/* Fixed-point arithmetic support. Copyright (C) 2006-2015 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "diagnostic-core.h" /* Compare two fixed objects for bitwise identity. */ bool fixed_identical (const FIXED_VALUE_TYPE *a, const FIXED_VALUE_TYPE *b) { return (a->mode == b->mode && a->data.high == b->data.high && a->data.low == b->data.low); } /* Calculate a hash value. */ unsigned int fixed_hash (const FIXED_VALUE_TYPE *f) { return (unsigned int) (f->data.low ^ f->data.high); } /* Define the enum code for the range of the fixed-point value. */ enum fixed_value_range_code { FIXED_OK, /* The value is within the range. */ FIXED_UNDERFLOW, /* The value is less than the minimum. */ FIXED_GT_MAX_EPS, /* The value is greater than the maximum, but not equal to the maximum plus the epsilon. */ FIXED_MAX_EPS /* The value equals the maximum plus the epsilon. */ }; /* Check REAL_VALUE against the range of the fixed-point mode. Return FIXED_OK, if it is within the range. FIXED_UNDERFLOW, if it is less than the minimum. FIXED_GT_MAX_EPS, if it is greater than the maximum, but not equal to the maximum plus the epsilon. FIXED_MAX_EPS, if it is equal to the maximum plus the epsilon. */ static enum fixed_value_range_code check_real_for_fixed_mode (REAL_VALUE_TYPE *real_value, machine_mode mode) { REAL_VALUE_TYPE max_value, min_value, epsilon_value; real_2expN (&max_value, GET_MODE_IBIT (mode), VOIDmode); real_2expN (&epsilon_value, -GET_MODE_FBIT (mode), VOIDmode); if (SIGNED_FIXED_POINT_MODE_P (mode)) min_value = real_value_negate (&max_value); else real_from_string (&min_value, "0.0"); if (real_compare (LT_EXPR, real_value, &min_value)) return FIXED_UNDERFLOW; if (real_compare (EQ_EXPR, real_value, &max_value)) return FIXED_MAX_EPS; real_arithmetic (&max_value, MINUS_EXPR, &max_value, &epsilon_value); if (real_compare (GT_EXPR, real_value, &max_value)) return FIXED_GT_MAX_EPS; return FIXED_OK; } /* Construct a CONST_FIXED from a bit payload and machine mode MODE. The bits in PAYLOAD are sign-extended/zero-extended according to MODE. */ FIXED_VALUE_TYPE fixed_from_double_int (double_int payload, machine_mode mode) { FIXED_VALUE_TYPE value; gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_DOUBLE_INT); if (SIGNED_SCALAR_FIXED_POINT_MODE_P (mode)) value.data = payload.sext (1 + GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode)); else if (UNSIGNED_SCALAR_FIXED_POINT_MODE_P (mode)) value.data = payload.zext (GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode)); else gcc_unreachable (); value.mode = mode; return value; } /* Initialize from a decimal or hexadecimal string. */ void fixed_from_string (FIXED_VALUE_TYPE *f, const char *str, machine_mode mode) { REAL_VALUE_TYPE real_value, fixed_value, base_value; unsigned int fbit; enum fixed_value_range_code temp; bool fail; f->mode = mode; fbit = GET_MODE_FBIT (mode); real_from_string (&real_value, str); temp = check_real_for_fixed_mode (&real_value, f->mode); /* We don't want to warn the case when the _Fract value is 1.0. */ if (temp == FIXED_UNDERFLOW || temp == FIXED_GT_MAX_EPS || (temp == FIXED_MAX_EPS && ALL_ACCUM_MODE_P (f->mode))) warning (OPT_Woverflow, "large fixed-point constant implicitly truncated to fixed-point type"); real_2expN (&base_value, fbit, VOIDmode); real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value); wide_int w = real_to_integer (&fixed_value, &fail, GET_MODE_PRECISION (mode)); f->data.low = w.elt (0); f->data.high = w.elt (1); if (temp == FIXED_MAX_EPS && ALL_FRACT_MODE_P (f->mode)) { /* From the spec, we need to evaluate 1 to the maximal value. */ f->data.low = -1; f->data.high = -1; f->data = f->data.zext (GET_MODE_FBIT (f->mode) + GET_MODE_IBIT (f->mode)); } else f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode) + GET_MODE_FBIT (f->mode) + GET_MODE_IBIT (f->mode), UNSIGNED_FIXED_POINT_MODE_P (f->mode)); } /* Render F as a decimal floating point constant. */ void fixed_to_decimal (char *str, const FIXED_VALUE_TYPE *f_orig, size_t buf_size) { REAL_VALUE_TYPE real_value, base_value, fixed_value; signop sgn = UNSIGNED_FIXED_POINT_MODE_P (f_orig->mode) ? UNSIGNED : SIGNED; real_2expN (&base_value, GET_MODE_FBIT (f_orig->mode), VOIDmode); real_from_integer (&real_value, VOIDmode, wide_int::from (f_orig->data, GET_MODE_PRECISION (f_orig->mode), sgn), sgn); real_arithmetic (&fixed_value, RDIV_EXPR, &real_value, &base_value); real_to_decimal (str, &fixed_value, buf_size, 0, 1); } /* If SAT_P, saturate A to the maximum or the minimum, and save to *F based on the machine mode MODE. Do not modify *F otherwise. This function assumes the width of double_int is greater than the width of the fixed-point value (the sum of a possible sign bit, possible ibits, and fbits). Return true, if !SAT_P and overflow. */ static bool fixed_saturate1 (machine_mode mode, double_int a, double_int *f, bool sat_p) { bool overflow_p = false; bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode); int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode); if (unsigned_p) /* Unsigned type. */ { double_int max; max.low = -1; max.high = -1; max = max.zext (i_f_bits); if (a.ugt (max)) { if (sat_p) *f = max; else overflow_p = true; } } else /* Signed type. */ { double_int max, min; max.high = -1; max.low = -1; max = max.zext (i_f_bits); min.high = 0; min.low = 1; min = min.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT); min = min.sext (1 + i_f_bits); if (a.sgt (max)) { if (sat_p) *f = max; else overflow_p = true; } else if (a.slt (min)) { if (sat_p) *f = min; else overflow_p = true; } } return overflow_p; } /* If SAT_P, saturate {A_HIGH, A_LOW} to the maximum or the minimum, and save to *F based on the machine mode MODE. Do not modify *F otherwise. This function assumes the width of two double_int is greater than the width of the fixed-point value (the sum of a possible sign bit, possible ibits, and fbits). Return true, if !SAT_P and overflow. */ static bool fixed_saturate2 (machine_mode mode, double_int a_high, double_int a_low, double_int *f, bool sat_p) { bool overflow_p = false; bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode); int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode); if (unsigned_p) /* Unsigned type. */ { double_int max_r, max_s; max_r.high = 0; max_r.low = 0; max_s.high = -1; max_s.low = -1; max_s = max_s.zext (i_f_bits); if (a_high.ugt (max_r) || (a_high == max_r && a_low.ugt (max_s))) { if (sat_p) *f = max_s; else overflow_p = true; } } else /* Signed type. */ { double_int max_r, max_s, min_r, min_s; max_r.high = 0; max_r.low = 0; max_s.high = -1; max_s.low = -1; max_s = max_s.zext (i_f_bits); min_r.high = -1; min_r.low = -1; min_s.high = 0; min_s.low = 1; min_s = min_s.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT); min_s = min_s.sext (1 + i_f_bits); if (a_high.sgt (max_r) || (a_high == max_r && a_low.ugt (max_s))) { if (sat_p) *f = max_s; else overflow_p = true; } else if (a_high.slt (min_r) || (a_high == min_r && a_low.ult (min_s))) { if (sat_p) *f = min_s; else overflow_p = true; } } return overflow_p; } /* Return the sign bit based on I_F_BITS. */ static inline int get_fixed_sign_bit (double_int a, int i_f_bits) { if (i_f_bits < HOST_BITS_PER_WIDE_INT) return (a.low >> i_f_bits) & 1; else return (a.high >> (i_f_bits - HOST_BITS_PER_WIDE_INT)) & 1; } /* Calculate F = A + (SUBTRACT_P ? -B : B). If SAT_P, saturate the result to the max or the min. Return true, if !SAT_P and overflow. */ static bool do_fixed_add (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, const FIXED_VALUE_TYPE *b, bool subtract_p, bool sat_p) { bool overflow_p = false; bool unsigned_p; double_int temp; int i_f_bits; /* This was a conditional expression but it triggered a bug in Sun C 5.5. */ if (subtract_p) temp = -b->data; else temp = b->data; unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode); i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode); f->mode = a->mode; f->data = a->data + temp; if (unsigned_p) /* Unsigned type. */ { if (subtract_p) /* Unsigned subtraction. */ { if (a->data.ult (b->data)) { if (sat_p) { f->data.high = 0; f->data.low = 0; } else overflow_p = true; } } else /* Unsigned addition. */ { f->data = f->data.zext (i_f_bits); if (f->data.ult (a->data) || f->data.ult (b->data)) { if (sat_p) { f->data.high = -1; f->data.low = -1; } else overflow_p = true; } } } else /* Signed type. */ { if ((!subtract_p && (get_fixed_sign_bit (a->data, i_f_bits) == get_fixed_sign_bit (b->data, i_f_bits)) && (get_fixed_sign_bit (a->data, i_f_bits) != get_fixed_sign_bit (f->data, i_f_bits))) || (subtract_p && (get_fixed_sign_bit (a->data, i_f_bits) != get_fixed_sign_bit (b->data, i_f_bits)) && (get_fixed_sign_bit (a->data, i_f_bits) != get_fixed_sign_bit (f->data, i_f_bits)))) { if (sat_p) { f->data.low = 1; f->data.high = 0; f->data = f->data.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT); if (get_fixed_sign_bit (a->data, i_f_bits) == 0) { --f->data; } } else overflow_p = true; } } f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p); return overflow_p; } /* Calculate F = A * B. If SAT_P, saturate the result to the max or the min. Return true, if !SAT_P and overflow. */ static bool do_fixed_multiply (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, const FIXED_VALUE_TYPE *b, bool sat_p) { bool overflow_p = false; bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode); int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode); f->mode = a->mode; if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT) { f->data = a->data * b->data; f->data = f->data.lshift (-GET_MODE_FBIT (f->mode), HOST_BITS_PER_DOUBLE_INT, !unsigned_p); overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p); } else { /* The result of multiplication expands to two double_int. */ double_int a_high, a_low, b_high, b_low; double_int high_high, high_low, low_high, low_low; double_int r, s, temp1, temp2; int carry = 0; /* Decompose a and b to four double_int. */ a_high.low = a->data.high; a_high.high = 0; a_low.low = a->data.low; a_low.high = 0; b_high.low = b->data.high; b_high.high = 0; b_low.low = b->data.low; b_low.high = 0; /* Perform four multiplications. */ low_low = a_low * b_low; low_high = a_low * b_high; high_low = a_high * b_low; high_high = a_high * b_high; /* Accumulate four results to {r, s}. */ temp1.high = high_low.low; temp1.low = 0; s = low_low + temp1; if (s.ult (low_low) || s.ult (temp1)) carry ++; /* Carry */ temp1.high = s.high; temp1.low = s.low; temp2.high = low_high.low; temp2.low = 0; s = temp1 + temp2; if (s.ult (temp1) || s.ult (temp2)) carry ++; /* Carry */ temp1.low = high_low.high; temp1.high = 0; r = high_high + temp1; temp1.low = low_high.high; temp1.high = 0; r += temp1; temp1.low = carry; temp1.high = 0; r += temp1; /* We need to subtract b from r, if a < 0. */ if (!unsigned_p && a->data.high < 0) r -= b->data; /* We need to subtract a from r, if b < 0. */ if (!unsigned_p && b->data.high < 0) r -= a->data; /* Shift right the result by FBIT. */ if (GET_MODE_FBIT (f->mode) == HOST_BITS_PER_DOUBLE_INT) { s.low = r.low; s.high = r.high; if (unsigned_p) { r.low = 0; r.high = 0; } else { r.low = -1; r.high = -1; } f->data.low = s.low; f->data.high = s.high; } else { s = s.llshift ((-GET_MODE_FBIT (f->mode)), HOST_BITS_PER_DOUBLE_INT); f->data = r.llshift ((HOST_BITS_PER_DOUBLE_INT - GET_MODE_FBIT (f->mode)), HOST_BITS_PER_DOUBLE_INT); f->data.low = f->data.low | s.low; f->data.high = f->data.high | s.high; s.low = f->data.low; s.high = f->data.high; r = r.lshift (-GET_MODE_FBIT (f->mode), HOST_BITS_PER_DOUBLE_INT, !unsigned_p); } overflow_p = fixed_saturate2 (f->mode, r, s, &f->data, sat_p); } f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p); return overflow_p; } /* Calculate F = A / B. If SAT_P, saturate the result to the max or the min. Return true, if !SAT_P and overflow. */ static bool do_fixed_divide (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, const FIXED_VALUE_TYPE *b, bool sat_p) { bool overflow_p = false; bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode); int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode); f->mode = a->mode; if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT) { f->data = a->data.lshift (GET_MODE_FBIT (f->mode), HOST_BITS_PER_DOUBLE_INT, !unsigned_p); f->data = f->data.div (b->data, unsigned_p, TRUNC_DIV_EXPR); overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p); } else { double_int pos_a, pos_b, r, s; double_int quo_r, quo_s, mod, temp; int num_of_neg = 0; int i; /* If a < 0, negate a. */ if (!unsigned_p && a->data.high < 0) { pos_a = -a->data; num_of_neg ++; } else pos_a = a->data; /* If b < 0, negate b. */ if (!unsigned_p && b->data.high < 0) { pos_b = -b->data; num_of_neg ++; } else pos_b = b->data; /* Left shift pos_a to {r, s} by FBIT. */ if (GET_MODE_FBIT (f->mode) == HOST_BITS_PER_DOUBLE_INT) { r = pos_a; s.high = 0; s.low = 0; } else { s = pos_a.llshift (GET_MODE_FBIT (f->mode), HOST_BITS_PER_DOUBLE_INT); r = pos_a.llshift (- (HOST_BITS_PER_DOUBLE_INT - GET_MODE_FBIT (f->mode)), HOST_BITS_PER_DOUBLE_INT); } /* Divide r by pos_b to quo_r. The remainder is in mod. */ quo_r = r.divmod (pos_b, 1, TRUNC_DIV_EXPR, &mod); quo_s = double_int_zero; for (i = 0; i < HOST_BITS_PER_DOUBLE_INT; i++) { /* Record the leftmost bit of mod. */ int leftmost_mod = (mod.high < 0); /* Shift left mod by 1 bit. */ mod = mod.lshift (1); /* Test the leftmost bit of s to add to mod. */ if (s.high < 0) mod.low += 1; /* Shift left quo_s by 1 bit. */ quo_s = quo_s.lshift (1); /* Try to calculate (mod - pos_b). */ temp = mod - pos_b; if (leftmost_mod == 1 || mod.ucmp (pos_b) != -1) { quo_s.low += 1; mod = temp; } /* Shift left s by 1 bit. */ s = s.lshift (1); } if (num_of_neg == 1) { quo_s = -quo_s; if (quo_s.high == 0 && quo_s.low == 0) quo_r = -quo_r; else { quo_r.low = ~quo_r.low; quo_r.high = ~quo_r.high; } } f->data = quo_s; overflow_p = fixed_saturate2 (f->mode, quo_r, quo_s, &f->data, sat_p); } f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p); return overflow_p; } /* Calculate F = A << B if LEFT_P. Otherwise, F = A >> B. If SAT_P, saturate the result to the max or the min. Return true, if !SAT_P and overflow. */ static bool do_fixed_shift (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, const FIXED_VALUE_TYPE *b, bool left_p, bool sat_p) { bool overflow_p = false; bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode); int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode); f->mode = a->mode; if (b->data.low == 0) { f->data = a->data; return overflow_p; } if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT || (!left_p)) { f->data = a->data.lshift (left_p ? b->data.low : -b->data.low, HOST_BITS_PER_DOUBLE_INT, !unsigned_p); if (left_p) /* Only left shift saturates. */ overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p); } else /* We need two double_int to store the left-shift result. */ { double_int temp_high, temp_low; if (b->data.low == HOST_BITS_PER_DOUBLE_INT) { temp_high = a->data; temp_low.high = 0; temp_low.low = 0; } else { temp_low = a->data.lshift (b->data.low, HOST_BITS_PER_DOUBLE_INT, !unsigned_p); /* Logical shift right to temp_high. */ temp_high = a->data.llshift (b->data.low - HOST_BITS_PER_DOUBLE_INT, HOST_BITS_PER_DOUBLE_INT); } if (!unsigned_p && a->data.high < 0) /* Signed-extend temp_high. */ temp_high = temp_high.ext (b->data.low, unsigned_p); f->data = temp_low; overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data, sat_p); } f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p); return overflow_p; } /* Calculate F = -A. If SAT_P, saturate the result to the max or the min. Return true, if !SAT_P and overflow. */ static bool do_fixed_neg (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, bool sat_p) { bool overflow_p = false; bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode); int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode); f->mode = a->mode; f->data = -a->data; f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p); if (unsigned_p) /* Unsigned type. */ { if (f->data.low != 0 || f->data.high != 0) { if (sat_p) { f->data.low = 0; f->data.high = 0; } else overflow_p = true; } } else /* Signed type. */ { if (!(f->data.high == 0 && f->data.low == 0) && f->data.high == a->data.high && f->data.low == a->data.low ) { if (sat_p) { /* Saturate to the maximum by subtracting f->data by one. */ f->data.low = -1; f->data.high = -1; f->data = f->data.zext (i_f_bits); } else overflow_p = true; } } return overflow_p; } /* Perform the binary or unary operation described by CODE. Note that OP0 and OP1 must have the same mode for binary operators. For a unary operation, leave OP1 NULL. Return true, if !SAT_P and overflow. */ bool fixed_arithmetic (FIXED_VALUE_TYPE *f, int icode, const FIXED_VALUE_TYPE *op0, const FIXED_VALUE_TYPE *op1, bool sat_p) { switch (icode) { case NEGATE_EXPR: return do_fixed_neg (f, op0, sat_p); break; case PLUS_EXPR: gcc_assert (op0->mode == op1->mode); return do_fixed_add (f, op0, op1, false, sat_p); break; case MINUS_EXPR: gcc_assert (op0->mode == op1->mode); return do_fixed_add (f, op0, op1, true, sat_p); break; case MULT_EXPR: gcc_assert (op0->mode == op1->mode); return do_fixed_multiply (f, op0, op1, sat_p); break; case TRUNC_DIV_EXPR: gcc_assert (op0->mode == op1->mode); return do_fixed_divide (f, op0, op1, sat_p); break; case LSHIFT_EXPR: return do_fixed_shift (f, op0, op1, true, sat_p); break; case RSHIFT_EXPR: return do_fixed_shift (f, op0, op1, false, sat_p); break; default: gcc_unreachable (); } return false; } /* Compare fixed-point values by tree_code. Note that OP0 and OP1 must have the same mode. */ bool fixed_compare (int icode, const FIXED_VALUE_TYPE *op0, const FIXED_VALUE_TYPE *op1) { enum tree_code code = (enum tree_code) icode; gcc_assert (op0->mode == op1->mode); switch (code) { case NE_EXPR: return op0->data != op1->data; case EQ_EXPR: return op0->data == op1->data; case LT_EXPR: return op0->data.cmp (op1->data, UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == -1; case LE_EXPR: return op0->data.cmp (op1->data, UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != 1; case GT_EXPR: return op0->data.cmp (op1->data, UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == 1; case GE_EXPR: return op0->data.cmp (op1->data, UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != -1; default: gcc_unreachable (); } } /* Extend or truncate to a new mode. If SAT_P, saturate the result to the max or the min. Return true, if !SAT_P and overflow. */ bool fixed_convert (FIXED_VALUE_TYPE *f, machine_mode mode, const FIXED_VALUE_TYPE *a, bool sat_p) { bool overflow_p = false; if (mode == a->mode) { *f = *a; return overflow_p; } if (GET_MODE_FBIT (mode) > GET_MODE_FBIT (a->mode)) { /* Left shift a to temp_high, temp_low based on a->mode. */ double_int temp_high, temp_low; int amount = GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode); temp_low = a->data.lshift (amount, HOST_BITS_PER_DOUBLE_INT, SIGNED_FIXED_POINT_MODE_P (a->mode)); /* Logical shift right to temp_high. */ temp_high = a->data.llshift (amount - HOST_BITS_PER_DOUBLE_INT, HOST_BITS_PER_DOUBLE_INT); if (SIGNED_FIXED_POINT_MODE_P (a->mode) && a->data.high < 0) /* Signed-extend temp_high. */ temp_high = temp_high.sext (amount); f->mode = mode; f->data = temp_low; if (SIGNED_FIXED_POINT_MODE_P (a->mode) == SIGNED_FIXED_POINT_MODE_P (f->mode)) overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data, sat_p); else { /* Take care of the cases when converting between signed and unsigned. */ if (SIGNED_FIXED_POINT_MODE_P (a->mode)) { /* Signed -> Unsigned. */ if (a->data.high < 0) { if (sat_p) { f->data.low = 0; /* Set to zero. */ f->data.high = 0; /* Set to zero. */ } else overflow_p = true; } else overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data, sat_p); } else { /* Unsigned -> Signed. */ if (temp_high.high < 0) { if (sat_p) { /* Set to maximum. */ f->data.low = -1; /* Set to all ones. */ f->data.high = -1; /* Set to all ones. */ f->data = f->data.zext (GET_MODE_FBIT (f->mode) + GET_MODE_IBIT (f->mode)); /* Clear the sign. */ } else overflow_p = true; } else overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data, sat_p); } } } else { /* Right shift a to temp based on a->mode. */ double_int temp; temp = a->data.lshift (GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode), HOST_BITS_PER_DOUBLE_INT, SIGNED_FIXED_POINT_MODE_P (a->mode)); f->mode = mode; f->data = temp; if (SIGNED_FIXED_POINT_MODE_P (a->mode) == SIGNED_FIXED_POINT_MODE_P (f->mode)) overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p); else { /* Take care of the cases when converting between signed and unsigned. */ if (SIGNED_FIXED_POINT_MODE_P (a->mode)) { /* Signed -> Unsigned. */ if (a->data.high < 0) { if (sat_p) { f->data.low = 0; /* Set to zero. */ f->data.high = 0; /* Set to zero. */ } else overflow_p = true; } else overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p); } else { /* Unsigned -> Signed. */ if (temp.high < 0) { if (sat_p) { /* Set to maximum. */ f->data.low = -1; /* Set to all ones. */ f->data.high = -1; /* Set to all ones. */ f->data = f->data.zext (GET_MODE_FBIT (f->mode) + GET_MODE_IBIT (f->mode)); /* Clear the sign. */ } else overflow_p = true; } else overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p); } } } f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode) + GET_MODE_FBIT (f->mode) + GET_MODE_IBIT (f->mode), UNSIGNED_FIXED_POINT_MODE_P (f->mode)); return overflow_p; } /* Convert to a new fixed-point mode from an integer. If UNSIGNED_P, this integer is unsigned. If SAT_P, saturate the result to the max or the min. Return true, if !SAT_P and overflow. */ bool fixed_convert_from_int (FIXED_VALUE_TYPE *f, machine_mode mode, double_int a, bool unsigned_p, bool sat_p) { bool overflow_p = false; /* Left shift a to temp_high, temp_low. */ double_int temp_high, temp_low; int amount = GET_MODE_FBIT (mode); if (amount == HOST_BITS_PER_DOUBLE_INT) { temp_high = a; temp_low.low = 