/* Pass manager for Fortran front end.
Copyright (C) 2010 Free Software Foundation, Inc.
Contributed by Thomas König.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
#include "config.h"
#include "system.h"
#include "gfortran.h"
#include "arith.h"
#include "flags.h"
#include "dependency.h"
#include "constructor.h"
#include "opts.h"
/* Forward declarations. */
static void strip_function_call (gfc_expr *);
static void optimize_namespace (gfc_namespace *);
static void optimize_assignment (gfc_code *);
static bool optimize_op (gfc_expr *);
static bool optimize_comparison (gfc_expr *, gfc_intrinsic_op);
static bool optimize_trim (gfc_expr *);
/* How deep we are inside an argument list. */
static int count_arglist;
/* Pointer to an array of gfc_expr ** we operate on, plus its size
and counter. */
static gfc_expr ***expr_array;
static int expr_size, expr_count;
/* Pointer to the gfc_code we currently work on - to be able to insert
a statement before. */
static gfc_code **current_code;
/* The namespace we are currently dealing with. */
gfc_namespace *current_ns;
/* Entry point - run all passes for a namespace. So far, only an
optimization pass is run. */
void
gfc_run_passes (gfc_namespace *ns)
{
if (optimize)
{
expr_size = 20;
expr_array = XNEWVEC(gfc_expr **, expr_size);
optimize_namespace (ns);
if (gfc_option.dump_fortran_optimized)
gfc_dump_parse_tree (ns, stdout);
/* FIXME: The following should be XDELETEVEC(expr_array);
but we cannot do that because it depends on free. */
gfc_free (expr_array);
}
}
/* Callback for each gfc_code node invoked through gfc_code_walker
from optimize_namespace. */
static int
optimize_code (gfc_code **c, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
gfc_exec_op op;
op = (*c)->op;
if (op == EXEC_CALL || op == EXEC_COMPCALL || op == EXEC_ASSIGN_CALL
|| op == EXEC_CALL_PPC)
count_arglist = 1;
else
count_arglist = 0;
if (op == EXEC_ASSIGN)
optimize_assignment (*c);
return 0;
}
/* Callback for each gfc_expr node invoked through gfc_code_walker
from optimize_namespace. */
static int
optimize_expr (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
bool function_expr;
if ((*e)->expr_type == EXPR_FUNCTION)
{
count_arglist ++;
function_expr = true;
}
else
function_expr = false;
if (optimize_trim (*e))
gfc_simplify_expr (*e, 0);
if ((*e)->expr_type == EXPR_OP && optimize_op (*e))
gfc_simplify_expr (*e, 0);
if (function_expr)
count_arglist --;
return 0;
}
/* Callback function for common function elimination, called from cfe_expr_0.
Put all eligible function expressions into expr_array. We can't do
allocatable functions. */
static int
cfe_register_funcs (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
if ((*e)->expr_type != EXPR_FUNCTION)
return 0;
/* We don't do character functions (yet). */
if ((*e)->ts.type == BT_CHARACTER)
return 0;
/* If we don't know the shape at compile time, we do not create a temporary
variable to hold the intermediate result. FIXME: Change this later when
allocation on assignment works for intrinsics. */
if ((*e)->rank > 0 && (*e)->shape == NULL)
return 0;
/* Skip the test for pure functions if -faggressive-function-elimination
is specified. */
if ((*e)->value.function.esym)
{
if ((*e)->value.function.esym->attr.allocatable)
return 0;
/* Don't create an array temporary for elemental functions. */
if ((*e)->value.function.esym->attr.elemental && (*e)->rank > 0)
return 0;
/* Only eliminate potentially impure functions if the
user specifically requested it. */
if (!gfc_option.flag_aggressive_function_elimination
&& !(*e)->value.function.esym->attr.pure
&& !(*e)->value.function.esym->attr.implicit_pure)
return 0;
}
if ((*e)->value.function.isym)
{
/* Conversions are handled on the fly by the middle end,
transpose during trans-* stages. */
if ((*e)->value.function.isym->id == GFC_ISYM_CONVERSION
|| (*e)->value.function.isym->id == GFC_ISYM_TRANSPOSE)
return 0;
/* Don't create an array temporary for elemental functions,
as this would be wasteful of memory.
