/* Deal with I/O statements & related stuff. Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. Contributed by Andy Vaught This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "flags.h" #include #include "gfortran.h" #include "match.h" #include "parse.h" gfc_st_label format_asterisk = { -1, ST_LABEL_FORMAT, ST_LABEL_FORMAT, NULL, 0, {NULL, NULL}, NULL, NULL}; typedef struct { const char *name, *spec; bt type; } io_tag; static const io_tag tag_file = { "FILE", " file = %e", BT_CHARACTER }, tag_status = { "STATUS", " status = %e", BT_CHARACTER}, tag_e_access = {"ACCESS", " access = %e", BT_CHARACTER}, tag_e_form = {"FORM", " form = %e", BT_CHARACTER}, tag_e_recl = {"RECL", " recl = %e", BT_INTEGER}, tag_e_blank = {"BLANK", " blank = %e", BT_CHARACTER}, tag_e_position = {"POSITION", " position = %e", BT_CHARACTER}, tag_e_action = {"ACTION", " action = %e", BT_CHARACTER}, tag_e_delim = {"DELIM", " delim = %e", BT_CHARACTER}, tag_e_pad = {"PAD", " pad = %e", BT_CHARACTER}, tag_unit = {"UNIT", " unit = %e", BT_INTEGER}, tag_advance = {"ADVANCE", " advance = %e", BT_CHARACTER}, tag_rec = {"REC", " rec = %e", BT_INTEGER}, tag_format = {"FORMAT", NULL, BT_CHARACTER}, tag_iostat = {"IOSTAT", " iostat = %v", BT_INTEGER}, tag_size = {"SIZE", " size = %v", BT_INTEGER}, tag_exist = {"EXIST", " exist = %v", BT_LOGICAL}, tag_opened = {"OPENED", " opened = %v", BT_LOGICAL}, tag_named = {"NAMED", " named = %v", BT_LOGICAL}, tag_name = {"NAME", " name = %v", BT_CHARACTER}, tag_number = {"NUMBER", " number = %v", BT_INTEGER}, tag_s_access = {"ACCESS", " access = %v", BT_CHARACTER}, tag_sequential = {"SEQUENTIAL", " sequential = %v", BT_CHARACTER}, tag_direct = {"DIRECT", " direct = %v", BT_CHARACTER}, tag_s_form = {"FORM", " form = %v", BT_CHARACTER}, tag_formatted = {"FORMATTED", " formatted = %v", BT_CHARACTER}, tag_unformatted = {"UNFORMATTED", " unformatted = %v", BT_CHARACTER}, tag_s_recl = {"RECL", " recl = %v", BT_INTEGER}, tag_nextrec = {"NEXTREC", " nextrec = %v", BT_INTEGER}, tag_s_blank = {"BLANK", " blank = %v", BT_CHARACTER}, tag_s_position = {"POSITION", " position = %v", BT_CHARACTER}, tag_s_action = {"ACTION", " action = %v", BT_CHARACTER}, tag_read = {"READ", " read = %v", BT_CHARACTER}, tag_write = {"WRITE", " write = %v", BT_CHARACTER}, tag_readwrite = {"READWRITE", " readwrite = %v", BT_CHARACTER}, tag_s_delim = {"DELIM", " delim = %v", BT_CHARACTER}, tag_s_pad = {"PAD", " pad = %v", BT_CHARACTER}, tag_iolength = {"IOLENGTH", " iolength = %v", BT_INTEGER}, tag_err = {"ERR", " err = %l", BT_UNKNOWN}, tag_end = {"END", " end = %l", BT_UNKNOWN}, tag_eor = {"EOR", " eor = %l", BT_UNKNOWN}; static gfc_dt *current_dt; #define RESOLVE_TAG(x, y) if (resolve_tag(x, y) == FAILURE) return FAILURE; /**************** Fortran 95 FORMAT parser *****************/ /* FORMAT tokens returned by format_lex(). */ typedef enum { FMT_NONE, FMT_UNKNOWN, FMT_SIGNED_INT, FMT_ZERO, FMT_POSINT, FMT_PERIOD, FMT_COMMA, FMT_COLON, FMT_SLASH, FMT_DOLLAR, FMT_POS, FMT_LPAREN, FMT_RPAREN, FMT_X, FMT_SIGN, FMT_BLANK, FMT_CHAR, FMT_P, FMT_IBOZ, FMT_F, FMT_E, FMT_EXT, FMT_G, FMT_L, FMT_A, FMT_D, FMT_H, FMT_END } format_token; /* Local variables for checking format strings. The saved_token is used to back up by a single format token during the parsing process. */ static char *format_string; static int format_length, use_last_char; static format_token saved_token; static enum { MODE_STRING, MODE_FORMAT, MODE_COPY } mode; /* Return the next character in the format string. */ static char next_char (int in_string) { static char c; if (use_last_char) { use_last_char = 0; return c; } format_length++; if (mode == MODE_STRING) c = *format_string++; else { c = gfc_next_char_literal (in_string); if (c == '\n') c = '\0'; if (mode == MODE_COPY) *format_string++ = c; } c = TOUPPER (c); return c; } /* Back up one character position. Only works once. */ static void unget_char (void) { use_last_char = 1; } static int value = 0; /* Simple lexical analyzer for getting the next token in a FORMAT statement. */ static format_token format_lex (void) { format_token token; char c, delim; int zflag; int negative_flag; if (saved_token != FMT_NONE) { token = saved_token; saved_token = FMT_NONE; return token; } do { c = next_char (0); } while (gfc_is_whitespace (c)); negative_flag = 0; switch (c) { case '-': negative_flag = 1; case '+': c = next_char (0); if (!ISDIGIT (c)) { token = FMT_UNKNOWN; break; } value = c - '0'; do { c = next_char (0); if(ISDIGIT (c)) value = 10 * value + c - '0'; } while (ISDIGIT (c)); unget_char (); if (negative_flag) value = -value; token = FMT_SIGNED_INT; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': zflag = (c == '0'); value = c - '0'; do { c = next_char (0); if (c != '0') zflag = 0; if (ISDIGIT (c)) value = 10 * value + c - '0'; } while (ISDIGIT (c)); unget_char (); token = zflag ? FMT_ZERO : FMT_POSINT; break; case '.': token = FMT_PERIOD; break; case ',': token = FMT_COMMA; break; case ':': token = FMT_COLON; break; case '/': token = FMT_SLASH; break; case '$': token = FMT_DOLLAR; break; case 'T': c = next_char (0); if (c != 'L' && c != 'R') unget_char (); token = FMT_POS; break; case '(': token = FMT_LPAREN; break; case ')': token = FMT_RPAREN; break; case 'X': token = FMT_X; break; case 'S': c = next_char (0); if (c != 'P' && c != 'S') unget_char (); token = FMT_SIGN; break; case 'B': c = next_char (0); if (c == 'N' || c == 'Z') token = FMT_BLANK; else { unget_char (); token = FMT_IBOZ; } break; case '\'': case '"': delim = c; value = 0; for (;;) { c = next_char (1); if (c == '\0') { token = FMT_END; break; } if (c == delim) { c = next_char (1); if (c == '\0') { token = FMT_END; break; } if (c != delim) { unget_char (); token = FMT_CHAR; break; } } value++; } break; case 'P': token = FMT_P; break; case 'I': case 'O': case 'Z': token = FMT_IBOZ; break; case 'F': token = FMT_F; break; case 'E': c = next_char (0); if (c == 'N' || c == 'S') token = FMT_EXT; else { token = FMT_E; unget_char (); } break; case 'G': token = FMT_G; break; case 'H': token = FMT_H; break; case 'L': token = FMT_L; break; case 'A': token = FMT_A; break; case 'D': token = FMT_D; break; case '\0': token = FMT_END; break; default: token = FMT_UNKNOWN; break; } return token; } /* Check a format statement. The format string, either from a FORMAT statement or a constant in an I/O statement has already been parsed by itself, and we are checking it for validity. The dual origin means that the warning message is a little less than great. */ static try check_format (void) { const char *posint_required = "Positive width required"; const char *period_required = "Period required"; const char *nonneg_required = "Nonnegative width required"; const char *unexpected_element = "Unexpected element"; const char *unexpected_end = "Unexpected end of format string"; const char *error; format_token t, u; int level; int repeat; try rv; use_last_char = 0; saved_token = FMT_NONE; level = 0; repeat = 0; rv = SUCCESS; t = format_lex (); if (t != FMT_LPAREN) { error = "Missing leading left parenthesis"; goto syntax; } t = format_lex (); if (t == FMT_RPAREN) goto finished; /* Empty format is legal */ saved_token = t; format_item: /* In this state, the next thing has to be a format item. */ t = format_lex (); switch (t) { case FMT_POSINT: repeat = value; t = format_lex (); if (t == FMT_LPAREN) { level++; goto format_item; } if (t == FMT_SLASH) goto optional_comma; goto data_desc; case FMT_LPAREN: level++; goto format_item; case FMT_SIGNED_INT: /* Signed integer can only precede a P format. */ t = format_lex (); if (t != FMT_P) { error = "Expected P edit descriptor"; goto syntax; } goto data_desc; case FMT_P: /* P requires a prior number. */ error = "P descriptor requires leading scale factor"; goto syntax; case FMT_X: /* X requires a prior number if we're being pedantic. */ if (gfc_notify_std (GFC_STD_GNU, "Extension: X descriptor " "requires leading space count at %C") == FAILURE) return FAILURE; goto between_desc; case FMT_SIGN: case FMT_BLANK: goto between_desc; case FMT_CHAR: goto extension_optional_comma; case FMT_COLON: case FMT_SLASH: goto optional_comma; case FMT_DOLLAR: t = format_lex (); if (t != FMT_RPAREN || level > 0) { error = "$ must the last specifier"; goto syntax; } goto finished; case FMT_POS: case FMT_IBOZ: case FMT_F: case FMT_E: case FMT_EXT: case FMT_G: case FMT_L: case FMT_A: case FMT_D: goto data_desc; case FMT_H: goto data_desc; case FMT_END: error = unexpected_end; goto syntax; default: error = unexpected_element; goto syntax; } data_desc: /* In this state, t must currently be a data descriptor. Deal with things that can/must follow the descriptor. */ switch (t) { case FMT_SIGN: case FMT_BLANK: case FMT_X: break; case FMT_P: if (pedantic) { t = format_lex (); if (t == FMT_POSINT) { error = "Repeat count cannot follow P descriptor"; goto syntax; } saved_token = t; } goto optional_comma; case FMT_POS: case FMT_L: t = format_lex (); if (t == FMT_POSINT) break; error = posint_required; goto syntax; case FMT_A: t = format_lex (); if (t != FMT_POSINT) saved_token = t; break; case FMT_D: case FMT_E: case FMT_G: case FMT_EXT: u = format_lex (); if (u != FMT_POSINT) { error = posint_required; goto syntax; } u = format_lex (); if (u != FMT_PERIOD) { error = period_required; goto syntax; } u = format_lex (); if (u != FMT_ZERO && u != FMT_POSINT) { error = nonneg_required; goto syntax; } if (t == FMT_D) break; /* Look for optional exponent. */ u = format_lex (); if (u != FMT_E) { saved_token = u; } else { u = format_lex (); if (u != FMT_POSINT) { error = "Positive exponent width required"; goto syntax; } } break; case FMT_F: t = format_lex (); if (t != FMT_ZERO && t != FMT_POSINT) { error = nonneg_required; goto syntax; } t = format_lex (); if (t != FMT_PERIOD) { error = period_required; goto syntax; } t = format_lex (); if (t != FMT_ZERO && t != FMT_POSINT) { error = nonneg_required; goto syntax; } break; case FMT_H: if(mode == MODE_STRING) { format_string += value; format_length -= value; } else { while(repeat >0) { next_char(0); repeat -- ; } } break; case FMT_IBOZ: t = format_lex (); if (t != FMT_ZERO && t != FMT_POSINT) { error = nonneg_required; goto syntax; } t = format_lex (); if (t != FMT_PERIOD) { saved_token = t; } else { t = format_lex (); if (t != FMT_ZERO && t != FMT_POSINT) { error = nonneg_required; goto syntax; } } break; default: error = unexpected_element; goto syntax; } between_desc: /* Between a descriptor and what comes next. */ t = format_lex (); switch (t) { case FMT_COMMA: goto format_item; case FMT_RPAREN: level--; if (level < 0) goto finished; goto between_desc; case FMT_COLON: case FMT_SLASH: goto optional_comma; case FMT_END: error = unexpected_end; goto syntax; default: error = "Missing