/* Convert tree expression to rtl instructions, for GNU compiler. Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "machmode.h" #include "real.h" #include "rtl.h" #include "tree.h" #include "flags.h" #include "regs.h" #include "hard-reg-set.h" #include "except.h" #include "function.h" #include "insn-config.h" #include "insn-attr.h" /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */ #include "expr.h" #include "optabs.h" #include "libfuncs.h" #include "recog.h" #include "reload.h" #include "output.h" #include "typeclass.h" #include "toplev.h" #include "ggc.h" #include "langhooks.h" #include "intl.h" #include "tm_p.h" #include "target.h" /* Decide whether a function's arguments should be processed from first to last or from last to first. They should if the stack and args grow in opposite directions, but only if we have push insns. */ #ifdef PUSH_ROUNDING #ifndef PUSH_ARGS_REVERSED #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD) #define PUSH_ARGS_REVERSED /* If it's last to first. */ #endif #endif #endif #ifndef STACK_PUSH_CODE #ifdef STACK_GROWS_DOWNWARD #define STACK_PUSH_CODE PRE_DEC #else #define STACK_PUSH_CODE PRE_INC #endif #endif /* Convert defined/undefined to boolean. */ #ifdef TARGET_MEM_FUNCTIONS #undef TARGET_MEM_FUNCTIONS #define TARGET_MEM_FUNCTIONS 1 #else #define TARGET_MEM_FUNCTIONS 0 #endif /* If this is nonzero, we do not bother generating VOLATILE around volatile memory references, and we are willing to output indirect addresses. If cse is to follow, we reject indirect addresses so a useful potential cse is generated; if it is used only once, instruction combination will produce the same indirect address eventually. */ int cse_not_expected; /* Chain of pending expressions for PLACEHOLDER_EXPR to replace. */ tree placeholder_list = 0; /* This structure is used by move_by_pieces to describe the move to be performed. */ struct move_by_pieces { rtx to; rtx to_addr; int autinc_to; int explicit_inc_to; rtx from; rtx from_addr; int autinc_from; int explicit_inc_from; unsigned HOST_WIDE_INT len; HOST_WIDE_INT offset; int reverse; }; /* This structure is used by store_by_pieces to describe the clear to be performed. */ struct store_by_pieces { rtx to; rtx to_addr; int autinc_to; int explicit_inc_to; unsigned HOST_WIDE_INT len; HOST_WIDE_INT offset; rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode); void *constfundata; int reverse; }; static rtx enqueue_insn (rtx, rtx); static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT, unsigned int); static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode, struct move_by_pieces *); static bool block_move_libcall_safe_for_call_parm (void); static bool emit_block_move_via_movstr (rtx, rtx, rtx, unsigned); static rtx emit_block_move_via_libcall (rtx, rtx, rtx); static tree emit_block_move_libcall_fn (int); static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned); static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode); static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int); static void store_by_pieces_1 (struct store_by_pieces *, unsigned int); static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode, struct store_by_pieces *); static bool clear_storage_via_clrstr (rtx, rtx, unsigned); static rtx clear_storage_via_libcall (rtx, rtx); static tree clear_storage_libcall_fn (int); static rtx compress_float_constant (rtx, rtx); static rtx get_subtarget (rtx); static int is_zeros_p (tree); static void store_constructor_field (rtx, unsigned HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode, tree, tree, int, int); static void store_constructor (tree, rtx, int, HOST_WIDE_INT); static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode, tree, enum machine_mode, int, tree, int); static rtx var_rtx (tree); static unsigned HOST_WIDE_INT highest_pow2_factor (tree); static unsigned HOST_WIDE_INT highest_pow2_factor_for_type (tree, tree); static int is_aligning_offset (tree, tree); static rtx expand_increment (tree, int, int); static void expand_operands (tree, tree, rtx, rtx*, rtx*, enum expand_modifier); static rtx do_store_flag (tree, rtx, enum machine_mode, int); #ifdef PUSH_ROUNDING static void emit_single_push_insn (enum machine_mode, rtx, tree); #endif static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx); static rtx const_vector_from_tree (tree); /* Record for each mode whether we can move a register directly to or from an object of that mode in memory. If we can't, we won't try to use that mode directly when accessing a field of that mode. */ static char direct_load[NUM_MACHINE_MODES]; static char direct_store[NUM_MACHINE_MODES]; /* Record for each mode whether we can float-extend from memory. */ static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES]; /* This macro is used to determine whether move_by_pieces should be called to perform a structure copy. */ #ifndef MOVE_BY_PIECES_P #define MOVE_BY_PIECES_P(SIZE, ALIGN) \ (move_by_pieces_ninsns (SIZE, ALIGN) < (unsigned int) MOVE_RATIO) #endif /* This macro is used to determine whether clear_by_pieces should be called to clear storage. */ #ifndef CLEAR_BY_PIECES_P #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \ (move_by_pieces_ninsns (SIZE, ALIGN) < (unsigned int) CLEAR_RATIO) #endif /* This macro is used to determine whether store_by_pieces should be called to "memset" storage with byte values other than zero, or to "memcpy" storage when the source is a constant string. */ #ifndef STORE_BY_PIECES_P #define STORE_BY_PIECES_P(SIZE, ALIGN) MOVE_BY_PIECES_P (SIZE, ALIGN) #endif /* This array records the insn_code of insns to perform block moves. */ enum insn_code movstr_optab[NUM_MACHINE_MODES]; /* This array records the insn_code of insns to perform block clears. */ enum insn_code clrstr_optab[NUM_MACHINE_MODES]; /* These arrays record the insn_code of two different kinds of insns to perform block compares. */ enum insn_code cmpstr_optab[NUM_MACHINE_MODES]; enum insn_code cmpmem_optab[NUM_MACHINE_MODES]; /* Stack of EXPR_WITH_FILE_LOCATION nested expressions. */ struct file_stack *expr_wfl_stack; /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */ #ifndef SLOW_UNALIGNED_ACCESS #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT #endif /* This is run once per compilation to set up which modes can be used directly in memory and to initialize the block move optab. */ void init_expr_once (void) { rtx insn, pat; enum machine_mode mode; int num_clobbers; rtx mem, mem1; rtx reg; /* Try indexing by frame ptr and try by stack ptr. It is known that on the Convex the stack ptr isn't a valid index. With luck, one or the other is valid on any machine. */ mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx); mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx); /* A scratch register we can modify in-place below to avoid useless RTL allocations. */ reg = gen_rtx_REG (VOIDmode, -1); insn = rtx_alloc (INSN); pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX); PATTERN (insn) = pat; for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES; mode = (enum machine_mode) ((int) mode + 1)) { int regno; direct_load[(int) mode] = direct_store[(int) mode] = 0; PUT_MODE (mem, mode); PUT_MODE (mem1, mode); PUT_MODE (reg, mode); /* See if there is some register that can be used in this mode and directly loaded or stored from memory. */ if (mode != VOIDmode && mode != BLKmode) for (regno = 0; regno < FIRST_PSEUDO_REGISTER && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0); regno++) { if (! HARD_REGNO_MODE_OK (regno, mode)) continue; REGNO (reg) = regno; SET_SRC (pat) = mem; SET_DEST (pat) = reg; if (recog (pat, insn, &num_clobbers) >= 0) direct_load[(int) mode] = 1; SET_SRC (pat) = mem1; SET_DEST (pat) = reg; if (recog (pat, insn, &num_clobbers) >= 0) direct_load[(int) mode] = 1; SET_SRC (pat) = reg; SET_DEST (pat) = mem; if (recog (pat, insn, &num_clobbers) >= 0) direct_store[(int) mode] = 1; SET_SRC (pat) = reg; SET_DEST (pat) = mem1; if (recog (pat, insn, &num_clobbers) >= 0) direct_store[(int) mode] = 1; } } mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000)); for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode)) { enum machine_mode srcmode; for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode; srcmode = GET_MODE_WIDER_MODE (srcmode)) { enum insn_code ic; ic = can_extend_p (mode, srcmode, 0); if (ic == CODE_FOR_nothing) continue; PUT_MODE (mem, srcmode); if ((*insn_data[ic].operand[1].predicate) (mem, srcmode)) float_extend_from_mem[mode][srcmode] = true; } } } /* This is run at the start of compiling a function. */ void init_expr (void) { cfun->expr = ggc_alloc_cleared (sizeof (struct expr_status)); } /* Small sanity check that the queue is empty at the end of a function. */ void finish_expr_for_function (void) { if (pending_chain) abort (); } /* Manage the queue of increment instructions to be output for POSTINCREMENT_EXPR expressions, etc. */ /* Queue up to increment (or change) VAR later. BODY says how: BODY should be the same thing you would pass to emit_insn to increment right away. It will go to emit_insn later on. The value is a QUEUED expression to be used in place of VAR where you want to guarantee the pre-incrementation value of VAR. */ static rtx enqueue_insn (rtx var, rtx body) { pending_chain = gen_rtx_QUEUED (GET_MODE (var), var, NULL_RTX, NULL_RTX, body, pending_chain); return pending_chain; } /* Use protect_from_queue to convert a QUEUED expression into something that you can put immediately into an instruction. If the queued incrementation has not happened yet, protect_from_queue returns the variable itself. If the incrementation has happened, protect_from_queue returns a temp that contains a copy of the old value of the variable. Any time an rtx which might possibly be a QUEUED is to be put into an instruction, it must be passed through protect_from_queue first. QUEUED expressions are not meaningful in instructions. Do not pass a value through protect_from_queue and then hold on to it for a while before putting it in an instruction! If the queue is flushed in between, incorrect code will result. */ rtx protect_from_queue (rtx x, int modify) { RTX_CODE code = GET_CODE (x); #if 0 /* A QUEUED can hang around after the queue is forced out. */ /* Shortcut for most common case. */ if (pending_chain == 0) return x; #endif if (code != QUEUED) { /* A special hack for read access to (MEM (QUEUED ...)) to facilitate use of autoincrement. Make a copy of the contents of the memory location rather than a copy of the address, but not if the value is of mode BLKmode. Don't modify X in place since it might be shared. */ if (code == MEM && GET_MODE (x) != BLKmode && GET_CODE (XEXP (x, 0)) == QUEUED && !modify) { rtx y = XEXP (x, 0); rtx new = replace_equiv_address_nv (x, QUEUED_VAR (y)); if (QUEUED_INSN (y)) { rtx temp = gen_reg_rtx (GET_MODE (x)); emit_insn_before (gen_move_insn (temp, new), QUEUED_INSN (y)); return temp; } /* Copy the address into a pseudo, so that the returned value remains correct across calls to emit_queue. */ return replace_equiv_address (new, copy_to_reg (XEXP (new, 0))); } /* Otherwise, recursively protect the subexpressions of all the kinds of rtx's that can contain a QUEUED. */ if (code == MEM) { rtx tem = protect_from_queue (XEXP (x, 0), 0); if (tem != XEXP (x, 0)) { x = copy_rtx (x); XEXP (x, 0) = tem; } } else if (code == PLUS || code == MULT) { rtx new0 = protect_from_queue (XEXP (x, 0), 0); rtx new1 = protect_from_queue (XEXP (x, 1), 0); if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)) { x = copy_rtx (x); XEXP (x, 0) = new0; XEXP (x, 1) = new1; } } return x; } /* If the increment has not happened, use the variable itself. Copy it into a new pseudo so that the value remains correct across calls to emit_queue. */ if (QUEUED_INSN (x) == 0) return copy_to_reg (QUEUED_VAR (x)); /* If the increment has happened and a pre-increment copy exists, use that copy. */ if (QUEUED_COPY (x) != 0) return QUEUED_COPY (x); /* The increment has happened but we haven't set up a pre-increment copy. Set one up now, and use it. */ QUEUED_COPY (x) = gen_reg_rtx (GET_MODE (QUEUED_VAR (x))); emit_insn_before (gen_move_insn (QUEUED_COPY (x), QUEUED_VAR (x)), QUEUED_INSN (x)); return QUEUED_COPY (x); } /* Return nonzero if X contains a QUEUED expression: if it contains anything that will be altered by a queued increment. We handle only combinations of MEM, PLUS, MINUS and MULT operators since memory addresses generally contain only those. */ int queued_subexp_p (rtx x) { enum rtx_code code = GET_CODE (x); switch (code) { case QUEUED: return 1; case MEM: return queued_subexp_p (XEXP (x, 0)); case MULT: case PLUS: case MINUS: return (queued_subexp_p (XEXP (x, 0)) || queued_subexp_p (XEXP (x, 1))); default: return 0; } } /* Perform all the pending incrementations. */ void emit_queue (void) { rtx p; while ((p = pending_chain)) { rtx body = QUEUED_BODY (p); switch (GET_CODE (body)) { case INSN: case JUMP_INSN: case CALL_INSN: case CODE_LABEL: case BARRIER: case NOTE: QUEUED_INSN (p) = body; emit_insn (body); break; #ifdef ENABLE_CHECKING case SEQUENCE: abort (); break; #endif default: QUEUED_INSN (p) = emit_insn (body); break; } pending_chain = QUEUED_NEXT (p); } } /* Copy data from FROM to TO, where the machine modes are not the same. Both modes may be integer, or both may be floating. UNSIGNEDP should be nonzero if FROM is an unsigned type. This causes zero-extension instead of sign-extension. */ void convert_move (rtx to, rtx from, int unsignedp) { enum machine_mode to_mode = GET_MODE (to); enum machine_mode from_mode = GET_MODE (from); int to_real = GET_MODE_CLASS (to_mode) == MODE_FLOAT; int from_real = GET_MODE_CLASS (from_mode) == MODE_FLOAT; enum insn_code code; rtx libcall; /* rtx code for making an equivalent value. */ enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND)); to = protect_from_queue (to, 1); from = protect_from_queue (from, 0); if (to_real != from_real) abort (); /* If FROM is a SUBREG that indicates that we have already done at least the required extension, strip it. We don't handle such SUBREGs as TO here. */ if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from) && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from))) >= GET_MODE_SIZE (to_mode)) && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp) from = gen_lowpart (to_mode, from), from_mode = to_mode; if (GET_CODE (to) == SUBREG && SUBREG_PROMOTED_VAR_P (to)) abort (); if (to_mode == from_mode || (from_mode == VOIDmode && CONSTANT_P (from))) { emit_move_insn (to, from); return; } if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode)) { if (GET_MODE_BITSIZE (from_mode) != GET_MODE_BITSIZE (to_mode)) abort (); if (VECTOR_MODE_P (to_mode)) from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0); else to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0); emit_move_insn (to, from); return; } if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT) { convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp); convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp); return; } if (to_real) { rtx value, insns; convert_optab tab; if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)) tab = sext_optab; else if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode)) tab = trunc_optab; else abort (); /* Try converting directly if the insn is supported. */ code = tab->handlers[to_mode][from_mode].insn_code; if (code != CODE_FOR_nothing) { emit_unop_insn (code, to, from, tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE); return; } /* Otherwise use a libcall. */ libcall = tab->handlers[to_mode][from_mode].libfunc; if (!libcall) /* This conversion is not implemented yet. */ abort (); start_sequence (); value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode, 1, from, from_mode); insns = get_insns (); end_sequence (); emit_libcall_block (insns, to, value, tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode, from) : gen_rtx_FLOAT_EXTEND (to_mode, from)); return; } /* Handle pointer conversion. */ /* SPEE 900220. */ /* Targets are expected to provide conversion insns between PxImode and xImode for all MODE_PARTIAL_INT modes they use, but no others. */ if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT) { enum machine_mode full_mode = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT); if (trunc_optab->handlers[to_mode][full_mode].insn_code == CODE_FOR_nothing) abort (); if (full_mode != from_mode) from = convert_to_mode (full_mode, from, unsignedp); emit_unop_insn (trunc_optab->handlers[to_mode][full_mode].insn_code, to, from, UNKNOWN); return; } if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT) { enum machine_mode full_mode = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT); if (sext_optab->handlers[full_mode][from_mode].insn_code == CODE_FOR_nothing) abort (); emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code, to, from, UNKNOWN); if (to_mode == full_mode) return; /* else proceed to integer conversions below */ from_mode = full_mode; } /* Now both modes are integers. */ /* Handle expanding beyond a word. */ if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode) && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD) { rtx insns; rtx lowpart; rtx fill_value; rtx lowfrom; int i; enum machine_mode lowpart_mode; int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD); /* Try converting directly if the insn is supported. */ if ((code = can_extend_p (to_mode, from_mode, unsignedp)) != CODE_FOR_nothing) { /* If FROM is a SUBREG, put it into a register. Do this so that we always generate the same set of insns for better cse'ing; if an intermediate assignment occurred, we won't be doing the operation directly on the SUBREG. */ if (optimize > 0 && GET_CODE (from) == SUBREG) from = force_reg (from_mode, from); emit_unop_insn (code, to, from, equiv_code); return; } /* Next, try converting via full word. */ else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD && ((code = can_extend_p (to_mode, word_mode, unsignedp)) != CODE_FOR_nothing)) { if (GET_CODE (to) == REG) emit_insn (gen_rtx_CLOBBER (VOIDmode, to)); convert_move (gen_lowpart (word_mode, to), from, unsignedp); emit_unop_insn (code, to, gen_lowpart (word_mode, to), equiv_code); return; } /* No special multiword conversion insn; do it by hand. */ start_sequence (); /* Since we will turn this into a no conflict block, we must ensure that the source does not overlap the target. */ if (reg_overlap_mentioned_p (to, from)) from = force_reg (from_mode, from); /* Get a copy of FROM widened to a word, if necessary. */ if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD) lowpart_mode = word_mode; else lowpart_mode = from_mode; lowfrom = convert_to_mode (lowpart_mode, from, unsignedp); lowpart = gen_lowpart (lowpart_mode, to); emit_move_insn (lowpart, lowfrom); /* Compute the value to put in each remaining word. */ if (unsignedp) fill_value = const0_rtx; else { #ifdef HAVE_slt if (HAVE_slt && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode && STORE_FLAG_VALUE == -1) { emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX, lowpart_mode, 0); fill_value = gen_reg_rtx (word_mode); emit_insn (gen_slt (fill_value)); } else #endif { fill_value = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom, size_int (GET_MODE_BITSIZE (lowpart_mode) - 1), NULL_RTX, 0); fill_value = convert_to_mode (word_mode, fill_value, 1); } } /* Fill the remaining words. */ for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++) { int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i); rtx subword = operand_subword (to, index, 1, to_mode); if (subword == 0) abort (); if (fill_value != subword) emit_move_insn (subword, fill_value); } insns = get_insns (); end_sequence (); emit_no_conflict_block (insns, to, from, NULL_RTX, gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from))); return; } /* Truncating multi-word to a word or less. */ if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD) { if (!((GET_CODE (from) == MEM && ! MEM_VOLATILE_P (from) && direct_load[(int) to_mode] && ! mode_dependent_address_p (XEXP (from, 0))) || GET_CODE (from) == REG || GET_CODE (from) == SUBREG)) from = force_reg (from_mode, from); convert_move (to, gen_lowpart (word_mode, from), 0); return; } /* Now follow all the conversions between integers no more than a word long. */ /* For truncation, usually we can just refer to FROM in a narrower mode. */ if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode) && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode), GET_MODE_BITSIZE (from_mode))) { if (!((GET_CODE (from) == MEM && ! MEM_VOLATILE_P (from) && direct_load[(int) to_mode] && ! mode_dependent_address_p (XEXP (from, 0))) || GET_CODE (from) == REG || GET_CODE (from) == SUBREG)) from = force_reg (from_mode, from); if (GET_CODE (from) == REG && REGNO (from) < FIRST_PSEUDO_REGISTER && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode)) from = copy_to_reg (from); emit_move_insn (to, gen_lowpart (to_mode, from)); return; } /* Handle extension. */ if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode)) { /* Convert directly if that works. */ if ((code = can_extend_p (to_mode, from_mode, unsignedp)) != CODE_FOR_nothing) { if (flag_force_mem) from = force_not_mem (from); emit_unop_insn (code, to, from, equiv_code); return; } else { enum machine_mode intermediate; rtx tmp; tree shift_amount; /* Search for a mode to convert via. */ for (intermediate = from_mode; intermediate != VOIDmode; intermediate = GET_MODE_WIDER_MODE (intermediate)) if (((can_extend_p (to_mode, intermediate, unsignedp) != CODE_FOR_nothing) || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate) && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode), GET_MODE_BITSIZE (intermediate)))) && (can_extend_p (intermediate, from_mode, unsignedp) != CODE_FOR_nothing)) { convert_move (to, convert_to_mode (intermediate, from, unsignedp), unsignedp); return; } /* No suitable intermediate mode. Generate what we need with shifts. */ shift_amount = build_int_2 (GET_MODE_BITSIZE (to_mode) - GET_MODE_BITSIZE (from_mode), 0); from = gen_lowpart (to_mode, force_reg (from_mode, from)); tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount, to, unsignedp); tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount, to, unsignedp); if (tmp != to) emit_move_insn (to, tmp); return; } } /* Support special truncate insns for certain modes. */ if (trunc_optab->handlers[to_mode][from_mode].insn_code != CODE_FOR_nothing) { emit_unop_insn (trunc_optab->handlers[to_mode][from_mode].insn_code, to, from, UNKNOWN); return; } /* Handle truncation of volatile memrefs, and so on; the things that couldn't be truncated directly, and for which there was no special instruction. ??? Code above formerly short-circuited this, for most integer mode pairs, with a force_reg in from_mode followed by a recursive call to this routine. Appears always to have been wrong. */ if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)) { rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from)); emit_move_insn (to, temp); return; } /* Mode combination is not recognized. */ abort (); } /* Return an rtx for a value that would result from converting X to mode MODE. Both X and MODE may be floating, or both integer. UNSIGNEDP is nonzero if X is an unsigned value. This can be done by referring to a part of X in place or by copying to a new temporary with conversion. This function *must not* call protect_from_queue except when putting X into an insn (in which case convert_move does it). */ rtx convert_to_mode (enum machine_mode mode, rtx x, int unsignedp) { return convert_modes (mode, VOIDmode, x, unsignedp); } /* Return an rtx for a value that would result from converting X from mode OLDMODE to mode MODE. Both modes may be floating, or both integer. UNSIGNEDP is nonzero if X is an unsigned value. This can be done by referring to a part of X in place or by copying to a new temporary with conversion. You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. This function *must not* call protect_from_queue except when putting X into an insn (in which case convert_move does it). */ rtx convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp) { rtx temp; /* If FROM is a SUBREG that indicates that we have already done at least the required extension, strip it. */ if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x) && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode) && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp) x = gen_lowpart (mode, x); if (GET_MODE (x) != VOIDmode) oldmode = GET_MODE (x); if (mode == oldmode) return x; /* There is one case that we must handle specially: If we are converting a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and we are to interpret the constant as unsigned, gen_lowpart will do the wrong if the constant appears negative. What we want to do is make the high-order word of the constant zero, not all ones. */ if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT && GET_CODE (x) == CONST_INT && INTVAL (x) < 0) { HOST_WIDE_INT val = INTVAL (x); if (oldmode != VOIDmode && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode)) { int width = GET_MODE_BITSIZE (oldmode); /* We need to zero extend VAL. */ val &= ((HOST_WIDE_INT) 1 << width) - 1; } return immed_double_const (val, (HOST_WIDE_INT) 0, mode); } /* We can do this with a gen_lowpart if both desired and current modes are integer, and this is either a constant integer, a register, or a non-volatile MEM. Except for the constant case where MODE is no wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */ if ((GET_CODE (x) == CONST_INT && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT) || (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_CLASS (oldmode) == MODE_INT && (GET_CODE (x) == CONST_DOUBLE || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode) && ((GET_CODE (x) == MEM && ! MEM_VOLATILE_P (x) && direct_load[(int) mode]) || (GET_CODE (x) == REG && (! HARD_REGISTER_P (x) || HARD_REGNO_MODE_OK (REGNO (x), mode)) && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode), GET_MODE_BITSIZE (GET_MODE (x))))))))) { /* ?? If we don't know OLDMODE, we have to assume here that X does not need sign- or zero-extension. This may not be the case, but it's the best we can do. */ if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode)) { HOST_WIDE_INT val = INTVAL (x); int width = GET_MODE_BITSIZE (oldmode); /* We must sign or zero-extend in this case. Start by zero-extending, then sign extend if we need to. */ val &= ((HOST_WIDE_INT) 1 << width) - 1; if (! unsignedp && (val & ((HOST_WIDE_INT) 1 << (width - 1)))) val |= (HOST_WIDE_INT) (-1) << width; return gen_int_mode (val, mode); } return gen_lowpart (mode, x); } /* Converting from integer constant into mode is always equivalent to an subreg operation. */ if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode) { if (GET_MODE_BITSIZE (mode) != GET_MODE_BITSIZE (oldmode)) abort (); return simplify_gen_subreg (mode, x, oldmode, 0); } temp = gen_reg_rtx (mode); convert_move (temp, x, unsignedp); return temp; } /* STORE_MAX_PIECES is the number of bytes at a time that we can store efficiently. Due to internal GCC limitations, this is MOVE_MAX_PIECES limited by the number of bytes GCC can represent for an immediate constant. */ #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT)) /* Determine whether the LEN bytes can be moved by using several move instructions. Return nonzero if a call to move_by_pieces should succeed. */ int can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align ATTRIBUTE_UNUSED) { return MOVE_BY_PIECES_P (len, align); } /* Generate several move instructions to copy LEN bytes from block FROM to block TO. (These are MEM rtx's with BLKmode). The caller must pass FROM and TO through protect_from_queue before calling. If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is used to push FROM to the stack. ALIGN is maximum stack alignment we can assume. If ENDP is 0 return to, if ENDP is 1 return memory at the end ala mempcpy, and if ENDP is 2 return memory the end minus one byte ala stpcpy. */ rtx move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len, unsigned int align, int endp) { struct move_by_pieces data; rtx to_addr, from_addr = XEXP (from, 0); unsigned int max_size = MOVE_MAX_PIECES + 1; enum machine_mode mode = VOIDmode, tmode; enum insn_code icode; align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from)); data.offset = 0; data.from_addr = from_addr; if (to) { to_addr = XEXP (to, 0); data.to = to; data.autinc_to = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC); data.reverse = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC); } else { to_addr = NULL_RTX; data.to = NULL_RTX; data.autinc_to = 1; #ifdef STACK_GROWS_DOWNWARD data.reverse = 1; #else data.reverse = 0; #endif } data.to_addr = to_addr; data.from = from; data.autinc_from = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC || GET_CODE (from_addr) == POST_INC || GET_CODE (from_addr) == POST_DEC); data.explicit_inc_from = 0; data.explicit_inc_to = 0; if (data.reverse) data.offset = len; data.len = len; /* If copying requires more than two move insns, copy addresses to registers (to make displacements shorter) and use post-increment if available. */ if (!