FIXME: Create a scalar temporary during scalarization. */
if ((*e)->value.function.isym->elemental && (*e)->rank > 0)
return 0;
if (!(*e)->value.function.isym->pure)
return 0;
}
if (expr_count >= expr_size)
{
expr_size += expr_size;
expr_array = XRESIZEVEC(gfc_expr **, expr_array, expr_size);
}
expr_array[expr_count] = e;
expr_count ++;
return 0;
}
/* Returns a new expression (a variable) to be used in place of the old one,
with an an assignment statement before the current statement to set
the value of the variable. */
static gfc_expr*
create_var (gfc_expr * e)
{
char name[GFC_MAX_SYMBOL_LEN +1];
static int num = 1;
gfc_symtree *symtree;
gfc_symbol *symbol;
gfc_expr *result;
gfc_code *n;
int i;
sprintf(name, "__var_%d",num++);
if (gfc_get_sym_tree (name, current_ns, &symtree, false) != 0)
gcc_unreachable ();
symbol = symtree->n.sym;
symbol->ts = e->ts;
symbol->as = gfc_get_array_spec ();
symbol->as->rank = e->rank;
symbol->as->type = AS_EXPLICIT;
for (i=0; irank; i++)
{
gfc_expr *p, *q;
p = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind,
&(e->where));
mpz_set_si (p->value.integer, 1);
symbol->as->lower[i] = p;
q = gfc_get_constant_expr (BT_INTEGER, gfc_index_integer_kind,
&(e->where));
mpz_set (q->value.integer, e->shape[i]);
symbol->as->upper[i] = q;
}
symbol->attr.flavor = FL_VARIABLE;
symbol->attr.referenced = 1;
symbol->attr.dimension = e->rank > 0;
gfc_commit_symbol (symbol);
result = gfc_get_expr ();
result->expr_type = EXPR_VARIABLE;
result->ts = e->ts;
result->rank = e->rank;
result->shape = gfc_copy_shape (e->shape, e->rank);
result->symtree = symtree;
result->where = e->where;
if (e->rank > 0)
{
result->ref = gfc_get_ref ();
result->ref->type = REF_ARRAY;
result->ref->u.ar.type = AR_FULL;
result->ref->u.ar.where = e->where;
result->ref->u.ar.as = symbol->as;
if (gfc_option.warn_array_temp)
gfc_warning ("Creating array temporary at %L", &(e->where));
}
/* Generate the new assignment. */
n = XCNEW (gfc_code);
n->op = EXEC_ASSIGN;
n->loc = (*current_code)->loc;
n->next = *current_code;
n->expr1 = gfc_copy_expr (result);
n->expr2 = e;
*current_code = n;
return result;
}
/* Callback function for the code walker for doing common function
elimination. This builds up the list of functions in the expression
and goes through them to detect duplicates, which it then replaces
by variables. */
static int
cfe_expr_0 (gfc_expr **e, int *walk_subtrees,
void *data ATTRIBUTE_UNUSED)
{
int i,j;
gfc_expr *newvar;
expr_count = 0;
gfc_expr_walker (e, cfe_register_funcs, NULL);
/* Walk backwards through all the functions to make sure we
catch the leaf functions first. */
for (i=expr_count-1; i>=1; i--)
{
/* Skip if the function has been replaced by a variable already. */
if ((*(expr_array[i]))->expr_type == EXPR_VARIABLE)
continue;
newvar = NULL;
for (j=i-1; j>=0; j--)
{
if (gfc_dep_compare_functions(*(expr_array[i]),
*(expr_array[j]), true) == 0)
{
if (newvar == NULL)
newvar = create_var (*(expr_array[i]));
gfc_free (*(expr_array[j]));
*(expr_array[j]) = gfc_copy_expr (newvar);
}
}
if (newvar)
*(expr_array[i]) = newvar;
}
/* We did all the necessary walking in this function. */
*walk_subtrees = 0;
return 0;
}
/* Callback function for common function elimination, called from
gfc_code_walker. This keeps track of the current code, in order
to insert statements as needed. */
static int
cfe_code (gfc_code **c, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
current_code = c;
return 0;
}
/* Optimize a namespace, including all contained namespaces. */
static void
optimize_namespace (gfc_namespace *ns)
{
current_ns = ns;
gfc_code_walker (&ns->code, cfe_code, cfe_expr_0, NULL);
gfc_code_walker (&ns->code, optimize_code, optimize_expr, NULL);
for (ns = ns->contained; ns; ns = ns->sibling)
optimize_namespace (ns);
}
/* Replace code like
a = matmul(b,c) + d
with
a = matmul(b,c) ; a = a + d
where the array function is not elemental and not allocatable
and does not depend on the left-hand side.
