/* Deal with I/O statements & related stuff.
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
Free Software Foundation, Inc.
Contributed by Andy Vaught
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
#include "config.h"
#include "system.h"
#include "flags.h"
#include "gfortran.h"
#include "match.h"
#include "parse.h"
gfc_st_label
format_asterisk = {0, NULL, NULL, -1, ST_LABEL_FORMAT, ST_LABEL_FORMAT, NULL,
0, {NULL, NULL}};
typedef struct
{
const char *name, *spec;
bt type;
}
io_tag;
static const io_tag
tag_file = { "FILE", " file = %e", BT_CHARACTER },
tag_status = { "STATUS", " status = %e", BT_CHARACTER},
tag_e_access = {"ACCESS", " access = %e", BT_CHARACTER},
tag_e_form = {"FORM", " form = %e", BT_CHARACTER},
tag_e_recl = {"RECL", " recl = %e", BT_INTEGER},
tag_e_blank = {"BLANK", " blank = %e", BT_CHARACTER},
tag_e_position = {"POSITION", " position = %e", BT_CHARACTER},
tag_e_action = {"ACTION", " action = %e", BT_CHARACTER},
tag_e_delim = {"DELIM", " delim = %e", BT_CHARACTER},
tag_e_pad = {"PAD", " pad = %e", BT_CHARACTER},
tag_unit = {"UNIT", " unit = %e", BT_INTEGER},
tag_advance = {"ADVANCE", " advance = %e", BT_CHARACTER},
tag_rec = {"REC", " rec = %e", BT_INTEGER},
tag_spos = {"POSITION", " pos = %e", BT_INTEGER},
tag_format = {"FORMAT", NULL, BT_CHARACTER},
tag_iomsg = {"IOMSG", " iomsg = %e", BT_CHARACTER},
tag_iostat = {"IOSTAT", " iostat = %v", BT_INTEGER},
tag_size = {"SIZE", " size = %v", BT_INTEGER},
tag_exist = {"EXIST", " exist = %v", BT_LOGICAL},
tag_opened = {"OPENED", " opened = %v", BT_LOGICAL},
tag_named = {"NAMED", " named = %v", BT_LOGICAL},
tag_name = {"NAME", " name = %v", BT_CHARACTER},
tag_number = {"NUMBER", " number = %v", BT_INTEGER},
tag_s_access = {"ACCESS", " access = %v", BT_CHARACTER},
tag_sequential = {"SEQUENTIAL", " sequential = %v", BT_CHARACTER},
tag_direct = {"DIRECT", " direct = %v", BT_CHARACTER},
tag_s_form = {"FORM", " form = %v", BT_CHARACTER},
tag_formatted = {"FORMATTED", " formatted = %v", BT_CHARACTER},
tag_unformatted = {"UNFORMATTED", " unformatted = %v", BT_CHARACTER},
tag_s_recl = {"RECL", " recl = %v", BT_INTEGER},
tag_nextrec = {"NEXTREC", " nextrec = %v", BT_INTEGER},
tag_s_blank = {"BLANK", " blank = %v", BT_CHARACTER},
tag_s_position = {"POSITION", " position = %v", BT_CHARACTER},
tag_s_action = {"ACTION", " action = %v", BT_CHARACTER},
tag_read = {"READ", " read = %v", BT_CHARACTER},
tag_write = {"WRITE", " write = %v", BT_CHARACTER},
tag_readwrite = {"READWRITE", " readwrite = %v", BT_CHARACTER},
tag_s_delim = {"DELIM", " delim = %v", BT_CHARACTER},
tag_s_pad = {"PAD", " pad = %v", BT_CHARACTER},
tag_iolength = {"IOLENGTH", " iolength = %v", BT_INTEGER},
tag_convert = {"CONVERT", " convert = %e", BT_CHARACTER},
tag_strm_out = {"POS", " pos = %v", BT_INTEGER},
tag_err = {"ERR", " err = %l", BT_UNKNOWN},
tag_end = {"END", " end = %l", BT_UNKNOWN},
tag_eor = {"EOR", " eor = %l", BT_UNKNOWN};
static gfc_dt *current_dt;
#define RESOLVE_TAG(x, y) if (resolve_tag(x, y) == FAILURE) return FAILURE;
/**************** Fortran 95 FORMAT parser *****************/
/* FORMAT tokens returned by format_lex(). */
typedef enum
{
FMT_NONE, FMT_UNKNOWN, FMT_SIGNED_INT, FMT_ZERO, FMT_POSINT, FMT_PERIOD,
FMT_COMMA, FMT_COLON, FMT_SLASH, FMT_DOLLAR, FMT_POS, FMT_LPAREN,
FMT_RPAREN, FMT_X, FMT_SIGN, FMT_BLANK, FMT_CHAR, FMT_P, FMT_IBOZ, FMT_F,
FMT_E, FMT_EXT, FMT_G, FMT_L, FMT_A, FMT_D, FMT_H, FMT_END
}
format_token;
/* Local variables for checking format strings. The saved_token is
used to back up by a single format token during the parsing
process. */
static char *format_string;
static int format_length, use_last_char;
static format_token saved_token;
static enum
{ MODE_STRING, MODE_FORMAT, MODE_COPY }
mode;
/* Return the next character in the format string. */
static char
next_char (int in_string)
{
static char c;
if (use_last_char)
{
use_last_char = 0;
return c;
}
format_length++;
if (mode == MODE_STRING)
c = *format_string++;
else
{
c = gfc_next_char_literal (in_string);
if (c == '\n')
c = '\0';
}
if (gfc_option.flag_backslash && c == '\\')
{
int tmp;
locus old_locus = gfc_current_locus;
/* Use a temp variable to avoid side effects from gfc_match_special_char
since it uses an int * for its argument. */
tmp = (int)c;
if (gfc_match_special_char (&tmp) == MATCH_NO)
gfc_current_locus = old_locus;
c = (char)tmp;
if (!(gfc_option.allow_std & GFC_STD_GNU) && !inhibit_warnings)
gfc_warning ("Extension: backslash character at %C");
}
if (mode == MODE_COPY)
*format_string++ = c;
c = TOUPPER (c);
return c;
}
/* Back up one character position. Only works once. */
static void
unget_char (void)
{
use_last_char = 1;
}
/* Eat up the spaces and return a character. */
static char
next_char_not_space (void)
{
char c;
do
{
c = next_char (0);
}
while (gfc_is_whitespace (c));
return c;
}
static int value = 0;
/* Simple lexical analyzer for getting the next token in a FORMAT
statement. */
static format_token
format_lex (void)
{
format_token token;
char c, delim;
int zflag;
int negative_flag;
if (saved_token != FMT_NONE)
{
token = saved_token;
saved_token = FMT_NONE;
return token;
}
c = next_char_not_space ();
negative_flag = 0;
switch (c)
{
case '-':
negative_flag = 1;
case '+':
c = next_char_not_space ();
if (!ISDIGIT (c))
{
token = FMT_UNKNOWN;
break;
}
value = c - '0';
do
{
c = next_char_not_space ();
if (ISDIGIT (c))
value = 10 * value + c - '0';
}
while (ISDIGIT (c));
unget_char ();
if (negative_flag)
value = -value;
token = FMT_SIGNED_INT;
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
zflag = (c == '0');
value = c - '0';
do
{
c = next_char_not_space ();
if (ISDIGIT (c))
{
value = 10 * value + c - '0';
if (c != '0')
zflag = 0;
}
}
while (ISDIGIT (c));
unget_char ();
token = zflag ? FMT_ZERO : FMT_POSINT;
break;
case '.':
token = FMT_PERIOD;
break;
case ',':
token = FMT_COMMA;
break;
case ':':
token = FMT_COLON;
break;
case '/':
token = FMT_SLASH;
break;
case '$':
token = FMT_DOLLAR;
break;
case 'T':
c = next_char_not_space ();
if (c != 'L' && c != 'R')
unget_char ();
token = FMT_POS;
break;
case '(':
token = FMT_LPAREN;
break;
case ')':
token = FMT_RPAREN;
break;
case 'X':
token = FMT_X;
break;
case 'S':
c = next_char_not_space ();
if (c != 'P' && c != 'S')
unget_char ();
token = FMT_SIGN;
break;
case 'B':
c = next_char_not_space ();
if (c == 'N' || c == 'Z')
token = FMT_BLANK;
else
{
unget_char ();
token = FMT_IBOZ;
}
break;
case '\'':
case '"':
delim = c;
value = 0;
for (;;)
{
c = next_char (1);
if (c == '\0')
{
token = FMT_END;
break;
}
if (c == delim)
{
c = next_char (1);
if (c == '\0')
{
token = FMT_END;
break;
}
if (c != delim)
{
unget_char ();
token = FMT_CHAR;
break;
}
}
value++;
}
break;
case 'P':
token = FMT_P;
break;
case 'I':
case 'O':
case 'Z':
token = FMT_IBOZ;
break;
case 'F':
token = FMT_F;
break;
case 'E':
c = next_char_not_space ();
if (c == 'N' || c == 'S')
token = FMT_EXT;
else
{
token = FMT_E;
unget_char ();
}
break;
case 'G':
token = FMT_G;
break;
case 'H':
token = FMT_H;
break;
case 'L':
token = FMT_L;
break;
case 'A':
token = FMT_A;
break;
case 'D':
token = FMT_D;
break;
case '\0':
token = FMT_END;
break;
default:
token = FMT_UNKNOWN;
break;
}
return token;
}
/* Check a format statement. The format string, either from a FORMAT
statement or a constant in an I/O statement has already been parsed
by itself, and we are checking it for validity. The dual origin
means that the warning message is a little less than great. */
static try
check_format (bool is_input)
{
const char *posint_required = _("Positive width required");
const char *nonneg_required = _("Nonnegative width required");
const char *unexpected_element = _("Unexpected element");
const char *unexpected_end = _("Unexpected end of format string");
const char *error;
format_token t, u;
int level;
int repeat;
try rv;
use_last_char = 0;
saved_token = FMT_NONE;
level = 0;
repeat = 0;
rv = SUCCESS;
t = format_lex ();
if (t != FMT_LPAREN)
{
error = _("Missing leading left parenthesis");
goto syntax;
}
t = format_lex ();
if (t == FMT_RPAREN)
goto finished; /* Empty format is legal */
saved_token = t;
format_item:
/* In this state, the next thing has to be a format item. */
t = format_lex ();
format_item_1:
switch (t)
{
case FMT_POSINT:
repeat = value;
t = format_lex ();
if (t == FMT_LPAREN)
{
level++;
goto format_item;
}
if (t == FMT_SLASH)
goto optional_comma;
goto data_desc;
case FMT_LPAREN:
level++;
goto format_item;
case FMT_SIGNED_INT:
case FMT_ZERO:
/* Signed integer can only precede a P format. */
t = format_lex ();
if (t != FMT_P)
{
error = _("Expected P edit descriptor");
goto syntax;
}
goto data_desc;
case FMT_P:
/* P requires a prior number. */
error = _("P descriptor requires leading scale factor");
goto syntax;
case FMT_X:
/* X requires a prior number if we're being pedantic. */
if (gfc_notify_std (GFC_STD_GNU, "Extension: X descriptor "
"requires leading space count at %C")
== FAILURE)
return FAILURE;
goto between_desc;
case FMT_SIGN:
case FMT_BLANK:
goto between_desc;
case FMT_CHAR:
goto extension_optional_comma;
case FMT_COLON:
case FMT_SLASH:
goto optional_comma;
case FMT_DOLLAR:
t = format_lex ();
if (gfc_notify_std (GFC_STD_GNU, "Extension: $ descriptor at %C")
== FAILURE)
return FAILURE;
if (t != FMT_RPAREN || level > 0)
{
gfc_warning ("$ should be the last specifier in format at %C");
goto optional_comma_1;
}
goto finished;
case FMT_POS:
case FMT_IBOZ:
case FMT_F:
case FMT_E:
case FMT_EXT:
case FMT_G:
case FMT_L:
case FMT_A:
case FMT_D:
case FMT_H:
goto data_desc;
case FMT_END:
error = unexpected_end;
goto syntax;
default:
error = unexpected_element;
goto syntax;
}
data_desc:
/* In this state, t must currently be a data descriptor.