comma"; goto syntax; } optional_comma: /* Optional comma is a weird between state where we've just finished reading a colon, slash or P descriptor. */ t = format_lex (); switch (t) { case FMT_COMMA: break; case FMT_RPAREN: level--; if (level < 0) goto finished; goto between_desc; default: /* Assume that we have another format item. */ saved_token = t; break; } goto format_item; extension_optional_comma: /* As a GNU extension, permit a missing comma after a string literal. */ t = format_lex (); switch (t) { case FMT_COMMA: break; case FMT_RPAREN: level--; if (level < 0) goto finished; goto between_desc; case FMT_COLON: case FMT_SLASH: goto optional_comma; case FMT_END: error = unexpected_end; goto syntax; default: if (gfc_notify_std (GFC_STD_GNU, "Extension: Missing comma at %C") == FAILURE) return FAILURE; saved_token = t; break; } goto format_item; syntax: /* Something went wrong. If the format we're checking is a string, generate a warning, since the program is correct. If the format is in a FORMAT statement, this messes up parsing, which is an error. */ if (mode != MODE_STRING) gfc_error ("%s in format string at %C", error); else { gfc_warning ("%s in format string at %C", error); /* TODO: More elaborate measures are needed to show where a problem is within a format string that has been calculated. */ } rv = FAILURE; finished: return rv; } /* Given an expression node that is a constant string, see if it looks like a format string. */ static void check_format_string (gfc_expr * e) { mode = MODE_STRING; format_string = e->value.character.string; check_format (); } /************ Fortran 95 I/O statement matchers *************/ /* Match a FORMAT statement. This amounts to actually parsing the format descriptors in order to correctly locate the end of the format string. */ match gfc_match_format (void) { gfc_expr *e; locus start; if (gfc_statement_label == NULL) { gfc_error ("Missing format label at %C"); return MATCH_ERROR; } gfc_gobble_whitespace (); mode = MODE_FORMAT; format_length = 0; start = gfc_current_locus; if (check_format () == FAILURE) return MATCH_ERROR; if (gfc_match_eos () != MATCH_YES) { gfc_syntax_error (ST_FORMAT); return MATCH_ERROR; } /* The label doesn't get created until after the statement is done being matched, so we have to leave the string for later. */ gfc_current_locus = start; /* Back to the beginning */ new_st.loc = start; new_st.op = EXEC_NOP; e = gfc_get_expr(); e->expr_type = EXPR_CONSTANT; e->ts.type = BT_CHARACTER; e->ts.kind = gfc_default_character_kind; e->where = start; e->value.character.string = format_string = gfc_getmem(format_length+1); e->value.character.length = format_length; gfc_statement_label->format = e; mode = MODE_COPY; check_format (); /* Guaranteed to succeed */ gfc_match_eos (); /* Guaranteed to succeed */ return MATCH_YES; } /* Match an expression I/O tag of some sort. */ static match match_etag (const io_tag * tag, gfc_expr ** v) { gfc_expr *result; match m; m = gfc_match (tag->spec, &result); if (m != MATCH_YES) return m; if (*v != NULL) { gfc_error ("Duplicate %s specification at %C", tag->name); gfc_free_expr (result); return MATCH_ERROR; } *v = result; return MATCH_YES; } /* Match a variable I/O tag of some sort. */ static match match_vtag (const io_tag * tag, gfc_expr ** v) { gfc_expr *result; match m; m = gfc_match (tag->spec, &result); if (m != MATCH_YES) return m; if (*v != NULL) { gfc_error ("Duplicate %s specification at %C", tag->name); gfc_free_expr (result); return MATCH_ERROR; } if (result->symtree->n.sym->attr.intent == INTENT_IN) { gfc_error ("Variable tag cannot be INTENT(IN) at %C"); gfc_free_expr (result); return MATCH_ERROR; } if (gfc_pure (NULL) && gfc_impure_variable (result->symtree->n.sym)) { gfc_error ("Variable tag cannot be assigned in PURE procedure at %C"); gfc_free_expr (result); return MATCH_ERROR; } *v = result; return MATCH_YES; } /* Match I/O tags that cause variables to become redefined. */ static match match_out_tag(const io_tag *tag, gfc_expr **result) { match m; m = match_vtag(tag, result); if (m == MATCH_YES) gfc_check_do_variable((*result)->symtree); return m; } /* Match a label I/O tag. */ static match match_ltag (const io_tag * tag, gfc_st_label ** label) { match m; gfc_st_label *old; old = *label; m = gfc_match (tag->spec, label); if (m == MATCH_YES && old != 0) { gfc_error ("Duplicate %s label specification at %C", tag->name); return MATCH_ERROR; } return m; } /* Do expression resolution and type-checking on an expression tag. */ static try resolve_tag (const io_tag * tag, gfc_expr * e) { if (e == NULL) return SUCCESS; if (gfc_resolve_expr (e) == FAILURE) return FAILURE; if (e->ts.type != tag->type) { /* Format label can be integer varibale. */ if (tag != &tag_format) { gfc_error ("%s tag at %L must be of type %s", tag->name, &e->where, gfc_basic_typename (tag->type)); return FAILURE; } } if (tag == &tag_format) { if (e->rank != 1 && e->rank != 0) { gfc_error ("FORMAT tag at %L cannot be array of strings", &e->where); return FAILURE; } } else { if (e->rank != 0) { gfc_error ("%s tag at %L must be scalar", tag->name, &e->where); return FAILURE; } } return SUCCESS; } /* Match a single tag of an OPEN statement. */ static match match_open_element (gfc_open * open) { match m; m = match_etag (&tag_unit, &open->unit); if (m != MATCH_NO) return m; m = match_out_tag (&tag_iostat, &open->iostat); if (m != MATCH_NO) return m; m = match_etag (&tag_file, &open->file); if (m != MATCH_NO) return m; m = match_etag (&tag_status, &open->status); if (m != MATCH_NO) return m; m = match_etag (&tag_e_access, &open->access); if (m != MATCH_NO) return m; m = match_etag (&tag_e_form, &open->form); if (m != MATCH_NO) return m; m = match_etag (&tag_e_recl, &open->recl); if (m != MATCH_NO) return m; m = match_etag (&tag_e_blank, &open->blank); if (m != MATCH_NO) return m; m = match_etag (&tag_e_position, &open->position); if (m != MATCH_NO) return m; m = match_etag (&tag_e_action, &open->action); if (m != MATCH_NO) return m; m = match_etag (&tag_e_delim, &open->delim); if (m != MATCH_NO) return m; m = match_etag (&tag_e_pad, &open->pad); if (m != MATCH_NO) return m; m = match_ltag (&tag_err, &open->err); if (m != MATCH_NO) return m; return MATCH_NO; } /* Free the gfc_open structure and all the expressions it contains. */ void gfc_free_open (gfc_open * open) { if (open == NULL) return; gfc_free_expr (open->unit); gfc_free_expr (open->iostat); gfc_free_expr (open->file); gfc_free_expr (open->status); gfc_free_expr (open->access); gfc_free_expr (open->form); gfc_free_expr (open->recl); gfc_free_expr (open->blank); gfc_free_expr (open->position); gfc_free_expr (open->action); gfc_free_expr (open->delim); gfc_free_expr (open->pad); gfc_free (open); } /* Resolve everything in a gfc_open structure. */ try gfc_resolve_open (gfc_open * open) { RESOLVE_TAG (&tag_unit, open->unit); RESOLVE_TAG (&tag_iostat, open->iostat); RESOLVE_TAG (&tag_file, open->file); RESOLVE_TAG (&tag_status, open->status); RESOLVE_TAG (&tag_e_form, open->form); RESOLVE_TAG (&tag_e_recl, open->recl); RESOLVE_TAG (&tag_e_blank, open->blank); RESOLVE_TAG (&tag_e_position, open->position); RESOLVE_TAG (&tag_e_action, open->action); RESOLVE_TAG (&tag_e_delim, open->delim); RESOLVE_TAG (&tag_e_pad, open->pad); if (gfc_reference_st_label (open->err, ST_LABEL_TARGET) == FAILURE) return FAILURE; return SUCCESS; } /* Match an OPEN statmement. */ match gfc_match_open (void) { gfc_open *open; match m; m = gfc_match_char ('('); if (m == MATCH_NO) return m; open = gfc_getmem (sizeof (gfc_open)); m = match_open_element (open); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) { m = gfc_match_expr (&open->unit); if (m == MATCH_NO) goto syntax; if (m == MATCH_ERROR) goto cleanup; } for (;;) { if (gfc_match_char (')') == MATCH_YES) break; if (gfc_match_char (',') != MATCH_YES) goto syntax; m = match_open_element (open); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; } if (gfc_match_eos () == MATCH_NO) goto syntax; if (gfc_pure (NULL)) { gfc_error ("OPEN statement not allowed in PURE procedure at %C"); goto cleanup; } new_st.op = EXEC_OPEN; new_st.ext.open = open; return MATCH_YES; syntax: gfc_syntax_error (ST_OPEN); cleanup: gfc_free_open (open); return MATCH_ERROR; } /* Free a gfc_close structure an all its expressions. */ void gfc_free_close (gfc_close * close) { if (close == NULL) return; gfc_free_expr (close->unit); gfc_free_expr (close->iostat); gfc_free_expr (close->status); gfc_free (close); } /* Match elements of a CLOSE statment. */ static match match_close_element (gfc_close * close) { match m; m = match_etag (&tag_unit, &close->unit); if (m != MATCH_NO) return m; m = match_etag (&tag_status, &close->status); if (m != MATCH_NO) return m; m = match_out_tag (&tag_iostat, &close->iostat); if (m != MATCH_NO) return m; m = match_ltag (&tag_err, &close->err); if (m != MATCH_NO) return m; return MATCH_NO; } /* Match a CLOSE statement. */ match gfc_match_close (void) { gfc_close *close; match m; m = gfc_match_char ('('); if (m == MATCH_NO) return m; close = gfc_getmem (sizeof (gfc_close)); m = match_close_element (close); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) { m = gfc_match_expr (&close->unit); if (m == MATCH_NO) goto syntax; if (m == MATCH_ERROR) goto cleanup; } for (;;) { if (gfc_match_char (')') == MATCH_YES) break; if (gfc_match_char (',') != MATCH_YES) goto syntax; m = match_close_element (close); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; } if (gfc_match_eos () == MATCH_NO) goto syntax; if (gfc_pure (NULL)) { gfc_error ("CLOSE statement not allowed in PURE procedure at %C"); goto cleanup; } new_st.op = EXEC_CLOSE; new_st.ext.close = close; return MATCH_YES; syntax: gfc_syntax_error (ST_CLOSE); cleanup: gfc_free_close (close); return MATCH_ERROR; } /* Resolve everything in a gfc_close structure. */ try gfc_resolve_close (gfc_close * close) { RESOLVE_TAG (&tag_unit, close->unit); RESOLVE_TAG (&tag_iostat, close->iostat); RESOLVE_TAG (&tag_status, close->status); if (gfc_reference_st_label (close->err, ST_LABEL_TARGET) == FAILURE) return FAILURE; return SUCCESS; } /* Free a gfc_filepos structure. */ void gfc_free_filepos (gfc_filepos * fp) { gfc_free_expr (fp->unit); gfc_free_expr (fp->iostat); gfc_free (fp); } /* Match elements of a REWIND, BACKSPACE or ENDFILE statement. */ static match match_file_element (gfc_filepos * fp) { match m; m = match_etag (&tag_unit, &fp->unit); if (m != MATCH_NO) return m; m = match_out_tag (&tag_iostat, &fp->iostat); if (m != MATCH_NO) return m; m = match_ltag (&tag_err, &fp->err); if (m != MATCH_NO) return m; return MATCH_NO; } /* Match the second half of the file-positioning statements, REWIND, BACKSPACE or ENDFILE. */ static match match_filepos (gfc_statement