*/
static bool
optimize_binop_array_assignment (gfc_code *c, gfc_expr **rhs, bool seen_op)
{
gfc_expr *e;
e = *rhs;
if (e->expr_type == EXPR_OP)
{
switch (e->value.op.op)
{
/* Unary operators and exponentiation: Only look at a single
operand. */
case INTRINSIC_NOT:
case INTRINSIC_UPLUS:
case INTRINSIC_UMINUS:
case INTRINSIC_PARENTHESES:
case INTRINSIC_POWER:
if (optimize_binop_array_assignment (c, &e->value.op.op1, seen_op))
return true;
break;
default:
/* Binary operators. */
if (optimize_binop_array_assignment (c, &e->value.op.op1, true))
return true;
if (optimize_binop_array_assignment (c, &e->value.op.op2, true))
return true;
break;
}
}
else if (seen_op && e->expr_type == EXPR_FUNCTION && e->rank > 0
&& ! (e->value.function.esym
&& (e->value.function.esym->attr.elemental
|| e->value.function.esym->attr.allocatable
|| e->value.function.esym->ts.type != c->expr1->ts.type
|| e->value.function.esym->ts.kind != c->expr1->ts.kind))
&& ! (e->value.function.isym
&& (e->value.function.isym->elemental
|| e->ts.type != c->expr1->ts.type
|| e->ts.kind != c->expr1->ts.kind)))
{
gfc_code *n;
gfc_expr *new_expr;
/* Insert a new assignment statement after the current one. */
n = XCNEW (gfc_code);
n->op = EXEC_ASSIGN;
n->loc = c->loc;
n->next = c->next;
c->next = n;
n->expr1 = gfc_copy_expr (c->expr1);
n->expr2 = c->expr2;
new_expr = gfc_copy_expr (c->expr1);
c->expr2 = e;
*rhs = new_expr;
return true;
}
/* Nothing to optimize. */
return false;
}
/* Optimizations for an assignment. */
static void
optimize_assignment (gfc_code * c)
{
gfc_expr *lhs, *rhs;
lhs = c->expr1;
rhs = c->expr2;
/* Optimize away a = trim(b), where a is a character variable. */
if (lhs->ts.type == BT_CHARACTER)
{
if (rhs->expr_type == EXPR_FUNCTION &&
rhs->value.function.isym &&
rhs->value.function.isym->id == GFC_ISYM_TRIM)
{
strip_function_call (rhs);
optimize_assignment (c);
return;
}
}
if (lhs->rank > 0 && gfc_check_dependency (lhs, rhs, true) == 0)
optimize_binop_array_assignment (c, &rhs, false);
}
/* Remove an unneeded function call, modifying the expression.