(data.autinc_from && data.autinc_to) && move_by_pieces_ninsns (len, align) > 2) { /* Find the mode of the largest move... */ for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode)) if (GET_MODE_SIZE (tmode) < max_size) mode = tmode; if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from) { data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len)); data.autinc_from = 1; data.explicit_inc_from = -1; } if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from) { data.from_addr = copy_addr_to_reg (from_addr); data.autinc_from = 1; data.explicit_inc_from = 1; } if (!data.autinc_from && CONSTANT_P (from_addr)) data.from_addr = copy_addr_to_reg (from_addr); if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to) { data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len)); data.autinc_to = 1; data.explicit_inc_to = -1; } if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to) { data.to_addr = copy_addr_to_reg (to_addr); data.autinc_to = 1; data.explicit_inc_to = 1; } if (!data.autinc_to && CONSTANT_P (to_addr)) data.to_addr = copy_addr_to_reg (to_addr); } if (! SLOW_UNALIGNED_ACCESS (word_mode, align) || align > MOVE_MAX * BITS_PER_UNIT || align >= BIGGEST_ALIGNMENT) align = MOVE_MAX * BITS_PER_UNIT; /* First move what we can in the largest integer mode, then go to successively smaller modes. */ while (max_size > 1) { for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode)) if (GET_MODE_SIZE (tmode) < max_size) mode = tmode; if (mode == VOIDmode) break; icode = mov_optab->handlers[(int) mode].insn_code; if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode)) move_by_pieces_1 (GEN_FCN (icode), mode, &data); max_size = GET_MODE_SIZE (mode); } /* The code above should have handled everything. */ if (data.len > 0) abort (); if (endp) { rtx to1; if (data.reverse) abort (); if (data.autinc_to) { if (endp == 2) { if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0) emit_insn (gen_add2_insn (data.to_addr, constm1_rtx)); else data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr, -1)); } to1 = adjust_automodify_address (data.to, QImode, data.to_addr, data.offset); } else { if (endp == 2) --data.offset; to1 = adjust_address (data.to, QImode, data.offset); } return to1; } else return data.to; } /* Return number of insns required to move L bytes by pieces. ALIGN (in bits) is maximum alignment we can assume. */ static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align) { unsigned HOST_WIDE_INT n_insns = 0; unsigned HOST_WIDE_INT max_size = MOVE_MAX + 1; if (! SLOW_UNALIGNED_ACCESS (word_mode, align) || align > MOVE_MAX * BITS_PER_UNIT || align >= BIGGEST_ALIGNMENT) align = MOVE_MAX * BITS_PER_UNIT; while (max_size > 1) { enum machine_mode mode = VOIDmode, tmode; enum insn_code icode; for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode)) if (GET_MODE_SIZE (tmode) < max_size) mode = tmode; if (mode == VOIDmode) break; icode = mov_optab->handlers[(int) mode].insn_code; if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode)) n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode); max_size = GET_MODE_SIZE (mode); } if (l) abort (); return n_insns; } /* Subroutine of move_by_pieces. Move as many bytes as appropriate with move instructions for mode MODE. GENFUN is the gen_... function to make a move insn for that mode. DATA has all the other info. */ static void move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode, struct move_by_pieces *data) { unsigned int size = GET_MODE_SIZE (mode); rtx to1 = NULL_RTX, from1; while (data->len >= size) { if (data->reverse) data->offset -= size; if (data->to) { if (data->autinc_to) to1 = adjust_automodify_address (data->to, mode, data->to_addr, data->offset); else to1 = adjust_address (data->to, mode, data->offset); } if (data->autinc_from) from1 = adjust_automodify_address (data->from, mode, data->from_addr, data->offset); else from1 = adjust_address (data->from, mode, data->offset); if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0) emit_insn (gen_add2_insn (data->to_addr, GEN_INT (-(HOST_WIDE_INT)size))); if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0) emit_insn (gen_add2_insn (data->from_addr, GEN_INT (-(HOST_WIDE_INT)size))); if (data->to) emit_insn ((*genfun) (to1, from1)); else { #ifdef PUSH_ROUNDING emit_single_push_insn (mode, from1, NULL); #else abort (); #endif } if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0) emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size))); if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0) emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size))); if (! data->reverse) data->offset += size; data->len -= size; } } /* Emit code to move a block Y to a block X. This may be done with string-move instructions, with multiple scalar move instructions, or with a library call. Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode. SIZE is an rtx that says how long they are. ALIGN is the maximum alignment we can assume they have. METHOD describes what kind of copy this is, and what mechanisms may be used. Return the address of the new block, if memcpy is called and returns it, 0 otherwise. */ rtx emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method) { bool may_use_call; rtx retval = 0; unsigned int align; switch (method) { case BLOCK_OP_NORMAL: may_use_call = true; break; case BLOCK_OP_CALL_PARM: may_use_call = block_move_libcall_safe_for_call_parm (); /* Make inhibit_defer_pop nonzero around the library call to force it to pop the arguments right away. */ NO_DEFER_POP; break; case BLOCK_OP_NO_LIBCALL: may_use_call = false; break; default: abort (); } align = MIN (MEM_ALIGN (x), MEM_ALIGN (y)); if (GET_MODE (x) != BLKmode) abort (); if (GET_MODE (y) != BLKmode) abort (); x = protect_from_queue (x, 1); y = protect_from_queue (y, 0); size = protect_from_queue (size, 0); if (GET_CODE (x) != MEM) abort (); if (GET_CODE (y) != MEM) abort (); if (size == 0) abort (); /* Set MEM_SIZE as appropriate for this block copy. The main place this can be incorrect is coming from __builtin_memcpy. */ if (GET_CODE (size) == CONST_INT) { if (INTVAL (size) == 0) return 0; x = shallow_copy_rtx (x); y = shallow_copy_rtx (y); set_mem_size (x, size); set_mem_size (y, size); } if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align)) move_by_pieces (x, y, INTVAL (size), align, 0); else if (emit_block_move_via_movstr (x, y, size, align)) ; else if (may_use_call) retval = emit_block_move_via_libcall (x, y, size); else emit_block_move_via_loop (x, y, size, align); if (method == BLOCK_OP_CALL_PARM) OK_DEFER_POP; return retval; } /* A subroutine of emit_block_move. Returns true if calling the block move libcall will not clobber any parameters which may have already been placed on the stack. */ static bool block_move_libcall_safe_for_call_parm (void) { /* If arguments are pushed on the stack, then they're safe. */ if (PUSH_ARGS) return true; /* If registers go on the stack anyway, any argument is sure to clobber an outgoing argument. */ #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE) { tree fn = emit_block_move_libcall_fn (false); (void) fn; if (REG_PARM_STACK_SPACE (fn) != 0) return false; } #endif /* If any argument goes in memory, then it might clobber an outgoing argument. */ { CUMULATIVE_ARGS args_so_far; tree fn, arg; fn = emit_block_move_libcall_fn (false); INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0); arg = TYPE_ARG_TYPES (TREE_TYPE (fn)); for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg)) { enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg)); rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1); if (!tmp || !REG_P (tmp)) return false; #ifdef FUNCTION_ARG_PARTIAL_NREGS if (FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1)) return false; #endif FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1); } } return true; } /* A subroutine of emit_block_move. Expand a movstr pattern; return true if successful. */ static bool emit_block_move_via_movstr (rtx x, rtx y, rtx size, unsigned int align) { rtx opalign = GEN_INT (align / BITS_PER_UNIT); enum machine_mode mode; /* Since this is a move insn, we don't care about volatility. */ volatile_ok = 1; /* Try the most limited insn first, because there's no point including more than one in the machine description unless the more limited one has some advantage. */ for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode)) { enum insn_code code = movstr_optab[(int) mode]; insn_operand_predicate_fn pred; if (code != CODE_FOR_nothing /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT here because if SIZE is less than the mode mask, as it is returned by the macro, it will definitely be less than the actual mode mask. */ && ((GET_CODE (size) == CONST_INT && ((unsigned HOST_WIDE_INT) INTVAL (size) <= (GET_MODE_MASK (mode) >> 1))) || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD) && ((pred = insn_data[(int) code].operand[0].predicate) == 0 || (*pred) (x, BLKmode)) && ((pred = insn_data[(int) code].operand[1].predicate) == 0 || (*pred) (y, BLKmode)) && ((pred = insn_data[(int) code].operand[3].predicate) == 0 || (*pred) (opalign, VOIDmode))) { rtx op2; rtx last = get_last_insn (); rtx pat; op2 = convert_to_mode (mode, size, 1); pred = insn_data[(int) code].operand[2].predicate; if (pred != 0 && ! (*pred) (op2, mode)) op2 = copy_to_mode_reg (mode, op2); /* ??? When called via emit_block_move_for_call, it'd be nice if there were some way to inform the backend, so that it doesn't fail the expansion because it thinks emitting the libcall would be more efficient. */ pat = GEN_FCN ((int) code) (x, y, op2, opalign); if (pat) { emit_insn (pat); volatile_ok = 0; return true; } else delete_insns_since (last); } } volatile_ok = 0; return false; } /* A subroutine of emit_block_move. Expand a call to memcpy or bcopy. Return the return value from memcpy, 0 otherwise. */ static rtx emit_block_move_via_libcall (rtx dst, rtx src, rtx size) { rtx dst_addr, src_addr; tree call_expr, arg_list, fn, src_tree, dst_tree, size_tree; enum machine_mode size_mode; rtx retval; /* DST, SRC, or SIZE may have been passed through protect_from_queue. It is unsafe to save the value generated by protect_from_queue and reuse it later. Consider what happens if emit_queue is called before the return value from protect_from_queue is used. Expansion of the CALL_EXPR below will call emit_queue before we are finished emitting RTL for argument setup. So if we are not careful we could get the wrong value for an argument. To avoid this problem we go ahead and emit code to copy the addresses of DST and SRC and SIZE into new pseudos. We can then place those new pseudos into an RTL_EXPR and use them later, even after a call to emit_queue. Note this is not strictly needed for library calls since they do not call emit_queue before loading their arguments. However, we may need to have library calls call emit_queue in the future since failing to do so could cause problems for targets which define SMALL_REGISTER_CLASSES and pass arguments in registers. */ dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0)); src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0)); dst_addr = convert_memory_address (ptr_mode, dst_addr); src_addr = convert_memory_address (ptr_mode, src_addr); dst_tree = make_tree (ptr_type_node, dst_addr); src_tree = make_tree (ptr_type_node, src_addr); if (TARGET_MEM_FUNCTIONS) size_mode = TYPE_MODE (sizetype); else size_mode = TYPE_MODE (unsigned_type_node); size = convert_to_mode (size_mode, size, 1); size = copy_to_mode_reg (size_mode, size); /* It is incorrect to use the libcall calling conventions to call memcpy in this context. This could be a user call to memcpy and the user may wish to examine the return value from memcpy. For targets where libcalls and normal calls have different conventions for returning pointers, we could end up generating incorrect code. For convenience, we generate the call to bcopy this way as well. */ if (TARGET_MEM_FUNCTIONS) size_tree = make_tree (sizetype, size); else size_tree = make_tree (unsigned_type_node, size); fn = emit_block_move_libcall_fn (true); arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE); if (TARGET_MEM_FUNCTIONS) { arg_list = tree_cons (NULL_TREE, src_tree, arg_list); arg_list = tree_cons (NULL_TREE, dst_tree, arg_list); } else { arg_list = tree_cons (NULL_TREE, dst_tree, arg_list); arg_list = tree_cons (NULL_TREE, src_tree, arg_list); } /* Now we have to build up the CALL_EXPR itself. */ call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn); call_expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)), call_expr, arg_list, NULL_TREE); retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0); /* If we are initializing a readonly value, show the above call clobbered it. Otherwise, a load from it may erroneously be hoisted from a loop, or the delay slot scheduler might overlook conflicts and take nasty decisions. */ if (RTX_UNCHANGING_P (dst)) add_function_usage_to (last_call_insn (), gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_CLOBBER (VOIDmode, dst), NULL_RTX)); return TARGET_MEM_FUNCTIONS ? retval : NULL_RTX; } /* A subroutine of emit_block_move_via_libcall. Create the tree node for the function we use for block copies. The first time FOR_CALL is true, we call assemble_external. */ static GTY(()) tree block_move_fn; void init_block_move_fn (const char *asmspec) { if (!block_move_fn) { tree args, fn; if (TARGET_MEM_FUNCTIONS) { fn = get_identifier ("memcpy"); args = build_function_type_list (ptr_type_node, ptr_type_node, const_ptr_type_node, sizetype, NULL_TREE); } else { fn = get_identifier ("bcopy"); args = build_function_type_list (void_type_node, const_ptr_type_node, ptr_type_node, unsigned_type_node, NULL_TREE); } fn = build_decl (FUNCTION_DECL, fn, args); DECL_EXTERNAL (fn) = 1; TREE_PUBLIC (fn) = 1; DECL_ARTIFICIAL (fn) = 1; TREE_NOTHROW (fn) = 1; block_move_fn = fn; } if (asmspec) { SET_DECL_RTL (block_move_fn, NULL_RTX); SET_DECL_ASSEMBLER_NAME (block_move_fn, get_identifier (asmspec)); } } static tree emit_block_move_libcall_fn (int for_call) { static bool emitted_extern; if (!block_move_fn) init_block_move_fn (NULL); if (for_call && !emitted_extern) { emitted_extern = true; make_decl_rtl (block_move_fn, NULL); assemble_external (block_move_fn); } return block_move_fn; } /* A subroutine of emit_block_move. Copy the data via an explicit loop. This is used only when libcalls are forbidden. */ /* ??? It'd be nice to copy in hunks larger than QImode. */ static void emit_block_move_via_loop (rtx x, rtx y, rtx size, unsigned int align ATTRIBUTE_UNUSED) { rtx cmp_label, top_label, iter, x_addr, y_addr, tmp; enum machine_mode iter_mode; iter_mode = GET_MODE (size); if (iter_mode == VOIDmode) iter_mode = word_mode; top_label = gen_label_rtx (); cmp_label = gen_label_rtx (); iter = gen_reg_rtx (iter_mode); emit_move_insn (iter, const0_rtx); x_addr = force_operand (XEXP (x, 0), NULL_RTX); y_addr = force_operand (XEXP (y, 0), NULL_RTX); do_pending_stack_adjust (); emit_note (NOTE_INSN_LOOP_BEG); emit_jump (cmp_label); emit_label (top_label); tmp = convert_modes (Pmode, iter_mode, iter, true); x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp); y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp); x = change_address (x, QImode, x_addr); y = change_address (y, QImode, y_addr); emit_move_insn (x, y); tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter, true, OPTAB_LIB_WIDEN); if (tmp != iter) emit_move_insn (iter, tmp); emit_note (NOTE_INSN_LOOP_CONT); emit_label (cmp_label); emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode, true, top_label); emit_note (NOTE_INSN_LOOP_END); } /* Copy all or part of a value X into registers starting at REGNO. The number of registers to be filled is NREGS. */ void move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode) { int i; #ifdef HAVE_load_multiple rtx pat; rtx last; #endif if (nregs == 0) return; if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x)) x = validize_mem (force_const_mem (mode, x)); /* See if the machine can do this with a load multiple insn. */ #ifdef HAVE_load_multiple if (HAVE_load_multiple) { last = get_last_insn (); pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x, GEN_INT (nregs)); if (pat) { emit_insn (pat); return; } else delete_insns_since (last); } #endif for (i = 0; i < nregs; i++) emit_move_insn (gen_rtx_REG (word_mode, regno + i), operand_subword_force (x, i, mode)); } /* Copy all or part of a BLKmode value X out of registers starting at REGNO. The number of registers to be filled is NREGS. */ void move_block_from_reg (int regno, rtx x, int nregs) { int i; if (nregs == 0) return; /* See if the machine can do this with a store multiple insn. */ #ifdef HAVE_store_multiple if (HAVE_store_multiple) { rtx last = get_last_insn (); rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno), GEN_INT (nregs)); if (pat) { emit_insn (pat); return; } else delete_insns_since (last); } #endif for (i = 0; i < nregs; i++) { rtx tem = operand_subword (x, i, 1, BLKmode); if (tem == 0) abort (); emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i)); } } /* Generate a PARALLEL rtx for a new non-consecutive group of registers from ORIG, where ORIG is a non-consecutive group of registers represented by a PARALLEL. The clone is identical to the original except in that the original set of registers is replaced by a new set of pseudo registers. The new set has the same modes as the original set. */ rtx gen_group_rtx (rtx orig) { int i, length; rtx *tmps; if (GET_CODE (orig) != PARALLEL) abort (); length = XVECLEN (orig, 0); tmps = alloca (sizeof (rtx) * length); /* Skip a NULL entry in first slot. */ i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1; if (i) tmps[0] = 0; for (; i < length; i++) { enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0)); rtx offset = XEXP (XVECEXP (orig, 0, i), 1); tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset); } return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps)); } /* Emit code to move a block ORIG_SRC of type TYPE to a block DST, where DST is non-consecutive registers represented by a PARALLEL. SSIZE represents the total size of block ORIG_SRC in bytes, or -1 if not known. */ void emit_group_load (rtx dst, rtx orig_src, tree type ATTRIBUTE_UNUSED, int ssize) { rtx *tmps, src; int start, i; if (GET_CODE (dst) != PARALLEL) abort (); /* Check for a NULL entry, used to indicate that the parameter goes both on the stack and in registers. */ if (XEXP (XVECEXP (dst, 0, 0), 0)) start = 0; else start = 1; tmps = alloca (sizeof (rtx) * XVECLEN (dst, 0)); /* Process the pieces. */ for (i = start; i < XVECLEN (dst, 0); i++) { enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0)); HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1)); unsigned int bytelen = GET_MODE_SIZE (mode); int shift = 0; /* Handle trailing fragments that run over the size of the struct. */ if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize) { /* Arrange to shift the fragment to where it belongs. extract_bit_field loads to the lsb of the reg. */ if ( #ifdef BLOCK_REG_PADDING BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start) == (BYTES_BIG_ENDIAN ? upward : downward) #else BYTES_BIG_ENDIAN #endif ) shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT; bytelen = ssize - bytepos; if (bytelen <= 0) abort (); } /* If we won't be loading directly from memory, protect the real source from strange tricks we might play; but make sure that the source can be loaded directly into the destination. */ src = orig_src; if (GET_CODE (orig_src) != MEM && (!CONSTANT_P (orig_src) || (GET_MODE (orig_src) != mode && GET_MODE (orig_src) != VOIDmode))) { if (GET_MODE (orig_src) == VOIDmode) src = gen_reg_rtx (mode); else src = gen_reg_rtx (GET_MODE (orig_src)); emit_move_insn (src, orig_src); } /* Optimize the access just a bit. */ if (GET_CODE (src) == MEM && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src)) || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode)) && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0 && bytelen == GET_MODE_SIZE (mode)) { tmps[i] = gen_reg_rtx (mode); emit_move_insn (tmps[i], adjust_address (src, mode, bytepos)); } else if (GET_CODE (src) == CONCAT) { unsigned int slen = GET_MODE_SIZE (GET_MODE (src)); unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0))); if ((bytepos == 0 && bytelen == slen0) || (bytepos != 0 && bytepos + bytelen <= slen)) { /* The following assumes that the concatenated objects all have the same size. In this case, a simple calculation can be used to determine the object and the bit field to be extracted. */ tmps[i] = XEXP (src, bytepos / slen0); if (! CONSTANT_P (tmps[i]) && (GET_CODE (tmps[i]) != REG || GET_MODE (tmps[i]) != mode)) tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT, (bytepos % slen0) * BITS_PER_UNIT, 1, NULL_RTX, mode, mode, ssize); } else if (bytepos == 0) { rtx mem = assign_stack_temp (GET_MODE (src), slen, 0); emit_move_insn (mem, src); tmps[i] = adjust_address (mem, mode, 0); } else abort (); } /* FIXME: A SIMD parallel will eventually lead to a subreg of a SIMD register, which is currently broken. While we get GCC to emit proper RTL for these cases, let's dump to memory. */ else if (VECTOR_MODE_P (GET_MODE (dst)) && GET_CODE (src) == REG) { int slen = GET_MODE_SIZE (GET_MODE (src)); rtx mem; mem = assign_stack_temp (GET_MODE (src), slen, 0); emit_move_insn (mem, src); tmps[i] = adjust_address (mem, mode, (int) bytepos); } else if (CONSTANT_P (src) || (GET_CODE (src) == REG && GET_MODE (src) == mode)) tmps[i] = src; else tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT, 1, NULL_RTX, mode, mode, ssize); if (shift) expand_binop (mode, ashl_optab, tmps[i], GEN_INT (shift), tmps[i], 0, OPTAB_WIDEN); } emit_queue (); /* Copy the extracted pieces into the proper (probable) hard regs. */ for (i = start; i < XVECLEN (dst, 0); i++) emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0), tmps[i]); } /* Emit