc->src->count) { fnotice (gcov_file, "call %2d returned %s\n", ix, format_gcov (arc->src->count - arc->count, arc->src->count, -flag_counts)); } else fnotice (gcov_file, "call %2d never executed\n", ix); } else if (!arc->is_unconditional) { if (arc->src->count) fnotice (gcov_file, "branch %2d taken %s%s\n", ix, format_gcov (arc->count, arc->src->count, -flag_counts), arc->fall_through ? " (fallthrough)" : ""); else fnotice (gcov_file, "branch %2d never executed\n", ix); } else if (flag_unconditional && !arc->dst->is_call_return) { if (arc->src->count) fnotice (gcov_file, "unconditional %2d taken %s\n", ix, format_gcov (arc->count, arc->src->count, -flag_counts)); else fnotice (gcov_file, "unconditional %2d never executed\n", ix); } else return 0; return 1; } /* Read in the source file one line at a time, and output that line to the gcov file preceded by its execution count and other information. */ static void output_lines (FILE *gcov_file, const source_t *src) { FILE *source_file; unsigned line_num; /* current line number. */ const line_t *line; /* current line info ptr. */ char string[STRING_SIZE]; /* line buffer. */ char const *retval = ""; /* status of source file reading. */ function_t *fn = NULL; fprintf (gcov_file, "%9s:%5d:Source:%s\n", "-", 0, src->name); if (!multiple_files) { fprintf (gcov_file, "%9s:%5d:Graph:%s\n", "-", 0, bbg_file_name); fprintf (gcov_file, "%9s:%5d:Data:%s\n", "-", 0, no_data_file ? "-" : da_file_name); fprintf (gcov_file, "%9s:%5d:Runs:%u\n", "-", 0, object_runs); } fprintf (gcov_file, "%9s:%5d:Programs:%u\n", "-", 0, program_count); source_file = fopen (src->name, "r"); if (!source_file) { fnotice (stderr, "%s:cannot open source file\n", src->name); retval = NULL; } else if (src->file_time == 0) fprintf (gcov_file, "%9s:%5d:Source is newer than graph\n", "-", 0); if (flag_branches) fn = src->functions; for (line_num = 1, line = &src->lines[line_num]; line_num < src->num_lines; line_num++, line++) { for (; fn && fn->line == line_num; fn = fn->line_next) { arc_t *arc = fn->blocks[fn->num_blocks - 1].pred; gcov_type return_count = fn->blocks[fn->num_blocks - 1].count; for (; arc; arc = arc->pred_next) if (arc->fake) return_count -= arc->count; fprintf (gcov_file, "function %s", fn->name); fprintf (gcov_file, " called %s", format_gcov (fn->blocks[0].count, 0, -1)); fprintf (gcov_file, " returned %s", format_gcov (return_count, fn->blocks[0].count, 0)); fprintf (gcov_file, " blocks executed %s", format_gcov (fn->blocks_executed, fn->num_blocks - 2, 0)); fprintf (gcov_file, "\n"); } /* For lines which don't exist in the .bb file, print '-' before the source line. For lines which exist but were never executed, print '#####' before the source line. Otherwise, print the execution count before the source line. There are 16 spaces of indentation added before the source line so that tabs won't be messed up. */ fprintf (gcov_file, "%9s:%5u:", !line->exists ? "-" : !line->count ? "#####" : format_gcov (line->count, 0, -1), line_num); if (retval) { /* Copy source line. */ do { retval = fgets (string, STRING_SIZE, source_file); if (!retval) break; fputs (retval, gcov_file); } while (!retval[0] || retval[strlen (retval) - 1] != '\n'); } if (!retval) fputs ("/*EOF*/\n", gcov_file); if (flag_all_blocks) { block_t *block; arc_t *arc; int ix, jx; for (ix = jx = 0, block = line->u.blocks; block; block = block->chain) { if (!block->is_call_return) fprintf (gcov_file, "%9s:%5u-block %2d\n", !line->exists ? "-" : !block->count ? "$$$$$" : format_gcov (block->count, 0, -1), line_num, ix++); if (flag_branches) for (arc = block->succ; arc; arc = arc->succ_next) jx += output_branch_count (gcov_file, jx, arc); } } else if (flag_branches) { int ix; arc_t *arc; for (ix = 0, arc = line->u.branches; arc; arc = arc->line_next) ix += output_branch_count (gcov_file, ix, arc); } } /* Handle all remaining source lines. There may be lines after the last line of code. */ if (retval) { for (; (retval = fgets (string, STRING_SIZE, source_file)); line_num++) { fprintf (gcov_file, "%9s:%5u:%s", "-", line_num, retval); while (!retval[0] || retval[strlen (retval) - 1] != '\n') { retval = fgets (string, STRING_SIZE, source_file); if (!retval) break; fputs (retval, gcov_file); } } } if (source_file) fclose (source_file); }