This replaces the function call with the value of its
first argument. The rest of the argument list is freed. */
static void
strip_function_call (gfc_expr *e)
{
gfc_expr *e1;
gfc_actual_arglist *a;
a = e->value.function.actual;
/* We should have at least one argument. */
gcc_assert (a->expr != NULL);
e1 = a->expr;
/* Free the remaining arglist, if any. */
if (a->next)
gfc_free_actual_arglist (a->next);
/* Graft the argument expression onto the original function. */
*e = *e1;
gfc_free (e1);
}
/* Recursive optimization of operators. */
static bool
optimize_op (gfc_expr *e)
{
gfc_intrinsic_op op = e->value.op.op;
switch (op)
{
case INTRINSIC_EQ:
case INTRINSIC_EQ_OS:
case INTRINSIC_GE:
case INTRINSIC_GE_OS:
case INTRINSIC_LE:
case INTRINSIC_LE_OS:
case INTRINSIC_NE:
case INTRINSIC_NE_OS:
case INTRINSIC_GT:
case INTRINSIC_GT_OS:
case INTRINSIC_LT:
case INTRINSIC_LT_OS:
return optimize_comparison (e, op);
default:
break;
}
return false;
}
/* Optimize expressions for equality. */
static bool
optimize_comparison (gfc_expr *e, gfc_intrinsic_op op)
{
gfc_expr *op1, *op2;
bool change;
int eq;
bool result;
op1 = e->value.op.op1;
op2 = e->value.op.op2;
/* Strip off unneeded TRIM calls from string comparisons. */
change = false;
if (op1->expr_type == EXPR_FUNCTION
&& op1->value.function.isym
&& op1->value.function.isym->id == GFC_ISYM_TRIM)
{
strip_function_call (op1);
change = true;
}
if (op2->expr_type == EXPR_FUNCTION
&& op2->value.function.isym
&& op2->value.function.isym->id == GFC_ISYM_TRIM)
{
strip_function_call (op2);
change = true;
}
if (change)
{
optimize_comparison (e, op);
return true;
}
/* An expression of type EXPR_CONSTANT is only valid for scalars. */
/* TODO: A scalar constant may be acceptable in some cases (the scalarizer
handles them well). However, there are also cases that need a non-scalar
argument. For example the any intrinsic. See PR 45380. */
if (e->rank > 0)
return false;
/* Don't compare REAL or COMPLEX expressions when honoring NaNs. */
if (flag_finite_math_only
|| (op1->ts.type != BT_REAL && op2->ts.type != BT_REAL
&& op1->ts.type != BT_COMPLEX && op2->ts.type != BT_COMPLEX))
{
eq = gfc_dep_compare_expr (op1, op2);
if (eq == -2)
{
/* Replace A // B < A // C with B < C, and A // B < C // B
with A < C. */
if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
&& op1->value.op.op == INTRINSIC_CONCAT
&& op2->value.op.op == INTRINSIC_CONCAT)
{
gfc_expr *op1_left = op1->value.op.op1;
gfc_expr *op2_left = op2->value.op.op1;
gfc_expr *op1_right = op1->value.op.op2;
gfc_expr *op2_right = op2->value.op.op2;
if (gfc_dep_compare_expr (op1_left, op2_left) == 0)
{
/* Watch out for 'A ' // x vs. 'A' // x. */
if (op1_left->expr_type == EXPR_CONSTANT
&& op2_left->expr_type == EXPR_CONSTANT