code to move a block SRC to block DST, where SRC and DST are non-consecutive groups of registers, each represented by a PARALLEL. */ void emit_group_move (rtx dst, rtx src) { int i; if (GET_CODE (src) != PARALLEL || GET_CODE (dst) != PARALLEL || XVECLEN (src, 0) != XVECLEN (dst, 0)) abort (); /* Skip first entry if NULL. */ for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++) emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0), XEXP (XVECEXP (src, 0, i), 0)); } /* Emit code to move a block SRC to a block ORIG_DST of type TYPE, where SRC is non-consecutive registers represented by a PARALLEL. SSIZE represents the total size of block ORIG_DST, or -1 if not known. */ void emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize) { rtx *tmps, dst; int start, i; if (GET_CODE (src) != PARALLEL) abort (); /* Check for a NULL entry, used to indicate that the parameter goes both on the stack and in registers. */ if (XEXP (XVECEXP (src, 0, 0), 0)) start = 0; else start = 1; tmps = alloca (sizeof (rtx) * XVECLEN (src, 0)); /* Copy the (probable) hard regs into pseudos. */ for (i = start; i < XVECLEN (src, 0); i++) { rtx reg = XEXP (XVECEXP (src, 0, i), 0); tmps[i] = gen_reg_rtx (GET_MODE (reg)); emit_move_insn (tmps[i], reg); } emit_queue (); /* If we won't be storing directly into memory, protect the real destination from strange tricks we might play. */ dst = orig_dst; if (GET_CODE (dst) == PARALLEL) { rtx temp; /* We can get a PARALLEL dst if there is a conditional expression in a return statement. In that case, the dst and src are the same, so no action is necessary. */ if (rtx_equal_p (dst, src)) return; /* It is unclear if we can ever reach here, but we may as well handle it. Allocate a temporary, and split this into a store/load to/from the temporary. */ temp = assign_stack_temp (GET_MODE (dst), ssize, 0); emit_group_store (temp, src, type, ssize); emit_group_load (dst, temp, type, ssize); return; } else if (GET_CODE (dst) != MEM && GET_CODE (dst) != CONCAT) { dst = gen_reg_rtx (GET_MODE (orig_dst)); /* Make life a bit easier for combine. */ emit_move_insn (dst, CONST0_RTX (GET_MODE (orig_dst))); } /* Process the pieces. */ for (i = start; i < XVECLEN (src, 0); i++) { HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1)); enum machine_mode mode = GET_MODE (tmps[i]); unsigned int bytelen = GET_MODE_SIZE (mode); rtx dest = dst; /* Handle trailing fragments that run over the size of the struct. */ if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize) { /* store_bit_field always takes its value from the lsb. Move the fragment to the lsb if it's not already there. */ if ( #ifdef BLOCK_REG_PADDING BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start) == (BYTES_BIG_ENDIAN ? upward : downward) #else BYTES_BIG_ENDIAN #endif ) { int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT; expand_binop (mode, ashr_optab, tmps[i], GEN_INT (shift), tmps[i], 0, OPTAB_WIDEN); } bytelen = ssize - bytepos; } if (GET_CODE (dst) == CONCAT) { if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))) dest = XEXP (dst, 0); else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))) { bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))); dest = XEXP (dst, 1); } else if (bytepos == 0 && XVECLEN (src, 0)) { dest = assign_stack_temp (GET_MODE (dest), GET_MODE_SIZE (GET_MODE (dest)), 0); emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos), tmps[i]); dst = dest; break; } else abort (); } /* Optimize the access just a bit. */ if (GET_CODE (dest) == MEM && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest)) || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode)) && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0 && bytelen == GET_MODE_SIZE (mode)) emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]); else store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT, mode, tmps[i], ssize); } emit_queue (); /* Copy from the pseudo into the (probable) hard reg. */ if (orig_dst != dst) emit_move_insn (orig_dst, dst); } /* Generate code to copy a BLKmode object of TYPE out of a set of registers starting with SRCREG into TGTBLK. If TGTBLK is null, a stack temporary is created. TGTBLK is returned. The purpose of this routine is to handle functions that return BLKmode structures in registers. Some machines (the PA for example) want to return all small structures in registers regardless of the structure's alignment. */ rtx copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type) { unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type); rtx src = NULL, dst = NULL; unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD); unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0; if (tgtblk == 0) { tgtblk = assign_temp (build_qualified_type (type, (TYPE_QUALS (type) | TYPE_QUAL_CONST)), 0, 1, 1); preserve_temp_slots (tgtblk); } /* This code assumes srcreg is at least a full word. If it isn't, copy it into a new pseudo which is a full word. */ if (GET_MODE (srcreg) != BLKmode && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD) srcreg = convert_to_mode (word_mode, srcreg, TREE_UNSIGNED (type)); /* If the structure doesn't take up a whole number of words, see whether SRCREG is padded on the left or on the right. If it's on the left, set PADDING_CORRECTION to the number of bits to skip. In most ABIs, the structure will be returned at the least end of the register, which translates to right padding on little-endian targets and left padding on big-endian targets. The opposite holds if the structure is returned at the most significant end of the register. */ if (bytes % UNITS_PER_WORD != 0 && (targetm.calls.return_in_msb (type) ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)) padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT)); /* Copy the structure BITSIZE bites at a time. We could probably emit more efficient code for machines which do not use strict alignment, but it doesn't seem worth the effort at the current time. */ for (bitpos = 0, xbitpos = padding_correction; bitpos < bytes * BITS_PER_UNIT; bitpos += bitsize, xbitpos += bitsize) { /* We need a new source operand each time xbitpos is on a word boundary and when xbitpos == padding_correction (the first time through). */ if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction) src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, GET_MODE (srcreg)); /* We need a new destination operand each time bitpos is on a word boundary. */ if (bitpos % BITS_PER_WORD == 0) dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode); /* Use xbitpos for the source extraction (right justified) and xbitpos for the destination store (left justified). */ store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode, extract_bit_field (src, bitsize, xbitpos % BITS_PER_WORD, 1, NULL_RTX, word_mode, word_mode, BITS_PER_WORD), BITS_PER_WORD); } return tgtblk; } /* Add a USE expression for REG to the (possibly empty) list pointed to by CALL_FUSAGE. REG must denote a hard register. */ void use_reg (rtx *call_fusage, rtx reg) { if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER) abort (); *call_fusage = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_USE (VOIDmode, reg), *call_fusage); } /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs, starting at REGNO. All of these registers must be hard registers. */ void use_regs (rtx *call_fusage, int regno, int nregs) { int i; if (regno + nregs > FIRST_PSEUDO_REGISTER) abort (); for (i = 0; i < nregs; i++) use_reg (call_fusage, regno_reg_rtx[regno + i]); } /* Add USE expressions to *CALL_FUSAGE for each REG contained in the PARALLEL REGS. This is for calls that pass values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ void use_group_regs (rtx *call_fusage, rtx regs) { int i; for (i = 0; i < XVECLEN (regs, 0); i++) { rtx reg = XEXP (XVECEXP (regs, 0, i), 0); /* A NULL entry means the parameter goes both on the stack and in registers. This can also be a MEM for targets that pass values partially on the stack and partially in registers. */ if (reg != 0 && GET_CODE (reg) == REG) use_reg (call_fusage, reg); } } /* Determine whether the LEN bytes generated by CONSTFUN can be stored to memory using several move instructions. CONSTFUNDATA is a pointer which will be passed as argument in every CONSTFUN call. ALIGN is maximum alignment we can assume. Return nonzero if a call to store_by_pieces should succeed. */ int can_store_by_pieces (unsigned HOST_WIDE_INT len, rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode), void *constfundata, unsigned int align) { unsigned HOST_WIDE_INT max_size, l; HOST_WIDE_INT offset = 0; enum machine_mode mode, tmode; enum insn_code icode; int reverse; rtx cst; if (len == 0) return 1; if (! STORE_BY_PIECES_P (len, align)) return 0; if (! SLOW_UNALIGNED_ACCESS (word_mode, align) || align > MOVE_MAX * BITS_PER_UNIT || align >= BIGGEST_ALIGNMENT) align = MOVE_MAX * BITS_PER_UNIT; /* We would first store what we can in the largest integer mode, then go to successively smaller modes. */ for (reverse = 0; reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT); reverse++) { l = len; mode = VOIDmode; max_size = STORE_MAX_PIECES + 1; while (max_size > 1) { for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode)) if (GET_MODE_SIZE (tmode) < max_size) mode = tmode; if (mode == VOIDmode) break; icode = mov_optab->handlers[(int) mode].insn_code; if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode)) { unsigned int size = GET_MODE_SIZE (mode); while (l >= size) { if (reverse) offset -= size; cst = (*constfun) (constfundata, offset, mode); if (!LEGITIMATE_CONSTANT_P (cst)) return 0; if (!reverse) offset += size; l -= size; } } max_size = GET_MODE_SIZE (mode); } /* The code above should have handled everything. */ if (l != 0) abort (); } return 1; } /* Generate several move instructions to store LEN bytes generated by CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a pointer which will be passed as argument in every CONSTFUN call. ALIGN is maximum alignment we can assume. If ENDP is 0 return to, if ENDP is 1 return memory at the end ala mempcpy, and if ENDP is 2 return memory the end minus one byte ala stpcpy. */ rtx store_by_pieces (rtx to, unsigned HOST_WIDE_INT len, rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode), void *constfundata, unsigned int align, int endp) { struct store_by_pieces data; if (len == 0) { if (endp == 2) abort (); return to; } if (! STORE_BY_PIECES_P (len, align)) abort (); to = protect_from_queue (to, 1); data.constfun = constfun; data.constfundata = constfundata; data.len = len; data.to = to; store_by_pieces_1 (&data, align); if (endp) { rtx to1; if (data.reverse) abort (); if (data.autinc_to) { if (endp == 2) { if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0) emit_insn (gen_add2_insn (data.to_addr, constm1_rtx)); else data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr, -1)); } to1 = adjust_automodify_address (data.to, QImode, data.to_addr, data.offset); } else { if (endp == 2) --data.offset; to1 = adjust_address (data.to, QImode, data.offset); } return to1; } else return data.to; } /* Generate several move instructions to clear LEN bytes of block TO. (A MEM rtx with BLKmode). The caller must pass TO through protect_from_queue before calling. ALIGN is maximum alignment we can assume. */ static void clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align) { struct store_by_pieces data; if (len == 0) return; data.constfun = clear_by_pieces_1; data.constfundata = NULL; data.len = len; data.to = to; store_by_pieces_1 (&data, align); } /* Callback routine for clear_by_pieces. Return const0_rtx unconditionally. */ static rtx clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED, HOST_WIDE_INT offset ATTRIBUTE_UNUSED, enum machine_mode mode ATTRIBUTE_UNUSED) { return const0_rtx; } /* Subroutine of clear_by_pieces and store_by_pieces. Generate several move instructions to store LEN bytes of block TO. (A MEM rtx with BLKmode). The caller must pass TO through protect_from_queue before calling. ALIGN is maximum alignment we can assume. */ static void store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED, unsigned int align ATTRIBUTE_UNUSED) { rtx to_addr = XEXP (data->to, 0); unsigned HOST_WIDE_INT max_size = STORE_MAX_PIECES + 1; enum machine_mode mode = VOIDmode, tmode; enum insn_code icode; data->offset = 0; data->to_addr = to_addr; data->autinc_to = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC); data->explicit_inc_to = 0; data->reverse = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC); if (data->reverse) data->offset = data->len; /* If storing requires more than two move insns, copy addresses to registers (to make displacements shorter) and use post-increment if available. */ if (!data->autinc_to && move_by_pieces_ninsns (data->len, align) > 2) { /* Determine the main mode we'll be using. */ for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode)) if (GET_MODE_SIZE (tmode) < max_size) mode = tmode; if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to) { data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len)); data->autinc_to = 1; data->explicit_inc_to = -1; } if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse && ! data->autinc_to) { data->to_addr = copy_addr_to_reg (to_addr); data->autinc_to = 1; data->explicit_inc_to = 1; } if ( !data->autinc_to && CONSTANT_P (to_addr)) data->to_addr = copy_addr_to_reg (to_addr); } if (! SLOW_UNALIGNED_ACCESS (word_mode, align) || align > MOVE_MAX * BITS_PER_UNIT || align >= BIGGEST_ALIGNMENT) align = MOVE_MAX * BITS_PER_UNIT; /* First store what we can in the largest integer mode, then go to successively smaller modes. */ while (max_size > 1) { for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode)) if (GET_MODE_SIZE (tmode) < max_size) mode = tmode; if (mode == VOIDmode) break; icode = mov_optab->handlers[(int) mode].insn_code; if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode)) store_by_pieces_2 (GEN_FCN (icode), mode, data); max_size = GET_MODE_SIZE (mode); } /* The code above should have handled everything. */ if (data->len != 0) abort (); } /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate with move instructions for mode MODE. GENFUN is the gen_... function to make a move insn for that mode. DATA has all the other info. */ static void store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode, struct store_by_pieces *data) { unsigned int size = GET_MODE_SIZE (mode); rtx to1, cst; while (data->len >= size) { if (data->reverse) data->offset -= size; if (data->autinc_to) to1 = adjust_automodify_address (data->to, mode, data->to_addr, data->offset); else to1 = adjust_address (data->to, mode, data->offset); if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0) emit_insn (gen_add2_insn (data->to_addr, GEN_INT (-(HOST_WIDE_INT) size))); cst = (*data->constfun) (data->constfundata, data->offset, mode); emit_insn ((*genfun) (to1, cst)); if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0) emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size))); if (! data->reverse) data->offset += size; data->len -= size; } } /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is its length in bytes. */ rtx clear_storage (rtx object, rtx size) { rtx retval = 0; unsigned int align = (GET_CODE (object) == MEM ? MEM_ALIGN (object) : GET_MODE_ALIGNMENT (GET_MODE (object))); /* If OBJECT is not BLKmode and SIZE is the same size as its mode, just move a zero. Otherwise, do this a piece at a time. */ if (GET_MODE (object) != BLKmode && GET_CODE (size) == CONST_INT && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (object))) emit_move_insn (object, CONST0_RTX (GET_MODE (object))); else { object = protect_from_queue (object, 1); size = protect_from_queue (size, 0); if (size == const0_rtx) ; else if (GET_CODE (size) == CONST_INT && CLEAR_BY_PIECES_P (INTVAL (size), align)) clear_by_pieces (object, INTVAL (size), align); else if (clear_storage_via_clrstr (object, size, align)) ; else retval = clear_storage_via_libcall (object, size); } return retval; } /* A subroutine of clear_storage. Expand a clrstr pattern; return true if successful. */ static bool clear_storage_via_clrstr (rtx object, rtx size, unsigned int align) { /* Try the most limited insn first, because there's no point including more than one in the machine description unless the more limited one has some advantage. */ rtx opalign = GEN_INT (align / BITS_PER_UNIT); enum machine_mode mode; for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode)) { enum insn_code code = clrstr_optab[(int) mode]; insn_operand_predicate_fn pred; if (code != CODE_FOR_nothing /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT here because if SIZE is less than the mode mask, as it is returned by the macro, it will definitely be less than the actual mode mask. */ && ((GET_CODE (size) == CONST_INT && ((unsigned HOST_WIDE_INT) INTVAL (size) <= (GET_MODE_MASK (mode) >> 1))) || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD) && ((pred = insn_data[(int) code].operand[0].predicate) == 0 || (*pred) (object, BLKmode)) && ((pred = insn_data[(int) code].operand[2].predicate) == 0 || (*pred) (opalign, VOIDmode))) { rtx op1; rtx last = get_last_insn (); rtx pat; op1 = convert_to_mode (mode, size, 1); pred = insn_data[(int) code].operand[1].predicate; if (pred != 0 && ! (*pred) (op1, mode)) op1 = copy_to_mode_reg (mode, op1); pat = GEN_FCN ((int) code) (object, op1, opalign); if (pat) { emit_insn (pat); return true; } else delete_insns_since (last); } } return false; } /* A subroutine of clear_storage. Expand a call to memset or bzero. Return the return value of memset, 0 otherwise. */ static rtx clear_storage_via_libcall (rtx object, rtx size) { tree call_expr, arg_list, fn, object_tree, size_tree; enum machine_mode size_mode; rtx retval; /* OBJECT or SIZE may have been passed through protect_from_queue. It is unsafe to save the value generated by protect_from_queue and reuse it later. Consider what happens if emit_queue is called before the return value from protect_from_queue is used. Expansion of the CALL_EXPR below will call emit_queue before we are finished emitting RTL for argument setup. So if we are not careful we could get the wrong value for an argument. To avoid this problem we go ahead and emit code to copy OBJECT and SIZE into new pseudos. We can then place those new pseudos into an RTL_EXPR and use them later, even after a call to emit_queue. Note this is not strictly needed for library calls since they do not call emit_queue before loading their arguments. However, we may need to have library calls call emit_queue in the future since failing to do so could cause problems for targets which define SMALL_REGISTER_CLASSES and pass arguments in registers. */ object = copy_to_mode_reg (Pmode, XEXP (object, 0)); if (TARGET_MEM_FUNCTIONS) size_mode = TYPE_MODE (sizetype); else size_mode = TYPE_MODE (unsigned_type_node); size = convert_to_mode (size_mode, size, 1); size = copy_to_mode_reg (size_mode, size); /* It is incorrect to use the libcall calling conventions to call memset in this context. This could be a user call to memset and the user may wish to examine the return value from memset. For targets where libcalls and normal calls have different conventions for returning pointers, we could end up generating incorrect code. For convenience, we generate the call to bzero this way as well. */ object_tree = make_tree (ptr_type_node, object); if (TARGET_MEM_FUNCTIONS) size_tree = make_tree (sizetype, size); else size_tree = make_tree (unsigned_type_node, size); fn = clear_storage_libcall_fn (true); arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE); if (TARGET_MEM_FUNCTIONS) arg_list = tree_cons (NULL_TREE, integer_zero_node, arg_list); arg_list = tree_cons (NULL_TREE, object_tree, arg_list); /* Now we have to build up the CALL_EXPR itself. */ call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn); call_expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)), call_expr, arg_list, NULL_TREE); retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0); /* If we are initializing a readonly value, show the above call clobbered it. Otherwise, a load from it may erroneously be hoisted from a loop. */ if (RTX_UNCHANGING_P (object)) emit_insn (gen_rtx_CLOBBER (VOIDmode, object)); return (TARGET_MEM_FUNCTIONS ? retval : NULL_RTX); } /* A subroutine of clear_storage_via_libcall. Create the tree node for the function we use for block clears. The first time FOR_CALL is true, we call assemble_external. */ static GTY(()) tree block_clear_fn; void init_block_clear_fn (const char *asmspec) { if (!block_clear_fn) { tree fn, args; if (TARGET_MEM_FUNCTIONS) { fn = get_identifier ("memset"); args = build_function_type_list (ptr_type_node, ptr_type_node, integer_type_node, sizetype, NULL_TREE); } else { fn = get_identifier ("bzero"); args = build_function_type_list (void_type_node, ptr_type_node, unsigned_type_node, NULL_TREE); } fn = build_decl (FUNCTION_DECL, fn, args); DECL_EXTERNAL (fn) = 1; TREE_PUBLIC (fn) = 1; DECL_ARTIFICIAL (fn) = 1; TREE_NOTHROW (fn) = 1; block_clear_fn = fn; } if (asmspec) { SET_DECL_RTL (block_clear_fn, NULL_RTX); SET_DECL_ASSEMBLER_NAME (block_clear_fn, get_identifier (asmspec)); } } static tree clear_storage_libcall_fn (int for_call) { static bool emitted_extern; if (!block_clear_fn) init_block_clear_fn (NULL); if (for_call && !emitted_extern) { emitted_extern = true; make_decl_rtl (block_clear_fn, NULL); assemble_external (block_clear_fn); } return block_clear_fn; } /* Generate code to copy Y into X. Both Y and X must have the same mode, except that Y can be a constant with VOIDmode. This mode cannot be BLKmode; use emit_block_move for that. Return the last instruction emitted. */ rtx emit_move_insn (rtx x, rtx y) { enum machine_mode mode = GET_MODE (x); rtx y_cst = NULL_RTX; rtx last_insn, set; x = protect_from_queue (x, 1); y = protect_from_queue (y, 0); if (mode == BLKmode || (GET_MODE (y) != mode && GET_MODE (y) != VOIDmode)) abort (); /* Never force constant_p_rtx to memory. */ if (GET_CODE (y) == CONSTANT_P_RTX) ; else if (CONSTANT_P (y)) { if (optimize && SCALAR_FLOAT_MODE_P (GET_MODE (x)) && (last_insn = compress_float_constant (x, y))) return last_insn; y_cst = y; if (!LEGITIMATE_CONSTANT_P (y)) { y = force_const_mem (mode, y); /* If the target's cannot_force_const_mem prevented the spill, assume that the target's move expanders will also take care of the non-legitimate constant. */ if (!y) y = y_cst; } } /* If X or Y are memory references, verify that their addresses are valid for the machine. */ if (GET_CODE (x) == MEM && ((! memory_address_p (GET_MODE (x), XEXP (x, 0)) && ! push_operand (x, GET_MODE (x))) || (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (x, 0))))) x = validize_mem (x); if (GET_CODE (y) == MEM && (! memory_address_p (GET_MODE (y), XEXP (y, 0)) || (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (y, 0))))) y = validize_mem (y); if (mode == BLKmode) abort (); last_insn = emit_move_insn_1 (x, y); if (y_cst && GET_CODE (x) == REG && (set = single_set (last_insn)) != NULL_RTX && SET_DEST (set) == x && ! rtx_equal_p (y_cst, SET_SRC (set))) set_unique_reg_note (last_insn, REG_EQUAL, y_cst); return last_insn; } /* Low level part of emit_move_insn. Called just like emit_move_insn, but assumes X and Y are basically valid. */ rtx emit_move_insn_1 (rtx x, rtx y) { enum machine_mode mode = GET_MODE (x); enum machine_mode submode; enum mode_class class = GET_MODE_CLASS (mode); if ((unsigned int) mode >= (unsigned int) MAX_MACHINE_MODE) abort (); if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) return emit_insn (GEN_FCN (mov_optab->handlers[(int) mode].insn_code) (x, y)); /* Expand complex moves by moving real part and imag part, if possible. */ else if ((class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT) && BLKmode != (submode = GET_MODE_INNER (mode)) && (mov_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing)) { /* Don't split destination if it is a stack push. */ int stack = push_operand (x, GET_MODE (x)); #ifdef PUSH_ROUNDING /* In case we output to the stack, but the size is smaller than the machine can push exactly, we need to use move instructions. */ if (stack && (PUSH_ROUNDING (GET_MODE_SIZE (submode)) != GET_MODE_SIZE (submode))) { rtx temp; HOST_WIDE_INT offset1, offset2; /* Do not use anti_adjust_stack, since we don't want to update stack_pointer_delta. */ temp = expand_binop (Pmode, #ifdef STACK_GROWS_DOWNWARD sub_optab, #else add_optab, #endif stack_pointer_rtx, GEN_INT (PUSH_ROUNDING (GET_MODE_SIZE (GET_MODE (x)))), stack_pointer_rtx, 0, OPTAB_LIB_WIDEN); if (temp != stack_pointer_rtx) emit_move_insn (stack_pointer_rtx, temp); #ifdef STACK_GROWS_DOWNWARD offset1 = 0; offset2 = GET_MODE_SIZE (submode); #else offset1 = -PUSH_ROUNDING (GET_MODE_SIZE (GET_MODE (x))); offset2 = (-PUSH_ROUNDING (GET_MODE_SIZE (GET_MODE (x))) + GET_MODE_SIZE (submode)); #endif emit_move_insn (change_address (x, submode, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset1))), gen_realpart (submode, y)); emit_move_insn (change_address (x, submode, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset2))), gen_imagpart (submode, y)); } else #endif /* If this is a stack, push the highpart first, so it will be in the argument order. In that case, change_address is used only to convert the mode, not to change the address. */ if (stack) { /* Note that the real part always precedes the imag part in memory regardless of machine's endianness. */ #ifdef STACK_GROWS_DOWNWARD emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)), gen_imagpart (submode, y)); emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)), gen_realpart (submode, y)); #else emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)), gen_realpart (submode, y)); emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)), gen_imagpart (submode, y)); #endif } else { rtx realpart_x, realpart_y; rtx imagpart_x, imagpart_y; /* If this is a complex value with each part being smaller than a word, the usual calling sequence will likely pack the pieces into a single register. Unfortunately, SUBREG of hard registers only deals in terms of words, so we have a problem converting input arguments to the CONCAT of two registers that is used elsewhere for complex values. If this is before reload, we can copy it into memory and reload. FIXME, we should see about using extract and insert on integer registers, but complex short and complex char variables should be rarely used. */ if (GET_MODE_BITSIZE (mode) < 2 * BITS_PER_WORD && (reload_in_progress | reload_completed) == 0) { int packed_dest_p = (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER); int packed_src_p = (REG_P (y) && REGNO (y) < FIRST_PSEUDO_REGISTER); if (packed_dest_p || packed_src_p) { enum mode_class reg_class = ((class == MODE_COMPLEX_FLOAT) ? MODE_FLOAT : MODE_INT); enum machine_mode reg_mode = mode_for_size (GET_MODE_BITSIZE (mode), reg_class, 1); if (reg_mode != BLKmode) { rtx mem = assign_stack_temp (reg_mode, GET_MODE_SIZE (mode), 0); rtx cmem = adjust_address (mem, mode, 0); cfun->cannot_inline = N_("function using short complex types cannot be inline"); if (packed_dest_p) { rtx sreg = gen_rtx_SUBREG (reg_mode, x, 0); emit_move_insn_1 (cmem, y); return emit_move_insn_1 (sreg, mem); } else { rtx sreg = gen_rtx_SUBREG (reg_mode, y, 0); emit_move_insn_1 (mem, sreg); return emit_move_insn_1 (x, cmem); } } } } realpart_x = gen_realpart (submode, x); realpart_y = gen_realpart (submode, y); imagpart_x = gen_imagpart (submode, x); imagpart_y = gen_imagpart (submode, y); /* Show the output dies here. This is necessary for SUBREGs of pseudos since we cannot track their lifetimes correctly; hard regs shouldn't appear here except as return values. We never want to emit such a clobber after reload. */ if (x != y && ! (reload_in_progress || reload_completed) && (GET_CODE (realpart_x) == SUBREG || GET_CODE (imagpart_x) == SUBREG)) emit_insn (gen_rtx_CLOBBER (VOIDmode, x)); emit_move_insn (realpart_x, realpart_y); emit_move_insn (imagpart_x, imagpart_y); } return get_last_insn (); } /* Handle MODE_CC modes: If we don't have a special move insn for this mode, find a mode to do it in. If we have a movcc, use it. Otherwise, find the MODE_INT mode of the same width. */ else if (GET_MODE_CLASS (mode) == MODE_CC && mov_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing) { enum insn_code insn_code; enum machine_mode tmode = VOIDmode; rtx x1 = x, y1 = y; if (mode != CCmode && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing) tmode = CCmode; else for (tmode = QImode; tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode)) if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode)) break; if (tmode == VOIDmode) abort (); /* Get X and Y in TMODE. We can't use gen_lowpart here because it may call change_address which is not appropriate if we were called when a reload was in progress. We don't have to worry about changing the address since the size in bytes is supposed to be the same. Copy the MEM to change the mode and move any substitutions from the old MEM to the new one. */ if (reload_in_progress) { x = gen_lowpart_common (tmode, x1); if (x == 0 && GET_CODE (x1) == MEM) { x = adjust_address_nv (x1, tmode, 0); copy_replacements (x1, x); } y = gen_lowpart_common (tmode, y1); if (y == 0 && GET_CODE (y1) == MEM) { y = adjust_address_nv (y1, tmode, 0); copy_replacements (y1, y); } } else { x = gen_lowpart (tmode, x); y = gen_lowpart (tmode, y); } insn_code = mov_optab->handlers[(int) tmode].insn_code; return emit_insn (GEN_FCN (insn_code) (x, y)); } /* Try using a move pattern for the corresponding integer mode. This is only safe when simplify_subreg can convert MODE constants into integer constants. At present, it can only do this reliably if the value fits within a HOST_WIDE_INT. */ else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT && (submode = int_mode_for_mode (mode)) != BLKmode && mov_optab->handlers[submode].insn_code != CODE_FOR_nothing) return emit_insn (GEN_FCN (mov_optab->handlers[submode].insn_code) (simplify_gen_subreg (submode, x, mode, 0), simplify_gen_subreg (submode, y, mode, 0))); /* This will handle any multi-word or full-word mode that lacks a move_insn pattern. However, you will get better code if you define such patterns, even if they must turn into multiple assembler instructions. */ else if (GET_MODE_SIZE (mode) >= UNITS_PER_WORD) { rtx last_insn = 0; rtx seq, inner; int need_clobber; int i; #ifdef PUSH_ROUNDING /* If X is a push on the stack, do the push now and replace X with a reference to the stack pointer. */ if (push_operand (x, GET_MODE (x))) { rtx temp; enum rtx_code code; /* Do not use anti_adjust_stack, since we don't want to update stack_pointer_delta. */ temp = expand_binop (Pmode, #ifdef STACK_GROWS_DOWNWARD sub_optab, #else add_optab, #endif stack_pointer_rtx, GEN_INT (PUSH_ROUNDING (GET_MODE_SIZE (GET_MODE (x)))), stack_pointer_rtx, 0, OPTAB_LIB_WIDEN); if (temp != stack_pointer_rtx) emit_move_insn (stack_pointer_rtx, temp); code = GET_CODE (XEXP (x, 0)); /* Just hope that small offsets off SP are OK. */ if (code == POST_INC) temp = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (x))))); else if (code == POST_DEC) temp = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (GET_MODE_SIZE (GET_MODE (x)))); else temp = stack_pointer_rtx; x = change_address (x, VOIDmode, temp); } #endif /* If we are in reload, see if either operand is a MEM whose address is scheduled for replacement. */ if (reload_in_progress && GET_CODE (x) == MEM && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0)) x = replace_equiv_address_nv (x, inner); if (reload_in_progress && GET_CODE (y) == MEM && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0)) y = replace_equiv_address_nv (y, inner); start_sequence (); need_clobber = 0; for (i = 0; i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD; i++) { rtx xpart = operand_subword (x, i, 1, mode); rtx ypart = operand_subword (y, i, 1, mode); /* If we can't get a part of Y, put Y into memory if it is a constant. Otherwise, force it into a register. If we still can't get a part of Y, abort. */ if (ypart == 0 && CONSTANT_P (y)) { y = force_const_mem (mode, y); ypart = operand_subword (y, i, 1, mode); } else if (ypart == 0) ypart = operand_subword_force (y, i, mode); if (xpart == 0 || ypart == 0) abort (); need_clobber |= (GET_CODE (xpart) == SUBREG); last_insn = emit_move_insn (xpart, ypart); } seq = get_insns (); end_sequence (); /* Show the output dies here. This is necessary for SUBREGs of pseudos since we cannot track their lifetimes correctly; hard regs shouldn't appear here except as return values. We never want to emit such a clobber after reload. */ if (x != y && ! (reload_in_progress || reload_completed) && need_clobber != 0) emit_insn (gen_rtx_CLOBBER (VOIDmode, x)); emit_insn (seq); return last_insn; } else abort (); } /* If Y is representable exactly in a narrower mode, and the target can perform the extension directly from constant or memory, then emit the move as an extension. */ static rtx compress_float_constant (rtx x, rtx y) { enum machine_mode dstmode = GET_MODE (x); enum machine_mode orig_srcmode = GET_MODE (y); enum machine_mode srcmode; REAL_VALUE_TYPE r; REAL_VALUE_FROM_CONST_DOUBLE (r, y); for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode)); srcmode != orig_srcmode; srcmode = GET_MODE_WIDER_MODE (srcmode)) { enum insn_code ic; rtx trunc_y, last_insn; /* Skip if the target can't extend this way. */ ic = can_extend_p (dstmode, srcmode, 0); if (ic == CODE_FOR_nothing) continue; /* Skip if the narrowed value isn't exact. */ if (! exact_real_truncate (srcmode, &r)) continue; trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode); if (LEGITIMATE_CONSTANT_P (trunc_y)) { /* Skip if the target needs extra instructions to perform the extension. */ if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode)) continue; } else if (float_extend_from_mem[dstmode][srcmode]) trunc_y = validize_mem (force_const_mem (srcmode, trunc_y)); else continue; emit_unop_insn (ic, x, trunc_y, UNKNOWN); last_insn = get_last_insn (); if (GET_CODE (x) == REG) set_unique_reg_note (last_insn, REG_EQUAL, y); return last_insn; } return NULL_RTX; } /* Pushing data onto the stack. */ /* Push a block of length SIZE (perhaps variable) and return an rtx to address the beginning of the block. Note that it is not possible for the value returned to be a QUEUED. The value may be virtual_outgoing_args_rtx. EXTRA is the number of bytes of padding to push in addition to SIZE. BELOW nonzero means this padding comes at low addresses; otherwise, the padding comes at high addresses. */ rtx push_block (rtx size, int extra, int below) { rtx temp; size = convert_modes (Pmode, ptr_mode, size, 1); if (CONSTANT_P (size)) anti_adjust_stack (plus_constant (size, extra)); else if (GET_CODE (size) == REG && extra == 0) anti_adjust_stack (size); else { temp = copy_to_mode_reg (Pmode, size); if (extra != 0) temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra), temp, 0, OPTAB_LIB_WIDEN); anti_adjust_stack (temp); } #ifndef STACK_GROWS_DOWNWARD if (0) #else if (1) #endif { temp = virtual_outgoing_args_rtx; if (extra != 0 && below) temp = plus_constant (temp, extra); } else { if (GET_CODE (size) == CONST_INT) temp = plus_constant (virtual_outgoing_args_rtx, -INTVAL (size) - (below ? 0 : extra)); else if (extra != 0 && !below) temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx, negate_rtx (Pmode, plus_constant (size, extra))); else temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx, negate_rtx (Pmode, size)); } return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp); } #ifdef PUSH_ROUNDING /* Emit single push insn. */ static void emit_single_push_insn (enum machine_mode mode, rtx x, tree type) { rtx dest_addr; unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode)); rtx dest; enum insn_code icode; insn_operand_predicate_fn pred; stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode)); /* If there is push pattern, use it. Otherwise try old way of throwing MEM representing push operation to move expander. */ icode = push_optab->handlers[(int) mode].insn_code; if (icode != CODE_FOR_nothing) { if (((pred = insn_data[(int) icode].operand[0].predicate) && !((*pred) (x, mode)))) x = force_reg (mode, x); emit_insn (GEN_FCN (icode) (x)); return; } if (GET_MODE_SIZE (mode) == rounded_size) dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx); /* If we are to pad downward, adjust the stack pointer first and then store X into the stack location using an offset. This is because emit_move_insn does not know how to pad; it does not have access to type. */ else if (FUNCTION_ARG_PADDING (mode, type) == downward) { unsigned padding_size = rounded_size - GET_MODE_SIZE (mode); HOST_WIDE_INT offset; emit_move_insn (stack_pointer_rtx, expand_binop (Pmode, #ifdef STACK_GROWS_DOWNWARD sub_optab, #else add_optab, #endif stack_pointer_rtx, GEN_INT (rounded_size), NULL_RTX, 0, OPTAB_LIB_WIDEN)); offset = (HOST_WIDE_INT) padding_size; #ifdef STACK_GROWS_DOWNWARD if (STACK_PUSH_CODE == POST_DEC) /* We have already decremented the stack pointer, so get the previous value. */ offset += (HOST_WIDE_INT) rounded_size; #else if (STACK_PUSH_CODE == POST_INC) /* We have already incremented the stack pointer, so get the previous value. */ offset -= (HOST_WIDE_INT) rounded_size; #endif dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset)); } else { #ifdef STACK_GROWS_DOWNWARD /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */ dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-(HOST_WIDE_INT) rounded_size)); #else /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */ dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (rounded_size)); #endif dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr); } dest = gen_rtx_MEM (mode, dest_addr); if (type != 0) { set_mem_attributes (dest, type, 1); if (flag_optimize_sibling_calls) /* Function incoming arguments may overlap with sibling call outgoing arguments and we cannot allow reordering of reads from function arguments with stores to outgoing arguments of sibling calls. */ set_mem_alias_set (dest, 0); } emit_move_insn (dest, x); } #endif /* Generate code to push X onto the stack, assuming it has mode MODE and type TYPE. MODE is redundant except when X is a CONST_INT (since they don't carry mode info). SIZE is an rtx for the size of data to be copied (in bytes), needed only if X is BLKmode. ALIGN (in bits) is maximum alignment we can assume. If PARTIAL and REG are both nonzero, then copy that many of the first words of X into registers starting with REG, and push the rest of X. The amount of space pushed is decreased by PARTIAL words, rounded *down* to a multiple of PARM_BOUNDARY. REG must be a hard register in this case. If REG is zero but PARTIAL is not, take any all others actions for an argument partially in registers, but do not actually load any registers. EXTRA is the amount in bytes of extra space to leave next to this arg. This is ignored if an argument block has already been allocated. On a machine that lacks real push insns, ARGS_ADDR is the address of the bottom of the argument block for this call. We use indexing off there to store the arg. On machines with push insns, ARGS_ADDR is 0 when a argument block has not been preallocated. ARGS_SO_FAR is the size of args previously pushed for this call. REG_PARM_STACK_SPACE is nonzero if functions require stack space for arguments passed in registers. If nonzero, it will be the number of bytes required. */ void emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size, unsigned int align, int partial, rtx reg, int extra, rtx args_addr, rtx args_so_far, int reg_parm_stack_space, rtx alignment_pad) { rtx xinner; enum direction stack_direction #ifdef STACK_GROWS_DOWNWARD = downward; #else = upward; #endif /* Decide where to pad the argument: `downward' for below, `upward' for above, or `none' for don't pad it. Default is below for small data on big-endian machines; else above. */ enum direction where_pad = FUNCTION_ARG_PADDING (mode, type); /* Invert direction if stack is post-decrement. FIXME: why? */ if (STACK_PUSH_CODE == POST_DEC) if (where_pad != none) where_pad = (where_pad == downward ? upward : downward); xinner = x = protect_from_queue (x, 0); if (mode == BLKmode) { /* Copy a block into the stack, entirely or partially. */ rtx temp; int used = partial * UNITS_PER_WORD; int offset; int skip; if (reg && GET_CODE (reg) == PARALLEL) { /* Use the size of the elt to compute offset. */ rtx elt = XEXP (XVECEXP (reg, 0, 0), 0); used = partial * GET_MODE_SIZE (GET_MODE (elt)); offset = used % (PARM_BOUNDARY / BITS_PER_UNIT); } else offset = used % (PARM_BOUNDARY / BITS_PER_UNIT); if (size == 0) abort (); used -= offset; /* USED is now the # of bytes we need not copy to the stack because registers will take care of them. */ if (partial != 0) xinner = adjust_address (xinner, BLKmode, used); /* If the partial register-part of the arg counts in its stack size, skip the part of stack space corresponding to the registers. Otherwise, start copying to the beginning of the stack space, by setting SKIP to 0. */ skip = (reg_parm_stack_space == 0) ? 0 : used; #ifdef PUSH_ROUNDING /* Do it with several push insns if that doesn't take lots of insns and if there is no difficulty with push insns that skip bytes on the stack for alignment purposes. */ if (args_addr == 0 && PUSH_ARGS && GET_CODE (size) == CONST_INT && skip == 0 && MEM_ALIGN (xinner) >= align && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align)) /* Here we avoid the case of a structure whose weak alignment forces many pushes of a small amount of data, and such small pushes do rounding that causes trouble. */ && ((! SLOW_UNALIGNED_ACCESS (word_mode, align)) || align >= BIGGEST_ALIGNMENT || (PUSH_ROUNDING (align / BITS_PER_UNIT) == (align / BITS_PER_UNIT))) && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size)) { /* Push padding now if padding above and stack grows down, or if padding below and stack grows up. But if space already allocated, this has already been done. */ if (extra && args_addr == 0 && where_pad != none && where_pad != stack_direction) anti_adjust_stack (GEN_INT (extra)); move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0); } else #endif /* PUSH_ROUNDING */ { rtx target; /* Otherwise make space on the stack and copy the data to the address of that space. */ /* Deduct words put into registers from the size we must copy. */ if (partial != 0) { if (GET_CODE (size) == CONST_INT) size = GEN_INT (INTVAL (size) - used); else size = expand_binop (GET_MODE (size), sub_optab, size, GEN_INT (used), NULL_RTX, 0, OPTAB_LIB_WIDEN); } /* Get the address of the stack space. In this case, we do not deal with EXTRA separately. A single stack adjust will do. */ if (! args_addr) { temp = push_block (size, extra, where_pad == downward); extra = 0; } else if (GET_CODE (args_so_far) == CONST_INT) temp = memory_address (BLKmode, plus_constant (args_addr, skip + INTVAL (args_so_far))); else temp = memory_address (BLKmode, plus_constant (gen_rtx_PLUS (Pmode, args_addr, args_so_far), skip)); if (!ACCUMULATE_OUTGOING_ARGS) { /* If the source is referenced relative to the stack pointer, copy it to another register to stabilize it. We do not need to do this if we know that we won't be changing sp. */ if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp) || reg_mentioned_p (virtual_outgoing_args_rtx, temp)) temp = copy_to_reg (temp); } target = gen_rtx_MEM (BLKmode, temp); if (type != 0) { set_mem_attributes (target, type, 1); /* Function incoming arguments may overlap with sibling call outgoing arguments and we cannot allow reordering of reads from function arguments with stores to outgoing arguments of sibling calls. */ set_mem_alias_set (target, 0); } /* ALIGN may well be better aligned than TYPE, e.g. due to PARM_BOUNDARY. Assume the caller isn't lying. */ set_mem_align (target, align); emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM); } } else if (partial > 0) { /* Scalar partly in registers. */ int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD; int i; int not_stack; /* # words of start of argument that we must make space for but need not store. */ int offset = partial % (PARM_BOUNDARY / BITS_PER_WORD); int args_offset = INTVAL (args_so_far); int skip; /* Push padding now if padding above and stack grows down, or if padding below and stack grows up. But if space already allocated, this has already been done. */ if (extra && args_addr == 0 && where_pad != none && where_pad != stack_direction) anti_adjust_stack (GEN_INT (extra)); /* If we make space by pushing it, we might as well push the real data. Otherwise, we can leave OFFSET nonzero and leave the space uninitialized. */ if (args_addr == 0) offset = 0; /* Now NOT_STACK gets the number of words that we don't need to allocate on the stack. */ not_stack = partial - offset; /* If the partial register-part of the arg counts in its stack size, skip the part of stack space corresponding to the registers. Otherwise, start copying to the beginning of the stack space, by setting SKIP to 0. */ skip = (reg_parm_stack_space == 0) ? 0 : not_stack; if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x)) x = validize_mem (force_const_mem (mode, x)); /* If X is a hard register in a non-integer mode, copy it into a pseudo; SUBREGs of such registers are not allowed. */ if ((GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)) x = copy_to_reg (x); /* Loop over all the words allocated on the stack for this arg. */ /* We can do it by words, because any scalar bigger than a word has a size a multiple of a word. */ #ifndef PUSH_ARGS_REVERSED for (i = not_stack; i < size; i++) #else for (i = size - 1; i >= not_stack; i--) #endif if (i >= not_stack + offset) emit_push_insn (operand_subword_force (x, i, mode), word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX, 0, args_addr, GEN_INT (args_offset + ((i - not_stack + skip) * UNITS_PER_WORD)), reg_parm_stack_space, alignment_pad); } else { rtx addr; rtx dest; /* Push padding now if padding above and stack grows down, or if padding below and stack grows up. But if space already allocated, this has already been done. */ if (extra && args_addr == 0 && where_pad != none && where_pad != stack_direction) anti_adjust_stack (GEN_INT (extra)); #ifdef PUSH_ROUNDING if (args_addr == 0 && PUSH_ARGS) emit_single_push_insn (mode, x, type); else #endif { if (GET_CODE (args_so_far) == CONST_INT) addr = memory_address (mode, plus_constant (args_addr, INTVAL (args_so_far))); else addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr, args_so_far)); dest = gen_rtx_MEM (mode, addr); if (type != 0) { set_mem_attributes (dest, type, 1); /* Function incoming arguments may overlap with sibling call outgoing arguments and we cannot allow reordering of reads from function arguments with stores to outgoing arguments of sibling calls. */ set_mem_alias_set (dest, 0); } emit_move_insn (dest, x); } } /* If part should go in registers, copy that part into the appropriate registers. Do this now, at the end, since mem-to-mem copies above may do function calls. */ if (partial > 0 && reg != 0) { /* Handle calls that pass values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ if (GET_CODE (reg) == PARALLEL) emit_group_load (reg, x, type, -1); else move_block_to_reg (REGNO (reg), x, partial, mode); } if (extra && args_addr == 0 && where_pad == stack_direction) anti_adjust_stack (GEN_INT (extra)); if (alignment_pad && args_addr == 0) anti_adjust_stack (alignment_pad); } /* Return X if X can be used as a subtarget in a sequence of arithmetic operations. */ static rtx get_subtarget (rtx x) { return ((x == 0 /* Only registers can be subtargets. */ || GET_CODE (x) != REG /* If the register is readonly, it can't be set more than once. */ || RTX_UNCHANGING_P (x) /* Don't use hard regs to avoid extending their life. */ || REGNO (x) < FIRST_PSEUDO_REGISTER /* Avoid subtargets inside loops, since they hide some invariant expressions. */ || preserve_subexpressions_p ()) ? 0 : x); } /* Expand an assignment that stores the value of FROM into TO. If WANT_VALUE is nonzero, return an rtx for the value of TO. (This may contain a QUEUED rtx; if the value is constant, this rtx is a constant.) Otherwise, the returned value is NULL_RTX. */ rtx expand_assignment (tree to, tree from, int want_value) { rtx to_rtx = 0; rtx result; /* Don't crash if the lhs of the assignment was erroneous. */ if (TREE_CODE (to) == ERROR_MARK) { result = expand_expr (from, NULL_RTX, VOIDmode, 0); return want_value ? result : NULL_RTX; } /* Assignment of a structure component needs special treatment if the structure component's rtx is not simply a MEM. Assignment of an array element at a constant index, and assignment of an array element in an unaligned packed structure field, has the same problem. */ if (TREE_CODE (to) == COMPONENT_REF || TREE_CODE (to) == BIT_FIELD_REF || TREE_CODE (to) == ARRAY_REF || TREE_CODE (to) == ARRAY_RANGE_REF || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE) { enum machine_mode mode1; HOST_WIDE_INT bitsize, bitpos; rtx orig_to_rtx; tree offset; int unsignedp; int volatilep = 0; tree tem; push_temp_slots (); tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1, &unsignedp, &volatilep); /* If we are going to use store_bit_field and extract_bit_field, make sure to_rtx will be safe for multiple use. */ if (mode1 == VOIDmode && want_value) tem = stabilize_reference (tem); orig_to_rtx = to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, 0); if (offset != 0) { rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM); if (GET_CODE (to_rtx) != MEM) abort (); #ifdef POINTERS_EXTEND_UNSIGNED if (GET_MODE (offset_rtx) != Pmode) offset_rtx = convert_to_mode (Pmode, offset_rtx, 0); #else if (GET_MODE (offset_rtx) != ptr_mode) offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0); #endif /* A constant address in TO_RTX can have VOIDmode, we must not try to call force_reg for that case. Avoid that case. */ if (GET_CODE (to_rtx) == MEM && GET_MODE (to_rtx) == BLKmode && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode && bitsize > 0 && (bitpos % bitsize) == 0 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1)) { to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT); bitpos = 0; } to_rtx = offset_address (to_rtx, offset_rtx, highest_pow2_factor_for_type (TREE_TYPE (to), offset)); } if (GET_CODE (to_rtx) == MEM) { /* If the field is at offset zero, we could have been given the DECL_RTX of the parent struct. Don't munge it. */ to_rtx = shallow_copy_rtx (to_rtx); set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos); } /* Deal with volatile and readonly fields. The former is only done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */ if (volatilep && GET_CODE (to_rtx) == MEM) { if (to_rtx == orig_to_rtx) to_rtx = copy_rtx (to_rtx); MEM_VOLATILE_P (to_rtx) = 1; } if (TREE_CODE (to) == COMPONENT_REF && TREE_READONLY (TREE_OPERAND (to, 1)) /* We can't assert that a MEM won't be set more than once if the component is not addressable because another non-addressable component may be referenced by the same MEM. */ && ! (GET_CODE (to_rtx) == MEM && ! can_address_p (to))) { if (to_rtx == orig_to_rtx) to_rtx = copy_rtx (to_rtx); RTX_UNCHANGING_P (to_rtx) = 1; } if (GET_CODE (to_rtx) == MEM && ! can_address_p (to)) { if (to_rtx == orig_to_rtx) to_rtx = copy_rtx (to_rtx); MEM_KEEP_ALIAS_SET_P (to_rtx) = 1; } result = store_field (to_rtx, bitsize, bitpos, mode1, from, (want_value /* Spurious cast for HPUX compiler. */ ? ((enum machine_mode) TYPE_MODE (TREE_TYPE (to))) : VOIDmode), unsignedp, TREE_TYPE (tem), get_alias_set (to)); preserve_temp_slots (result); free_temp_slots (); pop_temp_slots (); /* If the value is meaningful, convert RESULT to the proper mode. Otherwise, return nothing. */ return (want_value ? convert_modes (TYPE_MODE (TREE_TYPE (to)), TYPE_MODE (TREE_TYPE (from)), result, TREE_UNSIGNED (TREE_TYPE (to))) : NULL_RTX); } /* If the rhs is a function call and its value is not an aggregate, call the function before we start to compute the lhs. This is needed for correct code for cases such as val = setjmp (buf) on machines where reference to val requires loading up part of an address in a separate insn. Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG since it might be a promoted variable where the zero- or sign- extension needs to be done. Handling this in the normal way is safe because no computation is done before the call. */ if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from) && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL) && GET_CODE (DECL_RTL (to)) == REG)) { rtx value; push_temp_slots (); value = expand_expr (from, NULL_RTX, VOIDmode, 0); if (to_rtx == 0) to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE); /* Handle calls that return values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ if (GET_CODE (to_rtx) == PARALLEL) emit_group_load (to_rtx, value, TREE_TYPE (from), int_size_in_bytes (TREE_TYPE (from))); else if (GET_MODE (to_rtx) == BLKmode) emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL); else { if (POINTER_TYPE_P (TREE_TYPE (to))) value = convert_memory_address (GET_MODE (to_rtx), value); emit_move_insn (to_rtx, value); } preserve_temp_slots (to_rtx); free_temp_slots (); pop_temp_slots (); return want_value ? to_rtx : NULL_RTX; } /* Ordinary treatment. Expand TO to get a REG or MEM rtx. Don't re-expand if it was expanded already (in COMPONENT_REF case). */ if (to_rtx == 0) to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE); /* Don't move directly into a return register. */ if (TREE_CODE (to) == RESULT_DECL && (GET_CODE (to_rtx) == REG || GET_CODE (to_rtx) == PARALLEL)) { rtx temp; push_temp_slots (); temp = expand_expr (from, 0, GET_MODE (to_rtx), 0); if (GET_CODE (to_rtx) == PARALLEL) emit_group_load (to_rtx, temp, TREE_TYPE (from), int_size_in_bytes (TREE_TYPE (from))); else emit_move_insn (to_rtx, temp); preserve_temp_slots (to_rtx); free_temp_slots (); pop_temp_slots (); return want_value ? to_rtx : NULL_RTX; } /* In case we are returning the contents of an object which overlaps the place the value is being stored, use a safe function when copying a value through a pointer into a structure value return block. */ if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF && current_function_returns_struct && !current_function_returns_pcc_struct) { rtx from_rtx, size; push_temp_slots (); size = expr_size (from); from_rtx = expand_expr (from, NULL_RTX, VOIDmode, 0); if (TARGET_MEM_FUNCTIONS) emit_library_call (memmove_libfunc, LCT_NORMAL, VOIDmode, 3, XEXP (to_rtx, 0), Pmode, XEXP (from_rtx, 0), Pmode, convert_to_mode (TYPE_MODE (sizetype), size, TREE_UNSIGNED (sizetype)), TYPE_MODE (sizetype)); else emit_library_call (bcopy_libfunc, LCT_NORMAL, VOIDmode, 3, XEXP (from_rtx, 0), Pmode, XEXP (to_rtx, 0), Pmode, convert_to_mode (TYPE_MODE (integer_type_node), size, TREE_UNSIGNED (integer_type_node)), TYPE_MODE (integer_type_node)); preserve_temp_slots (to_rtx); free_temp_slots (); pop_temp_slots (); return want_value ? to_rtx : NULL_RTX; } /* Compute FROM and store the value in the rtx we got. */ push_temp_slots (); result = store_expr (from, to_rtx, want_value); preserve_temp_slots (result); free_temp_slots (); pop_temp_slots (); return want_value ? result : NULL_RTX; } /* Generate code for computing expression EXP, and storing the value into TARGET. TARGET may contain a QUEUED rtx. If WANT_VALUE & 1 is nonzero, return a copy of the value not in TARGET, so that we can be sure to use the proper value in a containing expression even if TARGET has something else stored in it. If possible, we copy the value through a pseudo and return that pseudo. Or, if the value is constant, we try to return the constant. In some cases, we return a pseudo copied *from* TARGET. If the mode is BLKmode then we may return TARGET itself. It turns out that in BLKmode it doesn't cause a problem. because C has no operators that could combine two different assignments into the same BLKmode object with different values with no sequence point. Will other languages need this to be more thorough? If WANT_VALUE & 1 is 0, we return NULL, to make sure to catch quickly any cases where the caller uses the value and fails to set WANT_VALUE. If WANT_VALUE & 2 is set, this is a store into a call param on the stack, and block moves may need to be treated specially. */ rtx store_expr (tree exp, rtx target, int want_value) { rtx temp; rtx alt_rtl = NULL_RTX; int dont_return_target = 0; int dont_store_target = 0; if (VOID_TYPE_P (TREE_TYPE (exp))) { /* C++ can generate ?: expressions with a throw expression in one branch and an rvalue in the other. Here, we resolve attempts to store the throw expression's nonexistent result. */ if (want_value) abort (); expand_expr (exp, const0_rtx, VOIDmode, 0); return NULL_RTX; } if (TREE_CODE (exp) == COMPOUND_EXPR) { /* Perform first part of compound expression, then assign from second part. */ expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, want_value & 2 ? EXPAND_STACK_PARM : EXPAND_NORMAL); emit_queue (); return store_expr (TREE_OPERAND (exp, 1), target, want_value); } else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode) { /* For conditional expression, get safe form of the target. Then test the condition, doing the appropriate assignment on either side. This avoids the creation of unnecessary temporaries. For non-BLKmode, it is more efficient not to do this. */ rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx (); emit_queue (); target = protect_from_queue (target, 1); do_pending_stack_adjust (); NO_DEFER_POP; jumpifnot (TREE_OPERAND (exp, 0), lab1); start_cleanup_deferral (); store_expr (TREE_OPERAND (exp, 1), target, want_value & 2); end_cleanup_deferral (); emit_queue (); emit_jump_insn (gen_jump (lab2)); emit_barrier (); emit_label (lab1); start_cleanup_deferral (); store_expr (TREE_OPERAND (exp, 2), target, want_value & 2); end_cleanup_deferral (); emit_queue (); emit_label (lab2); OK_DEFER_POP; return want_value & 1 ? target : NULL_RTX; } else if (queued_subexp_p (target)) /* If target contains a postincrement, let's not risk using it as the place to generate the rhs. */ { if (GET_MODE (target) != BLKmode && GET_MODE (target) != VOIDmode) { /* Expand EXP into a new pseudo. */ temp = gen_reg_rtx (GET_MODE (target)); temp = expand_expr (exp, temp, GET_MODE (target), (want_value & 2 ? EXPAND_STACK_PARM : EXPAND_NORMAL)); } else temp = expand_expr (exp, NULL_RTX, GET_MODE (target), (want_value & 2 ? EXPAND_STACK_PARM : EXPAND_NORMAL)); /* If target is volatile, ANSI requires accessing the value *from* the target, if it is accessed. So make that happen. In no case return the target itself. */ if (! MEM_VOLATILE_P (target) && (want_value & 1) != 0) dont_return_target = 1; } else if ((want_value & 1) != 0 && GET_CODE (target) == MEM && ! MEM_VOLATILE_P (target) && GET_MODE (target) != BLKmode) /* If target is in memory and caller wants value in a register instead, arrange that. Pass TARGET as target for expand_expr so that, if EXP is another assignment, WANT_VALUE will be nonzero for it. We know expand_expr will not use the target in that case. Don't do this if TARGET is volatile because we are supposed to write it and then read it. */ { temp = expand_expr (exp, target, GET_MODE (target), want_value & 2 ? EXPAND_STACK_PARM : EXPAND_NORMAL); if (GET_MODE (temp) != BLKmode && GET_MODE (temp) != VOIDmode) { /* If TEMP is already in the desired TARGET, only copy it from memory and don't store it there again. */ if (temp == target || (rtx_equal_p (temp, target) && ! side_effects_p (temp) && ! side_effects_p (target))) dont_store_target = 1; temp = copy_to_reg (temp); } dont_return_target = 1; } else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target)) /* If this is a scalar in a register that is stored in a wider mode than the declared mode, compute the result into its declared mode and then convert to the wider mode. Our value is the computed expression. */ { rtx inner_target = 0; /* If we don't want a value, we can do the conversion inside EXP, which will often result in some optimizations. Do the conversion in two steps: first change the signedness, if needed, then the extend. But don't do this if the type of EXP is a subtype of something else since then the conversion might involve more than just converting modes. */ if ((want_value & 1) == 0 && INTEGRAL_TYPE_P (TREE_TYPE (exp)) && TREE_TYPE (TREE_TYPE (exp)) == 0) { if (TREE_UNSIGNED (TREE_TYPE (exp)) != SUBREG_PROMOTED_UNSIGNED_P (target)) exp = convert ((*lang_hooks.types.signed_or_unsigned_type) (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)), exp); exp = convert ((*lang_hooks.types.type_for_mode) (GET_MODE (SUBREG_REG (target)), SUBREG_PROMOTED_UNSIGNED_P (target)), exp); inner_target = SUBREG_REG (target); } temp = expand_expr (exp, inner_target, VOIDmode, want_value & 2 ? EXPAND_STACK_PARM : EXPAND_NORMAL); /* If TEMP is a MEM and we want a result value, make the access now so it gets done only once. Strictly speaking, this is only necessary if the MEM is volatile, or if the address overlaps TARGET. But not performing the load twice also reduces the amount of rtl we generate and then have to CSE. */ if (GET_CODE (temp) == MEM && (want_value & 1) != 0) temp = copy_to_reg (temp); /* If TEMP is a VOIDmode constant, use convert_modes to make sure that we properly convert it. */ if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode) { temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)), temp, SUBREG_PROMOTED_UNSIGNED_P (target)); temp = convert_modes (GET_MODE (SUBREG_REG (target)), GET_MODE (target), temp, SUBREG_PROMOTED_UNSIGNED_P (target)); } convert_move (SUBREG_REG (target), temp, SUBREG_PROMOTED_UNSIGNED_P (target)); /* If we promoted a constant, change the mode back down to match target. Otherwise, the caller might get confused by a result whose mode is larger than expected. */ if ((want_value & 1) != 0 && GET_MODE (temp) != GET_MODE (target)) { if (GET_MODE (temp) != VOIDmode) { temp = gen_lowpart_SUBREG (GET_MODE (target), temp); SUBREG_PROMOTED_VAR_P (temp) = 1; SUBREG_PROMOTED_UNSIGNED_SET (temp, SUBREG_PROMOTED_UNSIGNED_P (target)); } else temp = convert_modes (GET_MODE (target), GET_MODE (SUBREG_REG (target)), temp, SUBREG_PROMOTED_UNSIGNED_P (target)); } return want_value & 1 ? temp : NULL_RTX; } else { temp = expand_expr_real (exp, target, GET_MODE (target), (want_value & 2 ? EXPAND_STACK_PARM : EXPAND_NORMAL), &alt_rtl); /* Return TARGET if it's a specified hardware register. If TARGET is a volatile mem ref, either return TARGET or return a reg copied *from* TARGET; ANSI requires this. Otherwise, if TEMP is not TARGET, return TEMP if it is constant (for efficiency), or if we really want the correct value. */ if (!(target && GET_CODE (target) == REG && REGNO (target) < FIRST_PSEUDO_REGISTER) && !(GET_CODE (target) == MEM && MEM_VOLATILE_P (target)) && ! rtx_equal_p (temp, target) && (CONSTANT_P (temp) || (want_value & 1) != 0)) dont_return_target = 1; } /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not the same as that of TARGET, adjust the constant. This is needed, for example, in case it is a CONST_DOUBLE and we want only a word-sized value. */ if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode && TREE_CODE (exp) != ERROR_MARK && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp))) temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)), temp, TREE_UNSIGNED (TREE_TYPE (exp))); /* If value was not generated in the target, store it there. Convert the value to TARGET's type first if necessary. If TEMP and TARGET compare equal according to rtx_equal_p, but one or both of them are volatile memory refs, we have to distinguish two cases: - expand_expr has used TARGET. In this case, we must not generate another copy. This can be detected by TARGET being equal according to == . - expand_expr has not used TARGET - that means that the source just happens to have the same RTX form. Since temp will have been created by expand_expr, it will compare unequal according to == . We must generate a copy in this case, to reach the correct number of volatile memory references. */ if ((! rtx_equal_p (temp, target) || (temp != target && (side_effects_p (temp) || side_effects_p (target)))) && TREE_CODE (exp) != ERROR_MARK && ! dont_store_target /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET, but TARGET is not valid memory reference, TEMP will differ from TARGET although it is really the same location. */ && !(alt_rtl && rtx_equal_p (alt_rtl, target)) /* If there's nothing to copy, don't bother. Don't call expr_size unless necessary, because some front-ends (C++) expr_size-hook aborts on objects that are not supposed to be bit-copied or bit-initialized. */ && expr_size (exp) != const0_rtx) { target = protect_from_queue (target, 1); if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode) { int unsignedp = TREE_UNSIGNED (TREE_TYPE (exp)); if (dont_return_target) { /* In this case, we will return TEMP, so make sure it has the proper mode. But don't forget to store the value into TARGET. */ temp = convert_to_mode (GET_MODE (target), temp, unsignedp); emit_move_insn (target, temp); } else convert_move (target, temp, unsignedp); } else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST) { /* Handle copying a string constant into an array. The string constant may be shorter than the array. So copy just the string's actual length, and clear the rest. First get the size of the data type of the string, which is actually the size of the target. */ rtx size = expr_size (exp); if (GET_CODE (size) == CONST_INT && INTVAL (size) < TREE_STRING_LENGTH (exp)) emit_block_move (target, temp, size, (want_value & 2 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL)); else { /* Compute the size of the data to copy from the string. */ tree copy_size = size_binop (MIN_EXPR, make_tree (sizetype, size), size_int (TREE_STRING_LENGTH (exp))); rtx copy_size_rtx = expand_expr (copy_size, NULL_RTX, VOIDmode, (want_value & 2 ? EXPAND_STACK_PARM : EXPAND_NORMAL)); rtx label = 0; /* Copy that much. */ copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx, TREE_UNSIGNED (sizetype)); emit_block_move (target, temp, copy_size_rtx, (want_value & 2 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL)); /* Figure out how much is left in TARGET that we have to clear. Do all calculations in ptr_mode. */ if (GET_CODE (copy_size_rtx) == CONST_INT) { size = plus_constant (size, -INTVAL (copy_size_rtx)); target = adjust_address (target, BLKmode, INTVAL (copy_size_rtx)); } else { size = expand_binop (TYPE_MODE (sizetype), sub_optab, size, copy_size_rtx, NULL_RTX, 0, OPTAB_LIB_WIDEN); #ifdef POINTERS_EXTEND_UNSIGNED if (GET_MODE (copy_size_rtx) != Pmode) copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx, TREE_UNSIGNED (sizetype)); #endif target = offset_address (target, copy_size_rtx, highest_pow2_factor (copy_size)); label = gen_label_rtx (); emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX, GET_MODE (size), 0, label); } if (size != const0_rtx) clear_storage (target, size); if (label) emit_label (label); } } /* Handle calls that return values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ else if (GET_CODE (target) == PARALLEL) emit_group_load (target, temp, TREE_TYPE (exp), int_size_in_bytes (TREE_TYPE (exp))); else if (GET_MODE (temp) == BLKmode) emit_block_move (target, temp, expr_size (exp), (want_value & 2 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL)); else emit_move_insn (target, temp); } /* If we don't want a value, return NULL_RTX. */ if ((want_value & 1) == 0) return NULL_RTX; /* If we are supposed to return TEMP, do so as long as it isn't a MEM. ??? The latter test doesn't seem to make sense. */ else if (dont_return_target && GET_CODE (temp) != MEM) return temp; /* Return TARGET itself if it is a hard register. */ else if ((want_value & 1) != 0 && GET_MODE (target) != BLKmode && ! (GET_CODE (target) == REG && REGNO (target) < FIRST_PSEUDO_REGISTER)) return copy_to_reg (target); else return target; } /* Return 1 if EXP just contains zeros. FIXME merge with initializer_zerop. */ static int is_zeros_p (tree exp) { tree elt; switch (TREE_CODE (exp)) { case CONVERT_EXPR: case NOP_EXPR: case NON_LVALUE_EXPR: case VIEW_CONVERT_EXPR: return is_zeros_p (TREE_OPERAND (exp, 0)); case INTEGER_CST: return integer_zerop (exp); case COMPLEX_CST: return is_zeros_p (TREE_REALPART (exp)) && is_zeros_p (TREE_IMAGPART (exp)); case REAL_CST: return REAL_VALUES_IDENTICAL (TREE_REAL_CST (exp), dconst0); case VECTOR_CST: for (elt = TREE_VECTOR_CST_ELTS (exp); elt; elt = TREE_CHAIN (elt)) if (!is_zeros_p (TREE_VALUE (elt))) return 0; return 1; case CONSTRUCTOR: if (TREE_TYPE (exp) && TREE_CODE (TREE_TYPE (exp)) == SET_TYPE) return CONSTRUCTOR_ELTS (exp) == NULL_TREE; for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt)) if (! is_zeros_p (TREE_VALUE (elt))) return 0; return 1; default: return 0; } } /* Return 1 if EXP contains mostly (3/4) zeros. */ int mostly_zeros_p (tree exp) { if (TREE_CODE (exp) == CONSTRUCTOR) { int elts = 0, zeros = 0; tree elt = CONSTRUCTOR_ELTS (exp); if (TREE_TYPE (exp) && TREE_CODE (TREE_TYPE (exp)) == SET_TYPE) { /* If there are no ranges of true bits, it is all zero. */ return elt == NULL_TREE; } for (; elt; elt = TREE_CHAIN (elt)) { /* We do not handle the case where the index is a RANGE_EXPR, so the statistic will be somewhat inaccurate. We do make a more accurate count in store_constructor itself, so since this function is only used for nested array elements, this should be close enough. */ if (mostly_zeros_p (TREE_VALUE (elt))) zeros++; elts++; } return 4 * zeros >= 3 * elts; } return is_zeros_p (exp); } /* Helper function for store_constructor. TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field. TYPE is the type of the CONSTRUCTOR, not the element type. CLEARED is as for store_constructor. ALIAS_SET is the alias set to use for any stores. This provides a recursive shortcut back to store_constructor when it isn't necessary to go through store_field. This is so that we can pass through the cleared field to let store_constructor know that we may not have to clear a substructure if the outer structure has already been cleared. */ static void store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos, enum machine_mode mode, tree exp, tree type, int cleared, int alias_set) { if (TREE_CODE (exp) == CONSTRUCTOR && bitpos % BITS_PER_UNIT == 0 /* If we have a nonzero bitpos for a register target, then we just let store_field do the bitfield handling. This is unlikely to generate unnecessary clear instructions anyways. */ && (bitpos == 0 || GET_CODE (target) == MEM)) { if (GET_CODE (target) == MEM) target = adjust_address (target, GET_MODE (target) == BLKmode || 0 != (bitpos % GET_MODE_ALIGNMENT (GET_MODE (target))) ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT); /* Update the alias set, if required. */ if (GET_CODE (target) == MEM && ! MEM_KEEP_ALIAS_SET_P (target) && MEM_ALIAS_SET (target) != 0) { target = copy_rtx (target); set_mem_alias_set (target, alias_set); } store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT); } else store_field (target, bitsize, bitpos, mode, exp, VOIDmode, 0, type, alias_set); } /* Store the value of constructor EXP into the rtx TARGET. TARGET is either a REG or a MEM; we know it cannot conflict, since safe_from_p has been called. CLEARED is true if TARGET is known to have been zero'd. SIZE is the number of bytes of TARGET we are allowed to modify: this may not be the same as the size of EXP if we are assigning to a field which has been packed to exclude padding bits. */ static void store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size) { tree type = TREE_TYPE (exp); #ifdef WORD_REGISTER_OPERATIONS HOST_WIDE_INT exp_size = int_size_in_bytes (type); #endif if (TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) { tree elt; /* If size is zero or the target is already cleared, do nothing. */ if (size == 0 || cleared) cleared = 1; /* We either clear the aggregate or indicate the value is dead. */ else if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) && ! CONSTRUCTOR_ELTS (exp)) /* If the constructor is empty, clear the union. */ { clear_storage (target, expr_size (exp)); cleared = 1; } /* If we are building a static constructor into a register, set the initial value as zero so we can fold the value into a constant. But if more than one register is involved, this probably loses. */ else if (GET_CODE (target) == REG && TREE_STATIC (exp) && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD) { emit_move_insn (target, CONST0_RTX (GET_MODE (target))); cleared = 1; } /* If the constructor has fewer fields than the structure or if we are initializing the structure to mostly zeros, clear the whole structure first. Don't do this if TARGET is a register whose mode size isn't equal to SIZE since clear_storage can't handle this case. */ else if (((list_length (CONSTRUCTOR_ELTS (exp)) != fields_length (type)) || mostly_zeros_p (exp)) && (GET_CODE (target) != REG || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target)) == size))) { rtx xtarget = target; if (readonly_fields_p (type)) { xtarget = copy_rtx (xtarget); RTX_UNCHANGING_P (xtarget) = 1; } clear_storage (xtarget, GEN_INT (size)); cleared = 1; } if (! cleared) emit_insn (gen_rtx_CLOBBER (VOIDmode, target)); /* Store each element of the constructor into the corresponding field of TARGET. */ for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt)) { tree field = TREE_PURPOSE (elt); tree value = TREE_VALUE (elt); enum machine_mode mode; HOST_WIDE_INT bitsize; HOST_WIDE_INT bitpos = 0; tree offset; rtx to_rtx = target; /* Just ignore missing fields. We cleared the whole structure, above, if any fields are missing. */ if (field == 0) continue; if (cleared && is_zeros_p (value)) continue; if (host_integerp (DECL_SIZE (field), 1)) bitsize = tree_low_cst (DECL_SIZE (field), 1); else bitsize = -1; mode = DECL_MODE (field); if (DECL_BIT_FIELD (field)) mode = VOIDmode; offset = DECL_FIELD_OFFSET (field); if (host_integerp (offset, 0) && host_integerp (bit_position (field), 0)) { bitpos = int_bit_position (field); offset = 0; } else bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0); if (offset) { rtx offset_rtx; if (CONTAINS_PLACEHOLDER_P (offset)) offset = build (WITH_RECORD_EXPR, sizetype, offset, make_tree (TREE_TYPE (exp), target)); offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0); if (GET_CODE (to_rtx) != MEM) abort (); #ifdef POINTERS_EXTEND_UNSIGNED if (GET_MODE (offset_rtx) != Pmode) offset_rtx = convert_to_mode (Pmode, offset_rtx, 0); #else if (GET_MODE (offset_rtx) != ptr_mode) offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0); #endif to_rtx = offset_address (to_rtx, offset_rtx, highest_pow2_factor (offset)); } /* If the constructor has been cleared, setting RTX_UNCHANGING_P on the MEM might lead to scheduling the clearing after the store. */ if (TREE_READONLY (field) && !cleared) { if (GET_CODE (to_rtx) == MEM) to_rtx = copy_rtx (to_rtx); RTX_UNCHANGING_P (to_rtx) = 1; } #ifdef WORD_REGISTER_OPERATIONS /* If this initializes a field that is smaller than a word, at the start of a word, try to widen it to a full word. This special case allows us to output C++ member function initializations in a form that the optimizers can understand. */ if (GET_CODE (target) == REG && bitsize < BITS_PER_WORD && bitpos % BITS_PER_WORD == 0 && GET_MODE_CLASS (mode) == MODE_INT && TREE_CODE (value) == INTEGER_CST && exp_size >= 0 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT) { tree type = TREE_TYPE (value); if (TYPE_PRECISION (type) < BITS_PER_WORD) { type = (*lang_hooks.types.type_for_size) (BITS_PER_WORD, TREE_UNSIGNED (type)); value = convert (type, value); } if (BYTES_BIG_ENDIAN) value = fold (build (LSHIFT_EXPR, type, value, build_int_2 (BITS_PER_WORD - bitsize, 0))); bitsize = BITS_PER_WORD; mode = word_mode; } #endif if (GET_CODE (to_rtx) == MEM && !MEM_KEEP_ALIAS_SET_P (to_rtx) && DECL_NONADDRESSABLE_P (field)) { to_rtx = copy_rtx (to_rtx); MEM_KEEP_ALIAS_SET_P (to_rtx) = 1; } store_constructor_field (to_rtx, bitsize, bitpos, mode, value, type, cleared, get_alias_set (TREE_TYPE (field))); } } else if (TREE_CODE (type) == ARRAY_TYPE || TREE_CODE (type) == VECTOR_TYPE) { tree elt; int i; int need_to_clear; tree domain = TYPE_DOMAIN (type); tree elttype = TREE_TYPE (type); int const_bounds_p; HOST_WIDE_INT minelt = 0; HOST_WIDE_INT maxelt = 0; int icode = 0; rtx *vector = NULL; int elt_size = 0; unsigned n_elts = 0; /* Vectors are like arrays, but the domain is stored via an array type indirectly. */ if (TREE_CODE (type) == VECTOR_TYPE) { /* Note that although TYPE_DEBUG_REPRESENTATION_TYPE