Deal with things that can/must follow the descriptor. */
switch (t)
{
case FMT_SIGN:
case FMT_BLANK:
case FMT_X:
break;
case FMT_P:
if (pedantic)
{
t = format_lex ();
if (t == FMT_POSINT)
{
error = _("Repeat count cannot follow P descriptor");
goto syntax;
}
saved_token = t;
}
goto optional_comma;
case FMT_POS:
case FMT_L:
t = format_lex ();
if (t == FMT_POSINT)
break;
switch (gfc_notification_std (GFC_STD_GNU))
{
case WARNING:
gfc_warning ("Extension: Missing positive width after L "
"descriptor at %C");
saved_token = t;
break;
case ERROR:
error = posint_required;
goto syntax;
case SILENT:
saved_token = t;
break;
default:
gcc_unreachable ();
}
break;
case FMT_A:
t = format_lex ();
if (t != FMT_POSINT)
saved_token = t;
break;
case FMT_D:
case FMT_E:
case FMT_G:
case FMT_EXT:
u = format_lex ();
if (u != FMT_POSINT)
{
error = posint_required;
goto syntax;
}
u = format_lex ();
if (u != FMT_PERIOD)
{
/* Warn if -std=legacy, otherwise error. */
if (gfc_option.warn_std != 0)
gfc_error_now ("Period required in format specifier at %C");
else
gfc_warning ("Period required in format specifier at %C");
saved_token = u;
break;
}
u = format_lex ();
if (u != FMT_ZERO && u != FMT_POSINT)
{
error = nonneg_required;
goto syntax;
}
if (t == FMT_D)
break;
/* Look for optional exponent. */
u = format_lex ();
if (u != FMT_E)
{
saved_token = u;
}
else
{
u = format_lex ();
if (u != FMT_POSINT)
{
error = _("Positive exponent width required");
goto syntax;
}
}
break;
case FMT_F:
t = format_lex ();
if (t != FMT_ZERO && t != FMT_POSINT)
{
error = nonneg_required;
goto syntax;
}
else if (is_input && t == FMT_ZERO)
{
error = posint_required;
goto syntax;
}
t = format_lex ();
if (t != FMT_PERIOD)
{
/* Warn if -std=legacy, otherwise error. */
if (gfc_option.warn_std != 0)
gfc_error_now ("Period required in format specifier at %C");
else
gfc_warning ("Period required in format specifier at %C");
saved_token = t;
break;
}
t = format_lex ();
if (t != FMT_ZERO && t != FMT_POSINT)
{
error = nonneg_required;
goto syntax;
}
break;
case FMT_H:
if (!(gfc_option.allow_std & GFC_STD_GNU) && !inhibit_warnings)
gfc_warning ("The H format specifier at %C is"
" a Fortran 95 deleted feature");
if(mode == MODE_STRING)
{
format_string += value;
format_length -= value;
}
else
{
while (repeat >0)
{
next_char (1);
repeat -- ;
}
}
break;
case FMT_IBOZ:
t = format_lex ();
if (t != FMT_ZERO && t != FMT_POSINT)
{
error = nonneg_required;
goto syntax;
}
else if (is_input && t == FMT_ZERO)
{
error = posint_required;
goto syntax;
}
t = format_lex ();
if (t != FMT_PERIOD)
{
saved_token = t;
}
else
{
t = format_lex ();
if (t != FMT_ZERO && t != FMT_POSINT)
{
error = nonneg_required;
goto syntax;
}
}
break;
default:
error = unexpected_element;
goto syntax;
}
between_desc:
/* Between a descriptor and what comes next. */
t = format_lex ();
switch (t)
{
case FMT_COMMA:
goto format_item;
case FMT_RPAREN:
level--;
if (level < 0)
goto finished;
goto between_desc;
case FMT_COLON:
case FMT_SLASH:
goto optional_comma;
case FMT_END:
error = unexpected_end;
goto syntax;
default:
if (gfc_notify_std (GFC_STD_GNU, "Extension: Missing comma at %C")
== FAILURE)
return FAILURE;
goto format_item_1;
}
optional_comma:
/* Optional comma is a weird between state where we've just finished
reading a colon, slash, dollar or P descriptor. */
t = format_lex ();
optional_comma_1:
switch (t)
{
case FMT_COMMA:
break;
case FMT_RPAREN:
level--;
if (level < 0)
goto finished;
goto between_desc;
default:
/* Assume that we have another format item. */
saved_token = t;
break;
}
goto format_item;
extension_optional_comma:
/* As a GNU extension, permit a missing comma after a string literal. */
t = format_lex ();
switch (t)
{
case FMT_COMMA:
break;
case FMT_RPAREN:
level--;
if (level < 0)
goto finished;
goto between_desc;
case FMT_COLON:
case FMT_SLASH:
goto optional_comma;
case FMT_END:
error = unexpected_end;
goto syntax;
default:
if (gfc_notify_std (GFC_STD_GNU, "Extension: Missing comma at %C")
== FAILURE)
return FAILURE;
saved_token = t;
break;
}
goto format_item;
syntax:
gfc_error ("%s in format string at %C", error);
/* TODO: More elaborate measures are needed to show where a problem
is within a format string that has been calculated. */
rv = FAILURE;
finished:
return rv;
}
/* Given an expression node that is a constant string, see if it looks
like a format string. */
static try
check_format_string (gfc_expr *e, bool is_input)
{
mode = MODE_STRING;
format_string = e->value.character.string;
return check_format (is_input);
}
/************ Fortran 95 I/O statement matchers *************/
/* Match a FORMAT statement. This amounts to actually parsing the
format descriptors in order to correctly locate the end of the
format string. */
match
gfc_match_format (void)
{
gfc_expr *e;
locus start;
if (gfc_current_ns->proc_name
&& gfc_current_ns->proc_name->attr.flavor == FL_MODULE)
{
gfc_error ("Format statement in module main block at %C");
return MATCH_ERROR;
}
if (gfc_statement_label == NULL)
{
gfc_error ("Missing format label at %C");
return MATCH_ERROR;
}
gfc_gobble_whitespace ();
mode = MODE_FORMAT;
format_length = 0;
start = gfc_current_locus;
if (check_format (false) == FAILURE)
return MATCH_ERROR;
if (gfc_match_eos () != MATCH_YES)
{
gfc_syntax_error (ST_FORMAT);
return MATCH_ERROR;
}
/* The label doesn't get created until after the statement is done
being matched, so we have to leave the string for later. */
gfc_current_locus = start; /* Back to the beginning */
new_st.loc = start;
new_st.op = EXEC_NOP;
e = gfc_get_expr();
e->expr_type = EXPR_CONSTANT;
e->ts.type = BT_CHARACTER;
e->ts.kind = gfc_default_character_kind;
e->where = start;
e->value.character.string = format_string = gfc_getmem (format_length + 1);
e->value.character.length = format_length;
gfc_statement_label->format = e;
mode = MODE_COPY;
check_format (false); /* Guaranteed to succeed */
gfc_match_eos (); /* Guaranteed to succeed */
return MATCH_YES;
}
/* Match an expression I/O tag of some sort. */
static match
match_etag (const io_tag *tag, gfc_expr **v)
{
gfc_expr *result;
match m;
m = gfc_match (tag->spec, &result);
if (m != MATCH_YES)
return m;
if (*v != NULL)
{
gfc_error ("Duplicate %s specification at %C", tag->name);
gfc_free_expr (result);
return MATCH_ERROR;
}
*v = result;
return MATCH_YES;
}
/* Match a variable I/O tag of some sort. */
static match
match_vtag (const io_tag *tag, gfc_expr **v)
{
gfc_expr *result;
match m;
m = gfc_match (tag->spec, &result);
if (m != MATCH_YES)
return m;
if (*v != NULL)
{
gfc_error ("Duplicate %s specification at %C", tag->name);
gfc_free_expr (result);
return MATCH_ERROR;
}
if (result->symtree->n.sym->attr.intent == INTENT_IN)
{
gfc_error ("Variable tag cannot be INTENT(IN) at %C");
gfc_free_expr (result);
return MATCH_ERROR;
}
if (gfc_pure (NULL) && gfc_impure_variable (result->symtree->n.sym))
{
gfc_error ("Variable tag cannot be assigned in PURE procedure at %C");
gfc_free_expr (result);
return MATCH_ERROR;
}
*v = result;
return MATCH_YES;
}
/* Match I/O tags that cause variables to become redefined. */
static match
match_out_tag(const io_tag *tag, gfc_expr **result)
{
match m;
m = match_vtag(tag, result);
if (m == MATCH_YES)
gfc_check_do_variable((*result)->symtree);
return m;
}
/* Match a label I/O tag. */
static match
match_ltag (const io_tag *tag, gfc_st_label ** label)
{
match m;
gfc_st_label *old;
old = *label;
m = gfc_match (tag->spec, label);
if (m == MATCH_YES && old != 0)
{
gfc_error ("Duplicate %s label specification at %C", tag->name);
return MATCH_ERROR;
}
if (m == MATCH_YES
&& gfc_reference_st_label (*label, ST_LABEL_TARGET) == FAILURE)
return MATCH_ERROR;