&& op1_left->value.character.length
!= op2_left->value.character.length)
return -2;
else
{
gfc_free (op1_left);
gfc_free (op2_left);
e->value.op.op1 = op1_right;
e->value.op.op2 = op2_right;
optimize_comparison (e, op);
return true;
}
}
if (gfc_dep_compare_expr (op1_right, op2_right) == 0)
{
gfc_free (op1_right);
gfc_free (op2_right);
e->value.op.op1 = op1_left;
e->value.op.op2 = op2_left;
optimize_comparison (e, op);
return true;
}
}
}
else
{
/* eq can only be -1, 0 or 1 at this point. */
switch (op)
{
case INTRINSIC_EQ:
case INTRINSIC_EQ_OS:
result = eq == 0;
break;
case INTRINSIC_GE:
case INTRINSIC_GE_OS:
result = eq >= 0;
break;
case INTRINSIC_LE:
case INTRINSIC_LE_OS:
result = eq <= 0;
break;
case INTRINSIC_NE:
case INTRINSIC_NE_OS:
result = eq != 0;
break;
case INTRINSIC_GT:
case INTRINSIC_GT_OS:
result = eq > 0;
break;
case INTRINSIC_LT:
case INTRINSIC_LT_OS:
result = eq < 0;
break;
default:
gfc_internal_error ("illegal OP in optimize_comparison");
break;
}
/* Replace the expression by a constant expression. The typespec
and where remains the way it is. */
gfc_free (op1);
gfc_free (op2);
e->expr_type = EXPR_CONSTANT;
e->value.logical = result;
return true;
}
}
return false;
}
/* Optimize a trim function by replacing it with an equivalent substring
involving a call to len_trim. This only works for expressions where
variables are trimmed. Return true if anything was modified. */
static bool
optimize_trim (gfc_expr *e)
{
gfc_expr *a;
gfc_ref *ref;
gfc_expr *fcn;
gfc_actual_arglist *actual_arglist, *next;
gfc_ref **rr = NULL;
/* Don't do this optimization within an argument list, because
otherwise aliasing issues may occur. */
if (count_arglist != 1)
return false;
if (e->ts.type != BT_CHARACTER || e->expr_type != EXPR_FUNCTION
|| e->value.function.isym == NULL
|| e->value.function.isym->id != GFC_ISYM_TRIM)
return false;
a = e->value.function.actual->expr;
if (a->expr_type != EXPR_VARIABLE)
return false;
/* Follow all references to find the correct place to put the newly
created reference. FIXME: Also handle substring references and
array references. Array references cause strange regressions at
the moment. */
if (a->ref)
{
for (rr = &(a->ref); *rr; rr = &((*rr)->next))
{
if ((*rr)->type == REF_SUBSTRING || (*rr)->type == REF_ARRAY)
return false;
}
}
strip_function_call (e);
if (e->ref == NULL)
rr = &(e->ref);
/* Create the reference. */
ref = gfc_get_ref ();
ref->type = REF_SUBSTRING;
/* Set the start of the reference. */
ref->u.ss.start = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
/* Build the function call to len_trim(x, gfc_defaul_integer_kind). */
fcn = gfc_get_expr ();
fcn->expr_type = EXPR_FUNCTION;
fcn->value.function.isym =
gfc_intrinsic_function_by_id (GFC_ISYM_LEN_TRIM);
