/* Constant folding for calls to built-in and internal functions. Copyright (C) 1988-2024 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "realmpfr.h" #include "tree.h" #include "stor-layout.h" #include "options.h" #include "fold-const.h" #include "fold-const-call.h" #include "case-cfn-macros.h" #include "tm.h" /* For C[LT]Z_DEFINED_VALUE_AT_ZERO. */ #include "builtins.h" #include "gimple-expr.h" #include "tree-vector-builder.h" /* Functions that test for certain constant types, abstracting away the decision about whether to check for overflow. */ static inline bool integer_cst_p (tree t) { return TREE_CODE (t) == INTEGER_CST && !TREE_OVERFLOW (t); } static inline bool real_cst_p (tree t) { return TREE_CODE (t) == REAL_CST && !TREE_OVERFLOW (t); } static inline bool complex_cst_p (tree t) { return TREE_CODE (t) == COMPLEX_CST; } /* Return true if ARG is a size_type_node constant. Store it in *SIZE_OUT if so. */ static inline bool size_t_cst_p (tree t, unsigned HOST_WIDE_INT *size_out) { if (types_compatible_p (size_type_node, TREE_TYPE (t)) && integer_cst_p (t) && tree_fits_uhwi_p (t)) { *size_out = tree_to_uhwi (t); return true; } return false; } /* RES is the result of a comparison in which < 0 means "less", 0 means "equal" and > 0 means "more". Canonicalize it to -1, 0 or 1 and return it in type TYPE. */ tree build_cmp_result (tree type, int res) { return build_int_cst (type, res < 0 ? -1 : res > 0 ? 1 : 0); } /* M is the result of trying to constant-fold an expression (starting with clear MPFR flags) and INEXACT says whether the result in M is exact or inexact. Return true if M can be used as a constant-folded result in format FORMAT, storing the value in *RESULT if so. */ static bool do_mpfr_ckconv (real_value *result, mpfr_srcptr m, bool inexact, const real_format *format) { /* Proceed iff we get a normal number, i.e. not NaN or Inf and no overflow/underflow occurred. If -frounding-math, proceed iff the result of calling FUNC was exact. */ if (!mpfr_number_p (m) || mpfr_overflow_p () || mpfr_underflow_p () || (flag_rounding_math && inexact)) return false; REAL_VALUE_TYPE tmp; real_from_mpfr (&tmp, m, format, MPFR_RNDN); /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values. If the REAL_VALUE_TYPE is zero but the mpfr_t is not, then we underflowed in the conversion. */ if (!real_isfinite (&tmp) || ((tmp.cl == rvc_zero) != (mpfr_zero_p (m) != 0))) return false; real_convert (result, format, &tmp); return real_identical (result, &tmp); } /* Try to evaluate: *RESULT = f (*ARG) in format FORMAT, given that FUNC is the MPFR implementation of f. Return true on success. */ static bool do_mpfr_arg1 (real_value *result, int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_rnd_t), const real_value *arg, const real_format *format) { /* To proceed, MPFR must exactly represent the target floating point format, which only happens when the target base equals two. */ if (format->b != 2 || !real_isfinite (arg)) return false; int prec = format->p; mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN; auto_mpfr m (prec); mpfr_from_real (m, arg, MPFR_RNDN); mpfr_clear_flags (); bool inexact = func (m, m, rnd); bool ok = do_mpfr_ckconv (result, m, inexact, format); return ok; } /* Try to evaluate: *RESULT_SIN = sin (*ARG); *RESULT_COS = cos (*ARG); for format FORMAT. Return true on success. */ static bool do_mpfr_sincos (real_value *result_sin, real_value *result_cos, const real_value *arg, const real_format *format) { /* To proceed, MPFR must exactly represent the target floating point format, which only happens when the target base equals two. */ if (format->b != 2 || !real_isfinite (arg)) return false; int prec = format->p; mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN; mpfr_t m, ms, mc; mpfr_inits2 (prec, m, ms, mc, NULL); mpfr_from_real (m, arg, MPFR_RNDN); mpfr_clear_flags (); bool inexact = mpfr_sin_cos (ms, mc, m, rnd); bool ok = (do_mpfr_ckconv (result_sin, ms, inexact, format) && do_mpfr_ckconv (result_cos, mc, inexact, format)); mpfr_clears (m, ms, mc, NULL); return ok; } /* Try to evaluate: *RESULT = f (*ARG0, *ARG1) in format FORMAT, given that FUNC is the MPFR implementation of f. Return true on success. */ static bool do_mpfr_arg2 (real_value *result, int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_rnd_t), const real_value *arg0, const real_value *arg1, const real_format *format) { /* To proceed, MPFR must exactly represent the target floating point format, which only happens when the target base equals two. */ if (format->b != 2 || !real_isfinite (arg0) || !real_isfinite (arg1)) return false; int prec = format->p; mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN; mpfr_t m0, m1; mpfr_inits2 (prec, m0, m1, NULL); mpfr_from_real (m0, arg0, MPFR_RNDN); mpfr_from_real (m1, arg1, MPFR_RNDN); mpfr_clear_flags (); bool inexact = func (m0, m0, m1, rnd); bool ok = do_mpfr_ckconv (result, m0, inexact, format); mpfr_clears (m0, m1, NULL); return ok; } /* Try to evaluate: *RESULT = f (ARG0, *ARG1) in format FORMAT, given that FUNC is the MPFR implementation of f. Return true on success. */ static bool do_mpfr_arg2 (real_value *result, int (*func) (mpfr_ptr, long, mpfr_srcptr, mpfr_rnd_t), const wide_int_ref &arg0, const real_value *arg1, const real_format *format) { if (format->b != 2 || !real_isfinite (arg1)) return false; int prec = format->p; mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN; auto_mpfr m (prec); mpfr_from_real (m, arg1, MPFR_RNDN); mpfr_clear_flags (); bool inexact = func (m, arg0.to_shwi (), m, rnd); bool ok = do_mpfr_ckconv (result, m, inexact, format); return ok; } /* Try to evaluate: *RESULT = f (*ARG0, *ARG1, *ARG2) in format FORMAT, given that FUNC is the MPFR implementation of f. Return true on success. */ static bool do_mpfr_arg3 (real_value *result, int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_srcptr, mpfr_rnd_t), const real_value *arg0, const real_value *arg1, const real_value *arg2, const real_format *format) { /* To proceed, MPFR must