0; temp_low.high = 0; } else { temp_low = a.llshift (amount, HOST_BITS_PER_DOUBLE_INT); /* Logical shift right to temp_high. */ temp_high = a.llshift (amount - HOST_BITS_PER_DOUBLE_INT, HOST_BITS_PER_DOUBLE_INT); } if (!unsigned_p && a.high < 0) /* Signed-extend temp_high. */ temp_high = temp_high.sext (amount); f->mode = mode; f->data = temp_low; if (unsigned_p == UNSIGNED_FIXED_POINT_MODE_P (f->mode)) overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data, sat_p); else { /* Take care of the cases when converting between signed and unsigned. */ if (!unsigned_p) { /* Signed -> Unsigned. */ if (a.high < 0) { if (sat_p) { f->data.low = 0; /* Set to zero. */ f->data.high = 0; /* Set to zero. */ } else overflow_p = true; } else overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data, sat_p); } else { /* Unsigned -> Signed. */ if (temp_high.high < 0) { if (sat_p) { /* Set to maximum. */ f->data.low = -1; /* Set to all ones. */ f->data.high = -1; /* Set to all ones. */ f->data = f->data.zext (GET_MODE_FBIT (f->mode) + GET_MODE_IBIT (f->mode)); /* Clear the sign. */ } else overflow_p = true; } else overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data, sat_p); } } f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode) + GET_MODE_FBIT (f->mode) + GET_MODE_IBIT (f->mode), UNSIGNED_FIXED_POINT_MODE_P (f->mode)); return overflow_p; } /* Convert to a new fixed-point mode from a real. If SAT_P, saturate the result to the max or the min. Return true, if !SAT_P and overflow. */ bool fixed_convert_from_real (FIXED_VALUE_TYPE *f, machine_mode mode, const REAL_VALUE_TYPE *a, bool sat_p) { bool overflow_p = false; REAL_VALUE_TYPE real_value, fixed_value, base_value; bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode); int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode); unsigned int fbit = GET_MODE_FBIT (mode); enum fixed_value_range_code temp; bool fail; real_value = *a; f->mode = mode; real_2expN (&base_value, fbit, VOIDmode); real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value); wide_int w = real_to_integer (&fixed_value, &fail, GET_MODE_PRECISION (mode)); f->data.low = w.elt (0); f->data.high = w.elt (1); temp = check_real_for_fixed_mode (&real_value, mode); if (temp == FIXED_UNDERFLOW) /* Minimum. */ { if (sat_p) { if (unsigned_p) { f->data.low = 0; f->data.high = 0; } else { f->data.low = 1; f->data.high = 0; f->data = f->data.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT); f->data = f->data.sext (1 + i_f_bits); } } else overflow_p = true; } else if (temp == FIXED_GT_MAX_EPS || temp == FIXED_MAX_EPS) /* Maximum. */ { if (sat_p) { f->data.low = -1; f->data.high = -1; f->data = f->data.zext (i_f_bits); } else overflow_p = true; } f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p); return overflow_p; } /* Convert to a new real mode from a fixed-point. */ void real_convert_from_fixed (REAL_VALUE_TYPE *r, machine_mode mode, const FIXED_VALUE_TYPE *f) { REAL_VALUE_TYPE base_value, fixed_value, real_value; signop sgn = UNSIGNED_FIXED_POINT_MODE_P (f->mode) ? UNSIGNED : SIGNED; real_2expN (&base_value, GET_MODE_FBIT (f->mode), VOIDmode); real_from_integer (&fixed_value, VOIDmode, wide_int::from (f->data, GET_MODE_PRECISION (f->mode), sgn), sgn); real_arithmetic (&real_value, RDIV_EXPR, &fixed_value, &base_value); real_convert (r, mode, &real_value); } /* Determine whether a fixed-point value F is negative. */ bool fixed_isneg (const FIXED_VALUE_TYPE *f) { if (SIGNED_FIXED_POINT_MODE_P (f->mode)) { int i_f_bits = GET_MODE_IBIT (f->mode) + GET_MODE_FBIT (f->mode); int sign_bit = get_fixed_sign_bit (f->data, i_f_bits); if (sign_bit == 1) return true; } return false; }