/* Supporting functions for resolving DATA statement. Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. Contributed by Lifang Zeng This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* Notes for DATA statement implementation: We first assign initial value to each symbol by gfc_assign_data_value during resolving DATA statement. Refer to check_data_variable and traverse_data_list in resolve.c. The complexity exists in the handling of array section, implied do and array of struct appeared in DATA statement. We call gfc_conv_structure, gfc_con_array_array_initializer, etc., to convert the initial value. Refer to trans-expr.c and trans-array.c. */ #include "config.h" #include "gfortran.h" #include "data.h" static void formalize_init_expr (gfc_expr *); /* Calculate the array element offset. */ static void get_array_index (gfc_array_ref *ar, mpz_t *offset) { gfc_expr *e; int i; mpz_t delta; mpz_t tmp; mpz_init (tmp); mpz_set_si (*offset, 0); mpz_init_set_si (delta, 1); for (i = 0; i < ar->dimen; i++) { e = gfc_copy_expr (ar->start[i]); gfc_simplify_expr (e, 1); if ((gfc_is_constant_expr (ar->as->lower[i]) == 0) || (gfc_is_constant_expr (ar->as->upper[i]) == 0) || (gfc_is_constant_expr (e) == 0)) gfc_error ("non-constant array in DATA statement %L", &ar->where); mpz_set (tmp, e->value.integer); mpz_sub (tmp, tmp, ar->as->lower[i]->value.integer); mpz_mul (tmp, tmp, delta); mpz_add (*offset, tmp, *offset); mpz_sub (tmp, ar->as->upper[i]->value.integer, ar->as->lower[i]->value.integer); mpz_add_ui (tmp, tmp, 1); mpz_mul (delta, tmp, delta); } mpz_clear (delta); mpz_clear (tmp); } /* Find if there is a constructor which offset is equal to OFFSET. */ static gfc_constructor * find_con_by_offset (splay_tree spt, mpz_t offset) { mpz_t tmp; gfc_constructor *ret = NULL; gfc_constructor *con; splay_tree_node sptn; /* The complexity is due to needing quick access to the linked list of constructors. Both a linked list and a splay tree are used, and both are kept up to date if they are array elements (which is the only time that a specific constructor has to be found). */ gcc_assert (spt != NULL); mpz_init (tmp); sptn = splay_tree_lookup (spt, (splay_tree_key) mpz_get_si (offset)); if (sptn) ret = (gfc_constructor*) sptn->value; else { /* Need to check and see if we match a range, so we will pull the next lowest index and see if the range matches. */ sptn = splay_tree_predecessor (spt, (splay_tree_key) mpz_get_si (offset)); if (sptn) { con = (gfc_constructor*) sptn->value; if (mpz_cmp_ui (con->repeat, 1) > 0) { mpz_init (tmp); mpz_add (tmp, con->n.offset, con->repeat); if (mpz_cmp (offset, tmp) < 0) ret = con; mpz_clear (tmp); } else ret = NULL; /* The range did not match. */ } else ret = NULL; /* No pred, so no match. */ } return ret; } /* Find if there is a constructor which component is equal to COM. */ static gfc_constructor * find_con_by_component (gfc_component *com, gfc_constructor *con) { for (; con; con = con->next) { if (com == con->n.component) return con; } return NULL; } /* Create a character type initialization expression from RVALUE. TS [and REF] describe [the substring of] the variable being initialized. INIT is the existing initializer, not NULL. Initialization is performed according to normal assignment rules. */ static gfc_expr * create_character_intializer (gfc_expr *init, gfc_typespec *ts, gfc_ref *ref, gfc_expr *rvalue) { int len, start, end; gfc_char_t *dest; gfc_extract_int (ts->u.cl->length, &len); if (init == NULL) { /* Create a new initializer. */ init = gfc_get_expr (); init->expr_type = EXPR_CONSTANT; init->ts = *ts; dest = gfc_get_wide_string (len + 1); dest[len] = '\0'; init->value.character.length = len; init->value.character.string = dest; /* Blank the string if we're only setting a substring. */ if (ref != NULL) gfc_wide_memset (dest, ' ', len); } else dest = init->value.character.string; if (ref) { gfc_expr *start_expr, *end_expr; gcc_assert (ref->type == REF_SUBSTRING); /* Only set a substring of the destination. Fortran substring bounds are one-based [start, end], we want zero based [start, end). */ start_expr = gfc_copy_expr (ref->u.ss.start); end_expr = gfc_copy_expr (ref->u.ss.end); if ((gfc_simplify_expr (start_expr, 1) == FAILURE) || (gfc_simplify_expr (end_expr, 1)) == FAILURE) { gfc_error ("failure to simplify substring reference in DATA " "statement at %L", &ref->u.ss.start->where); return NULL; } gfc_extract_int (start_expr, &start); start--; gfc_extract_int (end_expr, &end); } else { /* Set the whole string. */ start = 0; end = len; } /* Copy the initial value. */ if (rvalue->ts.type == BT_HOLLERITH) len = rvalue->representation.length; else len = rvalue->value.character.length; if (len > end - start) { len = end - start; gfc_warning_now ("initialization string truncated to match variable " "at %L", &rvalue->where); } if (rvalue->ts.type == BT_HOLLERITH) { int i; for (i = 0; i < len; i++) dest[start+i] = rvalue->representation.string[i]; } else memcpy (&dest[start], rvalue->value.character.string, len * sizeof (gfc_char_t)); /* Pad with spaces. Substrings will already be blanked. */ if (len < end - start && ref == NULL) gfc_wide_memset (&dest[start + len], ' ', end - (start + len)); if (rvalue->ts.type == BT_HOLLERITH) { init->representation.length = init->value.character.length; init->representation.string = gfc_widechar_to_char (init->value.character.string, init->value.character.length); } return init; } /* Assign the initial value RVALUE to LVALUE's symbol->value. If the LVALUE already has an initialization, we extend this, otherwise we create a new one. */ gfc_try gfc_assign_data_value (gfc_expr *lvalue, gfc_expr *rvalue, mpz_t index) { gfc_ref *ref; gfc_expr *init; gfc_expr *expr; gfc_constructor *con; gfc_constructor *last_con; gfc_constructor *pred; gfc_symbol *symbol; gfc_typespec *last_ts; mpz_t offset; splay_tree spt; splay_tree_node sptn; symbol = lvalue->symtree->n.sym; init = symbol->value; last_ts = &symbol->ts; last_con = NULL; mpz_init_set_si (offset, 0); /* Find/create the parent expressions for subobject references. */ for (ref = lvalue->ref; ref; ref = ref->next) { /* Break out of the loop if we find a substring. */ if (ref->type == REF_SUBSTRING) { /* A substring should always be the last subobject reference. */ gcc_assert (ref->next == NULL); break; } /* Use the existing initializer expression if it exists. Otherwise create a new one. */ if (init == NULL) expr = gfc_get_expr (); else expr = init; /* Find or create this element. */ switch (ref->type) { case REF_ARRAY: if (init && expr->expr_type != EXPR_ARRAY) { gfc_error ("'%s' at %L already is initialized at %L", lvalue->symtree->n.sym->name, &lvalue->where, &init->where); return FAILURE; } if (init == NULL) { /* The element typespec will be the same as the array typespec. */ expr->ts = *last_ts; /* Setup the expression to hold the constructor. */ expr->expr_type = EXPR_ARRAY; expr->rank = ref->u.ar.as->rank; } if (ref->u.ar.type == AR_ELEMENT) get_array_index (&ref->u.ar, &offset); else mpz_set (offset, index); /* Check the bounds. */ if (mpz_cmp_si (offset, 0) < 0) { gfc_error ("Data element below array lower bound at %L", &lvalue->where); return FAILURE; } else { mpz_t size; if (spec_size (ref->u.ar.as, &size) == SUCCESS) { if (mpz_cmp (offset, size) >= 0) { mpz_clear (size); gfc_error ("Data element above array upper bound at %L", &lvalue->where); return FAILURE; } mpz_clear (size); } } /* Splay tree containing offset and gfc_constructor. */ spt = expr->con_by_offset; if (spt == NULL) { spt = splay_tree_new (splay_tree_compare_ints, NULL, NULL); expr->con_by_offset = spt; con = NULL; } else con = find_con_by_offset (spt, offset); if (con == NULL) { splay_tree_key j; /* Create a new constructor. */ con = gfc_get_constructor (); mpz_set (con->n.offset, offset); j = (splay_tree_key) mpz_get_si (offset); sptn = splay_tree_insert (spt, j, (splay_tree_value) con); /* Fix up the linked list. */ sptn = splay_tree_predecessor (spt, j); if (sptn == NULL) { /* Insert at the head. */ con->next = expr->value.constructor; expr->value.constructor = con; } else { /* Insert in the chain. */ pred = (gfc_constructor*) sptn->value; con->next = pred->next; pred->next = con; } } break; case REF_COMPONENT: if (init == NULL) { /* Setup the expression to hold the constructor. */ expr->expr_type = EXPR_STRUCTURE; expr->ts.type = BT_DERIVED; expr->ts.u.derived = ref->u.c.sym; } else gcc_assert (expr->expr_type == EXPR_STRUCTURE); last_ts = &ref->u.c.component->ts; /* Find the same element in the existing constructor. */ con = expr->value.constructor; con = find_con_by_component (ref->u.c.component, con); if (con == NULL) { /* Create a new constructor. */ con = gfc_get_constructor (); con->n.component = ref->u.c.component; con->next = expr->value.constructor; expr->value.constructor = con; } break; default: gcc_unreachable (); } if (init == NULL) { /* Point the container at the new expression. */ if (last_con == NULL) symbol->value = expr; else last_con->expr = expr; } init = con->expr; last_con = con; } if (ref || last_ts->type == BT_CHARACTER) { if (lvalue->ts.u.cl->length == NULL && !(ref && ref->u.ss.length != NULL)) return FAILURE; expr = create_character_intializer (init, last_ts, ref, rvalue); } else { /* Overwriting an existing initializer is non-standard but usually only provokes a warning from other compilers. */ if (init != NULL) { /* Order in which the expressions arrive here depends on whether they are from data statements or F95 style declarations. Therefore, check which is the most recent. */ expr = (LOCATION_LINE (init->where.lb->location) > LOCATION_LINE (rvalue->where.lb->location)) ? init : rvalue; gfc_notify_std (GFC_STD_GNU, "Extension: re-initialization " "of '%s' at %L", symbol->name, &expr->where); } expr = gfc_copy_expr (rvalue); if (!gfc_compare_types (&lvalue->ts, &expr->ts)) gfc_convert_type (expr, &lvalue->ts, 0); } if (last_con == NULL) symbol->value = expr; else last_con->expr = expr; return SUCCESS; } /* Similarly, but initialize REPEAT consecutive values in LVALUE the same value in RVALUE. For the nonce, LVALUE must refer to a full array, not an array section. */ void gfc_assign_data_value_range (gfc_expr *lvalue, gfc_expr *rvalue, mpz_t index, mpz_t repeat) { gfc_ref *ref; gfc_expr *init, *expr; gfc_constructor *con, *last_con; gfc_constructor *pred; gfc_symbol *symbol; gfc_typespec *last_ts; mpz_t offset; splay_tree spt; splay_tree_node sptn; symbol = lvalue->symtree->n.sym; init = symbol->value; last_ts = &symbol->ts; last_con = NULL; mpz_init_set_si (offset, 0); /* Find/create the parent expressions for subobject references. */ for (ref = lvalue->ref; ref; ref = ref->next) { /* Use the existing initializer expression if it exists. Otherwise create a new one. */ if (init == NULL) expr = gfc_get_expr (); else