actual_arglist = gfc_get_actual_arglist ();
actual_arglist->expr = gfc_copy_expr (e);
next = gfc_get_actual_arglist ();
next->expr = gfc_get_int_expr (gfc_default_integer_kind, NULL,
gfc_default_integer_kind);
actual_arglist->next = next;
fcn->value.function.actual = actual_arglist;
/* Set the end of the reference to the call to len_trim. */
ref->u.ss.end = fcn;
gcc_assert (*rr == NULL);
*rr = ref;
return true;
}
#define WALK_SUBEXPR(NODE) \
do \
{ \
result = gfc_expr_walker (&(NODE), exprfn, data); \
if (result) \
return result; \
} \
while (0)
#define WALK_SUBEXPR_TAIL(NODE) e = &(NODE); continue
/* Walk expression *E, calling EXPRFN on each expression in it. */
int
gfc_expr_walker (gfc_expr **e, walk_expr_fn_t exprfn, void *data)
{
while (*e)
{
int walk_subtrees = 1;
gfc_actual_arglist *a;
gfc_ref *r;
gfc_constructor *c;
int result = exprfn (e, &walk_subtrees, data);
if (result)
return result;
if (walk_subtrees)
switch ((*e)->expr_type)
{
case EXPR_OP:
WALK_SUBEXPR ((*e)->value.op.op1);
WALK_SUBEXPR_TAIL ((*e)->value.op.op2);
break;
case EXPR_FUNCTION:
for (a = (*e)->value.function.actual; a; a = a->next)
WALK_SUBEXPR (a->expr);
break;
case EXPR_COMPCALL:
case EXPR_PPC:
WALK_SUBEXPR ((*e)->value.compcall.base_object);
for (a = (*e)->value.compcall.actual; a; a = a->next)
WALK_SUBEXPR (a->expr);
break;
case EXPR_STRUCTURE:
case EXPR_ARRAY:
for (c = gfc_constructor_first ((*e)->value.constructor); c;
c = gfc_constructor_next (c))
{
WALK_SUBEXPR (c->expr);
if (c->iterator != NULL)
{
WALK_SUBEXPR (c->iterator->var);
WALK_SUBEXPR (c->iterator->start);
WALK_SUBEXPR (c->iterator->end);
WALK_SUBEXPR (c->iterator->step);
}
}
if ((*e)->expr_type != EXPR_ARRAY)
break;
/* Fall through to the variable case in order to walk the
the reference. */
case EXPR_SUBSTRING:
case EXPR_VARIABLE:
for (r = (*e)->ref; r; r = r->next)
{
gfc_array_ref *ar;
int i;
switch (r->type)
{
case REF_ARRAY:
ar = &r->u.ar;
if (ar->type == AR_SECTION || ar->type == AR_ELEMENT)
{
for (i=0; i< ar->dimen; i++)
{
WALK_SUBEXPR (ar->start[i]);
WALK_SUBEXPR (ar->end[i]);
WALK_SUBEXPR (ar->stride[i]);
}
}
break;
case REF_SUBSTRING:
WALK_SUBEXPR (r->u.ss.start);
WALK_SUBEXPR (r->u.ss.end);
break;
case REF_COMPONENT:
break;
}
}
default:
break;
}
return 0;
}
return 0;
}
#define WALK_SUBCODE(NODE) \
do \
{ \
result = gfc_code_walker (&(NODE), codefn, exprfn, data); \
if (result) \
return result; \
} \
while (0)
/* Walk code *C, calling CODEFN on each gfc_code node in it and calling EXPRFN
on each expression in it. If any of the hooks returns non-zero, that
value is immediately returned. If the hook sets *WALK_SUBTREES to 0,
no subcodes or subexpressions are traversed. */
int
gfc_code_walker (gfc_code **c, walk_code_fn_t codefn, walk_expr_fn_t exprfn,
void *data)