exactly represent the target floating point format, which only happens when the target base equals two. */ if (format->b != 2 || !real_isfinite (arg0) || !real_isfinite (arg1) || !real_isfinite (arg2)) return false; int prec = format->p; mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN; mpfr_t m0, m1, m2; mpfr_inits2 (prec, m0, m1, m2, NULL); mpfr_from_real (m0, arg0, MPFR_RNDN); mpfr_from_real (m1, arg1, MPFR_RNDN); mpfr_from_real (m2, arg2, MPFR_RNDN); mpfr_clear_flags (); bool inexact = func (m0, m0, m1, m2, rnd); bool ok = do_mpfr_ckconv (result, m0, inexact, format); mpfr_clears (m0, m1, m2, NULL); return ok; } /* M is the result of trying to constant-fold an expression (starting with clear MPFR flags) and INEXACT says whether the result in M is exact or inexact. Return true if M can be used as a constant-folded result in which the real and imaginary parts have format FORMAT. Store those parts in *RESULT_REAL and *RESULT_IMAG if so. */ static bool do_mpc_ckconv (real_value *result_real, real_value *result_imag, mpc_srcptr m, bool inexact, const real_format *format) { /* Proceed iff we get a normal number, i.e. not NaN or Inf and no overflow/underflow occurred. If -frounding-math, proceed iff the result of calling FUNC was exact. */ if (!mpfr_number_p (mpc_realref (m)) || !mpfr_number_p (mpc_imagref (m)) || mpfr_overflow_p () || mpfr_underflow_p () || (flag_rounding_math && inexact)) return false; REAL_VALUE_TYPE tmp_real, tmp_imag; real_from_mpfr (&tmp_real, mpc_realref (m), format, MPFR_RNDN); real_from_mpfr (&tmp_imag, mpc_imagref (m), format, MPFR_RNDN); /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values. If the REAL_VALUE_TYPE is zero but the mpfr_t is not, then we underflowed in the conversion. */ if (!real_isfinite (&tmp_real) || !real_isfinite (&tmp_imag) || (tmp_real.cl == rvc_zero) != (mpfr_zero_p (mpc_realref (m)) != 0) || (tmp_imag.cl == rvc_zero) != (mpfr_zero_p (mpc_imagref (m)) != 0)) return false; real_convert (result_real, format, &tmp_real); real_convert (result_imag, format, &tmp_imag); return (real_identical (result_real, &tmp_real) && real_identical (result_imag, &tmp_imag)); } /* Try to evaluate: RESULT = f (ARG) in format FORMAT, given that FUNC is the mpc implementation of f. Return true on success. Both RESULT and ARG are represented as real and imaginary pairs. */ static bool do_mpc_arg1 (real_value *result_real, real_value *result_imag, int (*func) (mpc_ptr, mpc_srcptr, mpc_rnd_t), const real_value *arg_real, const real_value *arg_imag, const real_format *format) { /* To proceed, MPFR must exactly represent the target floating point format, which only happens when the target base equals two. */ if (format->b != 2 || !real_isfinite (arg_real) || !real_isfinite (arg_imag)) return false; int prec = format->p; mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN; mpc_t m; mpc_init2 (m, prec); mpfr_from_real (mpc_realref (m), arg_real, MPFR_RNDN); mpfr_from_real (mpc_imagref (m), arg_imag, MPFR_RNDN); mpfr_clear_flags (); bool inexact = func (m, m, crnd); bool ok = do_mpc_ckconv (result_real, result_imag, m, inexact, format); mpc_clear (m); return ok; } /* Try to evaluate: RESULT = f (ARG0, ARG1) in format FORMAT, given that FUNC is the mpc implementation of f. Return true on success. RESULT, ARG0 and ARG1 are represented as real and imaginary pairs. */ static bool do_mpc_arg2 (real_value *result_real, real_value *result_imag, int (*func)(mpc_ptr, mpc_srcptr, mpc_srcptr, mpc_rnd_t), const real_value *arg0_real, const real_value *arg0_imag, const real_value *arg1_real, const real_value *arg1_imag, const real_format *format) { if (!real_isfinite (arg0_real) || !real_isfinite (arg0_imag) || !real_isfinite (arg1_real) || !real_isfinite (arg1_imag)) return false; int prec = format->p; mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN; mpc_t m0, m1; mpc_init2 (m0, prec); mpc_init2 (m1, prec); mpfr_from_real (mpc_realref (m0), arg0_real, MPFR_RNDN); mpfr_from_real (mpc_imagref (m0), arg0_imag, MPFR_RNDN); mpfr_from_real (mpc_realref (m1), arg1_real, MPFR_RNDN); mpfr_from_real (mpc_imagref (m1), arg1_imag, MPFR_RNDN); mpfr_clear_flags (); bool inexact = func (m0, m0, m1, crnd); bool ok = do_mpc_ckconv (result_real, result_imag, m0, inexact, format); mpc_clear (m0); mpc_clear (m1); return ok; } /* Try to evaluate: *RESULT = logb (*ARG) in format FORMAT. Return true on success. */ static bool fold_const_logb (real_value *result, const real_value *arg, const real_format *format) { switch (arg->cl) { case rvc_nan: /* If arg is +-NaN, then return it. */ *result = *arg; return true; case rvc_inf: /* If arg is +-Inf, then return +Inf. */ *result = *arg; result->sign = 0; return true; case rvc_zero: /* Zero may set errno and/or raise an exception. */ return false; case rvc_normal: /* For normal numbers, proceed iff radix == 2. In GCC, normalized significands are in the range [0.5, 1.0). We want the exponent as if they were [1.0, 2.0) so get the exponent and subtract 1. */ if (format->b == 2) { real_from_integer (result, format, REAL_EXP (arg) - 1, SIGNED); return true; } return false; } } /* Try to evaluate: *RESULT = significand (*ARG) in format FORMAT. Return true on success. */ static bool fold_const_significand (real_value *result, const real_value *arg, const real_format *format) { switch (arg->cl) { case rvc_zero: case rvc_nan: case rvc_inf: /* If arg is +-0, +-Inf or +-NaN, then return it. */ *result = *arg; return true; case rvc_normal: /* For normal numbers, proceed iff radix == 2. */ if (format->b == 2) { *result = *arg; /* In GCC, normalized significands are in the range [0.5, 1.0). We want them to be [1.0, 2.0) so set the exponent to 1. */ SET_REAL_EXP (result, 1); return true; } return false; } } /* Try to evaluate: *RESULT = f (*ARG) where FORMAT is the format of *ARG and PRECISION is the number of significant bits in the result. Return true on success. */ static bool fold_const_conversion (wide_int *result, void (*fn) (real_value *, format_helper, const real_value *), const real_value *arg, unsigned int precision, const real_format *format) { if (!real_isfinite (arg)) return false; real_value rounded; fn (&rounded, format, arg); bool fail = false; *result = real_to_integer (&rounded, &fail, precision); return !fail; } /* Try to evaluate: *RESULT = pow (*ARG0, *ARG1) in format FORMAT. Return true on success. */ static bool fold_const_pow (real_value *result, const real_value *arg0, const real_value *arg1, const real_format *format) { if (do_mpfr_arg2 (result, mpfr_pow, arg0, arg1, format)) return true; /* Check for an integer exponent. */ REAL_VALUE_TYPE cint1; HOST_WIDE_INT n1 = real_to_integer (arg1); real_from_integer (&cint1, VOIDmode, n1, SIGNED); /* Attempt to evaluate pow at compile-time, unless this should raise an exception. */ if (real_identical (arg1, &cint1) && (n1 > 0 || (!flag_trapping_math && !flag_errno_math) || !real_equal (arg0, &dconst0))) { bool inexact = real_powi (result, format, arg0, n1); /* Avoid the folding if flag_signaling_nans is on. */ if (flag_unsafe_math_optimizations || (!inexact && !(flag_signaling_nans && REAL_VALUE_ISSIGNALING_NAN (*arg0)))) return true; } return false; } /* Try to evaluate: *RESULT = nextafter (*ARG0, *ARG1) or *RESULT = nexttoward (*ARG0, *ARG1) in format FORMAT. Return true on success. */ static bool fold_const_nextafter (real_value *result, const real_value *arg0, const real_value *arg1, const real_format *format) { if (REAL_VALUE_ISSIGNALING_NAN (*arg0) || REAL_VALUE_ISSIGNALING_NAN (*arg1)) return false; /* Don't handle composite modes, nor decimal, nor modes without inf or denorm at least for now. */ if (format->pnan < format->p || format->b == 10 || !format->has_inf || !format->has_denorm) return false; if (real_nextafter (result, format, arg0, arg1) /* If raising underflow or overflow and setting errno to ERANGE, fail if we care about those side-effects. */ && (flag_trapping_math || flag_errno_math)) return false; /* Similarly for nextafter (0, 1) raising underflow. */ else if (flag_trapping_math && arg0->cl == rvc_zero && result->cl != rvc_zero) return false; real_convert (result, format, result); return true; } /* Try to evaluate: *RESULT = ldexp (*ARG0, ARG1) in format FORMAT. Return true on success. */ static bool fold_const_builtin_load_exponent (real_value *result, const real_value *arg0, const wide_int_ref &arg1, const real_format *format) { /* Bound the maximum adjustment to twice the range of the mode's valid exponents. Use abs to ensure the range is positive as a sanity check. */ int max_exp_adj = 2 * labs (format->emax - format->emin); /* The requested adjustment must be inside this range. This is a preliminary cap to avoid things like overflow, we may still fail to compute the result for other reasons. */ if (wi::les_p (arg1, -max_exp_adj) || wi::ges_p (arg1, max_exp_adj)) return false; /* Don't perform operation if we honor signaling NaNs and operand is a signaling NaN. */ if (!flag_unsafe_math_optimizations && flag_signaling_nans && REAL_VALUE_ISSIGNALING_NAN (*arg0)) return false; REAL_VALUE_TYPE initial_result; real_ldexp (&initial_result, arg0, arg1.to_shwi ()); /* Ensure we didn't overflow. */ if (real_isinf (&initial_result)) return false; /* Only proceed if the target mode can hold the resulting value. */ *result = real_value_truncate (format, initial_result); return real_equal (&initial_result, result); } /* Fold a call to __builtin_nan or __builtin_nans with argument ARG and return type TYPE. QUIET is true if a quiet rather than signalling NaN is required. */ static tree fold_const_builtin_nan (tree type, tree arg, bool quiet) { REAL_VALUE_TYPE real; const char *str = c_getstr (arg); if (str && real_nan (&real, str, quiet, TYPE_MODE (type))) return build_real (type, real); return NULL_TREE; } /* Fold a call to IFN_REDUC_ (ARG), returning a value of type TYPE. */ static tree fold_const_reduction (tree type, tree arg, tree_code code) { unsigned HOST_WIDE_INT nelts; if (TREE_CODE (arg) != VECTOR_CST || !VECTOR_CST_NELTS (arg).is_constant (&nelts)) return NULL_TREE; tree res = VECTOR_CST_ELT (arg, 0); for (unsigned HOST_WIDE_INT i = 1; i < nelts; i++) { res = const_binop (code, type, res, VECTOR_CST_ELT (arg, i)); if (res == NULL_TREE || !CONSTANT_CLASS_P (res)) return NULL_TREE; } return res; } /* Fold a call to IFN_VEC_CONVERT (ARG) returning TYPE. */ static tree fold_const_vec_convert (tree ret_type, tree arg) { enum tree_code code = NOP_EXPR; tree arg_type = TREE_TYPE (arg); if (TREE_CODE (arg) != VECTOR_CST) return NULL_TREE; gcc_checking_assert (VECTOR_TYPE_P (ret_type) && VECTOR_TYPE_P (arg_type)); if (INTEGRAL_TYPE_P (TREE_TYPE (ret_type)) && SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg_type))) code = FIX_TRUNC_EXPR; else if (INTEGRAL_TYPE_P (TREE_TYPE (arg_type)) && SCALAR_FLOAT_TYPE_P (TREE_TYPE (ret_type))) code = FLOAT_EXPR; /* We can't handle steps directly when extending, since the values need to wrap at the original precision first. */ bool step_ok_p = (INTEGRAL_TYPE_P (TREE_TYPE (ret_type)) && INTEGRAL_TYPE_P (TREE_TYPE (arg_type)) && (TYPE_PRECISION (TREE_TYPE (ret_type)) <= TYPE_PRECISION (TREE_TYPE (arg_type)))); tree_vector_builder elts; if (!elts.new_unary_operation (ret_type, arg, step_ok_p)) return NULL_TREE; unsigned int count = elts.encoded_nelts (); for (unsigned int i = 0; i < count; ++i) { tree elt = fold_unary (code, TREE_TYPE (ret_type), VECTOR_CST_ELT (arg, i)); if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt)) return NULL_TREE; elts.quick_push (elt); } return elts.build (); } /* Try to evaluate: IFN_WHILE_ULT (ARG0, ARG1, (TYPE) { ... }) Return the value on success and null on failure. */ static tree fold_while_ult (tree type, poly_uint64 arg0, poly_uint64 arg1) { if (known_ge (arg0, arg1)) return build_zero_cst (type); if (maybe_ge (arg0, arg1)) return NULL_TREE; poly_uint64 diff = arg1 - arg0; poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type); if (known_ge (diff, nelts)) return build_all_ones_cst (type); unsigned HOST_WIDE_INT const_diff; if (known_le (diff, nelts) && diff.is_constant (&const_diff)) { tree minus_one = build_minus_one_cst (TREE_TYPE (type)); tree zero = build_zero_cst (TREE_TYPE (type)); return build_vector_a_then_b (type, const_diff, minus_one, zero); } return NULL_TREE; } /* Try to evaluate: *RESULT = FN (*ARG) in format FORMAT. Return true on success. */ static bool fold_const_call_ss (real_value *result, combined_fn fn, const real_value *arg, const real_format *format) { switch (fn) { CASE_CFN_SQRT: CASE_CFN_SQRT_FN: return (real_compare (GE_EXPR, arg, &dconst0) && do_mpfr_arg1 (result, mpfr_sqrt, arg, format)); CASE_CFN_CBRT: CASE_CFN_CBRT_FN: return do_mpfr_arg1 (result, mpfr_cbrt, arg, format); CASE_CFN_ASIN: CASE_CFN_ASIN_FN: return (real_compare (GE_EXPR, arg, &dconstm1) && real_compare (LE_EXPR, arg, &dconst1) && do_mpfr_arg1 (result, mpfr_asin, arg, format)); CASE_CFN_ACOS: CASE_CFN_ACOS_FN: return (real_compare (GE_EXPR, arg, &dconstm1) && real_compare (LE_EXPR, arg, &dconst1) && do_mpfr_arg1 (result, mpfr_acos, arg, format)); CASE_CFN_ATAN: CASE_CFN_ATAN_FN: return do_mpfr_arg1 (result, mpfr_atan, arg, format); CASE_CFN_ASINH: CASE_CFN_ASINH_FN: return do_mpfr_arg1 (result, mpfr_asinh, arg, format); CASE_CFN_ACOSH: CASE_CFN_ACOSH_FN: return (real_compare (GE_EXPR, arg, &dconst1) && do_mpfr_arg1 (result, mpfr_acosh, arg, format)); CASE_CFN_ATANH: CASE_CFN_ATANH_FN: return (real_compare (GE_EXPR, arg, &dconstm1) && real_compare (LE_EXPR, arg, &dconst1) && do_mpfr_arg1 (result, mpfr_atanh, arg, format)); CASE_CFN_SIN: CASE_CFN_SIN_FN: return do_mpfr_arg1 (result, mpfr_sin, arg, format); CASE_CFN_COS: CASE_CFN_COS_FN: return do_mpfr_arg1 (result, mpfr_cos, arg, format); CASE_CFN_TAN: CASE_CFN_TAN_FN: return do_mpfr_arg1 (result, mpfr_tan, arg, format); CASE_CFN_SINH: CASE_CFN_SINH_FN: return do_mpfr_arg1 (result, mpfr_sinh, arg, format); CASE_CFN_COSH: CASE_CFN_COSH_FN: return do_mpfr_arg1 (result, mpfr_cosh, arg, format); CASE_CFN_TANH: CASE_CFN_TANH_FN: return do_mpfr_arg1 (result, mpfr_tanh, arg, format); CASE_CFN_ERF: CASE_CFN_ERF_FN: return do_mpfr_arg1 (result, mpfr_erf, arg, format); CASE_CFN_ERFC: CASE_CFN_ERFC_FN: return do_mpfr_arg1 (result, mpfr_erfc, arg, format); CASE_CFN_TGAMMA: CASE_CFN_TGAMMA_FN: return do_mpfr_arg1 (result, mpfr_gamma, arg, format); CASE_CFN_EXP: CASE_CFN_EXP_FN: return do_mpfr_arg1 (result, mpfr_exp, arg, format); CASE_CFN_EXP2: CASE_CFN_EXP2_FN: return do_mpfr_arg1 (result, mpfr_exp2, arg, format); CASE_CFN_EXP10: CASE_CFN_POW10: return do_mpfr_arg1 (result, mpfr_exp10, arg, format); CASE_CFN_EXPM1: CASE_CFN_EXPM1_FN: return do_mpfr_arg1 (result, mpfr_expm1, arg, format); CASE_CFN_LOG: CASE_CFN_LOG_FN: return (real_compare (GT_EXPR, arg, &dconst0) && do_mpfr_arg1 (result, mpfr_log, arg, format)); CASE_CFN_LOG2: CASE_CFN_LOG2_FN: return (real_compare (GT_EXPR, arg, &dconst0) && do_mpfr_arg1 (result, mpfr_log2, arg, format)); CASE_CFN_LOG10: CASE_CFN_LOG10_FN: return (real_compare (GT_EXPR, arg, &dconst0) && do_mpfr_arg1 (result, mpfr_log10, arg, format)); CASE_CFN_LOG1P: CASE_CFN_LOG1P_FN: return (real_compare (GT_EXPR, arg, &dconstm1) && do_mpfr_arg1 (result, mpfr_log1p, arg, format)); CASE_CFN_J0: return do_mpfr_arg1 (result, mpfr_j0, arg, format); CASE_CFN_J1: return do_mpfr_arg1 (result, mpfr_j1, arg, format); CASE_CFN_Y0: return (real_compare (GT_EXPR, arg, &dconst0) && do_mpfr_arg1 (result, mpfr_y0, arg, format)); CASE_CFN_Y1: return (real_compare (GT_EXPR, arg, &dconst0) && do_mpfr_arg1 (result, mpfr_y1, arg, format)); CASE_CFN_FLOOR: CASE_CFN_FLOOR_FN: if (!REAL_VALUE_ISSIGNALING_NAN (*arg)) { real_floor (result, format, arg); return true; } return false; CASE_CFN_CEIL: CASE_CFN_CEIL_FN: if (!REAL_VALUE_ISSIGNALING_NAN (*arg)) { real_ceil (result, format, arg); return true; } return false; CASE_CFN_TRUNC: CASE_CFN_TRUNC_FN: if (!REAL_VALUE_ISSIGNALING_NAN (*arg)) { real_trunc (result, format, arg); return true; } return false; CASE_CFN_ROUND: CASE_CFN_ROUND_FN: if (!REAL_VALUE_ISSIGNALING_NAN (*arg)) { real_round (result, format, arg); return true; } return false; CASE_CFN_ROUNDEVEN: CASE_CFN_ROUNDEVEN_FN: if (!REAL_VALUE_ISSIGNALING_NAN (*arg)) { real_roundeven (result, format, arg); return true; } return false; CASE_CFN_LOGB: CASE_CFN_LOGB_FN: return fold_const_logb (result, arg, format); CASE_CFN_SIGNIFICAND: return fold_const_significand (result, arg, format); default: return false; } } /* Try to evaluate: *RESULT = FN (*ARG) where FORMAT is the format of ARG and PRECISION is the number of significant bits in the result. Return true on success. */ static bool fold_const_call_ss (wide_int *result, combined_fn fn, const real_value *arg, unsigned int precision, const real_format *format) { switch (fn) { CASE_CFN_SIGNBIT: if (real_isneg (arg)) *result = wi::one (precision); else *result = wi::zero (precision); return true; CASE_CFN_ILOGB: CASE_CFN_ILOGB_FN: /* For ilogb we don't know FP_ILOGB0, so only handle normal values. Proceed iff radix == 2. In GCC, normalized significands are in the range [0.5, 1.0). We want the exponent as if they were [1.0, 2.0) so get the exponent and subtract 1. */ if (arg->cl == rvc_normal && format->b == 2) { *result = wi::shwi (REAL_EXP (arg) - 1, precision); return true; } return false; CASE_CFN_ICEIL: CASE_CFN_LCEIL: CASE_CFN_LLCEIL: return fold_const_conversion (result, real_ceil, arg, precision, format); CASE_CFN_LFLOOR: CASE_CFN_IFLOOR: CASE_CFN_LLFLOOR: return fold_const_conversion (result, real_floor, arg, precision, format); CASE_CFN_IROUND: CASE_CFN_LROUND: CASE_CFN_LROUND_FN: CASE_CFN_LLROUND: CASE_CFN_LLROUND_FN: return fold_const_conversion (result, real_round, arg, precision, format); CASE_CFN_IRINT: CASE_CFN_LRINT: CASE_CFN_LRINT_FN: CASE_CFN_LLRINT: CASE_CFN_LLRINT_FN: /* Not yet folded to a constant. */ return false; CASE_CFN_FINITE: case CFN_BUILT_IN_FINITED32: case CFN_BUILT_IN_FINITED64: case CFN_BUILT_IN_FINITED128: case CFN_BUILT_IN_ISFINITE: *result = wi::shwi (real_isfinite (arg) ? 