expr = init; /* Find or create this element. */ switch (ref->type) { case REF_ARRAY: if (init == NULL) { /* The element typespec will be the same as the array typespec. */ expr->ts = *last_ts; /* Setup the expression to hold the constructor. */ expr->expr_type = EXPR_ARRAY; expr->rank = ref->u.ar.as->rank; } else gcc_assert (expr->expr_type == EXPR_ARRAY); if (ref->u.ar.type == AR_ELEMENT) { get_array_index (&ref->u.ar, &offset); /* This had better not be the bottom of the reference. We can still get to a full array via a component. */ gcc_assert (ref->next != NULL); } else { mpz_set (offset, index); /* We're at a full array or an array section. This means that we've better have found a full array, and that we're at the bottom of the reference. */ gcc_assert (ref->u.ar.type == AR_FULL); gcc_assert (ref->next == NULL); } /* Find the same element in the existing constructor. */ /* Splay tree containing offset and gfc_constructor. */ spt = expr->con_by_offset; if (spt == NULL) { spt = splay_tree_new (splay_tree_compare_ints, NULL, NULL); expr->con_by_offset = spt; con = NULL; } else con = find_con_by_offset (spt, offset); if (con == NULL) { splay_tree_key j; /* Create a new constructor. */ con = gfc_get_constructor (); mpz_set (con->n.offset, offset); j = (splay_tree_key) mpz_get_si (offset); if (ref->next == NULL) mpz_set (con->repeat, repeat); sptn = splay_tree_insert (spt, j, (splay_tree_value) con); /* Fix up the linked list. */ sptn = splay_tree_predecessor (spt, j); if (sptn == NULL) { /* Insert at the head. */ con->next = expr->value.constructor; expr->value.constructor = con; } else { /* Insert in the chain. */ pred = (gfc_constructor*) sptn->value; con->next = pred->next; pred->next = con; } } else gcc_assert (ref->next != NULL); break; case REF_COMPONENT: if (init == NULL) { /* Setup the expression to hold the constructor. */ expr->expr_type = EXPR_STRUCTURE; expr->ts.type = BT_DERIVED; expr->ts.u.derived = ref->u.c.sym; } else gcc_assert (expr->expr_type == EXPR_STRUCTURE); last_ts = &ref->u.c.component->ts; /* Find the same element in the existing constructor. */ con = expr->value.constructor; con = find_con_by_component (ref->u.c.component, con); if (con == NULL) { /* Create a new constructor. */ con = gfc_get_constructor (); con->n.component = ref->u.c.component; con->next = expr->value.constructor; expr->value.constructor = con; } /* Since we're only intending to initialize arrays here, there better be an inner reference. */ gcc_assert (ref->next != NULL); break; case REF_SUBSTRING: default: gcc_unreachable (); } if (init == NULL) { /* Point the container at the new expression. */ if (last_con == NULL) symbol->value = expr; else last_con->expr = expr; } init = con->expr; last_con = con; } if (last_ts->type == BT_CHARACTER) expr = create_character_intializer (init, last_ts, NULL, rvalue); else { /* We should never be overwriting an existing initializer. */ gcc_assert (!init); expr = gfc_copy_expr (rvalue); if (!gfc_compare_types (&lvalue->ts, &expr->ts)) gfc_convert_type (expr, &lvalue->ts, 0); } if (last_con == NULL) symbol->value = expr; else last_con->expr = expr; } /* Modify the index of array section and re-calculate the array offset. */ void gfc_advance_section (mpz_t *section_index, gfc_array_ref *ar, mpz_t *offset_ret) { int i; mpz_t delta; mpz_t tmp; bool forwards; int cmp; for (i = 0; i < ar->dimen; i++) { if (ar->dimen_type[i] != DIMEN_RANGE) continue; if (ar->stride[i]) { mpz_add (section_index[i], section_index[i], ar->stride[i]->value.integer); if (mpz_cmp_si (ar->stride[i]->value.integer, 0) >= 0) forwards = true; else