{
for (; *c; c = &(*c)->next)
{
int walk_subtrees = 1;
int result = codefn (c, &walk_subtrees, data);
if (result)
return result;
if (walk_subtrees)
{
gfc_code *b;
gfc_actual_arglist *a;
switch ((*c)->op)
{
case EXEC_DO:
WALK_SUBEXPR ((*c)->ext.iterator->var);
WALK_SUBEXPR ((*c)->ext.iterator->start);
WALK_SUBEXPR ((*c)->ext.iterator->end);
WALK_SUBEXPR ((*c)->ext.iterator->step);
break;
case EXEC_CALL:
case EXEC_ASSIGN_CALL:
for (a = (*c)->ext.actual; a; a = a->next)
WALK_SUBEXPR (a->expr);
break;
case EXEC_CALL_PPC:
WALK_SUBEXPR ((*c)->expr1);
for (a = (*c)->ext.actual; a; a = a->next)
WALK_SUBEXPR (a->expr);
break;
case EXEC_SELECT:
WALK_SUBEXPR ((*c)->expr1);
for (b = (*c)->block; b; b = b->block)
{
gfc_case *cp;
for (cp = b->ext.block.case_list; cp; cp = cp->next)
{
WALK_SUBEXPR (cp->low);
WALK_SUBEXPR (cp->high);
}
WALK_SUBCODE (b->next);
}
continue;
case EXEC_ALLOCATE:
case EXEC_DEALLOCATE:
{
gfc_alloc *a;
for (a = (*c)->ext.alloc.list; a; a = a->next)
WALK_SUBEXPR (a->expr);
break;
}
case EXEC_FORALL:
{
gfc_forall_iterator *fa;
for (fa = (*c)->ext.forall_iterator; fa; fa = fa->next)
{
WALK_SUBEXPR (fa->var);
WALK_SUBEXPR (fa->start);
WALK_SUBEXPR (fa->end);
WALK_SUBEXPR (fa->stride);
}
break;
}
case EXEC_OPEN:
WALK_SUBEXPR ((*c)->ext.open->unit);
WALK_SUBEXPR ((*c)->ext.open->file);
WALK_SUBEXPR ((*c)->ext.open->status);
WALK_SUBEXPR ((*c)->ext.open->access);
WALK_SUBEXPR ((*c)->ext.open->form);
WALK_SUBEXPR ((*c)->ext.open->recl);
WALK_SUBEXPR ((*c)->ext.open->blank);
WALK_SUBEXPR ((*c)->ext.open->position);
WALK_SUBEXPR ((*c)->ext.open->action);
WALK_SUBEXPR ((*c)->ext.open->delim);
WALK_SUBEXPR ((*c)->ext.open->pad);
WALK_SUBEXPR ((*c)->ext.open->iostat);
WALK_SUBEXPR ((*c)->ext.open->iomsg);
WALK_SUBEXPR ((*c)->ext.open->convert);
WALK_SUBEXPR ((*c)->ext.open->decimal);
WALK_SUBEXPR ((*c)->ext.open->encoding);
WALK_SUBEXPR ((*c)->ext.open->round);
WALK_SUBEXPR ((*c)->ext.open->sign);
WALK_SUBEXPR ((*c)->ext.open->asynchronous);
WALK_SUBEXPR ((*c)->ext.open->id);
WALK_SUBEXPR ((*c)->ext.open->newunit);
break;
case EXEC_CLOSE:
WALK_SUBEXPR ((*c)->ext.close->unit);
WALK_SUBEXPR ((*c)->ext.close->status);
WALK_SUBEXPR ((*c)->ext.close->iostat);
WALK_SUBEXPR ((*c)->ext.close->iomsg);
break;
case EXEC_BACKSPACE:
case EXEC_ENDFILE:
case EXEC_REWIND:
case EXEC_FLUSH:
WALK_SUBEXPR ((*c)->ext.filepos->unit);
WALK_SUBEXPR ((*c)->ext.filepos->iostat);
WALK_SUBEXPR ((*c)->ext.filepos->iomsg);
break;
case EXEC_INQUIRE:
WALK_SUBEXPR ((*c)->ext.inquire->unit);
WALK_SUBEXPR ((*c)->ext.inquire->file);
WALK_SUBEXPR ((*c)->ext.inquire->iomsg);
WALK_SUBEXPR ((*c)->ext.inquire->iostat);
WALK_SUBEXPR ((*c)->ext.inquire->exist);
WALK_SUBEXPR ((*c)->ext.inquire->opened);
WALK_SUBEXPR ((*c)->ext.inquire->number);