uses the same field as TYPE_DOMAIN, we are not guaranteed that it always will. */ domain = TYPE_DEBUG_REPRESENTATION_TYPE (type); domain = TYPE_DOMAIN (TREE_TYPE (TYPE_FIELDS (domain))); if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target))) { enum machine_mode mode = GET_MODE (target); icode = (int) vec_init_optab->handlers[mode].insn_code; if (icode != CODE_FOR_nothing) { unsigned int i; elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode)); n_elts = (GET_MODE_SIZE (mode) / elt_size); vector = alloca (n_elts); for (i = 0; i < n_elts; i++) vector [i] = CONST0_RTX (GET_MODE_INNER (mode)); } } } const_bounds_p = (TYPE_MIN_VALUE (domain) && TYPE_MAX_VALUE (domain) && host_integerp (TYPE_MIN_VALUE (domain), 0) && host_integerp (TYPE_MAX_VALUE (domain), 0)); /* If we have constant bounds for the range of the type, get them. */ if (const_bounds_p) { minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0); maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0); } /* If the constructor has fewer elements than the array, clear the whole array first. Similarly if this is static constructor of a non-BLKmode object. */ if (cleared || (GET_CODE (target) == REG && TREE_STATIC (exp))) need_to_clear = 1; else { HOST_WIDE_INT count = 0, zero_count = 0; need_to_clear = ! const_bounds_p; /* This loop is a more accurate version of the loop in mostly_zeros_p (it handles RANGE_EXPR in an index). It is also needed to check for missing elements. */ for (elt = CONSTRUCTOR_ELTS (exp); elt != NULL_TREE && ! need_to_clear; elt = TREE_CHAIN (elt)) { tree index = TREE_PURPOSE (elt); HOST_WIDE_INT this_node_count; if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR) { tree lo_index = TREE_OPERAND (index, 0); tree hi_index = TREE_OPERAND (index, 1); if (! host_integerp (lo_index, 1) || ! host_integerp (hi_index, 1)) { need_to_clear = 1; break; } this_node_count = (tree_low_cst (hi_index, 1) - tree_low_cst (lo_index, 1) + 1); } else this_node_count = 1; count += this_node_count; if (mostly_zeros_p (TREE_VALUE (elt))) zero_count += this_node_count; } /* Clear the entire array first if there are any missing elements, or if the incidence of zero elements is >= 75%. */ if (! need_to_clear && (count < maxelt - minelt + 1 || 4 * zero_count >= 3 * count)) need_to_clear = 1; } if (need_to_clear && size > 0 && !vector) { if (! cleared) { if (REG_P (target)) emit_move_insn (target, CONST0_RTX (GET_MODE (target))); else clear_storage (target, GEN_INT (size)); } cleared = 1; } else if (REG_P (target)) /* Inform later passes that the old value is dead. */ emit_insn (gen_rtx_CLOBBER (VOIDmode, target)); /* Store each element of the constructor into the corresponding element of TARGET, determined by counting the elements. */ for (elt = CONSTRUCTOR_ELTS (exp), i = 0; elt; elt = TREE_CHAIN (elt), i++) { enum machine_mode mode; HOST_WIDE_INT bitsize; HOST_WIDE_INT bitpos; int unsignedp; tree value = TREE_VALUE (elt); tree index = TREE_PURPOSE (elt); rtx xtarget = target; if (cleared && is_zeros_p (value)) continue; unsignedp = TREE_UNSIGNED (elttype); mode = TYPE_MODE (elttype); if (mode == BLKmode) bitsize = (host_integerp (TYPE_SIZE (elttype), 1) ? tree_low_cst (TYPE_SIZE (elttype), 1) : -1); else bitsize = GET_MODE_BITSIZE (mode); if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR) { tree lo_index = TREE_OPERAND (index, 0); tree hi_index = TREE_OPERAND (index, 1); rtx index_r, pos_rtx, loop_end; struct nesting *loop; HOST_WIDE_INT lo, hi, count; tree position; if (vector) abort (); /* If the range is constant and "small", unroll the loop. */ if (const_bounds_p && host_integerp (lo_index, 0) && host_integerp (hi_index, 0) && (lo = tree_low_cst (lo_index, 0), hi = tree_low_cst (hi_index, 0), count = hi - lo + 1, (GET_CODE (target) != MEM || count <= 2 || (host_integerp (TYPE_SIZE (elttype), 1) && (tree_low_cst (TYPE_SIZE (elttype), 1) * count <= 40 * 8))))) { lo -= minelt; hi -= minelt; for (; lo <= hi; lo++) { bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0); if (GET_CODE (target) == MEM && !MEM_KEEP_ALIAS_SET_P (target) && TREE_CODE (type) == ARRAY_TYPE && TYPE_NONALIASED_COMPONENT (type)) { target = copy_rtx (target); MEM_KEEP_ALIAS_SET_P (target) = 1; } store_constructor_field (target, bitsize, bitpos, mode, value, type, cleared, get_alias_set (elttype)); } } else { expand_expr (hi_index, NULL_RTX, VOIDmode, 0); loop_end = gen_label_rtx (); unsignedp = TREE_UNSIGNED (domain); index = build_decl (VAR_DECL, NULL_TREE, domain); index_r = gen_reg_rtx (promote_mode (domain, DECL_MODE (index), &unsignedp, 0)); SET_DECL_RTL (index, index_r); if (TREE_CODE (value) == SAVE_EXPR && SAVE_EXPR_RTL (value) == 0) { /* Make sure value gets expanded once before the loop. */ expand_expr (value, const0_rtx, VOIDmode, 0); emit_queue (); } store_expr (lo_index, index_r, 0); loop = expand_start_loop (0); /* Assign value to element index. */ position = convert (ssizetype, fold (build (MINUS_EXPR, TREE_TYPE (index), index, TYPE_MIN_VALUE (domain)))); position = size_binop (MULT_EXPR, position, convert (ssizetype, TYPE_SIZE_UNIT (elttype))); pos_rtx = expand_expr (position, 0, VOIDmode, 0); xtarget = offset_address (target, pos_rtx, highest_pow2_factor (position)); xtarget = adjust_address (xtarget, mode, 0); if (TREE_CODE (value) == CONSTRUCTOR) store_constructor (value, xtarget, cleared, bitsize / BITS_PER_UNIT); else store_expr (value, xtarget, 0); expand_exit_loop_if_false (loop, build (LT_EXPR, integer_type_node, index, hi_index)); expand_increment (build (PREINCREMENT_EXPR, TREE_TYPE (index), index, integer_one_node), 0, 0); expand_end_loop (); emit_label (loop_end); } } else if ((index != 0 && ! host_integerp (index, 0)) || ! host_integerp (TYPE_SIZE (elttype), 1)) { tree position; if (vector) abort (); if (index == 0) index = ssize_int (1); if (minelt) index = convert (ssizetype, fold (build (MINUS_EXPR, index, TYPE_MIN_VALUE (domain)))); position = size_binop (MULT_EXPR, index, convert (ssizetype, TYPE_SIZE_UNIT (elttype))); xtarget = offset_address (target, expand_expr (position, 0, VOIDmode, 0), highest_pow2_factor (position)); xtarget = adjust_address (xtarget, mode, 0); store_expr (value, xtarget, 0); } else if (vector) { int pos; if (index != 0) pos = tree_low_cst (index, 0) - minelt; else pos = i; vector[pos] = expand_expr (value, NULL_RTX, VOIDmode, 0); } else { if (index != 0) bitpos = ((tree_low_cst (index, 0) - minelt) * tree_low_cst (TYPE_SIZE (elttype), 1)); else bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1)); if (GET_CODE (target) == MEM && !MEM_KEEP_ALIAS_SET_P (target) && TREE_CODE (type) == ARRAY_TYPE && TYPE_NONALIASED_COMPONENT (type)) { target = copy_rtx (target); MEM_KEEP_ALIAS_SET_P (target) = 1; } store_constructor_field (target, bitsize, bitpos, mode, value, type, cleared, get_alias_set (elttype)); } } if (vector) { emit_insn (GEN_FCN (icode) (target, gen_rtx_PARALLEL (GET_MODE (target), gen_rtvec_v (n_elts, vector)))); } } /* Set constructor assignments. */ else if (TREE_CODE (type) == SET_TYPE) { tree elt = CONSTRUCTOR_ELTS (exp); unsigned HOST_WIDE_INT nbytes = int_size_in_bytes (type), nbits; tree domain = TYPE_DOMAIN (type); tree domain_min, domain_max, bitlength; /* The default implementation strategy is to extract the constant parts of the constructor, use that to initialize the target, and then "or" in whatever non-constant ranges we need in addition. If a large set is all zero or all ones, it is probably better to set it using memset (if available) or bzero. Also, if a large set has just a single range, it may also be better to first clear all the first clear the set (using bzero/memset), and set the bits we want. */ /* Check for all zeros. */ if (elt == NULL_TREE && size > 0) { if (!cleared) clear_storage (target, GEN_INT (size)); return; } domain_min = convert (sizetype, TYPE_MIN_VALUE (domain)); domain_max = convert (sizetype, TYPE_MAX_VALUE (domain)); bitlength = size_binop (PLUS_EXPR, size_diffop (domain_max, domain_min), ssize_int (1)); nbits = tree_low_cst (bitlength, 1); /* For "small" sets, or "medium-sized" (up to 32 bytes) sets that are "complicated" (more than one range), initialize (the constant parts) by copying from a constant. */ if (GET_MODE (target) != BLKmode || nbits <= 2 * BITS_PER_WORD || (nbytes <= 32 && TREE_CHAIN (elt) != NULL_TREE)) { unsigned int set_word_size = TYPE_ALIGN (TREE_TYPE (exp)); enum machine_mode mode = mode_for_size (set_word_size, MODE_INT, 1); char *bit_buffer = alloca (nbits); HOST_WIDE_INT word = 0; unsigned int bit_pos = 0; unsigned int ibit = 0; unsigned int offset = 0; /* In bytes from beginning of set. */ elt = get_set_constructor_bits (exp, bit_buffer, nbits); for (;;) { if (bit_buffer[ibit]) { if (BYTES_BIG_ENDIAN) word |= (1 << (set_word_size - 1 - bit_pos)); else word |= 1 << bit_pos; } bit_pos++; ibit++; if (bit_pos >= set_word_size || ibit == nbits) { if (word != 0 || ! cleared) { rtx datum = GEN_INT (word); rtx to_rtx; /* The assumption here is that it is safe to use XEXP if the set is multi-word, but not if it's single-word. */ if (GET_CODE (target) == MEM) to_rtx = adjust_address (target, mode, offset); else if (offset == 0) to_rtx = target; else abort (); emit_move_insn (to_rtx, datum); } if (ibit == nbits) break; word = 0; bit_pos = 0; offset += set_word_size / BITS_PER_UNIT; } } } else if (!cleared) /* Don't bother clearing storage if the set is all ones. */ if (TREE_CHAIN (elt) != NULL_TREE || (TREE_PURPOSE (elt) == NULL_TREE ? nbits != 1 : ( ! host_integerp (TREE_VALUE (elt), 0) || ! host_integerp (TREE_PURPOSE (elt), 0) || (tree_low_cst (TREE_VALUE (elt), 0) - tree_low_cst (TREE_PURPOSE (elt), 0) + 1 != (HOST_WIDE_INT) nbits)))) clear_storage (target, expr_size (exp)); for (; elt != NULL_TREE; elt = TREE_CHAIN (elt)) { /* Start of range of element or NULL. */ tree startbit = TREE_PURPOSE (elt); /* End of range of element, or element value. */ tree endbit = TREE_VALUE (elt); HOST_WIDE_INT startb, endb; rtx bitlength_rtx, startbit_rtx, endbit_rtx, targetx; bitlength_rtx = expand_expr (bitlength, NULL_RTX, MEM, EXPAND_CONST_ADDRESS); /* Handle non-range tuple element like [ expr ]. */ if (startbit == NULL_TREE) { startbit = save_expr (endbit); endbit = startbit; } startbit = convert (sizetype, startbit); endbit = convert (sizetype, endbit); if (! integer_zerop (domain_min)) { startbit = size_binop (MINUS_EXPR, startbit, domain_min); endbit = size_binop (MINUS_EXPR, endbit, domain_min); } startbit_rtx = expand_expr (startbit, NULL_RTX, MEM, EXPAND_CONST_ADDRESS); endbit_rtx = expand_expr (endbit, NULL_RTX, MEM, EXPAND_CONST_ADDRESS); if (REG_P (target)) { targetx = assign_temp ((build_qualified_type ((*lang_hooks.types.type_for_mode) (GET_MODE (target), 0), TYPE_QUAL_CONST)), 0, 1, 1); emit_move_insn (targetx, target); } else if (GET_CODE (target) == MEM) targetx = target; else abort (); /* Optimization: If startbit and endbit are constants divisible by BITS_PER_UNIT, call memset instead. */ if (TARGET_MEM_FUNCTIONS && TREE_CODE (startbit) == INTEGER_CST && TREE_CODE (endbit) == INTEGER_CST && (startb = TREE_INT_CST_LOW (startbit)) % BITS_PER_UNIT == 0 && (endb = TREE_INT_CST_LOW (endbit) + 1) % BITS_PER_UNIT == 0) { emit_library_call (memset_libfunc, LCT_NORMAL, VOIDmode, 3, plus_constant (XEXP (targetx, 0), startb / BITS_PER_UNIT), Pmode, constm1_rtx, TYPE_MODE (integer_type_node), GEN_INT ((endb - startb) / BITS_PER_UNIT), TYPE_MODE (sizetype)); } else emit_library_call (setbits_libfunc, LCT_NORMAL, VOIDmode, 4, XEXP (targetx, 0), Pmode, bitlength_rtx, TYPE_MODE (sizetype), startbit_rtx, TYPE_MODE (sizetype), endbit_rtx, TYPE_MODE (sizetype)); if (REG_P (target)) emit_move_insn (target, targetx); } } else abort (); } /* Store the value of EXP (an expression tree) into a subfield of TARGET which has mode MODE and occupies BITSIZE bits, starting BITPOS bits from the start of TARGET. If MODE is VOIDmode, it means that we are storing into a bit-field. If VALUE_MODE is VOIDmode, return nothing in particular. UNSIGNEDP is not used in this case. Otherwise, return an rtx for the value stored. This rtx has mode VALUE_MODE if that is convenient to do. In this case, UNSIGNEDP must be nonzero if the value is an unsigned type. TYPE is the type of the underlying object, ALIAS_SET is the alias set for the destination. This value will (in general) be different from that for TARGET, since TARGET is a reference to the containing structure. */ static rtx store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos, enum machine_mode mode, tree exp, enum machine_mode value_mode, int unsignedp, tree type, int alias_set) { HOST_WIDE_INT width_mask = 0; if (TREE_CODE (exp) == ERROR_MARK) return const0_rtx; /* If we have nothing to store, do nothing unless the expression has side-effects. */ if (bitsize == 0) return expand_expr (exp, const0_rtx, VOIDmode, 0); else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT) width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1; /* If we are storing into an unaligned field of an aligned union that is in a register, we may have the mode of TARGET being an integer mode but MODE == BLKmode. In that case, get an aligned object whose size and alignment are the same as TARGET and store TARGET into it (we can avoid the store if the field being stored is the entire width of TARGET). Then call ourselves recursively to store the field into a BLKmode version of that object. Finally, load from the object into TARGET. This is not very efficient in general, but should only be slightly more expensive than the otherwise-required unaligned accesses. Perhaps this can be cleaned up later. It's tempting to make OBJECT readonly, but it's set twice, once with emit_move_insn and once via store_field. */ if (mode == BLKmode && (GET_CODE (target) == REG || GET_CODE (target) == SUBREG)) { rtx object = assign_temp (type, 0, 1, 1); rtx blk_object = adjust_address (object, BLKmode, 0); if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target))) emit_move_insn (object, target); store_field (blk_object, bitsize, bitpos, mode, exp, VOIDmode, 0, type, alias_set); emit_move_insn (target, object); /* We want to return the BLKmode version of the data. */ return blk_object; } if (GET_CODE (target) == CONCAT) { /* We're storing into a struct containing a single __complex. */ if (bitpos != 0) abort (); return store_expr (exp, target, 0); } /* If the structure is in a register or if the component is a bit field, we cannot use addressing to access it. Use bit-field techniques or SUBREG to store in it. */ if (mode == VOIDmode || (mode != BLKmode && ! direct_store[(int) mode] && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT) || GET_CODE (target) == REG || GET_CODE (target) == SUBREG /* If the field isn't aligned enough to store as an ordinary memref, store it as a bit field. */ || (mode != BLKmode && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode)) || bitpos % GET_MODE_ALIGNMENT (mode)) && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target))) || (bitpos % BITS_PER_UNIT != 0))) /* If the RHS and field are a constant size and the size of the RHS isn't the same size as the bitfield, we must use bitfield operations. */ || (bitsize >= 0 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)) { rtx temp = expand_expr (exp, NULL_RTX, VOIDmode, 0); /* If BITSIZE is narrower than the size of the type of EXP we will be narrowing TEMP. Normally, what's wanted are the low-order bits. However, if EXP's type is a record and this is big-endian machine, we want the upper BITSIZE bits. */ if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp)) && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE) temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp, size_int (GET_MODE_BITSIZE (GET_MODE (temp)) - bitsize), NULL_RTX, 1); /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */ if (mode != VOIDmode && mode != BLKmode && mode != TYPE_MODE (TREE_TYPE (exp))) temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1); /* If the modes of TARGET and TEMP are both BLKmode, both must be in memory and BITPOS must be aligned on a byte boundary. If so, we simply do a block copy. */ if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode) { if (GET_CODE (target) != MEM || GET_CODE (temp) != MEM || bitpos % BITS_PER_UNIT != 0) abort (); target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT); emit_block_move (target, temp, GEN_INT ((bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT), BLOCK_OP_NORMAL); return value_mode == VOIDmode ? const0_rtx : target; } /* Store the value in the bitfield. */ store_bit_field (target, bitsize, bitpos, mode, temp, int_size_in_bytes (type)); if (value_mode != VOIDmode) { /* The caller wants an rtx for the value. If possible, avoid refetching from the bitfield itself. */ if (width_mask != 0 && ! (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))) { tree count; enum machine_mode tmode; tmode = GET_MODE (temp); if (tmode == VOIDmode) tmode = value_mode; if (unsignedp) return expand_and (tmode, temp, gen_int_mode (width_mask, tmode), NULL_RTX); count = build_int_2 (GET_MODE_BITSIZE (tmode) - bitsize, 0); temp = expand_shift (LSHIFT_EXPR, tmode, temp, count, 0, 0); return expand_shift (RSHIFT_EXPR, tmode, temp, count, 0, 0); } return extract_bit_field (target, bitsize, bitpos, unsignedp, NULL_RTX, value_mode, VOIDmode, int_size_in_bytes (type)); } return const0_rtx; } else { rtx addr = XEXP (target, 0); rtx to_rtx = target; /* If a value is wanted, it must be the lhs; so make the address stable for multiple use. */ if (value_mode != VOIDmode && GET_CODE (addr) != REG && ! CONSTANT_ADDRESS_P (addr) /* A frame-pointer reference is already stable. */ && ! (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT && (XEXP (addr, 0) == virtual_incoming_args_rtx || XEXP (addr, 0) == virtual_stack_vars_rtx))) to_rtx = replace_equiv_address (to_rtx, copy_to_reg (addr)); /* Now build a reference to just the desired component. */ to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT); if (to_rtx == target) to_rtx = copy_rtx (to_rtx); MEM_SET_IN_STRUCT_P (to_rtx, 1); if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0) set_mem_alias_set (to_rtx, alias_set); return store_expr (exp, to_rtx, value_mode != VOIDmode); } } /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF, an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these codes and find the ultimate containing object, which we return. We set *PBITSIZE to the size in bits that we want, *PBITPOS to the bit position, and *PUNSIGNEDP to the signedness of the field. If the position of the field is variable, we store a tree giving the variable offset (in units) in *POFFSET. This offset is in addition to the bit position. If the position is not variable, we store 0 in *POFFSET. If any of the extraction expressions is volatile, we store 1 in *PVOLATILEP. Otherwise we don't change that. If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it is a mode that can be used to access the field. In that case, *PBITSIZE is redundant. If the field describes a variable-sized object, *PMODE is set to VOIDmode and *PBITSIZE is set to -1. An access cannot be made in this case, but the address of the object can be found. */ tree get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize, HOST_WIDE_INT *pbitpos, tree *poffset, enum machine_mode *pmode, int *punsignedp, int *pvolatilep) { tree size_tree = 0; enum machine_mode mode = VOIDmode; tree offset = size_zero_node; tree bit_offset = bitsize_zero_node; tree placeholder_ptr = 0; tree tem; /* First get the mode, signedness, and size. We do this from just the outermost expression. */ if (TREE_CODE (exp) == COMPONENT_REF) { size_tree = DECL_SIZE (TREE_OPERAND (exp, 1)); if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1))) mode = DECL_MODE (TREE_OPERAND (exp, 1)); *punsignedp = TREE_UNSIGNED (TREE_OPERAND (exp, 1)); } else if (TREE_CODE (exp) == BIT_FIELD_REF) { size_tree = TREE_OPERAND (exp, 1); *punsignedp = TREE_UNSIGNED (exp); } else { mode = TYPE_MODE (TREE_TYPE (exp)); *punsignedp = TREE_UNSIGNED (TREE_TYPE (exp)); if (mode == BLKmode) size_tree = TYPE_SIZE (TREE_TYPE (exp)); else *pbitsize = GET_MODE_BITSIZE (mode); } if (size_tree != 0) { if (! host_integerp (size_tree, 1)) mode = BLKmode, *pbitsize = -1; else *pbitsize = tree_low_cst (size_tree, 1); } /* Compute cumulative bit-offset for nested component-refs and array-refs, and find the ultimate containing object. */ while (1) { if (TREE_CODE (exp) == BIT_FIELD_REF) bit_offset = size_binop (PLUS_EXPR, bit_offset, TREE_OPERAND (exp, 2)); else if (TREE_CODE (exp) == COMPONENT_REF) { tree field = TREE_OPERAND (exp, 1); tree this_offset = DECL_FIELD_OFFSET (field); /* If this field hasn't been filled in yet, don't go past it. This should only happen when folding expressions made during type construction. */ if (this_offset == 0) break; else if (CONTAINS_PLACEHOLDER_P (this_offset)) this_offset = build (WITH_RECORD_EXPR, sizetype, this_offset, exp); offset = size_binop (PLUS_EXPR, offset, this_offset); bit_offset = size_binop (PLUS_EXPR, bit_offset, DECL_FIELD_BIT_OFFSET (field)); /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */ } else if (TREE_CODE (exp) == ARRAY_REF || TREE_CODE (exp) == ARRAY_RANGE_REF) { tree index = TREE_OPERAND (exp, 1); tree array = TREE_OPERAND (exp, 0); tree domain = TYPE_DOMAIN (TREE_TYPE (array)); tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0); tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array))); /* We assume all arrays have sizes that are a multiple of a byte. First subtract the lower bound, if any, in the type of the index, then convert to sizetype and multiply by the size of the array element. */ if (low_bound != 0 && ! integer_zerop (low_bound)) index = fold (build (MINUS_EXPR, TREE_TYPE (index), index, low_bound)); /* If the index has a self-referential type, pass it to a WITH_RECORD_EXPR; if the component size is, pass our component to one. */ if (CONTAINS_PLACEHOLDER_P (index)) index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, exp); if (CONTAINS_PLACEHOLDER_P (unit_size)) unit_size = build (WITH_RECORD_EXPR, sizetype, unit_size, array); offset = size_binop (PLUS_EXPR, offset, size_binop (MULT_EXPR, convert (sizetype, index), unit_size)); } else if (TREE_CODE (exp) == PLACEHOLDER_EXPR) { tree new = find_placeholder (exp, &placeholder_ptr); /* If we couldn't find the replacement, return the PLACEHOLDER_EXPR. We might have been called from tree optimization where we haven't set up an object yet. */ if (new == 0) break; else exp = new; continue; } /* We can go inside most conversions: all NON_VALUE_EXPRs, all normal conversions that don't change the mode, and all view conversions except those that need to "step up" the alignment. */ else if (TREE_CODE (exp) != NON_LVALUE_EXPR && ! (TREE_CODE (exp) == VIEW_CONVERT_EXPR && ! ((TYPE_ALIGN (TREE_TYPE (exp)) > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))) && STRICT_ALIGNMENT && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))) < BIGGEST_ALIGNMENT) && (TYPE_ALIGN_OK (TREE_TYPE (exp)) || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))) && ! ((TREE_CODE (exp) == NOP_EXPR || TREE_CODE (exp) == CONVERT_EXPR) && (TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))) break; /* If any reference in the chain is volatile, the effect is volatile. */ if (TREE_THIS_VOLATILE (exp)) *pvolatilep = 1; exp = TREE_OPERAND (exp, 0); } /* If OFFSET is constant, see if we can return the whole thing as a constant bit position. Otherwise, split it up. */ if (host_integerp (offset, 0) && 0 != (tem = size_binop (MULT_EXPR, convert (bitsizetype, offset), bitsize_unit_node)) && 0 != (tem = size_binop (PLUS_EXPR, tem, bit_offset)) && host_integerp (tem, 0)) *pbitpos = tree_low_cst (tem, 0), *poffset = 0; else *pbitpos = tree_low_cst (bit_offset, 0), *poffset = offset; *pmode = mode; return exp; } /* Return 1 if T is an expression that get_inner_reference handles. */ int handled_component_p (tree t) { switch (TREE_CODE (t)) { case BIT_FIELD_REF: case COMPONENT_REF: case ARRAY_REF: case ARRAY_RANGE_REF: case NON_LVALUE_EXPR: case VIEW_CONVERT_EXPR: return 1; /* ??? Sure they are handled, but get_inner_reference may return a different PBITSIZE, depending upon whether the expression is wrapped up in a NOP_EXPR or not, e.g. for bitfields. */ case NOP_EXPR: case CONVERT_EXPR: return (TYPE_MODE (TREE_TYPE (t)) == TYPE_MODE (TREE_TYPE (TREE_OPERAND (t, 0)))); default: return 0; } } /* Given an rtx VALUE that may contain additions and multiplications, return an equivalent value that just refers to a register, memory, or constant. This is done by generating instructions to perform the arithmetic and returning a pseudo-register containing the value. The returned value may be a REG, SUBREG, MEM or constant. */ rtx force_operand (rtx value, rtx target) { rtx op1, op2; /* Use subtarget as the target for operand 0 of a binary operation. */ rtx subtarget = get_subtarget (target); enum rtx_code code = GET_CODE (value); /* Check for a PIC address load. */ if ((code == PLUS || code == MINUS) && XEXP (value, 0) == pic_offset_table_rtx && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF || GET_CODE (XEXP (value, 1)) == LABEL_REF || GET_CODE (XEXP (value, 1)) == CONST)) { if (!subtarget) subtarget = gen_reg_rtx (GET_MODE (value)); emit_move_insn (subtarget, value); return subtarget; } if (code == ZERO_EXTEND || code == SIGN_EXTEND) { if (!target) target = gen_reg_rtx (GET_MODE (value)); convert_move (target, force_operand (XEXP (value, 0), NULL), code == ZERO_EXTEND); return target; } if (GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c') { op2 = XEXP (value, 1); if (!CONSTANT_P (op2) && !