forwards = false; } else { mpz_add_ui (section_index[i], section_index[i], 1); forwards = true; } if (ar->end[i]) cmp = mpz_cmp (section_index[i], ar->end[i]->value.integer); else cmp = mpz_cmp (section_index[i], ar->as->upper[i]->value.integer); if ((cmp > 0 && forwards) || (cmp < 0 && !forwards)) { /* Reset index to start, then loop to advance the next index. */ if (ar->start[i]) mpz_set (section_index[i], ar->start[i]->value.integer); else mpz_set (section_index[i], ar->as->lower[i]->value.integer); } else break; } mpz_set_si (*offset_ret, 0); mpz_init_set_si (delta, 1); mpz_init (tmp); for (i = 0; i < ar->dimen; i++) { mpz_sub (tmp, section_index[i], ar->as->lower[i]->value.integer); mpz_mul (tmp, tmp, delta); mpz_add (*offset_ret, tmp, *offset_ret); mpz_sub (tmp, ar->as->upper[i]->value.integer, ar->as->lower[i]->value.integer); mpz_add_ui (tmp, tmp, 1); mpz_mul (delta, tmp, delta); } mpz_clear (tmp); mpz_clear (delta); } /* Rearrange a structure constructor so the elements are in the specified order. Also insert NULL entries if necessary. */ static void formalize_structure_cons (gfc_expr *expr) { gfc_constructor *head; gfc_constructor *tail; gfc_constructor *cur; gfc_constructor *last; gfc_constructor *c; gfc_component *order; c = expr->value.constructor; /* Constructor is already formalized. */ if (!c || c->n.component == NULL) return; head = tail = NULL; for (order = expr->ts.u.derived->components; order; order = order->next) { /* Find the next component. */ last = NULL; cur = c; while (cur != NULL && cur->n.component != order) { last = cur; cur = cur->next; } if (cur == NULL) { /* Create a new one. */ cur = gfc_get_constructor (); } else { /* Remove it from the chain. */ if (last == NULL) c = cur->next; else last->next = cur->next; cur->next = NULL; formalize_init_expr (cur->expr); } /* Add it to the new constructor. */ if (head == NULL) head = tail = cur; else { tail->next = cur; tail = tail->next; } } gcc_assert (c == NULL); expr->value.constructor = head; } /* Make sure an initialization expression is in normalized form, i.e., all elements of the constructors are in the correct order. */ static void formalize_init_expr (gfc_expr *expr) { expr_t type; gfc_constructor *c; if (expr == NULL) return; type = expr->expr_type; switch (type) { case EXPR_ARRAY: c = expr->value.constructor; while (c) { formalize_init_expr (c->expr); c = c->next; } break; case EXPR_STRUCTURE: formalize_structure_cons (expr); break; default: break; } } /* Resolve symbol's initial value after all data statement. */ void gfc_formalize_init_value (gfc_symbol *sym) { formalize_init_expr (sym->value); } /* Get the integer value into RET_AS and SECTION from AS and AR, and return offset. */ void gfc_get_section_index (gfc_array_ref *ar, mpz_t *section_index, mpz_t *offset) { int i; mpz_t delta; mpz_t tmp; mpz_set_si (*offset, 0); mpz_init (tmp); mpz_init_set_si (delta, 1); for (i = 0; i < ar->dimen; i++) { mpz_init (section_index[i]); switch (ar->dimen_type[i]) { case DIMEN_ELEMENT: case DIMEN_RANGE: if (ar->start[i]) { mpz_sub (tmp, ar->start[i]->value.integer, ar->as->lower[i]->value.integer); mpz_mul (tmp, tmp, delta); mpz_add (*offset, tmp, *offset); mpz_set (section_index[i], ar->start[i]->value.integer); } else mpz_set (section_index[i], ar->as->lower[i]->value.integer); break; case DIMEN_VECTOR: gfc_internal_error ("TODO: Vector sections in data statements"); default: gcc_unreachable (); } mpz_sub (tmp, ar->as->upper[i]->value.integer, ar->as->lower[i]->value.integer); mpz_add_ui (tmp, tmp, 1); mpz_mul (delta, tmp, delta); } mpz_clear (tmp); mpz_clear (delta); }