return m;
}
/* Do expression resolution and type-checking on an expression tag. */
static try
resolve_tag (const io_tag *tag, gfc_expr *e)
{
if (e == NULL)
return SUCCESS;
if (gfc_resolve_expr (e) == FAILURE)
return FAILURE;
if (e->ts.type != tag->type && tag != &tag_format)
{
gfc_error ("%s tag at %L must be of type %s", tag->name,
&e->where, gfc_basic_typename (tag->type));
return FAILURE;
}
if (tag == &tag_format)
{
if (e->expr_type == EXPR_CONSTANT
&& (e->ts.type != BT_CHARACTER
|| e->ts.kind != gfc_default_character_kind))
{
gfc_error ("Constant expression in FORMAT tag at %L must be "
"of type default CHARACTER", &e->where);
return FAILURE;
}
/* If e's rank is zero and e is not an element of an array, it should be
of integer or character type. The integer variable should be
ASSIGNED. */
if (e->symtree == NULL || e->symtree->n.sym->as == NULL
|| e->symtree->n.sym->as->rank == 0)
{
if (e->ts.type != BT_CHARACTER && e->ts.type != BT_INTEGER)
{
gfc_error ("%s tag at %L must be of type %s or %s", tag->name,
&e->where, gfc_basic_typename (BT_CHARACTER),
gfc_basic_typename (BT_INTEGER));
return FAILURE;
}
else if (e->ts.type == BT_INTEGER && e->expr_type == EXPR_VARIABLE)
{
if (gfc_notify_std (GFC_STD_F95_DEL, "Deleted feature: ASSIGNED "
"variable in FORMAT tag at %L", &e->where)
== FAILURE)
return FAILURE;
if (e->symtree->n.sym->attr.assign != 1)
{
gfc_error ("Variable '%s' at %L has not been assigned a "
"format label", e->symtree->n.sym->name,
&e->where);
return FAILURE;
}
}
else if (e->ts.type == BT_INTEGER)
{
gfc_error ("scalar '%s' FORMAT tag at %L is not an ASSIGNED "
"variable", gfc_basic_typename (e->ts.type),
&e->where);
return FAILURE;
}
return SUCCESS;
}
else
{
/* if rank is nonzero, we allow the type to be character under
GFC_STD_GNU and other type under GFC_STD_LEGACY. It may be
assigned an Hollerith constant. */
if (e->ts.type == BT_CHARACTER)
{
if (gfc_notify_std (GFC_STD_GNU, "Extension: Character array "
"in FORMAT tag at %L", &e->where)
== FAILURE)
return FAILURE;
}
else
{
if (gfc_notify_std (GFC_STD_LEGACY, "Extension: Non-character "
"in FORMAT tag at %L", &e->where)
== FAILURE)
return FAILURE;
}
return SUCCESS;
}
}
else
{
if (e->rank != 0)
{
gfc_error ("%s tag at %L must be scalar", tag->name, &e->where);
return FAILURE;
}
if (tag == &tag_iomsg)
{
if (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: IOMSG tag at %L",
&e->where) == FAILURE)
return FAILURE;
}
if (tag == &tag_iostat && e->ts.kind != gfc_default_integer_kind)
{
if (gfc_notify_std (GFC_STD_GNU, "Fortran 95 requires default "
"INTEGER in IOSTAT tag at %L", &e->where)
== FAILURE)
return FAILURE;
}
if (tag == &tag_size && e->ts.kind != gfc_default_integer_kind)
{
if (gfc_notify_std (GFC_STD_F2003, "Fortran 95 requires default "
"INTEGER in SIZE tag at %L", &e->where)
== FAILURE)
return FAILURE;
}
if (tag == &tag_convert)
{
if (gfc_notify_std (GFC_STD_GNU, "Extension: CONVERT tag at %L",
&e->where) == FAILURE)
return FAILURE;
}
if (tag == &tag_iolength && e->ts.kind != gfc_default_integer_kind)
{
if (gfc_notify_std (GFC_STD_F2003, "Fortran 95 requires default "
"INTEGER in IOLENGTH tag at %L", &e->where)
== FAILURE)
return FAILURE;
}
}
return SUCCESS;
}
/* Match a single tag of an OPEN statement. */
static match
match_open_element (gfc_open *open)
{
match m;
m = match_etag (&tag_unit, &open->unit);
if (m != MATCH_NO)
return m;
m = match_out_tag (&tag_iomsg, &open->iomsg);
if (m != MATCH_NO)
return m;
m = match_out_tag (&tag_iostat, &open->iostat);
if (m != MATCH_NO)
return m;
m = match_etag (&tag_file, &open->file);
if (m != MATCH_NO)
return m;
m = match_etag (&tag_status, &open->status);
if (m != MATCH_NO)
return m;
m = match_etag (&tag_e_access, &open->access);
if (m != MATCH_NO)
return m;
m = match_etag (&tag_e_form, &open->form);
if (m != MATCH_NO)
return m;
m = match_etag (&tag_e_recl, &open->recl);
if (m != MATCH_NO)
return m;
m = match_etag (&tag_e_blank, &open->blank);
if (m != MATCH_NO)
return m;
m = match_etag (&tag_e_position, &open->position);
if (m != MATCH_NO)
return m;
m = match_etag (&tag_e_action, &open->action);
if (m != MATCH_NO)
return m;
m = match_etag (&tag_e_delim, &open->delim);
if (m != MATCH_NO)
return m;
m = match_etag (&tag_e_pad, &open->pad);
if (m != MATCH_NO)
return m;
m = match_ltag (&tag_err, &open->err);
if (m != MATCH_NO)
return m;
m = match_etag (&tag_convert, &open->convert);
if (m != MATCH_NO)
return m;
return MATCH_NO;
}
/* Free the gfc_open structure and all the expressions it contains. */
void
gfc_free_open (gfc_open *open)
{
if (open == NULL)
return;
gfc_free_expr (open->unit);
gfc_free_expr (open->iomsg);
gfc_free_expr (open->iostat);
gfc_free_expr (open->file);
gfc_free_expr (open->status);
gfc_free_expr (open->access);
gfc_free_expr (open->form);
gfc_free_expr (open->recl);
gfc_free_expr (open->blank);
gfc_free_expr (open->position);
gfc_free_expr (open->action);
gfc_free_expr (open->delim);
gfc_free_expr (open->pad);
gfc_free_expr (open->convert);
gfc_free (open);
}
/* Resolve everything in a gfc_open structure. */
try
gfc_resolve_open (gfc_open *open)
{
RESOLVE_TAG (&tag_unit, open->unit);
RESOLVE_TAG (&tag_iomsg, open->iomsg);
RESOLVE_TAG (&tag_iostat, open->iostat);
RESOLVE_TAG (&tag_file, open->file);
RESOLVE_TAG (&tag_status, open->status);
RESOLVE_TAG (&tag_e_access, open->access);
RESOLVE_TAG (&tag_e_form, open->form);
RESOLVE_TAG (&tag_e_recl, open->recl);
RESOLVE_TAG (&tag_e_blank, open->blank);
RESOLVE_TAG (&tag_e_position, open->position);
RESOLVE_TAG (&tag_e_action, open->action);
RESOLVE_TAG (&tag_e_delim, open->delim);
RESOLVE_TAG (&tag_e_pad, open->pad);
RESOLVE_TAG (&tag_convert, open->convert);
if (gfc_reference_st_label (open->err, ST_LABEL_TARGET) == FAILURE)
return FAILURE;
return SUCCESS;
}
/* Check if a given value for a SPECIFIER is either in the list of values
allowed in F95 or F2003, issuing an error message and returning a zero
value if it is not allowed. */
static int
compare_to_allowed_values (const char *specifier, const char *allowed[],
const char *allowed_f2003[],
const char *allowed_gnu[], char *value,
const char *statement, bool warn)
{
int i;
unsigned int len;
len = strlen (value);
if (len > 0)
{
for (len--; len > 0; len--)
if (value[len] != ' ')
break;
len++;
}
for (i = 0; allowed[i]; i++)
if (len == strlen (allowed[i])
&& strncasecmp (value, allowed[i], strlen (allowed[i])) == 0)
return 1;
for (i = 0; allowed_f2003 && allowed_f2003[i]; i++)
if (len == strlen (allowed_f2003[i])
&& strncasecmp (value, allowed_f2003[i], strlen (allowed_f2003[i]))
== 0)
{
notification n = gfc_notification_std (GFC_STD_F2003);
if (n == WARNING || (warn && n == ERROR))
{
gfc_warning ("Fortran 2003: %s specifier in %s statement at %C "
"has value '%s'", specifier, statement,
allowed_f2003[i]);
return 1;
}
else
if (n == ERROR)
{
gfc_notify_std (GFC_STD_F2003, "Fortran 2003: %s specifier in "
"%s statement at %C has value '%s'", specifier,
statement, allowed_f2003[i]);
return 0;
}
/* n == SILENT */
return 1;
}
for (i = 0; allowed_gnu && allowed_gnu[i]; i++)
if (len == strlen (allowed_gnu[i])
&& strncasecmp (value, allowed_gnu[i], strlen (allowed_gnu[i])) == 0)
{
notification n = gfc_notification_std (GFC_STD_GNU);
if (n == WARNING || (warn && n == ERROR))
{
gfc_warning ("Extension: %s specifier in %s statement at %C "
"has value '%s'", specifier, statement,
allowed_gnu[i]);
return 1;
}
else
if (n == ERROR)
{
gfc_notify_std (GFC_STD_GNU, "Extension: %s specifier in "
"%s statement at %C has value '%s'", specifier,
statement, allowed_gnu[i]);
return 0;
}
/* n == SILENT */
return 1;
}
if (warn)
{
gfc_warning ("%s specifier in %s statement at %C has invalid value '%s'",