(GET_CODE (op2) == REG && op2 != subtarget)) subtarget = 0; if (code == MINUS && GET_CODE (op2) == CONST_INT) { code = PLUS; op2 = negate_rtx (GET_MODE (value), op2); } /* Check for an addition with OP2 a constant integer and our first operand a PLUS of a virtual register and something else. In that case, we want to emit the sum of the virtual register and the constant first and then add the other value. This allows virtual register instantiation to simply modify the constant rather than creating another one around this addition. */ if (code == PLUS && GET_CODE (op2) == CONST_INT && GET_CODE (XEXP (value, 0)) == PLUS && GET_CODE (XEXP (XEXP (value, 0), 0)) == REG && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER) { rtx temp = expand_simple_binop (GET_MODE (value), code, XEXP (XEXP (value, 0), 0), op2, subtarget, 0, OPTAB_LIB_WIDEN); return expand_simple_binop (GET_MODE (value), code, temp, force_operand (XEXP (XEXP (value, 0), 1), 0), target, 0, OPTAB_LIB_WIDEN); } op1 = force_operand (XEXP (value, 0), subtarget); op2 = force_operand (op2, NULL_RTX); switch (code) { case MULT: return expand_mult (GET_MODE (value), op1, op2, target, 1); case DIV: if (!INTEGRAL_MODE_P (GET_MODE (value))) return expand_simple_binop (GET_MODE (value), code, op1, op2, target, 1, OPTAB_LIB_WIDEN); else return expand_divmod (0, FLOAT_MODE_P (GET_MODE (value)) ? RDIV_EXPR : TRUNC_DIV_EXPR, GET_MODE (value), op1, op2, target, 0); break; case MOD: return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2, target, 0); break; case UDIV: return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2, target, 1); break; case UMOD: return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2, target, 1); break; case ASHIFTRT: return expand_simple_binop (GET_MODE (value), code, op1, op2, target, 0, OPTAB_LIB_WIDEN); break; default: return expand_simple_binop (GET_MODE (value), code, op1, op2, target, 1, OPTAB_LIB_WIDEN); } } if (GET_RTX_CLASS (code) == '1') { op1 = force_operand (XEXP (value, 0), NULL_RTX); return expand_simple_unop (GET_MODE (value), code, op1, target, 0); } #ifdef INSN_SCHEDULING /* On machines that have insn scheduling, we want all memory reference to be explicit, so we need to deal with such paradoxical SUBREGs. */ if (GET_CODE (value) == SUBREG && GET_CODE (SUBREG_REG (value)) == MEM && (GET_MODE_SIZE (GET_MODE (value)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value))))) value = simplify_gen_subreg (GET_MODE (value), force_reg (GET_MODE (SUBREG_REG (value)), force_operand (SUBREG_REG (value), NULL_RTX)), GET_MODE (SUBREG_REG (value)), SUBREG_BYTE (value)); #endif return value; } /* Subroutine of expand_expr: return nonzero iff there is no way that EXP can reference X, which is being modified. TOP_P is nonzero if this call is going to be used to determine whether we need a temporary for EXP, as opposed to a recursive call to this function. It is always safe for this routine to return zero since it merely searches for optimization opportunities. */ int safe_from_p (rtx x, tree exp, int top_p) { rtx exp_rtl = 0; int i, nops; static tree save_expr_list; if (x == 0 /* If EXP has varying size, we MUST use a target since we currently have no way of allocating temporaries of variable size (except for arrays that have TYPE_ARRAY_MAX_SIZE set). So we assume here that something at a higher level has prevented a clash. This is somewhat bogus, but the best we can do. Only do this when X is BLKmode and when we are at the top level. */ || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp)) && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp))) != INTEGER_CST) && GET_MODE (x) == BLKmode) /* If X is in the outgoing argument area, it is always safe. */ || (GET_CODE (x) == MEM && (XEXP (x, 0) == virtual_outgoing_args_rtx || (GET_CODE (XEXP (x, 0)) == PLUS && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx)))) return 1; /* If this is a subreg of a hard register, declare it unsafe, otherwise, find the underlying pseudo. */ if (GET_CODE (x) == SUBREG) { x = SUBREG_REG (x); if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER) return 0; } /* A SAVE_EXPR might appear many times in the expression passed to the top-level safe_from_p call, and if it has a complex subexpression, examining it multiple times could result in a combinatorial explosion. E.g. on an Alpha running at least 200MHz, a Fortran testcase compiled with optimization took about 28 minutes to compile -- even though it was only a few lines long. So we mark each SAVE_EXPR we see with TREE_PRIVATE and turn that off when we are done. We keep a list of the SAVE_EXPRs we have processed. Note that the only test of top_p was above. */ if (top_p) { int rtn; tree t; save_expr_list = 0; rtn = safe_from_p (x, exp, 0); for (t = save_expr_list; t != 0; t = TREE_CHAIN (t)) TREE_PRIVATE (TREE_PURPOSE (t)) = 0; return rtn; } /* Now look at our tree code and possibly recurse. */ switch (TREE_CODE_CLASS (TREE_CODE (exp))) { case 'd': exp_rtl = DECL_RTL_IF_SET (exp); break; case 'c': return 1; case 'x': if (TREE_CODE (exp) == TREE_LIST) { while (1) { if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0)) return 0; exp = TREE_CHAIN (exp); if (!exp) return 1; if (TREE_CODE (exp) != TREE_LIST) return safe_from_p (x, exp, 0); } } else if (TREE_CODE (exp) == ERROR_MARK) return 1; /* An already-visited SAVE_EXPR? */ else return 0; case '2': case '<': if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0)) return 0; /* Fall through. */ case '1': return safe_from_p (x, TREE_OPERAND (exp, 0), 0); case 'e': case 'r': /* Now do code-specific tests. EXP_RTL is set to any rtx we find in the expression. If it is set, we conflict iff we are that rtx or both are in memory. Otherwise, we check all operands of the expression recursively. */ switch (TREE_CODE (exp)) { case ADDR_EXPR: /* If the operand is static or we are static, we can't conflict. Likewise if we don't conflict with the operand at all. */ if (staticp (TREE_OPERAND (exp, 0)) || TREE_STATIC (exp) || safe_from_p (x, TREE_OPERAND (exp, 0), 0)) return 1; /* Otherwise, the only way this can conflict is if we are taking the address of a DECL a that address if part of X, which is very rare. */ exp = TREE_OPERAND (exp, 0); if (DECL_P (exp)) { if (!DECL_RTL_SET_P (exp) || GET_CODE (DECL_RTL (exp)) != MEM) return 0; else exp_rtl = XEXP (DECL_RTL (exp), 0); } break; case INDIRECT_REF: if (GET_CODE (x) == MEM && alias_sets_conflict_p (MEM_ALIAS_SET (x), get_alias_set (exp))) return 0; break; case CALL_EXPR: /* Assume that the call will clobber all hard registers and all of memory. */ if ((GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER) || GET_CODE (x) == MEM) return 0; break; case RTL_EXPR: /* If a sequence exists, we would have to scan every instruction in the sequence to see if it was safe. This is probably not worthwhile. */ if (RTL_EXPR_SEQUENCE (exp)) return 0; exp_rtl = RTL_EXPR_RTL (exp); break; case WITH_CLEANUP_EXPR: exp_rtl = WITH_CLEANUP_EXPR_RTL (exp); break; case CLEANUP_POINT_EXPR: return safe_from_p (x, TREE_OPERAND (exp, 0), 0); case SAVE_EXPR: exp_rtl = SAVE_EXPR_RTL (exp); if (exp_rtl) break; /* If we've already scanned this, don't do it again. Otherwise, show we've scanned it and record for clearing the flag if we're going on. */ if (TREE_PRIVATE (exp)) return 1; TREE_PRIVATE (exp) = 1; if (! safe_from_p (x, TREE_OPERAND (exp, 0), 0)) { TREE_PRIVATE (exp) = 0; return 0; } save_expr_list = tree_cons (exp, NULL_TREE, save_expr_list); return 1; case BIND_EXPR: /* The only operand we look at is operand 1. The rest aren't part of the expression. */ return safe_from_p (x, TREE_OPERAND (exp, 1), 0); default: break; } /* If we have an rtx, we do not need to scan our operands. */ if (exp_rtl) break; nops = first_rtl_op (TREE_CODE (exp)); for (i = 0; i < nops; i++) if (TREE_OPERAND (exp, i) != 0 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0)) return 0; /* If this is a language-specific tree code, it may require special handling. */ if ((unsigned int) TREE_CODE (exp) >= (unsigned int) LAST_AND_UNUSED_TREE_CODE && !(*lang_hooks.safe_from_p) (x, exp)) return 0; } /* If we have an rtl, find any enclosed object. Then see if we conflict with it. */ if (exp_rtl) { if (GET_CODE (exp_rtl) == SUBREG) { exp_rtl = SUBREG_REG (exp_rtl); if (GET_CODE (exp_rtl) == REG && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER) return 0; } /* If the rtl is X, then it is not safe. Otherwise, it is unless both are memory and they conflict. */ return ! (rtx_equal_p (x, exp_rtl) || (GET_CODE (x) == MEM && GET_CODE (exp_rtl) == MEM && true_dependence (exp_rtl, VOIDmode, x, rtx_addr_varies_p))); } /* If we reach here, it is safe. */ return 1; } /* Subroutine of expand_expr: return rtx if EXP is a variable or parameter; else return 0. */ static rtx var_rtx (tree exp) { STRIP_NOPS (exp); switch (TREE_CODE (exp)) { case PARM_DECL: case VAR_DECL: return DECL_RTL (exp); default: return 0; } } /* Return the highest power of two that EXP is known to be a multiple of. This is used in updating alignment of MEMs in array references. */ static unsigned HOST_WIDE_INT highest_pow2_factor (tree exp) { unsigned HOST_WIDE_INT c0, c1; switch (TREE_CODE (exp)) { case INTEGER_CST: /* We can find the lowest bit that's a one. If the low HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT. We need to handle this case since we can find it in a COND_EXPR, a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an erroneous program, so return BIGGEST_ALIGNMENT to avoid any later ICE. */ if (TREE_CONSTANT_OVERFLOW (exp)) return BIGGEST_ALIGNMENT; else { /* Note: tree_low_cst is intentionally not used here, we don't care about the upper bits. */ c0 = TREE_INT_CST_LOW (exp); c0 &= -c0; return c0 ? c0 : BIGGEST_ALIGNMENT; } break; case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR: c0 = highest_pow2_factor (TREE_OPERAND (exp, 0)); c1 = highest_pow2_factor (TREE_OPERAND (exp, 1)); return MIN (c0, c1); case MULT_EXPR: c0 = highest_pow2_factor (TREE_OPERAND (exp, 0)); c1 = highest_pow2_factor (TREE_OPERAND (exp, 1)); return c0 * c1; case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR: if (integer_pow2p (TREE_OPERAND (exp, 1)) && host_integerp (TREE_OPERAND (exp, 1), 1)) { c0 = highest_pow2_factor (TREE_OPERAND (exp, 0)); c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1); return MAX (1, c0 / c1); } break; case NON_LVALUE_EXPR: case NOP_EXPR: case CONVERT_EXPR: case SAVE_EXPR: case WITH_RECORD_EXPR: return highest_pow2_factor (TREE_OPERAND (exp, 0)); case COMPOUND_EXPR: return highest_pow2_factor (TREE_OPERAND (exp, 1)); case COND_EXPR: c0 = highest_pow2_factor (TREE_OPERAND (exp, 1)); c1 = highest_pow2_factor (TREE_OPERAND (exp, 2)); return MIN (c0, c1); default: break; } return 1; } /* Similar, except that it is known that the expression must be a multiple of the alignment of TYPE. */ static unsigned HOST_WIDE_INT highest_pow2_factor_for_type (tree type, tree exp) { unsigned HOST_WIDE_INT type_align, factor; factor = highest_pow2_factor (exp); type_align = TYPE_ALIGN (type) / BITS_PER_UNIT; return MAX (factor, type_align); } /* Return an object on the placeholder list that matches EXP, a PLACEHOLDER_EXPR. An object "matches" if it is of the type of the PLACEHOLDER_EXPR or a pointer type to it. For further information, see tree.def. If no such object is found, return 0. If PLIST is nonzero, it is a location which initially points to a starting location in the placeholder list (zero means start of the list) and where a pointer into the placeholder list at which the object is found is placed. */ tree find_placeholder (tree exp, tree *plist) { tree type = TREE_TYPE (exp); tree placeholder_expr; for (placeholder_expr = plist && *plist ? TREE_CHAIN (*plist) : placeholder_list; placeholder_expr != 0; placeholder_expr = TREE_CHAIN (placeholder_expr)) { tree need_type = TYPE_MAIN_VARIANT (type); tree elt; /* Find the outermost reference that is of the type we want. If none, see if any object has a type that is a pointer to the type we want. */ for (elt = TREE_PURPOSE (placeholder_expr); elt != 0; elt = ((TREE_CODE (elt) == COMPOUND_EXPR || TREE_CODE (elt) == COND_EXPR) ? TREE_OPERAND (elt, 1) : (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r' || TREE_CODE_CLASS (TREE_CODE (elt)) == '1' || TREE_CODE_CLASS (TREE_CODE (elt)) == '2' || TREE_CODE_CLASS (TREE_CODE (elt)) == 'e') ? TREE_OPERAND (elt, 0) : 0)) if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type) { if (plist) *plist = placeholder_expr; return elt; } for (elt = TREE_PURPOSE (placeholder_expr); elt != 0; elt = ((TREE_CODE (elt) == COMPOUND_EXPR || TREE_CODE (elt) == COND_EXPR) ? TREE_OPERAND (elt, 1) : (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r' || TREE_CODE_CLASS (TREE_CODE (elt)) == '1' || TREE_CODE_CLASS (TREE_CODE (elt)) == '2' || TREE_CODE_CLASS (TREE_CODE (elt)) == 'e') ? TREE_OPERAND (elt, 0) : 0)) if (POINTER_TYPE_P (TREE_TYPE (elt)) && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt))) == need_type)) { if (plist) *plist = placeholder_expr; return build1 (INDIRECT_REF, need_type, elt); } } return 0; } /* Subroutine of expand_expr. Expand the two operands of a binary expression EXP0 and EXP1 placing the results in OP0 and OP1. The value may be stored in TARGET if TARGET is nonzero. The MODIFIER argument is as documented by expand_expr. */ static void expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1, enum expand_modifier modifier) { if (! safe_from_p (target, exp1, 1)) target = 0; if (operand_equal_p (exp0, exp1, 0)) { *op0 = expand_expr (exp0, target, VOIDmode, modifier); *op1 = copy_rtx (*op0); } else { /* If we need to preserve evaluation order, copy exp0 into its own temporary variable so that it can't be clobbered by exp1. */ if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1)) exp0 = save_expr (exp0); *op0 = expand_expr (exp0, target, VOIDmode, modifier); *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier); } } /* expand_expr: generate code for computing expression EXP. An rtx for the computed value is returned. The value is never null. In the case of a void EXP, const0_rtx is returned. The value may be stored in TARGET if TARGET is nonzero. TARGET is just a suggestion; callers must assume that the rtx returned may not be the same as TARGET. If TARGET is CONST0_RTX, it means that the value will be ignored. If TMODE is not VOIDmode, it suggests generating the result in mode TMODE. But this is done only when convenient. Otherwise, TMODE is ignored and the value generated in its natural mode. TMODE is just a suggestion; callers must assume that the rtx returned may not have mode TMODE. Note that TARGET may have neither TMODE nor MODE. In that case, it probably will not be used. If MODIFIER is EXPAND_SUM then when EXP is an addition we can return an rtx of the form (MULT (REG ...) (CONST_INT ...)) or a nest of (PLUS ...) and (MINUS ...) where the terms are products as above, or REG or MEM, or constant. Ordinarily in such cases we would output mul or add instructions and then return a pseudo reg containing the sum. EXPAND_INITIALIZER is much like EXPAND_SUM except that it also marks a label as absolutely required (it can't be dead). It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns. This is used for outputting expressions used in initializers. EXPAND_CONST_ADDRESS says that it is okay to return a MEM with a constant address even if that address is not normally legitimate. EXPAND_INITIALIZER and EXPAND_SUM also have this effect. EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for a call parameter. Such targets require special care as we haven't yet marked TARGET so that it's safe from being trashed by libcalls. We don't want to use TARGET for anything but the final result; Intermediate values must go elsewhere. Additionally, calls to emit_block_move will be flagged with BLOCK_OP_CALL_PARM. If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on recursively. */ rtx expand_expr_real (tree exp, rtx target, enum machine_mode tmode, enum expand_modifier modifier, rtx *alt_rtl) { rtx op0, op1, temp; tree type = TREE_TYPE (exp); int unsignedp = TREE_UNSIGNED (type); enum machine_mode mode; enum tree_code code = TREE_CODE (exp); optab this_optab; rtx subtarget, original_target; int ignore; tree context; /* Handle ERROR_MARK before anybody tries to access its type. */ if (TREE_CODE (exp) == ERROR_MARK || TREE_CODE (type) == ERROR_MARK) { op0 = CONST0_RTX (tmode); if (op0 != 0) return op0; return const0_rtx; } mode = TYPE_MODE (type); /* Use subtarget as the target for operand 0 of a binary operation. */ subtarget = get_subtarget (target); original_target = target; ignore = (target == const0_rtx || ((code == NON_LVALUE_EXPR || code == NOP_EXPR || code == CONVERT_EXPR || code == REFERENCE_EXPR || code == COND_EXPR || code == VIEW_CONVERT_EXPR) && TREE_CODE (type) == VOID_TYPE)); /* If we are going to ignore this result, we need only do something if there is a side-effect somewhere in the expression. If there is, short-circuit the most common cases here. Note that we must not call expand_expr with anything but const0_rtx in case this is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */ if (ignore) { if (! TREE_SIDE_EFFECTS (exp)) return const0_rtx; /* Ensure we reference a volatile object even if value is ignored, but don't do this if all we are doing is taking its address. */ if (TREE_THIS_VOLATILE (exp) && TREE_CODE (exp) != FUNCTION_DECL && mode != VOIDmode && mode != BLKmode && modifier != EXPAND_CONST_ADDRESS) { temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier); if (GET_CODE (temp) == MEM) temp = copy_to_reg (temp); return const0_rtx; } if (TREE_CODE_CLASS (code) == '1' || code == COMPONENT_REF || code == INDIRECT_REF || code == BUFFER_REF) return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier); else if (TREE_CODE_CLASS (code) == '2' || TREE_CODE_CLASS (code) == '<' || code == ARRAY_REF || code == ARRAY_RANGE_REF) { expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier); expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier); return const0_rtx; } else if ((code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR) && ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 1))) /* If the second operand has no side effects, just evaluate the first. */ return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier); else if (code == BIT_FIELD_REF) { expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier); expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier); expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier); return const0_rtx; } target = 0; } /* If will do cse, generate all results into pseudo registers since 1) that allows cse to find more things and 2) otherwise cse could produce an insn the machine cannot support. An exception is a CONSTRUCTOR into a multi-word MEM: that's much more likely to be most efficient into the MEM. Another is a CALL_EXPR which must return in memory. */ if (! cse_not_expected && mode != BLKmode && target && (GET_CODE (target) != REG || REGNO (target) < FIRST_PSEUDO_REGISTER) && ! (code == CONSTRUCTOR && GET_MODE_SIZE (mode) > UNITS_PER_WORD) && ! (code == CALL_EXPR && aggregate_value_p (exp, exp))) target = 0; switch (code) { case LABEL_DECL: { tree function = decl_function_context (exp); /* Labels in containing functions, or labels used from initializers, must be forced. */ if (modifier == EXPAND_INITIALIZER || (function != current_function_decl && function != inline_function_decl && function != 0)) temp = force_label_rtx (exp); else temp = label_rtx (exp); temp = gen_rtx_MEM (FUNCTION_MODE, gen_rtx_LABEL_REF (Pmode, temp)); if (function != current_function_decl && function != inline_function_decl && function != 0) LABEL_REF_NONLOCAL_P (XEXP (temp, 0)) = 1; return temp; } case PARM_DECL: if (!DECL_RTL_SET_P (exp)) { error ("%Jprior parameter's size depends on '%D'", exp, exp); return CONST0_RTX (mode); } /* ... fall through ... */ case VAR_DECL: /* If a static var's type was incomplete when the decl was written, but the type is complete now, lay out the decl now. */ if (DECL_SIZE (exp) == 0 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp)) && (TREE_STATIC (exp) || DECL_EXTERNAL (exp))) layout_decl (exp, 0); /* ... fall through ... */ case FUNCTION_DECL: case RESULT_DECL: if (DECL_RTL (exp) == 0) abort (); /* Ensure variable marked as used even if it doesn't go through a parser. If it hasn't be used yet, write out an external definition. */ if (! TREE_USED (exp)) { assemble_external (exp); TREE_USED (exp) = 1; } /* Show we haven't gotten RTL for this yet. */ temp = 0; /* Handle variables inherited from containing functions. */ context = decl_function_context (exp); /* We treat inline_function_decl as an alias for the current function because that is the inline function whose vars, types, etc. are being merged into the current function. See expand_inline_function. */ if (context != 0 && context != current_function_decl && context != inline_function_decl /* If var is static, we don't need a static chain to access it. */ && ! (GET_CODE (DECL_RTL (exp)) == MEM && CONSTANT_P (XEXP (DECL_RTL (exp), 0)))) { rtx addr; /* Mark as non-local and addressable. */ DECL_NONLOCAL (exp) = 1; if (DECL_NO_STATIC_CHAIN (current_function_decl)) abort (); (*lang_hooks.mark_addressable) (exp); if (GET_CODE (DECL_RTL (exp)) != MEM) abort (); addr = XEXP (DECL_RTL (exp), 0); if (GET_CODE (addr) == MEM) addr = replace_equiv_address (addr, fix_lexical_addr (XEXP (addr, 0), exp)); else addr = fix_lexical_addr (addr, exp); temp = replace_equiv_address (DECL_RTL (exp), addr); } /* This is the case of an array whose size is to be determined from its initializer, while the initializer is still being parsed. See expand_decl. */ else if (GET_CODE (DECL_RTL (exp)) == MEM && GET_CODE (XEXP (DECL_RTL (exp), 0)) == REG) temp = validize_mem (DECL_RTL (exp)); /* If DECL_RTL is memory, we are in the normal case and either the address is not valid or it is not a register and -fforce-addr is specified, get the address into a register. */ else if (GET_CODE (DECL_RTL (exp)) == MEM && modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER && (! memory_address_p (DECL_MODE (exp), XEXP (DECL_RTL (exp), 0)) || (flag_force_addr && GET_CODE (XEXP (DECL_RTL (exp), 0)) != REG))) { if (alt_rtl) *alt_rtl = DECL_RTL (exp); temp = replace_equiv_address (DECL_RTL (exp), copy_rtx (XEXP (DECL_RTL (exp), 0))); } /* If we got something, return it. But first, set the alignment if the address is a register. */ if (temp != 0) { if (GET_CODE (temp) == MEM && GET_CODE (XEXP (temp, 0)) == REG) mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp)); return temp; } /* If the mode of DECL_RTL does not match that of the decl, it must be a promoted value. We return a SUBREG of the wanted mode, but mark it so that we know that it was already extended. */ if (GET_CODE (DECL_RTL (exp)) == REG && GET_MODE (DECL_RTL (exp)) != DECL_MODE (exp)) { /* Get the signedness used for this variable. Ensure we get the same mode we got when the variable was declared. */ if (GET_MODE (DECL_RTL (exp)) != promote_mode (type, DECL_MODE (exp), &unsignedp, (TREE_CODE (exp) == RESULT_DECL ? 