1 : 0, precision); return true; case CFN_BUILT_IN_ISSIGNALING: *result = wi::shwi (real_issignaling_nan (arg) ? 1 : 0, precision); return true; CASE_CFN_ISINF: case CFN_BUILT_IN_ISINFD32: case CFN_BUILT_IN_ISINFD64: case CFN_BUILT_IN_ISINFD128: if (real_isinf (arg)) *result = wi::shwi (arg->sign ? -1 : 1, precision); else *result = wi::shwi (0, precision); return true; CASE_CFN_ISNAN: case CFN_BUILT_IN_ISNAND32: case CFN_BUILT_IN_ISNAND64: case CFN_BUILT_IN_ISNAND128: *result = wi::shwi (real_isnan (arg) ? 1 : 0, precision); return true; default: return false; } } /* Try to evaluate: *RESULT = FN (ARG) where ARG_TYPE is the type of ARG and PRECISION is the number of bits in the result. Return true on success. */ static bool fold_const_call_ss (wide_int *result, combined_fn fn, const wide_int_ref &arg, unsigned int precision, tree arg_type) { switch (fn) { CASE_CFN_FFS: case CFN_BUILT_IN_FFSG: *result = wi::shwi (wi::ffs (arg), precision); return true; CASE_CFN_CLZ: case CFN_BUILT_IN_CLZG: { int tmp; if (wi::ne_p (arg, 0)) tmp = wi::clz (arg); else if (TREE_CODE (arg_type) == BITINT_TYPE) tmp = TYPE_PRECISION (arg_type); else if (!CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (arg_type), tmp)) tmp = TYPE_PRECISION (arg_type); *result = wi::shwi (tmp, precision); return true; } CASE_CFN_CTZ: case CFN_BUILT_IN_CTZG: { int tmp; if (wi::ne_p (arg, 0)) tmp = wi::ctz (arg); else if (TREE_CODE (arg_type) == BITINT_TYPE) tmp = TYPE_PRECISION (arg_type); else if (!CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (arg_type), tmp)) tmp = TYPE_PRECISION (arg_type); *result = wi::shwi (tmp, precision); return true; } CASE_CFN_CLRSB: case CFN_BUILT_IN_CLRSBG: *result = wi::shwi (wi::clrsb (arg), precision); return true; CASE_CFN_POPCOUNT: case CFN_BUILT_IN_POPCOUNTG: *result = wi::shwi (wi::popcount (arg), precision); return true; CASE_CFN_PARITY: case CFN_BUILT_IN_PARITYG: *result = wi::shwi (wi::parity (arg), precision); return true; case CFN_BUILT_IN_BSWAP16: case CFN_BUILT_IN_BSWAP32: case CFN_BUILT_IN_BSWAP64: case CFN_BUILT_IN_BSWAP128: *result = wi::bswap (wide_int::from (arg, precision, TYPE_SIGN (arg_type))); return true; default: return false; } } /* Try to evaluate: RESULT = FN (*ARG) where FORMAT is the format of ARG and of the real and imaginary parts of RESULT, passed as RESULT_REAL and RESULT_IMAG respectively. Return true on success. */ static bool fold_const_call_cs (real_value *result_real, real_value *result_imag, combined_fn fn, const real_value *arg, const real_format *format) { switch (fn) { CASE_CFN_CEXPI: /* cexpi(x+yi) = cos(x)+sin(y)*i. */ return do_mpfr_sincos (result_imag, result_real, arg, format); default: return false; } } /* Try to evaluate: *RESULT = fn (ARG) where FORMAT is the format of RESULT and of the real and imaginary parts of ARG, passed as ARG_REAL and ARG_IMAG respectively. Return true on success. */ static bool fold_const_call_sc (real_value *result, combined_fn fn, const real_value *arg_real, const real_value *arg_imag, const real_format *format) { switch (fn) { CASE_CFN_CABS: CASE_CFN_CABS_FN: return do_mpfr_arg2 (result, mpfr_hypot, arg_real, arg_imag, format); default: return false; } } /* Try to evaluate: RESULT = fn (ARG) where FORMAT is the format of the real and imaginary parts of RESULT (RESULT_REAL and RESULT_IMAG) and of ARG (ARG_REAL and ARG_IMAG). Return true on success. */ static bool fold_const_call_cc (real_value *result_real, real_value *result_imag, combined_fn fn, const real_value *arg_real, const real_value *arg_imag, const real_format *format) { switch (fn) { CASE_CFN_CCOS: CASE_CFN_CCOS_FN: return do_mpc_arg1 (result_real, result_imag, mpc_cos, arg_real, arg_imag, format); CASE_CFN_CCOSH: CASE_CFN_CCOSH_FN: return do_mpc_arg1 (result_real, result_imag, mpc_cosh, arg_real, arg_imag, format); CASE_CFN_CPROJ: CASE_CFN_CPROJ_FN: if (real_isinf (arg_real) || real_isinf (arg_imag)) { *result_real = dconstinf; *result_imag = dconst0; result_imag->sign = arg_imag->sign; } else { *result_real = *arg_real; *result_imag = *arg_imag; } return true; CASE_CFN_CSIN: CASE_CFN_CSIN_FN: return do_mpc_arg1 (result_real, result_imag, mpc_sin, arg_real, arg_imag, format); CASE_CFN_CSINH: CASE_CFN_CSINH_FN: return do_mpc_arg1 (result_real, result_imag, mpc_sinh, arg_real, arg_imag, format); CASE_CFN_CTAN: CASE_CFN_CTAN_FN: return do_mpc_arg1 (result_real, result_imag, mpc_tan, arg_real, arg_imag, format); CASE_CFN_CTANH: CASE_CFN_CTANH_FN: return do_mpc_arg1 (result_real, result_imag, mpc_tanh, arg_real, arg_imag, format); CASE_CFN_CLOG: CASE_CFN_CLOG_FN: return do_mpc_arg1 (result_real, result_imag, mpc_log, arg_real, arg_imag, format); CASE_CFN_CSQRT: CASE_CFN_CSQRT_FN: return do_mpc_arg1 (result_real, result_imag, mpc_sqrt, arg_real, arg_imag, format); CASE_CFN_CASIN: CASE_CFN_CASIN_FN: return do_mpc_arg1 (result_real, result_imag, mpc_asin, arg_real, arg_imag, format); CASE_CFN_CACOS: CASE_CFN_CACOS_FN: return do_mpc_arg1 (result_real, result_imag, mpc_acos, arg_real, arg_imag, format); CASE_CFN_CATAN: CASE_CFN_CATAN_FN: return do_mpc_arg1 (result_real, result_imag, mpc_atan, arg_real, arg_imag, format); CASE_CFN_CASINH: CASE_CFN_CASINH_FN: return do_mpc_arg1 (result_real, result_imag, mpc_asinh, arg_real, arg_imag, format); CASE_CFN_CACOSH: CASE_CFN_CACOSH_FN: return do_mpc_arg1 (result_real, result_imag, mpc_acosh, arg_real, arg_imag, format); CASE_CFN_CATANH: CASE_CFN_CATANH_FN: return do_mpc_arg1 (result_real, result_imag, mpc_atanh, arg_real, arg_imag, format); CASE_CFN_CEXP: CASE_CFN_CEXP_FN: return do_mpc_arg1 (result_real, result_imag, mpc_exp, arg_real, arg_imag, format); default: return false; } } /* Subroutine of fold_const_call, with the same interface. Handle cases where the arguments and result are numerical. */ static tree fold_const_call_1 (combined_fn fn, tree type, tree arg) { machine_mode mode = TYPE_MODE (type); machine_mode arg_mode = TYPE_MODE (TREE_TYPE (arg)); if (integer_cst_p (arg)) { if (SCALAR_INT_MODE_P (mode)) { wide_int result; if (fold_const_call_ss (&result, fn, wi::to_wide (arg), TYPE_PRECISION (type), TREE_TYPE (arg))) return wide_int_to_tree (type, result); } return NULL_TREE; } if (real_cst_p (arg)) { gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg_mode)); if (mode == arg_mode) { /* real -> real. */ REAL_VALUE_TYPE result; if (fold_const_call_ss (&result, fn, TREE_REAL_CST_PTR (arg), REAL_MODE_FORMAT (mode))) return build_real (type, result); } else if (COMPLEX_MODE_P (mode) && GET_MODE_INNER (mode) == arg_mode) { /* real -> complex real. */ REAL_VALUE_TYPE result_real, result_imag; if (fold_const_call_cs (&result_real, &result_imag, fn, TREE_REAL_CST_PTR (arg), REAL_MODE_FORMAT (arg_mode))) return build_complex (type, build_real (TREE_TYPE (type), result_real), build_real (TREE_TYPE (type), result_imag)); } else if (INTEGRAL_TYPE_P (type)) { /* real -> int. */ wide_int result; if (fold_const_call_ss (&result, fn, TREE_REAL_CST_PTR (arg), TYPE_PRECISION (type), REAL_MODE_FORMAT (arg_mode))) return wide_int_to_tree (type, result); } return NULL_TREE; } if (complex_cst_p (arg)) { gcc_checking_assert (COMPLEX_MODE_P (arg_mode)); machine_mode inner_mode = GET_MODE_INNER (arg_mode); tree argr = TREE_REALPART (arg); tree argi = TREE_IMAGPART (arg); if (mode == arg_mode && real_cst_p (argr) && real_cst_p (argi)) { /* complex real -> complex real. */ REAL_VALUE_TYPE result_real, result_imag; if (fold_const_call_cc (&result_real, &result_imag, fn, TREE_REAL_CST_PTR (argr), TREE_REAL_CST_PTR (argi), REAL_MODE_FORMAT (inner_mode))) return build_complex (type, build_real (TREE_TYPE (type), result_real), build_real (TREE_TYPE (type), result_imag)); } if (mode == inner_mode && real_cst_p (argr) && real_cst_p (argi)) { /* complex real -> real. */ REAL_VALUE_TYPE result; if (fold_const_call_sc (&result, fn, TREE_REAL_CST_PTR (argr), TREE_REAL_CST_PTR (argi), REAL_MODE_FORMAT (inner_mode))) return build_real (type, result); } return NULL_TREE; } return NULL_TREE; } /* Try to fold FN (ARG) to a constant. Return the constant on success, otherwise return null. TYPE is the type of the return value. */ tree fold_const_call (combined_fn fn, tree type, tree arg) { switch (fn) { case CFN_BUILT_IN_STRLEN: if (const char *str = c_getstr (arg)) return build_int_cst (type, strlen (str)); return NULL_TREE; CASE_CFN_NAN: CASE_FLT_FN_FLOATN_NX (CFN_BUILT_IN_NAN): case CFN_BUILT_IN_NAND32: case CFN_BUILT_IN_NAND64: case CFN_BUILT_IN_NAND128: case CFN_BUILT_IN_NAND64X: return fold_const_builtin_nan (type, arg, true); CASE_CFN_NANS: CASE_FLT_FN_FLOATN_NX (CFN_BUILT_IN_NANS): case CFN_BUILT_IN_NANSF16B: case CFN_BUILT_IN_NANSD32: case CFN_BUILT_IN_NANSD64: case CFN_BUILT_IN_NANSD128: case CFN_BUILT_IN_NANSD64X: return fold_const_builtin_nan (type, arg, false); case CFN_REDUC_PLUS: return fold_const_reduction (type, arg, PLUS_EXPR); case CFN_REDUC_MAX: return fold_const_reduction (type, arg, MAX_EXPR); case CFN_REDUC_MIN: return fold_const_reduction (type, arg, MIN_EXPR); case CFN_REDUC_AND: return fold_const_reduction (type, arg, BIT_AND_EXPR); case CFN_REDUC_IOR: return fold_const_reduction (type, arg, BIT_IOR_EXPR); case CFN_REDUC_XOR: return fold_const_reduction (type, arg, BIT_XOR_EXPR); case CFN_VEC_CONVERT: return fold_const_vec_convert (type, arg); default: return fold_const_call_1 (fn, type, arg); } } /* Fold a call to IFN_FOLD_LEFT_ (ARG0, ARG1), returning a value of type TYPE. */ static tree fold_const_fold_left (tree type, tree arg0, tree arg1, tree_code code) { if (TREE_CODE (arg1) != VECTOR_CST) return NULL_TREE; unsigned HOST_WIDE_INT nelts; if (!VECTOR_CST_NELTS (arg1).is_constant (&nelts)) return NULL_TREE; for (unsigned HOST_WIDE_INT i = 0; i < nelts; i++) { arg0 = const_binop (code, type, arg0, VECTOR_CST_ELT (arg1, i)); if (arg0 == NULL_TREE || !CONSTANT_CLASS_P (arg0)) return NULL_TREE; } return arg0; } /* Try to evaluate: *RESULT = FN (*ARG0, *ARG1) in format FORMAT. Return true on success. */ static bool fold_const_call_sss (real_value *result, combined_fn fn, const real_value *arg0, const real_value *arg1, const real_format *format) { switch (fn) { CASE_CFN_DREM: CASE_CFN_REMAINDER: CASE_CFN_REMAINDER_FN: return do_mpfr_arg2 (result, mpfr_remainder, arg0, arg1, format); CASE_CFN_ATAN2: CASE_CFN_ATAN2_FN: return do_mpfr_arg2 (result, mpfr_atan2, arg0, arg1, format); CASE_CFN_FDIM: CASE_CFN_FDIM_FN: return do_mpfr_arg2 (result, mpfr_dim, arg0, arg1, format); CASE_CFN_FMOD: CASE_CFN_FMOD_FN: return do_mpfr_arg2 (result, mpfr_fmod, arg0, arg1, format); CASE_CFN_HYPOT: CASE_CFN_HYPOT_FN: return do_mpfr_arg2 (result, mpfr_hypot, arg0, arg1, format); CASE_CFN_COPYSIGN: CASE_CFN_COPYSIGN_FN: *result = *arg0; real_copysign (result, arg1); return true; CASE_CFN_FMIN: CASE_CFN_FMIN_FN: return do_mpfr_arg2 (result, mpfr_min, arg0, arg1, format); CASE_CFN_FMAX: CASE_CFN_FMAX_FN: return do_mpfr_arg2 (result, mpfr_max, arg0, arg1, format); CASE_CFN_POW: CASE_CFN_POW_FN: return fold_const_pow (result, arg0, arg1, format); CASE_CFN_NEXTAFTER: CASE_CFN_NEXTAFTER_FN: case CFN_BUILT_IN_NEXTAFTERF16B: CASE_CFN_NEXTTOWARD: return fold_const_nextafter (result, arg0, arg1, format); default: return false; } } /* Try to evaluate: *RESULT = FN (*ARG0, ARG1) where FORMAT is the format of *RESULT and *ARG0. Return true on success. */ static bool fold_const_call_sss (real_value *result, combined_fn fn, const real_value *arg0, const wide_int_ref &arg1, const real_format *format) { switch (fn) { CASE_CFN_LDEXP: CASE_CFN_LDEXP_FN: return fold_const_builtin_load_exponent (result, arg0, arg1, format); CASE_CFN_SCALBN: CASE_CFN_SCALBN_FN: CASE_CFN_SCALBLN: CASE_CFN_SCALBLN_FN: return (format->b == 2 && fold_const_builtin_load_exponent (result, arg0, arg1, format)); CASE_CFN_POWI: /* Avoid the folding if flag_signaling_nans is on and operand is a signaling NaN. */ if (!flag_unsafe_math_optimizations && flag_signaling_nans && REAL_VALUE_ISSIGNALING_NAN (*arg0)) return false; real_powi (result, format, arg0, arg1.to_shwi ()); return true; default: return false; } } /* Try to evaluate: *RESULT = FN (ARG0, *ARG1) where FORMAT is the format of *RESULT and *ARG1. Return true on success. */ static bool fold_const_call_sss (real_value *result, combined_fn fn, const wide_int_ref &arg0, const real_value *arg1, const real_format *format) { switch (fn) { CASE_CFN_JN: return do_mpfr_arg2 (result, mpfr_jn, arg0, arg1, format); CASE_CFN_YN: return (real_compare (GT_EXPR, arg1, &dconst0) && do_mpfr_arg2 (result, mpfr_yn, arg0, arg1, format)); default: return false; } } /* Try to evaluate: *RESULT = FN (ARG0, ARG1) where ARG_TYPE is the type of ARG0 and PRECISION is the number of bits in the result. Return true on success. */ static bool fold_const_call_sss (wide_int *result, combined_fn fn, const wide_int_ref &arg0, const wide_int_ref &arg1, unsigned int precision, tree arg_type ATTRIBUTE_UNUSED) { switch (fn) { case CFN_CLZ: case CFN_BUILT_IN_CLZG: { int tmp; if (wi::ne_p (arg0, 0)) tmp = wi::clz (arg0); else tmp = arg1.to_shwi (); *result = wi::shwi (tmp, precision); return true; } case CFN_CTZ: case CFN_BUILT_IN_CTZG: { int tmp; if (wi::ne_p (arg0, 0)) tmp = wi::ctz (arg0); else tmp = arg1.to_shwi (); *result = wi::shwi (tmp, precision); return true; } default: return false; } } /* Try to evaluate: RESULT = fn (ARG0, ARG1) where FORMAT is the format of the real and imaginary parts of RESULT (RESULT_REAL and RESULT_IMAG), of ARG0 (ARG0_REAL and ARG0_IMAG) and of ARG1 (ARG1_REAL and ARG1_IMAG). Return true on success. */ static bool fold_const_call_ccc (real_value *result_real, real_value *result_imag, combined_fn fn, const real_value *arg0_real, const real_value *arg0_imag, const real_value *arg1_real, const real_value *arg1_imag, const real_format *format) { switch (fn) { CASE_CFN_CPOW: CASE_CFN_CPOW_FN: return do_mpc_arg2 (result_real, result_imag, mpc_pow, arg0_real, arg0_imag, arg1_real, arg1_imag, format); default: return false; } } /* Subroutine of fold_const_call, with the same interface. Handle cases where the arguments and result are numerical. */ static tree fold_const_call_1 (combined_fn fn, tree type, tree arg0, tree arg1) { machine_mode mode = TYPE_MODE (type); machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0)); machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1)); if (integer_cst_p (arg0) && integer_cst_p (arg1)) { if (SCALAR_INT_MODE_P (mode)) { wide_int result; if (fold_const_call_sss (&result, fn, wi::to_wide (arg0), wi::to_wide (arg1), TYPE_PRECISION (type), TREE_TYPE (arg0))) return wide_int_to_tree (type, result); } return NULL_TREE; } if (mode == arg0_mode && real_cst_p (arg0) && real_cst_p (arg1)) { gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode)); REAL_VALUE_TYPE result; if (arg0_mode == arg1_mode) { /* real, real -> real. */ if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0), TREE_REAL_CST_PTR (arg1), REAL_MODE_FORMAT (mode))) return build_real (type, result); } else if (arg1_mode == TYPE_MODE (long_double_type_node)) switch (fn) { CASE_CFN_NEXTTOWARD: /* real, long double -> real. */ if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0), TREE_REAL_CST_PTR (arg1), REAL_MODE_FORMAT (mode))) return build_real (type, result); break; default: break; } return NULL_TREE; } if (real_cst_p (arg0) && integer_cst_p (arg1)) { gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode)); if (mode == arg0_mode) { /* real, int -> real. */ REAL_VALUE_TYPE result; if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0), wi::to_wide (arg1), REAL_MODE_FORMAT (mode))) return build_real (type, result); } return NULL_TREE; } if (integer_cst_p (arg0) && real_cst_p (arg1)) { gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg1_mode)); if (mode == arg1_mode) { /* int, real -> real. */ REAL_VALUE_TYPE result; if (fold_const_call_sss (&result, fn, wi::to_wide (arg0), TREE_REAL_CST_PTR (arg1), REAL_MODE_FORMAT (mode))) return build_real (type, result); } return NULL_TREE; } if (arg0_mode == arg1_mode && complex_cst_p (arg0) && complex_cst_p (arg1)) { gcc_checking_assert (COMPLEX_MODE_P (arg0_mode)); machine_mode inner_mode = GET_MODE_INNER (arg0_mode); tree arg0r = TREE_REALPART (arg0); tree arg0i = TREE_IMAGPART (arg0); tree arg1r = TREE_REALPART (arg1); tree arg1i = TREE_IMAGPART (arg1); if (mode == arg0_mode && real_cst_p (arg0r) && real_cst_p (arg0i) && real_cst_p (arg1r) && real_cst_p (arg1i)) { /* complex real, complex real -> complex real. */ REAL_VALUE_TYPE result_real, result_imag; if (fold_const_call_ccc (&result_real, &result_imag, fn, TREE_REAL_CST_PTR (arg0r), TREE_REAL_CST_PTR (arg0i), TREE_REAL_CST_PTR (arg1r), TREE_REAL_CST_PTR (arg1i), REAL_MODE_FORMAT (inner_mode))) return build_complex (type, build_real (TREE_TYPE (type), result_real), build_real (TREE_TYPE (type), result_imag)); } return NULL_TREE; } return NULL_TREE; } /* Try to fold FN (ARG0, ARG1) to a constant. Return the constant on success, otherwise return null. TYPE is the type of the return value. */ tree fold_const_call (combined_fn fn, tree type, tree arg0, tree arg1) { const char *p0, *p1; char c; tree_code subcode; switch (fn) { case CFN_BUILT_IN_STRSPN: if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1))) return build_int_cst (type, strspn (p0, p1)); return NULL_TREE; case CFN_BUILT_IN_STRCSPN: if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1))) return build_int_cst (type, strcspn (p0, p1)); return NULL_TREE; case CFN_BUILT_IN_STRCMP: if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1))) return build_cmp_result (type, strcmp (p0, p1)); return NULL_TREE; case CFN_BUILT_IN_STRCASECMP: if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1))) { int r = strcmp (p0, p1); if (r == 0) return build_cmp_result (type, r); } return NULL_TREE; case CFN_BUILT_IN_INDEX: case CFN_BUILT_IN_STRCHR: if ((p0 = c_getstr (arg0)) && target_char_cst_p (arg1, &c)) { const char *r = strchr (p0, c); if (r == NULL) return build_int_cst (type, 0); return fold_convert (type, fold_build_pointer_plus_hwi (arg0, r - p0)); } return NULL_TREE; case CFN_BUILT_IN_RINDEX: case CFN_BUILT_IN_STRRCHR: if ((p0 = c_getstr (arg0)) && target_char_cst_p (arg1, &c)) { const char *r = strrchr (p0, c); if (r == NULL) return build_int_cst (type, 0); return fold_convert (type, fold_build_pointer_plus_hwi (arg0, r - p0)); } return NULL_TREE; case CFN_BUILT_IN_STRSTR: if ((p1 = c_getstr (arg1))) { if ((p0 = c_getstr (arg0))) { const char *r = strstr (p0, p1); if (r == NULL) return build_int_cst (type, 0); return fold_convert (type, fold_build_pointer_plus_hwi (arg0, r - p0)); } if (*p1 == '\0') return fold_convert (type, arg0); } return NULL_TREE; case CFN_FOLD_LEFT_PLUS: return fold_const_fold_left (type, arg0, arg1, PLUS_EXPR); case CFN_UBSAN_CHECK_ADD: case CFN_ADD_OVERFLOW: subcode = PLUS_EXPR; goto arith_overflow; case CFN_UBSAN_CHECK_SUB: case CFN_SUB_OVERFLOW: subcode = MINUS_EXPR; goto arith_overflow; case CFN_UBSAN_CHECK_MUL: case CFN_MUL_OVERFLOW: subcode = MULT_EXPR; goto arith_overflow; arith_overflow: if (integer_cst_p (arg0) && integer_cst_p (arg1)) { tree itype = TREE_CODE (type) == COMPLEX_TYPE ? TREE_TYPE (type) : type; bool ovf = false; tree r = int_const_binop (subcode, fold_convert (itype, arg0), fold_convert (itype, arg1)); if (!r || TREE_CODE (r) != INTEGER_CST) return NULL_TREE; if (arith_overflowed_p (subcode, itype, arg0, arg1)) ovf = true; if (TREE_OVERFLOW (r)) r = drop_tree_overflow (r); if (itype == type) { if (ovf) return NULL_TREE; return r; } else return build_complex (type, r, build_int_cst (itype, ovf)); } return NULL_TREE; default: return fold_const_call_1 (fn, type, arg0, arg1); } } /* Try to evaluate: *RESULT = FN (*ARG0, *ARG1, *ARG2) in format FORMAT. Return true on success. */ static bool fold_const_call_ssss (real_value *result, combined_fn fn, const real_value *arg0, const real_value *arg1, const real_value *arg2, const real_format *format) { switch (fn) { CASE_CFN_FMA: CASE_CFN_FMA_FN: return do_mpfr_arg3 (result, mpfr_fma, arg0, arg1, arg2, format); case CFN_FMS: { real_value new_arg2 = real_value_negate (arg2); return do_mpfr_arg3 (result, mpfr_fma, arg0, arg1, &new_arg2, format); } case CFN_FNMA: { real_value new_arg0 = real_value_negate (arg0); return do_mpfr_arg3 (result, mpfr_fma, &new_arg0, arg1, arg2, format); } case CFN_FNMS: { real_value new_arg0 = real_value_negate (arg0); real_value new_arg2 = real_value_negate (arg2); return do_mpfr_arg3 (result, mpfr_fma, &new_arg0, arg1, &new_arg2, format); } default: return false; } } /* Subroutine of fold_const_call, with the same interface. Handle cases where the arguments and result are numerical. */ static tree fold_const_call_1 (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2) { machine_mode mode = TYPE_MODE (type); machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0)); machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1)); machine_mode arg2_mode = TYPE_MODE (TREE_TYPE (arg2)); if (arg0_mode == arg1_mode && arg0_mode == arg2_mode && real_cst_p (arg0) && real_cst_p (arg1) && real_cst_p (arg2)) { gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode)); if (mode == arg0_mode) { /* real, real, real -> real. */ REAL_VALUE_TYPE result; if (fold_const_call_ssss (&result, fn, TREE_REAL_CST_PTR (arg0), TREE_REAL_CST_PTR (arg1), TREE_REAL_CST_PTR (arg2), REAL_MODE_FORMAT (mode))) return build_real (type, result); } return NULL_TREE; } return NULL_TREE; } /* Try to fold FN (ARG0, ARG1, ARG2) to a constant. Return the constant on success, otherwise return null. TYPE is the type of the return value. */ tree fold_const_call (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2) { const char *p0, *p1; char c; unsigned HOST_WIDE_INT s0, s1, s2 = 0; switch (fn) { case CFN_BUILT_IN_STRNCMP: if (!size_t_cst_p (arg2, &s2)) return NULL_TREE; if (s2 == 0 && !TREE_SIDE_EFFECTS (arg0) && !TREE_SIDE_EFFECTS (arg1)) return build_int_cst (type, 0); else if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1))) return build_int_cst (type, strncmp (p0, p1, MIN (s2, SIZE_MAX))); return NULL_TREE; case CFN_BUILT_IN_STRNCASECMP: if (!size_t_cst_p (arg2, &s2)) return NULL_TREE; if (s2 == 0 && !TREE_SIDE_EFFECTS (arg0) && !TREE_SIDE_EFFECTS (arg1)) return build_int_cst (type, 0); else if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)) && strncmp (p0, p1, MIN (s2, SIZE_MAX)) == 0) return build_int_cst (type, 0); return NULL_TREE; case CFN_BUILT_IN_BCMP: case CFN_BUILT_IN_MEMCMP: if (!size_t_cst_p (arg2, &s2)) return NULL_TREE; if (s2 == 0 && !TREE_SIDE_EFFECTS (arg0) && !TREE_SIDE_EFFECTS (arg1)) return build_int_cst (type, 0); if ((p0 = getbyterep (arg0, &s0)) && (p1 = getbyterep (arg1, &s1)) && s2 <= s0 && s2 <= s1) return build_cmp_result (type, memcmp (p0, p1, s2)); return NULL_TREE; case CFN_BUILT_IN_MEMCHR: if (!size_t_cst_p (arg2, &s2)) return NULL_TREE; if (s2 == 0 && !TREE_SIDE_EFFECTS (arg0) && !TREE_SIDE_EFFECTS (arg1)) return build_int_cst (type, 0); if ((p0 = getbyterep (arg0, &s0)) && s2 <= s0 && target_char_cst_p (arg1, &c)) { const char *r = (const char *) memchr (p0, c, s2); if (r == NULL) return build_int_cst (type, 0); return fold_convert (type, fold_build_pointer_plus_hwi (arg0, r - p0)); } return NULL_TREE; case CFN_WHILE_ULT: { poly_uint64 parg0, parg1; if (poly_int_tree_p (arg0, &parg0) && poly_int_tree_p (arg1, &parg1)) return fold_while_ult (type, parg0, parg1); return NULL_TREE; } case CFN_UADDC: case CFN_USUBC: if (integer_cst_p (arg0) && integer_cst_p (arg1) && integer_cst_p (arg2)) { tree itype = TREE_TYPE (type); bool ovf = false; tree_code subcode = fn == CFN_UADDC ? PLUS_EXPR : MINUS_EXPR; tree r = int_const_binop (subcode, fold_convert (itype, arg0), fold_convert (itype, arg1)); if (!r) return NULL_TREE; if (arith_overflowed_p (subcode, itype, arg0, arg1)) ovf = true; tree r2 = int_const_binop (subcode, r, fold_convert (itype, arg2)); if (!r2 || TREE_CODE (r2) != INTEGER_CST) return NULL_TREE; if (arith_overflowed_p (subcode, itype, r, arg2)) ovf = true; if (TREE_OVERFLOW (r2)) r2 = drop_tree_overflow (r2); return build_complex (type, r2, build_int_cst (itype, ovf)); } return NULL_TREE; default: return fold_const_call_1 (fn, type, arg0, arg1, arg2); } }