specifier, statement, value);
return 1;
}
else
{
gfc_error ("%s specifier in %s statement at %C has invalid value '%s'",
specifier, statement, value);
return 0;
}
}
/* Match an OPEN statement. */
match
gfc_match_open (void)
{
gfc_open *open;
match m;
bool warn;
m = gfc_match_char ('(');
if (m == MATCH_NO)
return m;
open = gfc_getmem (sizeof (gfc_open));
m = match_open_element (open);
if (m == MATCH_ERROR)
goto cleanup;
if (m == MATCH_NO)
{
m = gfc_match_expr (&open->unit);
if (m == MATCH_NO)
goto syntax;
if (m == MATCH_ERROR)
goto cleanup;
}
for (;;)
{
if (gfc_match_char (')') == MATCH_YES)
break;
if (gfc_match_char (',') != MATCH_YES)
goto syntax;
m = match_open_element (open);
if (m == MATCH_ERROR)
goto cleanup;
if (m == MATCH_NO)
goto syntax;
}
if (gfc_match_eos () == MATCH_NO)
goto syntax;
if (gfc_pure (NULL))
{
gfc_error ("OPEN statement not allowed in PURE procedure at %C");
goto cleanup;
}
warn = (open->err || open->iostat) ? true : false;
/* Checks on the ACCESS specifier. */
if (open->access && open->access->expr_type == EXPR_CONSTANT)
{
static const char *access_f95[] = { "SEQUENTIAL", "DIRECT", NULL };
static const char *access_f2003[] = { "STREAM", NULL };
static const char *access_gnu[] = { "APPEND", NULL };
if (!compare_to_allowed_values ("ACCESS", access_f95, access_f2003,
access_gnu,
open->access->value.character.string,
"OPEN", warn))
goto cleanup;
}
/* Checks on the ACTION specifier. */
if (open->action && open->action->expr_type == EXPR_CONSTANT)
{
static const char *action[] = { "READ", "WRITE", "READWRITE", NULL };
if (!compare_to_allowed_values ("ACTION", action, NULL, NULL,
open->action->value.character.string,
"OPEN", warn))
goto cleanup;
}
/* Checks on the ASYNCHRONOUS specifier. */
/* TODO: code is ready, just needs uncommenting when async I/O support
is added ;-)
if (open->asynchronous && open->asynchronous->expr_type == EXPR_CONSTANT)
{
static const char * asynchronous[] = { "YES", "NO", NULL };
if (!compare_to_allowed_values
("action", asynchronous, NULL, NULL,
open->asynchronous->value.character.string, "OPEN", warn))
goto cleanup;
}*/
/* Checks on the BLANK specifier. */
if (open->blank && open->blank->expr_type == EXPR_CONSTANT)
{
static const char *blank[] = { "ZERO", "NULL", NULL };
if (!compare_to_allowed_values ("BLANK", blank, NULL, NULL,
open->blank->value.character.string,
"OPEN", warn))
goto cleanup;
}
/* Checks on the DECIMAL specifier. */
/* TODO: uncomment this code when DECIMAL support is added
if (open->decimal && open->decimal->expr_type == EXPR_CONSTANT)
{
static const char * decimal[] = { "COMMA", "POINT", NULL };
if (!compare_to_allowed_values ("DECIMAL", decimal, NULL, NULL,
open->decimal->value.character.string,
"OPEN", warn))
goto cleanup;
} */
/* Checks on the DELIM specifier. */
if (open->delim && open->delim->expr_type == EXPR_CONSTANT)
{
static const char *delim[] = { "APOSTROPHE", "QUOTE", "NONE", NULL };
if (!compare_to_allowed_values ("DELIM", delim, NULL, NULL,
open->delim->value.character.string,
"OPEN", warn))
goto cleanup;
}
/* Checks on the ENCODING specifier. */
/* TODO: uncomment this code when ENCODING support is added
if (open->encoding && open->encoding->expr_type == EXPR_CONSTANT)
{
static const char * encoding[] = { "UTF-8", "DEFAULT", NULL };
if (!compare_to_allowed_values ("ENCODING", encoding, NULL, NULL,
open->encoding->value.character.string,
"OPEN", warn))
goto cleanup;
} */
/* Checks on the FORM specifier. */
if (open->form && open->form->expr_type == EXPR_CONSTANT)
{
static const char *form[] = { "FORMATTED", "UNFORMATTED", NULL };
if (!compare_to_allowed_values ("FORM", form, NULL, NULL,
open->form->value.character.string,
"OPEN", warn))
goto cleanup;
}
/* Checks on the PAD specifier. */
if (open->pad && open->pad->expr_type == EXPR_CONSTANT)
{
static const char *pad[] = { "YES", "NO", NULL };
if (!compare_to_allowed_values ("PAD", pad, NULL, NULL,
open->pad->value.character.string,
"OPEN", warn))
goto cleanup;
}
/* Checks on the POSITION specifier. */
if (open->position && open->position->expr_type == EXPR_CONSTANT)
{
static const char *position[] = { "ASIS", "REWIND", "APPEND", NULL };
if (!compare_to_allowed_values ("POSITION", position, NULL, NULL,
open->position->value.character.string,
"OPEN", warn))
goto cleanup;
}
/* Checks on the ROUND specifier. */
/* TODO: uncomment this code when ROUND support is added
if (open->round && open->round->expr_type == EXPR_CONSTANT)
{
static const char * round[] = { "UP", "DOWN", "ZERO", "NEAREST",
"COMPATIBLE", "PROCESSOR_DEFINED", NULL };
if (!compare_to_allowed_values ("ROUND", round, NULL, NULL,
open->round->value.character.string,
"OPEN", warn))
goto cleanup;
} */
/* Checks on the SIGN specifier. */
/* TODO: uncomment this code when SIGN support is added
if (open->sign && open->sign->expr_type == EXPR_CONSTANT)
{
static const char * sign[] = { "PLUS", "SUPPRESS", "PROCESSOR_DEFINED",
NULL };
if (!compare_to_allowed_values ("SIGN", sign, NULL, NULL,
open->sign->value.character.string,
"OPEN", warn))
goto cleanup;
} */
#define warn_or_error(...) \
{ \
if (warn) \
gfc_warning (__VA_ARGS__); \
else \
{ \
gfc_error (__VA_ARGS__); \
goto cleanup; \
} \
}
/* Checks on the RECL specifier. */
if (open->recl && open->recl->expr_type == EXPR_CONSTANT
&& open->recl->ts.type == BT_INTEGER
&& mpz_sgn (open->recl->value.integer) != 1)
{
warn_or_error ("RECL in OPEN statement at %C must be positive");
}
/* Checks on the STATUS specifier. */
if (open->status && open->status->expr_type == EXPR_CONSTANT)
{
static const char *status[] = { "OLD", "NEW", "SCRATCH",
"REPLACE", "UNKNOWN", NULL };
if (!compare_to_allowed_values ("STATUS", status, NULL, NULL,
open->status->value.character.string,
"OPEN", warn))
goto cleanup;
/* F2003, 9.4.5: If the STATUS= specifier has the value NEW or REPLACE,
the FILE= specifier shall appear. */
if (open->file == NULL
&& (strncasecmp (open->status->value.character.string, "replace", 7)
== 0
|| strncasecmp (open->status->value.character.string, "new", 3)
== 0))
{
warn_or_error ("The STATUS specified in OPEN statement at %C is "
"'%s' and no FILE specifier is present",
open->status->value.character.string);
}
/* F2003, 9.4.5: If the STATUS= specifier has the value SCRATCH,
the FILE= specifier shall not appear. */
if (strncasecmp (open->status->value.character.string, "scratch", 7)
== 0 && open->file)
{
warn_or_error ("The STATUS specified in OPEN statement at %C "
"cannot have the value SCRATCH if a FILE specifier "
"is present");
}
}
/* Things that are not allowed for unformatted I/O. */
if (open->form && open->form->expr_type == EXPR_CONSTANT
&& (open->delim
/* TODO uncomment this code when F2003 support is finished */
/* || open->decimal || open->encoding || open->round
|| open->sign */
|| open->pad || open->blank)
&& strncasecmp (open->form->value.character.string,
"unformatted", 11) == 0)
{
const char *spec = (open->delim ? "DELIM "
: (open->pad ? "PAD " : open->blank
? "BLANK " : ""));
warn_or_error ("%s specifier at %C not allowed in OPEN statement for "
"unformatted I/O", spec);
}
if (open->recl && open->access && open->access->expr_type == EXPR_CONSTANT
&& strncasecmp (open->access->value.character.string, "stream", 6) == 0)
{
warn_or_error ("RECL specifier not allowed in OPEN statement at %C for "
"stream I/O");
}
if (open->position
&& open->access && open->access->expr_type == EXPR_CONSTANT
&& !(strncasecmp (open->access->value.character.string,
"sequential", 10) == 0
|| strncasecmp (open->access->value.character.string,
"stream", 6) == 0
|| strncasecmp (open->access->value.character.string,
"append", 6) == 0))
{