WALK_SUBEXPR ((*c)->ext.inquire->named);
WALK_SUBEXPR ((*c)->ext.inquire->name);
WALK_SUBEXPR ((*c)->ext.inquire->access);
WALK_SUBEXPR ((*c)->ext.inquire->sequential);
WALK_SUBEXPR ((*c)->ext.inquire->direct);
WALK_SUBEXPR ((*c)->ext.inquire->form);
WALK_SUBEXPR ((*c)->ext.inquire->formatted);
WALK_SUBEXPR ((*c)->ext.inquire->unformatted);
WALK_SUBEXPR ((*c)->ext.inquire->recl);
WALK_SUBEXPR ((*c)->ext.inquire->nextrec);
WALK_SUBEXPR ((*c)->ext.inquire->blank);
WALK_SUBEXPR ((*c)->ext.inquire->position);
WALK_SUBEXPR ((*c)->ext.inquire->action);
WALK_SUBEXPR ((*c)->ext.inquire->read);
WALK_SUBEXPR ((*c)->ext.inquire->write);
WALK_SUBEXPR ((*c)->ext.inquire->readwrite);
WALK_SUBEXPR ((*c)->ext.inquire->delim);
WALK_SUBEXPR ((*c)->ext.inquire->encoding);
WALK_SUBEXPR ((*c)->ext.inquire->pad);
WALK_SUBEXPR ((*c)->ext.inquire->iolength);
WALK_SUBEXPR ((*c)->ext.inquire->convert);
WALK_SUBEXPR ((*c)->ext.inquire->strm_pos);
WALK_SUBEXPR ((*c)->ext.inquire->asynchronous);
WALK_SUBEXPR ((*c)->ext.inquire->decimal);
WALK_SUBEXPR ((*c)->ext.inquire->pending);
WALK_SUBEXPR ((*c)->ext.inquire->id);
WALK_SUBEXPR ((*c)->ext.inquire->sign);
WALK_SUBEXPR ((*c)->ext.inquire->size);
WALK_SUBEXPR ((*c)->ext.inquire->round);
break;
case EXEC_WAIT:
WALK_SUBEXPR ((*c)->ext.wait->unit);
WALK_SUBEXPR ((*c)->ext.wait->iostat);
WALK_SUBEXPR ((*c)->ext.wait->iomsg);
WALK_SUBEXPR ((*c)->ext.wait->id);
break;
case EXEC_READ:
case EXEC_WRITE:
WALK_SUBEXPR ((*c)->ext.dt->io_unit);
WALK_SUBEXPR ((*c)->ext.dt->format_expr);
WALK_SUBEXPR ((*c)->ext.dt->rec);
WALK_SUBEXPR ((*c)->ext.dt->advance);
WALK_SUBEXPR ((*c)->ext.dt->iostat);
WALK_SUBEXPR ((*c)->ext.dt->size);
WALK_SUBEXPR ((*c)->ext.dt->iomsg);
WALK_SUBEXPR ((*c)->ext.dt->id);
WALK_SUBEXPR ((*c)->ext.dt->pos);
WALK_SUBEXPR ((*c)->ext.dt->asynchronous);
WALK_SUBEXPR ((*c)->ext.dt->blank);
WALK_SUBEXPR ((*c)->ext.dt->decimal);
WALK_SUBEXPR ((*c)->ext.dt->delim);
WALK_SUBEXPR ((*c)->ext.dt->pad);
WALK_SUBEXPR ((*c)->ext.dt->round);
WALK_SUBEXPR ((*c)->ext.dt->sign);
WALK_SUBEXPR ((*c)->ext.dt->extra_comma);
break;
case EXEC_OMP_DO:
case EXEC_OMP_PARALLEL:
case EXEC_OMP_PARALLEL_DO:
case EXEC_OMP_PARALLEL_SECTIONS:
case EXEC_OMP_PARALLEL_WORKSHARE:
case EXEC_OMP_SECTIONS:
case EXEC_OMP_SINGLE:
case EXEC_OMP_WORKSHARE:
case EXEC_OMP_END_SINGLE:
case EXEC_OMP_TASK:
if ((*c)->ext.omp_clauses)
{
WALK_SUBEXPR ((*c)->ext.omp_clauses->if_expr);
WALK_SUBEXPR ((*c)->ext.omp_clauses->num_threads);
WALK_SUBEXPR ((*c)->ext.omp_clauses->chunk_size);
}
break;
default:
break;
}
WALK_SUBEXPR ((*c)->expr1);
WALK_SUBEXPR ((*c)->expr2);
WALK_SUBEXPR ((*c)->expr3);
for (b = (*c)->block; b; b = b->block)
{
WALK_SUBEXPR (b->expr1);
WALK_SUBEXPR (b->expr2);
WALK_SUBCODE (b->next);
}
}
}
return 0;
}