st, gfc_exec_op op) { gfc_filepos *fp; match m; fp = gfc_getmem (sizeof (gfc_filepos)); if (gfc_match_char ('(') == MATCH_NO) { m = gfc_match_expr (&fp->unit); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; goto done; } m = match_file_element (fp); if (m == MATCH_ERROR) goto done; if (m == MATCH_NO) { m = gfc_match_expr (&fp->unit); if (m == MATCH_ERROR) goto done; if (m == MATCH_NO) goto syntax; } for (;;) { if (gfc_match_char (')') == MATCH_YES) break; if (gfc_match_char (',') != MATCH_YES) goto syntax; m = match_file_element (fp); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; } done: if (gfc_match_eos () != MATCH_YES) goto syntax; if (gfc_pure (NULL)) { gfc_error ("%s statement not allowed in PURE procedure at %C", gfc_ascii_statement (st)); goto cleanup; } new_st.op = op; new_st.ext.filepos = fp; return MATCH_YES; syntax: gfc_syntax_error (st); cleanup: gfc_free_filepos (fp); return MATCH_ERROR; } try gfc_resolve_filepos (gfc_filepos * fp) { RESOLVE_TAG (&tag_unit, fp->unit); if (gfc_reference_st_label (fp->err, ST_LABEL_TARGET) == FAILURE) return FAILURE; return SUCCESS; } /* Match the file positioning statements: ENDFILE, BACKSPACE or REWIND. */ match gfc_match_endfile (void) { return match_filepos (ST_END_FILE, EXEC_ENDFILE); } match gfc_match_backspace (void) { return match_filepos (ST_BACKSPACE, EXEC_BACKSPACE); } match gfc_match_rewind (void) { return match_filepos (ST_REWIND, EXEC_REWIND); } /******************** Data Transfer Statments *********************/ typedef enum { M_READ, M_WRITE, M_PRINT, M_INQUIRE } io_kind; /* Return a default unit number. */ static gfc_expr * default_unit (io_kind k) { int unit; if (k == M_READ) unit = 5; else unit = 6; return gfc_int_expr (unit); } /* Match a unit specification for a data transfer statement. */ static match match_dt_unit (io_kind k, gfc_dt * dt) { gfc_expr *e; if (gfc_match_char ('*') == MATCH_YES) { if (dt->io_unit != NULL) goto conflict; dt->io_unit = default_unit (k); return MATCH_YES; } if (gfc_match_expr (&e) == MATCH_YES) { if (dt->io_unit != NULL) { gfc_free_expr (e); goto conflict; } dt->io_unit = e; return MATCH_YES; } return MATCH_NO; conflict: gfc_error ("Duplicate UNIT specification at %C"); return MATCH_ERROR; } /* Match a format specification. */ static match match_dt_format (gfc_dt * dt) { locus where; gfc_expr *e; gfc_st_label *label; where = gfc_current_locus; if (gfc_match_char ('*') == MATCH_YES) { if (dt->format_expr != NULL || dt->format_label != NULL) goto conflict; dt->format_label = &format_asterisk; return MATCH_YES; } if (gfc_match_st_label (&label, 0) == MATCH_YES) { if (dt->format_expr != NULL || dt->format_label != NULL) { gfc_free_st_label (label); goto conflict; } if (gfc_reference_st_label (label, ST_LABEL_FORMAT) == FAILURE) return MATCH_ERROR; dt->format_label = label; return MATCH_YES; } if (gfc_match_expr (&e) == MATCH_YES) { if (dt->format_expr != NULL || dt->format_label != NULL) { gfc_free_expr (e); goto conflict; } if (e->ts.type == BT_INTEGER && e->rank == 0) e->symtree->n.sym->attr.assign = 1; dt->format_expr = e; return MATCH_YES; } gfc_current_locus = where; /* The only case where we have to restore */ return MATCH_NO; conflict: gfc_error ("Duplicate format specification at %C"); return MATCH_ERROR; } /* Traverse a namelist that is part of a READ statement to make sure that none of the variables in the namelist are INTENT(IN). Returns nonzero if we find such a variable. */ static int check_namelist (gfc_symbol * sym) { gfc_namelist *p; for (p = sym->namelist; p; p = p->next) if (p->sym->attr.intent == INTENT_IN) { gfc_error ("Symbol '%s' in namelist '%s' is INTENT(IN) at %C", p->sym->name, sym->name); return 1; } return 0; } /* Match a single data transfer element. */ static match match_dt_element (io_kind k, gfc_dt * dt) { char name[GFC_MAX_SYMBOL_LEN + 1]; gfc_symbol *sym; match m; if (gfc_match (" unit =") == MATCH_YES) { m = match_dt_unit (k, dt); if (m != MATCH_NO) return m; } if (gfc_match (" fmt =") == MATCH_YES) { m = match_dt_format (dt); if (m != MATCH_NO) return m; } if (gfc_match (" nml = %n", name) == MATCH_YES) { if (dt->namelist != NULL) { gfc_error ("Duplicate NML specification at %C"); return MATCH_ERROR; } if (gfc_find_symbol (name, NULL, 1, &sym)) return MATCH_ERROR; if (sym == NULL || sym->attr.flavor != FL_NAMELIST) { gfc_error ("Symbol '%s' at %C must be a NAMELIST group name", sym != NULL ? sym->name : name); return MATCH_ERROR; } dt->namelist = sym; if (k == M_READ && check_namelist (sym)) return MATCH_ERROR; return MATCH_YES; } m = match_etag (&tag_rec, &dt->rec); if (m != MATCH_NO) return m; m = match_out_tag (&tag_iostat, &dt->iostat); if (m != MATCH_NO) return m; m = match_ltag (&tag_err, &dt->err); if (m != MATCH_NO) return m; m = match_etag (&tag_advance, &dt->advance); if (m != MATCH_NO) return m; m = match_out_tag (&tag_size, &dt->size); if (m != MATCH_NO) return m; m = match_ltag (&tag_end, &dt->end); if (m == MATCH_YES) dt->end_where = gfc_current_locus; if (m != MATCH_NO) return m; m = match_ltag (&tag_eor, &dt->eor); if (m == MATCH_YES) dt->eor_where = gfc_current_locus; if (m != MATCH_NO) return m; return MATCH_NO; } /* Free a data transfer structure and everything below it. */ void gfc_free_dt (gfc_dt * dt) { if (dt == NULL) return; gfc_free_expr (dt->io_unit); gfc_free_expr (dt->format_expr); gfc_free_expr (dt->rec); gfc_free_expr (dt->advance); gfc_free_expr (dt->iostat); gfc_free_expr (dt->size); gfc_free (dt); } /* Resolve everything in a gfc_dt structure. */ try gfc_resolve_dt (gfc_dt * dt) { gfc_expr *e; RESOLVE_TAG (&tag_format, dt->format_expr); RESOLVE_TAG (&tag_rec, dt->rec); RESOLVE_TAG (&tag_advance, dt->advance); RESOLVE_TAG (&tag_iostat, dt->iostat); RESOLVE_TAG (&tag_size, dt->size); e = dt->io_unit; if (gfc_resolve_expr (e) == SUCCESS && (e->ts.type != BT_INTEGER && (e->ts.type != BT_CHARACTER || e->expr_type != EXPR_VARIABLE))) { gfc_error ("UNIT specification at %L must be an INTEGER expression or a " "CHARACTER variable", &e->where); return FAILURE; } /* Sanity checks on data transfer statements. */ if (e->ts.type == BT_CHARACTER) { if (dt->rec != NULL) { gfc_error ("REC tag at %L is incompatible with internal file", &dt->rec->where); return FAILURE; } if (dt->namelist != NULL) { gfc_error ("Internal file at %L is incompatible with namelist", &dt->io_unit->where); return FAILURE; } if (dt->advance != NULL) { gfc_error ("ADVANCE tag at %L is incompatible with internal file", &dt->advance->where); return FAILURE; } } if (dt->rec != NULL) { if (dt->end != NULL) { gfc_error ("REC tag at %L is incompatible with END tag", &dt->rec->where); return FAILURE; } if (dt->format_label == &format_asterisk) { gfc_error ("END tag at %L is incompatible with list directed format (*)", &dt->end_where); return FAILURE; } if (dt->namelist != NULL) { gfc_error ("REC tag at %L is incompatible with namelist", &dt->rec->where); return FAILURE; } } if (dt->advance != NULL && dt->format_label == &format_asterisk) { gfc_error ("ADVANCE tag at %L is incompatible with list directed " "format (*)", &dt->advance->where); return FAILURE; } if (dt->eor != 0 && dt->advance == NULL) { gfc_error ("EOR tag at %L requires an ADVANCE tag", &dt->eor_where); return FAILURE; } if (dt->size != NULL && dt->advance == NULL) { gfc_error ("SIZE tag at %L requires an ADVANCE tag", &dt->size->where); return FAILURE; } /* TODO: Make sure the ADVANCE tag is 'yes' or 'no' if it is a string constant. */ if (gfc_reference_st_label (dt->err, ST_LABEL_TARGET) == FAILURE) return FAILURE; if (gfc_reference_st_label (dt->end, ST_LABEL_TARGET) == FAILURE) return FAILURE; if (gfc_reference_st_label (dt->eor, ST_LABEL_TARGET) == FAILURE) return FAILURE; /* Check the format label actually exists. */ if (dt->format_label && dt->format_label != &format_asterisk && dt->format_label->defined == ST_LABEL_UNKNOWN) { gfc_error ("FORMAT label %d at %L not defined", dt->format_label->value, &dt->format_label->where); return FAILURE; } return SUCCESS; } /* Given an io_kind, return its name. */ static const char * io_kind_name (io_kind k) { const char *name; switch (k) { case M_READ: name = "READ"; break; case M_WRITE: name = "WRITE"; break; case M_PRINT: name = "PRINT"; break; case M_INQUIRE: name = "INQUIRE"; break; default: gfc_internal_error ("io_kind_name(): bad I/O-kind"); } return name; } /* Match an IO iteration statement of the form: ( [ ,] , I = , [, ] ) which is equivalent to a single IO element. This function is mutually recursive with match_io_element(). */ static match match_io_element (io_kind k, gfc_code **); static match match_io_iterator (io_kind k, gfc_code ** result) { gfc_code *head, *tail, *new; gfc_iterator *iter; locus old_loc; match m; int n; iter = NULL; head = NULL; old_loc = gfc_current_locus; if (gfc_match_char ('(') != MATCH_YES) return MATCH_NO; m = match_io_element (k, &head); tail = head; if (m != MATCH_YES || gfc_match_char (',') != MATCH_YES) { m = MATCH_NO; goto cleanup; } /* Can't be anything but an IO iterator. Build a list. */ iter = gfc_get_iterator (); for (n = 1;; n++) { m = gfc_match_iterator (iter, 0); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_YES) { gfc_check_do_variable (iter->var->symtree); break; } m = match_io_element (k, &new); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) { if (n > 2) goto syntax; goto cleanup; } tail = gfc_append_code (tail, new); if (gfc_match_char (',') != MATCH_YES) { if (n > 2) goto syntax; m = MATCH_NO; goto cleanup; } } if (gfc_match_char (')') != MATCH_YES) goto syntax; new = gfc_get_code (); new->op = EXEC_DO; new->ext.iterator = iter; new->block = gfc_get_code (); new->block->op = EXEC_DO; new->block->next = head; *result = new; return MATCH_YES; syntax: gfc_error ("Syntax error in I/O iterator at %C"); m = MATCH_ERROR; cleanup: gfc_free_iterator (iter, 1); gfc_free_statements (head); gfc_current_locus = old_loc; return m; } /* Match a single element of an IO list, which is either a single expression or an IO Iterator. */ static match match_io_element (io_kind k, gfc_code ** cpp) { gfc_expr *expr; gfc_code *cp; match m; expr = NULL; m = match_io_iterator (k, cpp); if (m == MATCH_YES) return MATCH_YES; if (k == M_READ) { m = gfc_match_variable (&expr, 0); if (m == MATCH_NO) gfc_error ("Expected variable in READ statement at %C"); } else { m = gfc_match_expr (&expr); if (m == MATCH_NO) gfc_error ("Expected expression in %s statement at %C", io_kind_name (k)); } if (m == MATCH_YES) switch (k) { case M_READ: if (expr->symtree->n.sym->attr.intent == INTENT_IN) { gfc_error ("Variable '%s' in input list at %C cannot be INTENT(IN)", expr->symtree->n.sym->name); m = MATCH_ERROR; } if (gfc_pure (NULL) && gfc_impure_variable (expr->symtree->n.sym) && current_dt->io_unit->ts.type == BT_CHARACTER) { gfc_error ("Cannot read to variable '%s' in PURE procedure at %C", expr->symtree->n.sym->name); m = MATCH_ERROR; } if (gfc_check_do_variable (expr->symtree)) m = MATCH_ERROR; break; case M_WRITE: if (current_dt->io_unit->ts.type == BT_CHARACTER && gfc_pure (NULL) && current_dt->io_unit->expr_type == EXPR_VARIABLE && gfc_impure_variable (current_dt->io_unit->symtree->n.sym)) { gfc_error ("Cannot write to internal file unit '%s' at %C inside a " "PURE procedure", current_dt->io_unit->symtree->n.sym->name); m = MATCH_ERROR; } break; default: break; } if (m != MATCH_YES) { gfc_free_expr (expr); return MATCH_ERROR; } cp = gfc_get_code (); cp->op = EXEC_TRANSFER; cp->expr = expr; *cpp = cp; return MATCH_YES; } /* Match an I/O list, building gfc_code structures as we go. */ static match match_io_list (io_kind k, gfc_code ** head_p) { gfc_code *head, *tail, *new; match m; *head_p = head = tail = NULL; if (gfc_match_eos () == MATCH_YES) return MATCH_YES; for (;;) { m = match_io_element (k, &new); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; tail = gfc_append_code (tail, new); if (head == NULL) head = new; if (gfc_match_eos () == MATCH_YES) break; if (gfc_match_char (',') != MATCH_YES) goto syntax; } *head_p = head; return MATCH_YES; syntax: gfc_error ("Syntax error in %s statement at %C", io_kind_name (k)); cleanup: gfc_free_statements (head); return MATCH_ERROR; } /* Attach the data transfer end node. */ static void terminate_io (gfc_code * io_code) { gfc_code *c; if (io_code == NULL) io_code = &new_st; c = gfc_get_code (); c->op = EXEC_DT_END; /* Point to structure that is already there */ c->ext.dt = new_st.ext.dt; gfc_append_code (io_code, c); } /* Match a READ, WRITE or PRINT statement. */ static match match_io (io_kind k) { char name[GFC_MAX_SYMBOL_LEN + 1]; gfc_code *io_code; gfc_symbol *sym; gfc_expr *expr; int comma_flag, c; locus where; gfc_dt *dt; match m; comma_flag = 0; current_dt = dt = gfc_getmem (sizeof (gfc_dt)); if (gfc_match_char ('(') == MATCH_NO) { if (k == M_WRITE) goto syntax; if (gfc_current_form == FORM_FREE) { c = gfc_peek_char(); if (c != ' ' && c != '*' && c != '\'' && c != '"') { m = MATCH_NO; goto cleanup; } } m = match_dt_format (dt); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; comma_flag = 1; dt->io_unit = default_unit (k); goto get_io_list; } /* Match a control list */ if (match_dt_element (k, dt) == MATCH_YES) goto next; if (match_dt_unit (k, dt) != MATCH_YES) goto loop; if (gfc_match_char (')') == MATCH_YES) goto get_io_list; if (gfc_match_char (',') != MATCH_YES) goto syntax; m = match_dt_element (k, dt); if (m == MATCH_YES) goto next; if (m == MATCH_ERROR) goto cleanup; m = match_dt_format (dt); if (m == MATCH_YES) goto next; if (m == MATCH_ERROR) goto cleanup; where = gfc_current_locus; if (gfc_match_name (name) == MATCH_YES && !gfc_find_symbol (name, NULL, 1, &sym) && sym->attr.flavor == FL_NAMELIST) { dt->namelist = sym; if (k == M_READ && check_namelist (sym)) { m = MATCH_ERROR; goto cleanup; } goto next; } gfc_current_locus = where; goto loop; /* No matches, try regular elements */ next: if (gfc_match_char (')') == MATCH_YES) goto get_io_list; if (gfc_match_char (',') != MATCH_YES) goto syntax; loop: for (;;) { m = match_dt_element (k, dt); if (m == MATCH_NO) goto syntax; if (m == MATCH_ERROR) goto cleanup; if (gfc_match_char (')') == MATCH_YES) break; if (gfc_match_char (',') != MATCH_YES) goto syntax; } get_io_list: /* Optional leading comma (non-standard). */ if (!comma_flag && gfc_match_char (',') == MATCH_YES && k == M_WRITE && gfc_notify_std (GFC_STD_GNU, "Extension: Comma before output " "item list at %C is an extension") == FAILURE) return MATCH_ERROR; io_code = NULL; if (gfc_match_eos () != MATCH_YES) { if (comma_flag && gfc_match_char (',') != MATCH_YES) { gfc_error ("Expected comma in I/O list at %C"); m = MATCH_ERROR; goto cleanup; } m = match_io_list (k, &io_code); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; } /* A full IO statement has been matched. */ if (dt->io_unit->expr_type == EXPR_VARIABLE && k == M_WRITE && dt->io_unit->ts.type == BT_CHARACTER && dt->io_unit->symtree->n.sym->attr.intent == INTENT_IN) { gfc_error ("Internal file '%s' at %L is INTENT(IN)", dt->io_unit->symtree->n.sym->name, &dt->io_unit->where); m = MATCH_ERROR; goto cleanup; } expr = dt->format_expr; if (expr != NULL && expr->expr_type == EXPR_CONSTANT) check_format_string (expr); if (gfc_pure (NULL) && (k == M_READ || k == M_WRITE) && dt->io_unit->ts.type != BT_CHARACTER) { gfc_error ("io-unit in %s statement at %C must be an internal file in a " "PURE procedure", io_kind_name (k)); m = MATCH_ERROR; goto cleanup; } new_st.op = (k == M_READ) ? EXEC_READ : EXEC_WRITE; new_st.ext.dt = dt; new_st.next = io_code; terminate_io (io_code); return MATCH_YES; syntax: gfc_error ("Syntax error in %s statement at %C", io_kind_name (k)); m = MATCH_ERROR; cleanup: gfc_free_dt (dt); return m; } match gfc_match_read (void) { return match_io (M_READ); } match gfc_match_write (void) { return match_io (M_WRITE); } match gfc_match_print (void) { match m; m = match_io (M_PRINT); if (m != MATCH_YES) return m; if (gfc_pure (NULL)) { gfc_error ("PRINT statement at %C not allowed within PURE procedure"); return MATCH_ERROR; } return MATCH_YES; } /* Free a gfc_inquire structure. */ void gfc_free_inquire (gfc_inquire * inquire) { if (inquire == NULL) return; gfc_free_expr (inquire->unit); gfc_free_expr (inquire->file); gfc_free_expr (inquire->iostat); gfc_free_expr (inquire->exist); gfc_free_expr (inquire->opened); gfc_free_expr (inquire->number); gfc_free_expr (inquire->named); gfc_free_expr (inquire->name); gfc_free_expr (inquire->access); gfc_free_expr (inquire->sequential); gfc_free_expr (inquire->direct); gfc_free_expr (inquire->form); gfc_free_expr (inquire->formatted); gfc_free_expr (inquire->unformatted); gfc_free_expr (inquire->recl); gfc_free_expr (inquire->nextrec); gfc_free_expr (inquire->blank); gfc_free_expr (inquire->position); gfc_free_expr (inquire->action); gfc_free_expr (inquire->read); gfc_free_expr (inquire->write); gfc_free_expr (inquire->readwrite); gfc_free_expr (inquire->delim); gfc_free_expr (inquire->pad); gfc_free_expr (inquire->iolength); gfc_free (inquire); } /* Match an element of an INQUIRE statement. */ #define RETM if (m != MATCH_NO) return m; static match match_inquire_element (gfc_inquire * inquire) { match m; m = match_etag (&tag_unit, &inquire->unit); RETM m = match_etag (&tag_file, &inquire->file); RETM m = match_ltag (&tag_err, &inquire->err); RETM m = match_out_tag (&tag_iostat, &inquire->iostat); RETM m = match_vtag (&tag_exist, &inquire->exist); RETM m = match_vtag (&tag_opened, &inquire->opened); RETM m = match_vtag (&tag_named, &inquire->named); RETM m = match_vtag (&tag_name, &inquire->name); RETM m = match_out_tag (&tag_number, &inquire->number); RETM m = match_vtag (&tag_s_access, &inquire->access); RETM m = match_vtag (&tag_sequential, &inquire->sequential); RETM m = match_vtag (&tag_direct, &inquire->direct); RETM m = match_vtag (&tag_s_form, &inquire->form); RETM m = match_vtag (&tag_formatted, &inquire->formatted); RETM m = match_vtag (&tag_unformatted, &inquire->unformatted); RETM m = match_out_tag (&tag_s_recl, &inquire->recl); RETM m = match_out_tag (&tag_nextrec, &inquire->nextrec); RETM m = match_vtag (&tag_s_blank, &inquire->blank); RETM m = match_vtag (&tag_s_position, &inquire->position); RETM m = match_vtag (&tag_s_action, &inquire->action); RETM m = match_vtag (&tag_read, &inquire->read); RETM m = match_vtag (&tag_write, &inquire->write); RETM m = match_vtag (&tag_readwrite, &inquire->readwrite); RETM m = match_vtag (&tag_s_delim, &inquire->delim); RETM m = match_vtag (&tag_s_pad, &inquire->pad); RETM m = match_vtag (&tag_iolength, &inquire->iolength); RETM return MATCH_NO; } #undef RETM match gfc_match_inquire (void) { gfc_inquire *inquire; gfc_code *code; match m; m = gfc_match_char ('('); if (m == MATCH_NO) return m; inquire = gfc_getmem (sizeof (gfc_inquire)); m = match_inquire_element (inquire); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) { m = gfc_match_expr (&inquire->unit); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; } /* See if we have the IOLENGTH form of the inquire statement. */ if (inquire->iolength != NULL) { if (gfc_match_char (')') != MATCH_YES) goto syntax; m = match_io_list (M_INQUIRE, &code); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; terminate_io (code); new_st.op = EXEC_IOLENGTH; new_st.expr = inquire->iolength; new_st.ext.inquire = inquire; if (gfc_pure (NULL)) { gfc_free_statements (code); gfc_error ("INQUIRE statement not allowed in PURE procedure at %C"); return MATCH_ERROR; } new_st.next = code; return MATCH_YES; } /* At this point, we have the non-IOLENGTH inquire statement. */ for (;;) { if (gfc_match_char (')') == MATCH_YES) break; if (gfc_match_char (',') != MATCH_YES) goto syntax; m = match_inquire_element (inquire); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; if (inquire->iolength != NULL) { gfc_error ("IOLENGTH tag invalid in INQUIRE statement at %C"); goto cleanup; } } if (gfc_match_eos () != MATCH_YES) goto syntax; if (gfc_pure (NULL)) { gfc_error ("INQUIRE statement not allowed in PURE procedure at %C"); goto cleanup; } new_st.op = EXEC_INQUIRE; new_st.ext.inquire = inquire; return MATCH_YES; syntax: gfc_syntax_error (ST_INQUIRE); cleanup: gfc_free_inquire (inquire); return MATCH_ERROR; } /* Resolve everything in a gfc_inquire structure. */ try gfc_resolve_inquire (gfc_inquire * inquire) { RESOLVE_TAG (&tag_unit, inquire->unit); RESOLVE_TAG (&tag_file, inquire->file); RESOLVE_TAG (&tag_iostat, inquire->iostat); RESOLVE_TAG (&tag_exist, inquire->exist); RESOLVE_TAG (&tag_opened, inquire->opened); RESOLVE_TAG (&tag_number, inquire->number); RESOLVE_TAG (&tag_named, inquire->named); RESOLVE_TAG (&tag_name, inquire->name); RESOLVE_TAG (&tag_s_access, inquire->access); RESOLVE_TAG (&tag_sequential, inquire->sequential); RESOLVE_TAG (&tag_direct, inquire->direct); RESOLVE_TAG (&tag_s_form, inquire->form); RESOLVE_TAG (&tag_formatted, inquire->formatted); RESOLVE_TAG (&tag_unformatted, inquire->unformatted); RESOLVE_TAG (&tag_s_recl, inquire->recl); RESOLVE_TAG (&tag_nextrec, inquire->nextrec); RESOLVE_TAG (&tag_s_blank, inquire->blank); RESOLVE_TAG (&tag_s_position, inquire->position); RESOLVE_TAG (&tag_s_action, inquire->action); RESOLVE_TAG (&tag_read, inquire->read); RESOLVE_TAG (&tag_write, inquire->write); RESOLVE_TAG (&tag_readwrite, inquire->readwrite); RESOLVE_TAG (&tag_s_delim, inquire->delim); RESOLVE_TAG (&tag_s_pad, inquire->pad); RESOLVE_TAG (&tag_iolength, inquire->iolength); if (gfc_reference_st_label (inquire->err, ST_LABEL_TARGET) == FAILURE) return FAILURE; return SUCCESS; }