warn_or_error ("POSITION specifier in OPEN statement at %C only allowed "
"for stream or sequential ACCESS");
}
#undef warn_or_error
new_st.op = EXEC_OPEN;
new_st.ext.open = open;
return MATCH_YES;
syntax:
gfc_syntax_error (ST_OPEN);
cleanup:
gfc_free_open (open);
return MATCH_ERROR;
}
/* Free a gfc_close structure an all its expressions. */
void
gfc_free_close (gfc_close *close)
{
if (close == NULL)
return;
gfc_free_expr (close->unit);
gfc_free_expr (close->iomsg);
gfc_free_expr (close->iostat);
gfc_free_expr (close->status);
gfc_free (close);
}
/* Match elements of a CLOSE statement. */
static match
match_close_element (gfc_close *close)
{
match m;
m = match_etag (&tag_unit, &close->unit);
if (m != MATCH_NO)
return m;
m = match_etag (&tag_status, &close->status);
if (m != MATCH_NO)
return m;
m = match_out_tag (&tag_iomsg, &close->iomsg);
if (m != MATCH_NO)
return m;
m = match_out_tag (&tag_iostat, &close->iostat);
if (m != MATCH_NO)
return m;
m = match_ltag (&tag_err, &close->err);
if (m != MATCH_NO)
return m;
return MATCH_NO;
}
/* Match a CLOSE statement. */
match
gfc_match_close (void)
{
gfc_close *close;
match m;
bool warn;
m = gfc_match_char ('(');
if (m == MATCH_NO)
return m;
close = gfc_getmem (sizeof (gfc_close));
m = match_close_element (close);
if (m == MATCH_ERROR)
goto cleanup;
if (m == MATCH_NO)
{
m = gfc_match_expr (&close->unit);
if (m == MATCH_NO)
goto syntax;
if (m == MATCH_ERROR)
goto cleanup;
}
for (;;)
{
if (gfc_match_char (')') == MATCH_YES)
break;
if (gfc_match_char (',') != MATCH_YES)
goto syntax;
m = match_close_element (close);
if (m == MATCH_ERROR)
goto cleanup;
if (m == MATCH_NO)
goto syntax;
}
if (gfc_match_eos () == MATCH_NO)
goto syntax;
if (gfc_pure (NULL))
{
gfc_error ("CLOSE statement not allowed in PURE procedure at %C");
goto cleanup;
}
warn = (close->iostat || close->err) ? true : false;
/* Checks on the STATUS specifier. */
if (close->status && close->status->expr_type == EXPR_CONSTANT)
{
static const char *status[] = { "KEEP", "DELETE", NULL };
if (!compare_to_allowed_values ("STATUS", status, NULL, NULL,
close->status->value.character.string,
"CLOSE", warn))
goto cleanup;
}
new_st.op = EXEC_CLOSE;
new_st.ext.close = close;
return MATCH_YES;
syntax:
gfc_syntax_error (ST_CLOSE);
cleanup:
gfc_free_close (close);
return MATCH_ERROR;
}
/* Resolve everything in a gfc_close structure. */
try
gfc_resolve_close (gfc_close *close)
{
RESOLVE_TAG (&tag_unit, close->unit);
RESOLVE_TAG (&tag_iomsg, close->iomsg);
RESOLVE_TAG (&tag_iostat, close->iostat);
RESOLVE_TAG (&tag_status, close->status);
if (gfc_reference_st_label (close->err, ST_LABEL_TARGET) == FAILURE)
return FAILURE;
return SUCCESS;
}
/* Free a gfc_filepos structure. */
void
gfc_free_filepos (gfc_filepos *fp)
{
gfc_free_expr (fp->unit);
gfc_free_expr (fp->iomsg);
gfc_free_expr (fp->iostat);
gfc_free (fp);
}
/* Match elements of a REWIND, BACKSPACE, ENDFILE, or FLUSH statement. */
static match
match_file_element (gfc_filepos *fp)
{
match m;
m = match_etag (&tag_unit, &fp->unit);
if (m != MATCH_NO)
return m;
m = match_out_tag (&tag_iomsg, &fp->iomsg);
if (m != MATCH_NO)
return m;
m = match_out_tag (&tag_iostat, &fp->iostat);
if (m != MATCH_NO)
return m;
m = match_ltag (&tag_err, &fp->err);
if (m != MATCH_NO)
return m;
return MATCH_NO;
}
/* Match the second half of the file-positioning statements, REWIND,
BACKSPACE, ENDFILE, or the FLUSH statement. */
static match
match_filepos (gfc_statement st, gfc_exec_op op)
{
gfc_filepos *fp;
match m;
fp = gfc_getmem (sizeof (gfc_filepos));
if (gfc_match_char ('(') == MATCH_NO)
{
m = gfc_match_expr (&fp->unit);
if (m == MATCH_ERROR)
goto cleanup;
if (m == MATCH_NO)
goto syntax;
goto done;
}
m = match_file_element (fp);
if (m == MATCH_ERROR)
goto done;
if (m == MATCH_NO)
{
m = gfc_match_expr (&fp->unit);
if (m == MATCH_ERROR)
goto done;
if (m == MATCH_NO)
goto syntax;
}
for (;;)
{
if (gfc_match_char (')') == MATCH_YES)
break;
if (gfc_match_char (',') != MATCH_YES)
goto syntax;
m = match_file_element (fp);
if (m == MATCH_ERROR)
goto cleanup;
if (m == MATCH_NO)
goto syntax;
}
done:
if (gfc_match_eos () != MATCH_YES)
goto syntax;
if (gfc_pure (NULL))
{
gfc_error ("%s statement not allowed in PURE procedure at %C",
gfc_ascii_statement (st));
goto cleanup;
}
new_st.op = op;
new_st.ext.filepos = fp;
return MATCH_YES;
syntax:
gfc_syntax_error (st);
cleanup:
gfc_free_filepos (fp);
return MATCH_ERROR;
}
try
gfc_resolve_filepos (gfc_filepos *fp)
{
RESOLVE_TAG (&tag_unit, fp->unit);
RESOLVE_TAG (&tag_iostat, fp->iostat);
RESOLVE_TAG (&tag_iomsg, fp->iomsg);
if (gfc_reference_st_label (fp->err, ST_LABEL_TARGET) == FAILURE)
return FAILURE;
return SUCCESS;
}
/* Match the file positioning statements: ENDFILE, BACKSPACE, REWIND,
and the FLUSH statement. */
match
gfc_match_endfile (void)
{
return match_filepos (ST_END_FILE, EXEC_ENDFILE);
}
match
gfc_match_backspace (void)
{
return match_filepos (ST_BACKSPACE, EXEC_BACKSPACE);
}
match
gfc_match_rewind (void)
{
return match_filepos (ST_REWIND, EXEC_REWIND);
}
match
gfc_match_flush (void)
{
if (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: FLUSH statement at %C")
== FAILURE)
return MATCH_ERROR;
return match_filepos (ST_FLUSH, EXEC_FLUSH);
}
/******************** Data Transfer Statements *********************/
typedef enum
{ M_READ, M_WRITE, M_PRINT, M_INQUIRE }
io_kind;
/* Return a default unit number. */
static gfc_expr *
default_unit (io_kind k)
{
int unit;
if (k == M_READ)
unit = 5;
else
unit = 6;
return gfc_int_expr (unit);
}
/* Match a unit specification for a data transfer statement. */
static match
match_dt_unit (io_kind k, gfc_dt *dt)
{
gfc_expr *e;
if (gfc_match_char ('*') == MATCH_YES)
{
if (dt->io_unit != NULL)
goto conflict;
dt->io_unit = default_unit (k);
return MATCH_YES;
}
if (gfc_match_expr (&e) == MATCH_YES)
{
if (dt->io_unit != NULL)
{
gfc_free_expr (e);
goto conflict;
}
dt->io_unit = e;
return MATCH_YES;
}
return MATCH_NO;
conflict:
gfc_error ("Duplicate UNIT specification at %C");
return MATCH_ERROR;
}
/* Match a format specification. */
static match
match_dt_format (gfc_dt *dt)
{
locus where;
gfc_expr *e;
gfc_st_label *label;
where = gfc_current_locus;
if (gfc_match_char ('*') == MATCH_YES)
{
if (dt->format_expr != NULL || dt->format_label != NULL)
goto conflict;
dt->format_label = &format_asterisk;
return MATCH_YES;
}
if (gfc_match_st_label (&label) == MATCH_YES)
{
if (dt->format_expr != NULL || dt->format_label != NULL)
{
gfc_free_st_label (label);
goto conflict;
}
if (gfc_reference_st_label (label, ST_LABEL_FORMAT) == FAILURE)
return MATCH_ERROR;
dt->format_label = label;
return MATCH_YES;
}
if (gfc_match_expr (&e) == MATCH_YES)
{
if (dt->format_expr != NULL || dt->format_label != NULL)
{
gfc_free_expr (e);
goto conflict;
}
dt->format_expr = e;
return MATCH_YES;
}
gfc_current_locus = where; /* The only case where we have to restore */
return MATCH_NO;
conflict:
gfc_error ("Duplicate format specification at %C");
return MATCH_ERROR;
}
/* Traverse a namelist that is part of a READ statement to make sure
that none of the variables in the namelist are INTENT(IN). Returns
nonzero if we find such a variable. */
static int
check_namelist (gfc_symbol *sym)
{
gfc_namelist *p;
for (p = sym->namelist; p; p = p->next)
if (p->sym->attr.intent == INTENT_IN)
{
gfc_error ("Symbol '%s' in namelist '%s' is INTENT(IN) at %C",
p->sym->name, sym->name);
return 1;
}
return 0;
}
/* Match a single data transfer element. */
static match
match_dt_element (io_kind k, gfc_dt *dt)
{
char name[GFC_MAX_SYMBOL_LEN + 1];
gfc_symbol *sym;
match m;
if (gfc_match (" unit =") == MATCH_YES)
{
m = match_dt_unit (k, dt);
if (m != MATCH_NO)
return m;
}
if (gfc_match (" fmt =") == MATCH_YES)
{
m = match_dt_format (dt);
if (m != MATCH_NO)
return m;
}
if (gfc_match (" nml = %n", name) == MATCH_YES)
{
if (dt->namelist != NULL)
{
gfc_error ("Duplicate NML specification at %C");
return MATCH_ERROR;
}
if (gfc_find_symbol (name, NULL, 1, &sym))
return MATCH_ERROR;
if (sym == NULL || sym->attr.flavor != FL_NAMELIST)
{
gfc_error ("Symbol '%s' at %C must be a NAMELIST group name",
sym != NULL ? sym->name : name);
return MATCH_ERROR;
}
dt->namelist = sym;
if (k == M_READ && check_namelist (sym))
return MATCH_ERROR;
return MATCH_YES;
}
m = match_etag (&tag_rec, &dt->rec);
if (m != MATCH_NO)
return m;
m = match_etag (&tag_spos, &dt->rec);
if (m != MATCH_NO)
return m;
m = match_out_tag (&tag_iomsg, &dt->iomsg);
if (m != MATCH_NO)
return m;
m = match_out_tag (&tag_iostat, &dt->iostat);
if (m != MATCH_NO)
return m;
m = match_ltag (&tag_err, &dt->err);
if (m == MATCH_YES)
dt->err_where = gfc_current_locus;
if (m != MATCH_NO)
return m;
m = match_etag (&tag_advance, &dt->advance);
if (m != MATCH_NO)
return m;
m = match_out_tag (&tag_size, &dt->size);
if (m != MATCH_NO)
return m;
m = match_ltag (&tag_end, &dt->end);
if (m == MATCH_YES)
{
if (k == M_WRITE)
{
gfc_error ("END tag at %C not allowed in output statement");
return MATCH_ERROR;
}
dt->end_where = gfc_current_locus;
}
if (m != MATCH_NO)
return m;
m = match_ltag (&tag_eor, &dt->eor);
if (m == MATCH_YES)
dt->eor_where = gfc_current_locus;
if (m != MATCH_NO)
return m;
return MATCH_NO;
}
/* Free a data transfer structure and everything below it. */
void
gfc_free_dt (gfc_dt *dt)
{
if (dt == NULL)
return;
gfc_free_expr (dt->io_unit);
gfc_free_expr (dt->format_expr);
gfc_free_expr (dt->rec);
gfc_free_expr (dt->advance);
gfc_free_expr (dt->iomsg);
gfc_free_expr (dt->iostat);
gfc_free_expr (dt->size);
gfc_free (dt);
}
/* Resolve everything in a gfc_dt structure. */
try
gfc_resolve_dt (gfc_dt *dt)
{
gfc_expr *e;
RESOLVE_TAG (&tag_format, dt->format_expr);
RESOLVE_TAG (&tag_rec, dt->rec);
RESOLVE_TAG (&tag_spos, dt->rec);
RESOLVE_TAG (&tag_advance, dt->advance);
RESOLVE_TAG (&tag_iomsg, dt->iomsg);
RESOLVE_TAG (&tag_iostat, dt->iostat);
RESOLVE_TAG (&tag_size, dt->size);
e = dt->io_unit;
if (gfc_resolve_expr (e) == SUCCESS
&& (e->ts.type != BT_INTEGER
&& (e->ts.type != BT_CHARACTER || e->expr_type != EXPR_VARIABLE)))
{
gfc_error ("UNIT specification at %L must be an INTEGER expression "
"or a CHARACTER variable", &e->where);
return FAILURE;
}
if (e->ts.type == BT_CHARACTER)
{
if (gfc_has_vector_index (e))
{
gfc_error ("Internal unit with vector subscript at %L", &e->where);
return FAILURE;
}
}
if (e->rank && e->ts.type != BT_CHARACTER)
{
gfc_error ("External IO UNIT cannot be an array at %L", &e->where);
return FAILURE;
}
if (dt->err)
{
if (gfc_reference_st_label (dt->err, ST_LABEL_TARGET) == FAILURE)
return FAILURE;
if (dt->err->defined == ST_LABEL_UNKNOWN)
{
gfc_error ("ERR tag label %d at %L not defined",
dt->err->value, &dt->err_where);
return FAILURE;
}
}
if (dt->end)
{
if (gfc_reference_st_label (dt->end, ST_LABEL_TARGET) == FAILURE)
return FAILURE;
if (dt->end->defined == ST_LABEL_UNKNOWN)
{
gfc_error ("END tag label %d at %L not defined",
dt->end->value, &dt->end_where);
return FAILURE;
}
}
if (dt->eor)
{
if (gfc_reference_st_label (dt->eor, ST_LABEL_TARGET) == FAILURE)
return FAILURE;
if (dt->eor->defined == ST_LABEL_UNKNOWN)
{
gfc_error ("EOR tag label %d at %L not defined",
dt->eor->value, &dt->eor_where);
return FAILURE;
}
}
/* Check the format label actually exists. */
if (dt->format_label && dt->format_label != &format_asterisk
&& dt->format_label->defined == ST_LABEL_UNKNOWN)
{
gfc_error ("FORMAT label %d at %L not defined", dt->format_label->value,
&dt->format_label->where);
return FAILURE;
}
return SUCCESS;
}
/* Given an io_kind, return its name. */
static const char *
io_kind_name (io_kind k)
{
const char *name;
switch (k)
{
case M_READ:
name = "READ";
break;
case M_WRITE:
name = "WRITE";
break;
case M_PRINT:
name = "PRINT";
break;
case M_INQUIRE:
name = "INQUIRE";
break;
default:
gfc_internal_error ("io_kind_name(): bad I/O-kind");
}
return name;
}
/* Match an IO iteration statement of the form:
( [ ,] , I = , [, ] )
which is equivalent to a single IO element. This function is
mutually recursive with match_io_element(). */
static match match_io_element (io_kind, gfc_code **);
static match
match_io_iterator (io_kind k, gfc_code **result)
{
gfc_code *head, *tail, *new;
gfc_iterator *iter;
locus old_loc;
match m;
int n;
iter = NULL;
head = NULL;
old_loc = gfc_current_locus;
if (gfc_match_char ('(') != MATCH_YES)
return MATCH_NO;
m = match_io_element (k, &head);
tail = head;
if (m != MATCH_YES || gfc_match_char (',') != MATCH_YES)
{
m = MATCH_NO;
goto cleanup;
}
/* Can't be anything but an IO iterator. Build a list. */
iter = gfc_get_iterator ();
for (n = 1;; n++)
{
m = gfc_match_iterator (iter, 0);
if (m == MATCH_ERROR)
goto cleanup;
if (m == MATCH_YES)
{
gfc_check_do_variable (iter->var->symtree);
break;
}
m = match_io_element (k, &new);
if (m == MATCH_ERROR)
goto cleanup;
if (m == MATCH_NO)
{
if (n > 2)
goto syntax;
goto cleanup;
}
tail = gfc_append_code (tail, new);
if (gfc_match_char (',') != MATCH_YES)
{
if (n > 2)
goto syntax;
m = MATCH_NO;
goto cleanup;
}
}
if (gfc_match_char (')') != MATCH_YES)
goto syntax;
new = gfc_get_code ();
new->op = EXEC_DO;
new->ext.iterator = iter;
new->block = gfc_get_code ();
new->block->op = EXEC_DO;
new->block->next = head;
*result = new;
return MATCH_YES;
syntax:
gfc_error ("Syntax error in I/O iterator at %C");
m = MATCH_ERROR;
cleanup:
gfc_free_iterator (iter, 1);
gfc_free_statements (head);
gfc_current_locus = old_loc;
return m;
}
/* Match a single element of an IO list, which is either a single
expression or an IO Iterator. */
static match
match_io_element (io_kind k, gfc_code **cpp)
{
gfc_expr *expr;
gfc_code *cp;
match m;
expr = NULL;
m = match_io_iterator (k, cpp);
if (m == MATCH_YES)
return MATCH_YES;
if (k == M_READ)
{
m = gfc_match_variable (&expr, 0);
if (m == MATCH_NO)
gfc_error ("Expected variable in READ statement at %C");
}
else
{
m = gfc_match_expr (&expr);
if (m == MATCH_NO)
gfc_error ("Expected expression in %s statement at %C",
io_kind_name (k));
}
if (m == MATCH_YES)
switch (k)
{
case M_READ:
if (expr->symtree->n.sym->attr.intent == INTENT_IN)
{
gfc_error ("Variable '%s' in input list at %C cannot be "
"INTENT(IN)", expr->symtree->n.sym->name);
m = MATCH_ERROR;
}
if (gfc_pure (NULL)
&& gfc_impure_variable (expr->symtree->n.sym)
&& current_dt->io_unit->ts.type == BT_CHARACTER)
{
gfc_error ("Cannot read to variable '%s' in PURE procedure at %C",
expr->symtree->n.sym->name);
m = MATCH_ERROR;
}
if (gfc_check_do_variable (expr->symtree))
m = MATCH_ERROR;
break;
case M_WRITE:
if (current_dt->io_unit->ts.type == BT_CHARACTER
&& gfc_pure (NULL)
&& current_dt->io_unit->expr_type == EXPR_VARIABLE
&& gfc_impure_variable (current_dt->io_unit->symtree->n.sym))
{
gfc_error ("Cannot write to internal file unit '%s' at %C "
"inside a PURE procedure",
current_dt->io_unit->symtree->n.sym->name);
m = MATCH_ERROR;
}
break;
default:
break;
}
if (m != MATCH_YES)
{
gfc_free_expr (expr);
return MATCH_ERROR;
}
cp = gfc_get_code ();
cp->op = EXEC_TRANSFER;
cp->expr = expr;
*cpp = cp;
return MATCH_YES;
}
/* Match an I/O list, building gfc_code structures as we go. */
static match
match_io_list (io_kind k, gfc_code **head_p)
{
gfc_code *head, *tail, *new;
match m;
*head_p = head = tail = NULL;
if (gfc_match_eos () == MATCH_YES)
return MATCH_YES;
for (;;)
{
m = match_io_element (k, &new);
if (m == MATCH_ERROR)
goto cleanup;
if (m == MATCH_NO)
goto syntax;
tail = gfc_append_code (tail, new);
if (head == NULL)
head = new;
if (gfc_match_eos () == MATCH_YES)
break;
if (gfc_match_char (',') != MATCH_YES)
goto syntax;
}
*head_p = head;
return MATCH_YES;
syntax:
gfc_error ("Syntax error in %s statement at %C", io_kind_name (k));
cleanup:
gfc_free_statements (head);
return MATCH_ERROR;
}
/* Attach the data transfer end node. */
static void
terminate_io (gfc_code *io_code)
{
gfc_code *c;
if (io_code == NULL)
io_code = new_st.block;
c = gfc_get_code ();
c->op = EXEC_DT_END;
/* Point to structure that is already there */
c->ext.dt = new_st.ext.dt;
gfc_append_code (io_code, c);
}
/* Check the constraints for a data transfer statement. The majority of the
constraints appearing in 9.4 of the standard appear here. Some are handled
in resolve_tag and others in gfc_resolve_dt. */
static match
check_io_constraints (io_kind k, gfc_dt *dt, gfc_code *io_code,
locus *spec_end)
{
#define io_constraint(condition,msg,arg)\
if (condition) \
{\
gfc_error(msg,arg);\
m = MATCH_ERROR;\
}
match m;
gfc_expr *expr;
gfc_symbol *sym = NULL;
m = MATCH_YES;
expr = dt->io_unit;
if (expr && expr->expr_type == EXPR_VARIABLE
&& expr->ts.type == BT_CHARACTER)
{
sym = expr->symtree->n.sym;
io_constraint (k == M_WRITE && sym->attr.intent == INTENT_IN,
"Internal file at %L must not be INTENT(IN)",
&expr->where);
io_constraint (gfc_has_vector_index (dt->io_unit),
"Internal file incompatible with vector subscript at %L",
&expr->where);
io_constraint (dt->rec != NULL,
"REC tag at %L is incompatible with internal file",
&dt->rec->where);
if (dt->namelist != NULL)
{
if (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: Internal file "
"at %L with namelist", &expr->where)
== FAILURE)
m = MATCH_ERROR;
}
io_constraint (dt->advance != NULL,
"ADVANCE tag at %L is incompatible with internal file",
&dt->advance->where);
}
if (expr && expr->ts.type != BT_CHARACTER)
{
io_constraint (gfc_pure (NULL) && (k == M_READ || k == M_WRITE),
"IO UNIT in %s statement at %C must be "
"an internal file in a PURE procedure",
io_kind_name (k));
}
if (k != M_READ)
{
io_constraint (dt->end, "END tag not allowed with output at %L",
&dt->end_where);
io_constraint (dt->eor, "EOR tag not allowed with output at %L",
&dt->eor_where);
io_constraint (k != M_READ && dt->size,
"SIZE=specifier not allowed with output at %L",
&dt->size->where);
}
else
{
io_constraint (dt->size && dt->advance == NULL,
"SIZE tag at %L requires an ADVANCE tag",
&dt->size->where);
io_constraint (dt->eor && dt->advance == NULL,
"EOR tag at %L requires an ADVANCE tag",
&dt->eor_where);
}
if (dt->namelist)
{
io_constraint (io_code && dt->namelist,
"NAMELIST cannot be followed by IO-list at %L",
&io_code->loc);
io_constraint (dt->format_expr,
"IO spec-list cannot contain both NAMELIST group name "
"and format specification at %L.",
&dt->format_expr->where);
io_constraint (dt->format_label,
"IO spec-list cannot contain both NAMELIST group name "
"and format label at %L", spec_end);
io_constraint (dt->rec,
"NAMELIST IO is not allowed with a REC=specifier "
"at %L.", &dt->rec->where);
io_constraint (dt->advance,
"NAMELIST IO is not allowed with a ADVANCE=specifier "
"at %L.", &dt->advance->where);
}
if (dt->rec)
{
io_constraint (dt->end,
"An END tag is not allowed with a "
"REC=specifier at %L.", &dt->end_where);
io_constraint (dt->format_label == &format_asterisk,
"FMT=* is not allowed with a REC=specifier "
"at %L.", spec_end);
}
if (dt->advance)
{
int not_yes, not_no;
expr = dt->advance;
io_constraint (dt->format_label == &format_asterisk,
"List directed format(*) is not allowed with a "
"ADVANCE=specifier at %L.", &expr->where);
io_constraint (dt->format_expr == NULL && dt->format_label == NULL
&& dt->namelist == NULL,
"the ADVANCE=specifier at %L must appear with an "
"explicit format expression", &expr->where);
if (expr->expr_type == EXPR_CONSTANT && expr->ts.type == BT_CHARACTER)
{
const char * advance = expr->value.character.string;
not_no = strcasecmp (advance, "no") != 0;
not_yes = strcasecmp (advance, "yes") != 0;
}
else
{
not_no = 0;
not_yes = 0;
}
io_constraint (not_no && not_yes,
"ADVANCE=specifier at %L must have value = "
"YES or NO.", &expr->where);
io_constraint (dt->size && not_no && k == M_READ,
"SIZE tag at %L requires an ADVANCE = 'NO'",
&dt->size->where);
io_constraint (dt->eor && not_no && k == M_READ,
"EOR tag at %L requires an ADVANCE = 'NO'",
&dt->eor_where);
}
expr = dt->format_expr;
if (expr != NULL && expr->expr_type == EXPR_CONSTANT
&& check_format_string (expr, k == M_READ) == FAILURE)
return MATCH_ERROR;
return m;
}
#undef io_constraint
/* Match a READ, WRITE or PRINT statement. */
static match
match_io (io_kind k)
{
char name[GFC_MAX_SYMBOL_LEN + 1];
gfc_code *io_code;
gfc_symbol *sym;
int comma_flag, c;
locus where;
locus spec_end;
gfc_dt *dt;
match m;
where = gfc_current_locus;
comma_flag = 0;
current_dt = dt = gfc_getmem (sizeof (gfc_dt));
m = gfc_match_char ('(');
if (m == MATCH_NO)
{
where = gfc_current_locus;
if (k == M_WRITE)
goto syntax;
else if (k == M_PRINT)
{
/* Treat the non-standard case of PRINT namelist. */
if ((gfc_current_form == FORM_FIXED || gfc_peek_char () == ' ')
&& gfc_match_name (name) == MATCH_YES)
{
gfc_find_symbol (name, NULL, 1, &sym);
if (sym && sym->attr.flavor == FL_NAMELIST)
{
if (gfc_notify_std (GFC_STD_GNU, "PRINT namelist at "
"%C is an extension") == FAILURE)
{
m = MATCH_ERROR;
goto cleanup;
}
dt->io_unit = default_unit (k);
dt->namelist = sym;
goto get_io_list;
}
else
gfc_current_locus = where;
}
}
if (gfc_current_form == FORM_FREE)
{
c = gfc_peek_char();
if (c != ' ' && c != '*' && c != '\'' && c != '"')
{
m = MATCH_NO;
goto cleanup;
}
}
m = match_dt_format (dt);
if (m == MATCH_ERROR)
goto cleanup;
if (m == MATCH_NO)
goto syntax;
comma_flag = 1;
dt->io_unit = default_unit (k);
goto get_io_list;
}
else
{
/* Before issuing an error for a malformed 'print (1,*)' type of
error, check for a default-char-expr of the form ('(I0)'). */
if (k == M_PRINT && m == MATCH_YES)
{
/* Reset current locus to get the initial '(' in an expression. */
gfc_current_locus = where;
dt->format_expr = NULL;
m = match_dt_format (dt);
if (m == MATCH_ERROR)
goto cleanup;
if (m == MATCH_NO || dt->format_expr == NULL)
goto syntax;
comma_flag = 1;
dt->io_unit = default_unit (k);
goto get_io_list;
}
}
/* Match a control list */
if (match_dt_element (k, dt) == MATCH_YES)
goto next;
if (match_dt_unit (k, dt) != MATCH_YES)
goto loop;
if (gfc_match_char (')') == MATCH_YES)
goto get_io_list;
if (gfc_match_char (',') != MATCH_YES)
goto syntax;
m = match_dt_element (k, dt);
if (m == MATCH_YES)
goto next;
if (m == MATCH_ERROR)
goto cleanup;
m = match_dt_format (dt);
if (m == MATCH_YES)
goto next;
if (m == MATCH_ERROR)
goto cleanup;
where = gfc_current_locus;
m = gfc_match_name (name);
if (m == MATCH_YES)
{
gfc_find_symbol (name, NULL, 1, &sym);
if (sym && sym->attr.flavor == FL_NAMELIST)
{
dt->namelist = sym;
if (k == M_READ && check_namelist (sym))
{
m = MATCH_ERROR;
goto cleanup;
}
goto next;
}
}
gfc_current_locus = where;
goto loop; /* No matches, try regular elements */
next:
if (gfc_match_char (')') == MATCH_YES)
goto get_io_list;
if (gfc_match_char (',') != MATCH_YES)
goto syntax;
loop:
for (;;)
{
m = match_dt_element (k, dt);
if (m == MATCH_NO)
goto syntax;
if (m == MATCH_ERROR)
goto cleanup;
if (gfc_match_char (')') == MATCH_YES)
break;
if (gfc_match_char (',') != MATCH_YES)
goto syntax;
}
get_io_list:
/* Used in check_io_constraints, where no locus is available. */
spec_end = gfc_current_locus;
/* Optional leading comma (non-standard). */
if (!comma_flag
&& gfc_match_char (',') == MATCH_YES
&& k == M_WRITE
&& gfc_notify_std (GFC_STD_GNU, "Extension: Comma before output "
"item list at %C is an extension") == FAILURE)
return MATCH_ERROR;
io_code = NULL;
if (gfc_match_eos () != MATCH_YES)
{
if (comma_flag && gfc_match_char (',') != MATCH_YES)
{
gfc_error ("Expected comma in I/O list at %C");
m = MATCH_ERROR;
goto cleanup;
}
m = match_io_list (k, &io_code);
if (m == MATCH_ERROR)
goto cleanup;
if (m == MATCH_NO)
goto syntax;
}
/* A full IO statement has been matched. Check the constraints. spec_end is
supplied for cases where no locus is supplied. */
m = check_io_constraints (k, dt, io_code, &spec_end);
if (m == MATCH_ERROR)
goto cleanup;
new_st.op = (k == M_READ) ? EXEC_READ : EXEC_WRITE;
new_st.ext.dt = dt;
new_st.block = gfc_get_code ();
new_st.block->op = new_st.op;
new_st.block->next = io_code;
terminate_io (io_code);
return MATCH_YES;
syntax:
gfc_error ("Syntax error in %s statement at %C", io_kind_name (k));
m = MATCH_ERROR;
cleanup:
gfc_free_dt (dt);
return m;
}
match
gfc_match_read (void)
{
return match_io (M_READ);
}
match
gfc_match_write (void)
{
return match_io (M_WRITE);
}
match
gfc_match_print (void)
{
match m;
m = match_io (M_PRINT);
if (m != MATCH_YES)
return m;
if (gfc_pure (NULL))
{
gfc_error ("PRINT statement at %C not allowed within PURE procedure");
return MATCH_ERROR;
}
return MATCH_YES;
}
/* Free a gfc_inquire structure. */
void
gfc_free_inquire (gfc_inquire *inquire)
{
if (inquire == NULL)
return;
gfc_free_expr (inquire->unit);
gfc_free_expr (inquire->file);
gfc_free_expr (inquire->iomsg);
gfc_free_expr (inquire->iostat);
gfc_free_expr (inquire->exist);
gfc_free_expr (inquire->opened);
gfc_free_expr (inquire->number);
gfc_free_expr (inquire->named);
gfc_free_expr (inquire->name);
gfc_free_expr (inquire->access);
gfc_free_expr (inquire->sequential);
gfc_free_expr (inquire->direct);
gfc_free_expr (inquire->form);
gfc_free_expr (inquire->formatted);
gfc_free_expr (inquire->unformatted);
gfc_free_expr (inquire->recl);
gfc_free_expr (inquire->nextrec);
gfc_free_expr (inquire->blank);
gfc_free_expr (inquire->position);
gfc_free_expr (inquire->action);
gfc_free_expr (inquire->read);
gfc_free_expr (inquire->write);
gfc_free_expr (inquire->readwrite);
gfc_free_expr (inquire->delim);
gfc_free_expr (inquire->pad);
gfc_free_expr (inquire->iolength);
gfc_free_expr (inquire->convert);
gfc_free_expr (inquire->strm_pos);
gfc_free (inquire);
}
/* Match an element of an INQUIRE statement. */
#define RETM if (m != MATCH_NO) return m;
static match
match_inquire_element (gfc_inquire *inquire)
{
match m;
m = match_etag (&tag_unit, &inquire->unit);
RETM m = match_etag (&tag_file, &inquire->file);
RETM m = match_ltag (&tag_err, &inquire->err);
RETM m = match_out_tag (&tag_iomsg, &inquire->iomsg);
RETM m = match_out_tag (&tag_iostat, &inquire->iostat);
RETM m = match_vtag (&tag_exist, &inquire->exist);
RETM m = match_vtag (&tag_opened, &inquire->opened);
RETM m = match_vtag (&tag_named, &inquire->named);
RETM m = match_vtag (&tag_name, &inquire->name);
RETM m = match_out_tag (&tag_number, &inquire->number);
RETM m = match_vtag (&tag_s_access, &inquire->access);
RETM m = match_vtag (&tag_sequential, &inquire->sequential);
RETM m = match_vtag (&tag_direct, &inquire->direct);
RETM m = match_vtag (&tag_s_form, &inquire->form);
RETM m = match_vtag (&tag_formatted, &inquire->formatted);
RETM m = match_vtag (&tag_unformatted, &inquire->unformatted);
RETM m = match_out_tag (&tag_s_recl, &inquire->recl);
RETM m = match_out_tag (&tag_nextrec, &inquire->nextrec);
RETM m = match_vtag (&tag_s_blank, &inquire->blank);
RETM m = match_vtag (&tag_s_position, &inquire->position);
RETM m = match_vtag (&tag_s_action, &inquire->action);
RETM m = match_vtag (&tag_read, &inquire->read);
RETM m = match_vtag (&tag_write, &inquire->write);
RETM m = match_vtag (&tag_readwrite, &inquire->readwrite);
RETM m = match_vtag (&tag_s_delim, &inquire->delim);
RETM m = match_vtag (&tag_s_pad, &inquire->pad);
RETM m = match_vtag (&tag_iolength, &inquire->iolength);
RETM m = match_vtag (&tag_convert, &inquire->convert);
RETM m = match_out_tag (&tag_strm_out, &inquire->strm_pos);
RETM return MATCH_NO;
}
#undef RETM
match
gfc_match_inquire (void)
{
gfc_inquire *inquire;
gfc_code *code;
match m;
locus loc;
m = gfc_match_char ('(');
if (m == MATCH_NO)
return m;
inquire = gfc_getmem (sizeof (gfc_inquire));
loc = gfc_current_locus;
m = match_inquire_element (inquire);
if (m == MATCH_ERROR)
goto cleanup;
if (m == MATCH_NO)
{
m = gfc_match_expr (&inquire->unit);
if (m == MATCH_ERROR)
goto cleanup;
if (m == MATCH_NO)
goto syntax;
}
/* See if we have the IOLENGTH form of the inquire statement. */
if (inquire->iolength != NULL)
{
if (gfc_match_char (')') != MATCH_YES)
goto syntax;
m = match_io_list (M_INQUIRE, &code);
if (m == MATCH_ERROR)
goto cleanup;
if (m == MATCH_NO)
goto syntax;
new_st.op = EXEC_IOLENGTH;
new_st.expr = inquire->iolength;
new_st.ext.inquire = inquire;
if (gfc_pure (NULL))
{
gfc_free_statements (code);
gfc_error ("INQUIRE statement not allowed in PURE procedure at %C");
return MATCH_ERROR;
}
new_st.block = gfc_get_code ();
new_st.block->op = EXEC_IOLENGTH;
terminate_io (code);
new_st.block->next = code;
return MATCH_YES;
}
/* At this point, we have the non-IOLENGTH inquire statement. */
for (;;)
{
if (gfc_match_char (')') == MATCH_YES)
break;
if (gfc_match_char (',') != MATCH_YES)
goto syntax;
m = match_inquire_element (inquire);
if (m == MATCH_ERROR)
goto cleanup;
if (m == MATCH_NO)
goto syntax;
if (inquire->iolength != NULL)
{
gfc_error ("IOLENGTH tag invalid in INQUIRE statement at %C");
goto cleanup;
}
}
if (gfc_match_eos () != MATCH_YES)
goto syntax;
if (inquire->unit != NULL && inquire->file != NULL)
{
gfc_error ("INQUIRE statement at %L cannot contain both FILE and "
"UNIT specifiers", &loc);
goto cleanup;
}
if (inquire->unit == NULL && inquire->file == NULL)
{
gfc_error ("INQUIRE statement at %L requires either FILE or "
"UNIT specifier", &loc);
goto cleanup;
}
if (gfc_pure (NULL))
{
gfc_error ("INQUIRE statement not allowed in PURE procedure at %C");
goto cleanup;
}
new_st.op = EXEC_INQUIRE;
new_st.ext.inquire = inquire;
return MATCH_YES;
syntax:
gfc_syntax_error (ST_INQUIRE);
cleanup:
gfc_free_inquire (inquire);
return MATCH_ERROR;
}
/* Resolve everything in a gfc_inquire structure. */
try
gfc_resolve_inquire (gfc_inquire *inquire)
{
RESOLVE_TAG (&tag_unit, inquire->unit);
RESOLVE_TAG (&tag_file, inquire->file);
RESOLVE_TAG (&tag_iomsg, inquire->iomsg);
RESOLVE_TAG (&tag_iostat, inquire->iostat);
RESOLVE_TAG (&tag_exist, inquire->exist);
RESOLVE_TAG (&tag_opened, inquire->opened);
RESOLVE_TAG (&tag_number, inquire->number);
RESOLVE_TAG (&tag_named, inquire->named);
RESOLVE_TAG (&tag_name, inquire->name);
RESOLVE_TAG (&tag_s_access, inquire->access);
RESOLVE_TAG (&tag_sequential, inquire->sequential);
RESOLVE_TAG (&tag_direct, inquire->direct);
RESOLVE_TAG (&tag_s_form, inquire->form);
RESOLVE_TAG (&tag_formatted, inquire->formatted);
RESOLVE_TAG (&tag_unformatted, inquire->unformatted);
RESOLVE_TAG (&tag_s_recl, inquire->recl);
RESOLVE_TAG (&tag_nextrec, inquire->nextrec);
RESOLVE_TAG (&tag_s_blank, inquire->blank);
RESOLVE_TAG (&tag_s_position, inquire->position);
RESOLVE_TAG (&tag_s_action, inquire->action);
RESOLVE_TAG (&tag_read, inquire->read);
RESOLVE_TAG (&tag_write, inquire->write);
RESOLVE_TAG (&tag_readwrite, inquire->readwrite);
RESOLVE_TAG (&tag_s_delim, inquire->delim);
RESOLVE_TAG (&tag_s_pad, inquire->pad);
RESOLVE_TAG (&tag_iolength, inquire->iolength);
RESOLVE_TAG (&tag_convert, inquire->convert);
RESOLVE_TAG (&tag_strm_out, inquire->strm_pos);
if (gfc_reference_st_label (inquire->err, ST_LABEL_TARGET) == FAILURE)
return FAILURE;
return SUCCESS;
}