1 : 0))) abort (); temp = gen_lowpart_SUBREG (mode, DECL_RTL (exp)); SUBREG_PROMOTED_VAR_P (temp) = 1; SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp); return temp; } return DECL_RTL (exp); case INTEGER_CST: temp = immed_double_const (TREE_INT_CST_LOW (exp), TREE_INT_CST_HIGH (exp), mode); /* ??? If overflow is set, fold will have done an incomplete job, which can result in (plus xx (const_int 0)), which can get simplified by validate_replace_rtx during virtual register instantiation, which can result in unrecognizable insns. Avoid this by forcing all overflows into registers. */ if (TREE_CONSTANT_OVERFLOW (exp) && modifier != EXPAND_INITIALIZER) temp = force_reg (mode, temp); return temp; case VECTOR_CST: return const_vector_from_tree (exp); case CONST_DECL: return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier); case REAL_CST: /* If optimized, generate immediate CONST_DOUBLE which will be turned into memory by reload if necessary. We used to force a register so that loop.c could see it. But this does not allow gen_* patterns to perform optimizations with the constants. It also produces two insns in cases like "x = 1.0;". On most machines, floating-point constants are not permitted in many insns, so we'd end up copying it to a register in any case. Now, we do the copying in expand_binop, if appropriate. */ return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp), TYPE_MODE (TREE_TYPE (exp))); case COMPLEX_CST: /* Handle evaluating a complex constant in a CONCAT target. */ if (original_target && GET_CODE (original_target) == CONCAT) { enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp))); rtx rtarg, itarg; rtarg = XEXP (original_target, 0); itarg = XEXP (original_target, 1); /* Move the real and imaginary parts separately. */ op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, 0); op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, 0); if (op0 != rtarg) emit_move_insn (rtarg, op0); if (op1 != itarg) emit_move_insn (itarg, op1); return original_target; } /* ... fall through ... */ case STRING_CST: temp = output_constant_def (exp, 1); /* temp contains a constant address. On RISC machines where a constant address isn't valid, make some insns to get that address into a register. */ if (modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_INITIALIZER && modifier != EXPAND_SUM && (! memory_address_p (mode, XEXP (temp, 0)) || flag_force_addr)) return replace_equiv_address (temp, copy_rtx (XEXP (temp, 0))); return temp; case EXPR_WITH_FILE_LOCATION: { rtx to_return; struct file_stack fs; fs.location = input_location; fs.next = expr_wfl_stack; input_filename = EXPR_WFL_FILENAME (exp); input_line = EXPR_WFL_LINENO (exp); expr_wfl_stack = &fs; if (EXPR_WFL_EMIT_LINE_NOTE (exp)) emit_line_note (input_location); /* Possibly avoid switching back and forth here. */ to_return = expand_expr (EXPR_WFL_NODE (exp), (ignore ? const0_rtx : target), tmode, modifier); if (expr_wfl_stack != &fs) abort (); input_location = fs.location; expr_wfl_stack = fs.next; return to_return; } case SAVE_EXPR: context = decl_function_context (exp); /* If this SAVE_EXPR was at global context, assume we are an initialization function and move it into our context. */ if (context == 0) SAVE_EXPR_CONTEXT (exp) = current_function_decl; /* We treat inline_function_decl as an alias for the current function because that is the inline function whose vars, types, etc. are being merged into the current function. See expand_inline_function. */ if (context == current_function_decl || context == inline_function_decl) context = 0; /* If this is non-local, handle it. */ if (context) { /* The following call just exists to abort if the context is not of a containing function. */ find_function_data (context); temp = SAVE_EXPR_RTL (exp); if (temp && GET_CODE (temp) == REG) { put_var_into_stack (exp, /*rescan=*/true); temp = SAVE_EXPR_RTL (exp); } if (temp == 0 || GET_CODE (temp) != MEM) abort (); return replace_equiv_address (temp, fix_lexical_addr (XEXP (temp, 0), exp)); } if (SAVE_EXPR_RTL (exp) == 0) { if (mode == VOIDmode) temp = const0_rtx; else temp = assign_temp (build_qualified_type (type, (TYPE_QUALS (type) | TYPE_QUAL_CONST)), 3, 0, 0); SAVE_EXPR_RTL (exp) = temp; if (!optimize && GET_CODE (temp) == REG) save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, temp, save_expr_regs); /* If the mode of TEMP does not match that of the expression, it must be a promoted value. We pass store_expr a SUBREG of the wanted mode but mark it so that we know that it was already extended. */ if (GET_CODE (temp) == REG && GET_MODE (temp) != mode) { temp = gen_lowpart_SUBREG (mode, SAVE_EXPR_RTL (exp)); promote_mode (type, mode, &unsignedp, 0); SUBREG_PROMOTED_VAR_P (temp) = 1; SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp); } if (temp == const0_rtx) expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0); else store_expr (TREE_OPERAND (exp, 0), temp, modifier == EXPAND_STACK_PARM ? 2 : 0); TREE_USED (exp) = 1; } /* If the mode of SAVE_EXPR_RTL does not match that of the expression, it must be a promoted value. We return a SUBREG of the wanted mode, but mark it so that we know that it was already extended. */ if (GET_CODE (SAVE_EXPR_RTL (exp)) == REG && GET_MODE (SAVE_EXPR_RTL (exp)) != mode) { /* Compute the signedness and make the proper SUBREG. */ promote_mode (type, mode, &unsignedp, 0); temp = gen_lowpart_SUBREG (mode, SAVE_EXPR_RTL (exp)); SUBREG_PROMOTED_VAR_P (temp) = 1; SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp); return temp; } return SAVE_EXPR_RTL (exp); case UNSAVE_EXPR: { rtx temp; temp = expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier); TREE_OPERAND (exp, 0) = (*lang_hooks.unsave_expr_now) (TREE_OPERAND (exp, 0)); return temp; } case PLACEHOLDER_EXPR: { tree old_list = placeholder_list; tree placeholder_expr = 0; exp = find_placeholder (exp, &placeholder_expr); if (exp == 0) abort (); placeholder_list = TREE_CHAIN (placeholder_expr); temp = expand_expr (exp, original_target, tmode, modifier); placeholder_list = old_list; return temp; } case WITH_RECORD_EXPR: /* Put the object on the placeholder list, expand our first operand, and pop the list. */ placeholder_list = tree_cons (TREE_OPERAND (exp, 1), NULL_TREE, placeholder_list); target = expand_expr (TREE_OPERAND (exp, 0), original_target, tmode, modifier); placeholder_list = TREE_CHAIN (placeholder_list); return target; case GOTO_EXPR: if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL) expand_goto (TREE_OPERAND (exp, 0)); else expand_computed_goto (TREE_OPERAND (exp, 0)); return const0_rtx; case EXIT_EXPR: expand_exit_loop_if_false (NULL, invert_truthvalue (TREE_OPERAND (exp, 0))); return const0_rtx; case LABELED_BLOCK_EXPR: if (LABELED_BLOCK_BODY (exp)) expand_expr_stmt_value (LABELED_BLOCK_BODY (exp), 0, 1); /* Should perhaps use expand_label, but this is simpler and safer. */ do_pending_stack_adjust (); emit_label (label_rtx (LABELED_BLOCK_LABEL (exp))); return const0_rtx; case EXIT_BLOCK_EXPR: if (EXIT_BLOCK_RETURN (exp)) sorry ("returned value in block_exit_expr"); expand_goto (LABELED_BLOCK_LABEL (EXIT_BLOCK_LABELED_BLOCK (exp))); return const0_rtx; case LOOP_EXPR: push_temp_slots (); expand_start_loop (1); expand_expr_stmt_value (TREE_OPERAND (exp, 0), 0, 1); expand_end_loop (); pop_temp_slots (); return const0_rtx; case BIND_EXPR: { tree vars = TREE_OPERAND (exp, 0); /* Need to open a binding contour here because if there are any cleanups they must be contained here. */ expand_start_bindings (2); /* Mark the corresponding BLOCK for output in its proper place. */ if (TREE_OPERAND (exp, 2) != 0 && ! TREE_USED (TREE_OPERAND (exp, 2))) (*lang_hooks.decls.insert_block) (TREE_OPERAND (exp, 2)); /* If VARS have not yet been expanded, expand them now. */ while (vars) { if (!DECL_RTL_SET_P (vars)) expand_decl (vars); expand_decl_init (vars); vars = TREE_CHAIN (vars); } temp = expand_expr (TREE_OPERAND (exp, 1), target, tmode, modifier); expand_end_bindings (TREE_OPERAND (exp, 0), 0, 0); return temp; } case RTL_EXPR: if (RTL_EXPR_SEQUENCE (exp)) { if (RTL_EXPR_SEQUENCE (exp) == const0_rtx) abort (); emit_insn (RTL_EXPR_SEQUENCE (exp)); RTL_EXPR_SEQUENCE (exp) = const0_rtx; } preserve_rtl_expr_result (RTL_EXPR_RTL (exp)); free_temps_for_rtl_expr (exp); if (alt_rtl) *alt_rtl = RTL_EXPR_ALT_RTL (exp); return RTL_EXPR_RTL (exp); case CONSTRUCTOR: /* If we don't need the result, just ensure we evaluate any subexpressions. */ if (ignore) { tree elt; for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt)) expand_expr (TREE_VALUE (elt), const0_rtx, VOIDmode, 0); return const0_rtx; } /* All elts simple constants => refer to a constant in memory. But if this is a non-BLKmode mode, let it store a field at a time since that should make a CONST_INT or CONST_DOUBLE when we fold. Likewise, if we have a target we can use, it is best to store directly into the target unless the type is large enough that memcpy will be used. If we are making an initializer and all operands are constant, put it in memory as well. FIXME: Avoid trying to fill vector constructors piece-meal. Output them with output_constant_def below unless we're sure they're zeros. This should go away when vector initializers are treated like VECTOR_CST instead of arrays. */ else if ((TREE_STATIC (exp) && ((mode == BLKmode && ! (target != 0 && safe_from_p (target, exp, 1))) || TREE_ADDRESSABLE (exp) || (host_integerp (TYPE_SIZE_UNIT (type), 1) && (! MOVE_BY_PIECES_P (tree_low_cst (TYPE_SIZE_UNIT (type), 1), TYPE_ALIGN (type))) && ((TREE_CODE (type) == VECTOR_TYPE && !is_zeros_p (exp)) || ! mostly_zeros_p (exp))))) || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS) && TREE_CONSTANT (exp))) { rtx constructor = output_constant_def (exp, 1); if (modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_INITIALIZER && modifier != EXPAND_SUM) constructor = validize_mem (constructor); return constructor; } else { /* Handle calls that pass values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ if (target == 0 || ! safe_from_p (target, exp, 1) || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM) target = assign_temp (build_qualified_type (type, (TYPE_QUALS (type) | (TREE_READONLY (exp) * TYPE_QUAL_CONST))), 0, TREE_ADDRESSABLE (exp), 1); store_constructor (exp, target, 0, int_expr_size (exp)); return target; } case INDIRECT_REF: { tree exp1 = TREE_OPERAND (exp, 0); tree index; tree string = string_constant (exp1, &index); /* Try to optimize reads from const strings. */ if (string && TREE_CODE (string) == STRING_CST && TREE_CODE (index) == INTEGER_CST && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0 && GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1 && modifier != EXPAND_WRITE) return gen_int_mode (TREE_STRING_POINTER (string) [TREE_INT_CST_LOW (index)], mode); op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM); op0 = memory_address (mode, op0); temp = gen_rtx_MEM (mode, op0); set_mem_attributes (temp, exp, 0); /* If we are writing to this object and its type is a record with readonly fields, we must mark it as readonly so it will conflict with readonly references to those fields. */ if (modifier == EXPAND_WRITE && readonly_fields_p (type)) RTX_UNCHANGING_P (temp) = 1; return temp; } case ARRAY_REF: if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) != ARRAY_TYPE) abort (); { tree array = TREE_OPERAND (exp, 0); tree domain = TYPE_DOMAIN (TREE_TYPE (array)); tree low_bound = domain ? TYPE_MIN_VALUE (domain) : integer_zero_node; tree index = convert (sizetype, TREE_OPERAND (exp, 1)); HOST_WIDE_INT i; /* Optimize the special-case of a zero lower bound. We convert the low_bound to sizetype to avoid some problems with constant folding. (E.g. suppose the lower bound is 1, and its mode is QI. Without the conversion, (ARRAY +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1)) +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */ if (! integer_zerop (low_bound)) index = size_diffop (index, convert (sizetype, low_bound)); /* Fold an expression like: "foo"[2]. This is not done in fold so it won't happen inside &. Don't fold if this is for wide characters since it's too difficult to do correctly and this is a very rare case. */ if (modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_INITIALIZER && modifier != EXPAND_MEMORY && TREE_CODE (array) == STRING_CST && TREE_CODE (index) == INTEGER_CST && compare_tree_int (index, TREE_STRING_LENGTH (array)) < 0 && GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1) return gen_int_mode (TREE_STRING_POINTER (array) [TREE_INT_CST_LOW (index)], mode); /* If this is a constant index into a constant array, just get the value from the array. Handle both the cases when we have an explicit constructor and when our operand is a variable that was declared const. */ if (modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_INITIALIZER && modifier != EXPAND_MEMORY && TREE_CODE (array) == CONSTRUCTOR && ! TREE_SIDE_EFFECTS (array) && TREE_CODE (index) == INTEGER_CST && 0 > compare_tree_int (index, list_length (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0))))) { tree elem; for (elem = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)), i = TREE_INT_CST_LOW (index); elem != 0 && i != 0; i--, elem = TREE_CHAIN (elem)) ; if (elem) return expand_expr (fold (TREE_VALUE (elem)), target, tmode, modifier); } else if (optimize >= 1 && modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_INITIALIZER && modifier != EXPAND_MEMORY && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array) && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array) && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK && targetm.binds_local_p (array)) { if (TREE_CODE (index) == INTEGER_CST) { tree init = DECL_INITIAL (array); if (TREE_CODE (init) == CONSTRUCTOR) { tree elem; for (elem = CONSTRUCTOR_ELTS (init); (elem && !tree_int_cst_equal (TREE_PURPOSE (elem), index)); elem = TREE_CHAIN (elem)) ; if (elem && !TREE_SIDE_EFFECTS (TREE_VALUE (elem))) return expand_expr (fold (TREE_VALUE (elem)), target, tmode, modifier); } else if (TREE_CODE (init) == STRING_CST && 0 > compare_tree_int (index, TREE_STRING_LENGTH (init))) { tree type = TREE_TYPE (TREE_TYPE (init)); enum machine_mode mode = TYPE_MODE (type); if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1) return gen_int_mode (TREE_STRING_POINTER (init) [TREE_INT_CST_LOW (index)], mode); } } } } goto normal_inner_ref; case COMPONENT_REF: /* If the operand is a CONSTRUCTOR, we can just extract the appropriate field if it is present. */ if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR) { tree elt; for (elt = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)); elt; elt = TREE_CHAIN (elt)) if (TREE_PURPOSE (elt) == TREE_OPERAND (exp, 1) /* We can normally use the value of the field in the CONSTRUCTOR. However, if this is a bitfield in an integral mode that we can fit in a HOST_WIDE_INT, we must mask only the number of bits in the bitfield, since this is done implicitly by the constructor. If the bitfield does not meet either of those conditions, we can't do this optimization. */ && (! DECL_BIT_FIELD (TREE_PURPOSE (elt)) || ((GET_MODE_CLASS (DECL_MODE (TREE_PURPOSE (elt))) == MODE_INT) && (GET_MODE_BITSIZE (DECL_MODE (TREE_PURPOSE (elt))) <= HOST_BITS_PER_WIDE_INT)))) { if (DECL_BIT_FIELD (TREE_PURPOSE (elt)) && modifier == EXPAND_STACK_PARM) target = 0; op0 = expand_expr (TREE_VALUE (elt), target, tmode, modifier); if (DECL_BIT_FIELD (TREE_PURPOSE (elt))) { HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (TREE_PURPOSE (elt))); enum machine_mode imode = TYPE_MODE (TREE_TYPE (TREE_PURPOSE (elt))); if (TREE_UNSIGNED (TREE_TYPE (TREE_PURPOSE (elt)))) { op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1); op0 = expand_and (imode, op0, op1, target); } else { tree count = build_int_2 (GET_MODE_BITSIZE (imode) - bitsize, 0); op0 = expand_shift (LSHIFT_EXPR, imode, op0, count, target, 0); op0 = expand_shift (RSHIFT_EXPR, imode, op0, count, target, 0); } } return op0; } } goto normal_inner_ref; case BIT_FIELD_REF: case ARRAY_RANGE_REF: normal_inner_ref: { enum machine_mode mode1; HOST_WIDE_INT bitsize, bitpos; tree offset; int volatilep = 0; tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1, &unsignedp, &volatilep); rtx orig_op0; /* If we got back the original object, something is wrong. Perhaps we are evaluating an expression too early. In any event, don't infinitely recurse. */ if (tem == exp) abort (); /* If TEM's type is a union of variable size, pass TARGET to the inner computation, since it will need a temporary and TARGET is known to have to do. This occurs in unchecked conversion in Ada. */ orig_op0 = op0 = expand_expr (tem, (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem))) != INTEGER_CST) && modifier != EXPAND_STACK_PARM ? target : NULL_RTX), VOIDmode, (modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS || modifier == EXPAND_STACK_PARM) ? modifier : EXPAND_NORMAL); /* If this is a constant, put it into a register if it is a legitimate constant and OFFSET is 0 and memory if it isn't. */ if (CONSTANT_P (op0)) { enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem)); if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0) && offset == 0) op0 = force_reg (mode, op0); else op0 = validize_mem (force_const_mem (mode, op0)); } /* Otherwise, if this object not in memory and we either have an offset or a BLKmode result, put it there. This case can't occur in C, but can in Ada if we have unchecked conversion of an expression from a scalar type to an array or record type or for an ARRAY_RANGE_REF whose type is BLKmode. */ else if (GET_CODE (op0) != MEM && (offset != 0 || (code == ARRAY_RANGE_REF && mode == BLKmode))) { /* If the operand is a SAVE_EXPR, we can deal with this by forcing the SAVE_EXPR into memory. */ if (TREE_CODE (TREE_OPERAND (exp, 0)) == SAVE_EXPR) { put_var_into_stack (TREE_OPERAND (exp, 0), /*rescan=*/true); op0 = SAVE_EXPR_RTL (TREE_OPERAND (exp, 0)); } else { tree nt = build_qualified_type (TREE_TYPE (tem), (TYPE_QUALS (TREE_TYPE (tem)) | TYPE_QUAL_CONST)); rtx memloc = assign_temp (nt, 1, 1, 1); emit_move_insn (memloc, op0); op0 = memloc; } } if (offset != 0) { rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM); if (GET_CODE (op0) != MEM) abort (); #ifdef POINTERS_EXTEND_UNSIGNED if (GET_MODE (offset_rtx) != Pmode) offset_rtx = convert_to_mode (Pmode, offset_rtx, 0); #else if (GET_MODE (offset_rtx) != ptr_mode) offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0); #endif if (GET_MODE (op0) == BLKmode /* A constant address in OP0 can have VOIDmode, we must not try to call force_reg in that case. */ && GET_MODE (XEXP (op0, 0)) != VOIDmode && bitsize != 0 && (bitpos % bitsize) == 0 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1)) { op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT); bitpos = 0; } op0 = offset_address (op0, offset_rtx, highest_pow2_factor (offset)); } /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT, record its alignment as BIGGEST_ALIGNMENT. */ if (GET_CODE (op0) == MEM && bitpos == 0 && offset != 0 && is_aligning_offset (offset, tem)) set_mem_align (op0, BIGGEST_ALIGNMENT); /* Don't forget about volatility even if this is a bitfield. */ if (GET_CODE (op0) == MEM && volatilep && ! MEM_VOLATILE_P (op0)) { if (op0 == orig_op0) op0 = copy_rtx (op0); MEM_VOLATILE_P (op0) = 1; } /* The following code doesn't handle CONCAT. Assume only bitpos == 0 can be used for CONCAT, due to one element arrays having the same mode as its element. */ if (GET_CODE (op0) == CONCAT) { if (bitpos != 0 || bitsize != GET_MODE_BITSIZE (GET_MODE (op0))) abort (); return op0; } /* In cases where an aligned union has an unaligned object as a field, we might be extracting a BLKmode value from an integer-mode (e.g., SImode) object. Handle this case by doing the extract into an object as wide as the field (which we know to be the width of a basic mode), then storing into memory, and changing the mode to BLKmode. */ if (mode1 == VOIDmode || GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG || (mode1 != BLKmode && ! direct_load[(int) mode1] && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT && modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_INITIALIZER) /* If the field isn't aligned enough to fetch as a memref, fetch it as a bit field. */ || (mode1 != BLKmode && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode) || (bitpos % GET_MODE_ALIGNMENT (mode) != 0) || (GET_CODE (op0) == MEM && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1) || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0)))) && ((modifier == EXPAND_CONST_ADDRESS || modifier == EXPAND_INITIALIZER) ? STRICT_ALIGNMENT : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0)))) || (bitpos % BITS_PER_UNIT != 0))) /* If the type and the field are a constant size and the size of the type isn't the same size as the bitfield, we must use bitfield operations. */ || (bitsize >= 0 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST) && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize))) { enum machine_mode ext_mode = mode; if (ext_mode == BLKmode && ! (target != 0 && GET_CODE (op0) == MEM && GET_CODE (target) == MEM && bitpos % BITS_PER_UNIT == 0)) ext_mode = mode_for_size (bitsize, MODE_INT, 1); if (ext_mode == BLKmode) { if (target == 0) target = assign_temp (type, 0, 1, 1); if (bitsize == 0) return target; /* In this case, BITPOS must start at a byte boundary and TARGET, if specified, must be a MEM. */ if (GET_CODE (op0) != MEM || (target != 0 && GET_CODE (target) != MEM) || bitpos % BITS_PER_UNIT != 0) abort (); emit_block_move (target, adjust_address (op0, VOIDmode, bitpos / BITS_PER_UNIT), GEN_INT ((bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT), (modifier == EXPAND_STACK_PARM ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL)); return target; } op0 = validize_mem (op0); if (GET_CODE (op0) == MEM && GET_CODE (XEXP (op0, 0)) == REG) mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0)); op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp, (modifier == EXPAND_STACK_PARM ? NULL_RTX : target), ext_mode, ext_mode, int_size_in_bytes (TREE_TYPE (tem))); /* If the result is a record type and BITSIZE is narrower than the mode of OP0, an integral mode, and this is a big endian machine, we must put the field into the high-order bits. */ if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0))) op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0, size_int (GET_MODE_BITSIZE (GET_MODE (op0)) - bitsize), op0, 1); if (mode == BLKmode) { rtx new = assign_temp (build_qualified_type ((*lang_hooks.types.type_for_mode) (ext_mode, 0), TYPE_QUAL_CONST), 0, 1, 1); emit_move_insn (new, op0); op0 = copy_rtx (new); PUT_MODE (op0, BLKmode); set_mem_attributes (op0, exp, 1); } return op0; } /* If the result is BLKmode, use that to access the object now as well. */ if (mode == BLKmode) mode1 = BLKmode; /* Get a reference to just this component. */ if (modifier == EXPAND_CONST_ADDRESS || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER) op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT); else op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT); if (op0 == orig_op0) op0 = copy_rtx (op0); set_mem_attributes (op0, exp, 0); if (GET_CODE (XEXP (op0, 0)) == REG) mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0)); MEM_VOLATILE_P (op0) |= volatilep; if (mode == mode1 || mode1 == BLKmode || mode1 == tmode || modifier == EXPAND_CONST_ADDRESS || modifier == EXPAND_INITIALIZER) return op0; else if (target == 0) target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode); convert_move (target, op0, unsignedp); return target; } case VTABLE_REF: { rtx insn, before = get_last_insn (), vtbl_ref; /* Evaluate the interior expression. */ subtarget = expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier); /* Get or create an instruction off which to hang a note. */ if (REG_P (subtarget)) { target = subtarget; insn = get_last_insn (); if (insn == before) abort (); if (! INSN_P (insn)) insn = prev_nonnote_insn (insn); } else { target = gen_reg_rtx (GET_MODE (subtarget)); insn = emit_move_insn (target, subtarget); } /* Collect the data for the note. */ vtbl_ref = XEXP (DECL_RTL (TREE_OPERAND (exp, 1)), 0); vtbl_ref = plus_constant (vtbl_ref, tree_low_cst (TREE_OPERAND (exp, 2), 0)); /* Discard the initial CONST that was added. */ vtbl_ref = XEXP (vtbl_ref, 0); REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_VTABLE_REF, vtbl_ref, REG_NOTES (insn)); return target; } /* Intended for a reference to a buffer of a file-object in Pascal. But it's not certain that a special tree code will really be necessary for these. INDIRECT_REF might work for them. */ case BUFFER_REF: abort (); case IN_EXPR: { /* Pascal set IN expression. Algorithm: rlo = set_low - (set_low%bits_per_word); the_word = set [ (index - rlo)/bits_per_word ]; bit_index = index % bits_per_word; bitmask = 1 << bit_index; return !!(the_word & bitmask); */ tree set = TREE_OPERAND (exp, 0); tree index = TREE_OPERAND (exp, 1); int iunsignedp = TREE_UNSIGNED (TREE_TYPE (index)); tree set_type = TREE_TYPE (set); tree set_low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (set_type)); tree set_high_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (set_type)); rtx index_val = expand_expr (index, 0, VOIDmode, 0); rtx lo_r = expand_expr (set_low_bound, 0, VOIDmode, 0); rtx hi_r = expand_expr (set_high_bound, 0, VOIDmode, 0); rtx setval = expand_expr (set, 0, VOIDmode, 0); rtx setaddr = XEXP (setval, 0); enum machine_mode index_mode = TYPE_MODE (TREE_TYPE (index)); rtx rlow; rtx diff, quo, rem, addr, bit, result; /* If domain is empty, answer is no. Likewise if index is constant and out of bounds. */ if (((TREE_CODE (set_high_bound) == INTEGER_CST && TREE_CODE (set_low_bound) == INTEGER_CST && tree_int_cst_lt (set_high_bound, set_low_bound)) || (TREE_CODE (index) == INTEGER_CST && TREE_CODE (set_low_bound) == INTEGER_CST && tree_int_cst_lt (index, set_low_bound)) || (TREE_CODE (set_high_bound) == INTEGER_CST && TREE_CODE (index) == INTEGER_CST && tree_int_cst_lt (set_high_bound, index)))) return const0_rtx; if (target == 0) target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode); /* If we get here, we have to generate the code for both cases (in range and out of range). */ op0 = gen_label_rtx (); op1 = gen_label_rtx (); if (! (GET_CODE (index_val) == CONST_INT && GET_CODE (lo_r) == CONST_INT)) emit_cmp_and_jump_insns (index_val, lo_r, LT, NULL_RTX, GET_MODE (index_val), iunsignedp, op1); if (! (GET_CODE (index_val) == CONST_INT && GET_CODE (hi_r) == CONST_INT)) emit_cmp_and_jump_insns (index_val, hi_r, GT, NULL_RTX, GET_MODE (index_val), iunsignedp, op1); /* Calculate the element number of bit zero in the first word of the set. */ if (GET_CODE (lo_r) == CONST_INT) rlow = GEN_INT (INTVAL (lo_r) & ~((HOST_WIDE_INT) 1 << BITS_PER_UNIT)); else rlow = expand_binop (index_mode, and_optab, lo_r, GEN_INT (~((HOST_WIDE_INT) 1 << BITS_PER_UNIT)), NULL_RTX, iunsignedp, OPTAB_LIB_WIDEN); diff = expand_binop (index_mode, sub_optab, index_val, rlow, NULL_RTX, iunsignedp, OPTAB_LIB_WIDEN); quo = expand_divmod (0, TRUNC_DIV_EXPR, index_mode, diff, GEN_INT (BITS_PER_UNIT), NULL_RTX, iunsignedp); rem = expand_divmod (1, TRUNC_MOD_EXPR, index_mode, index_val, GEN_INT (BITS_PER_UNIT), NULL_RTX, iunsignedp); addr = memory_address (byte_mode, expand_binop (index_mode, add_optab, diff, setaddr, NULL_RTX, iunsignedp, OPTAB_LIB_WIDEN)); /* Extract the bit we want to examine. */ bit = expand_shift (RSHIFT_EXPR, byte_mode, gen_rtx_MEM (byte_mode, addr), make_tree (TREE_TYPE (index), rem), NULL_RTX, 1); result = expand_binop (byte_mode, and_optab, bit, const1_rtx, GET_MODE (target) == byte_mode ? target : 0, 1, OPTAB_LIB_WIDEN); if (result != target) convert_move (target, result, 1); /* Output the code to handle the out-of-range case. */ emit_jump (op0); emit_label (op1); emit_move_insn (target, const0_rtx); emit_label (op0); return target; } case WITH_CLEANUP_EXPR: if (WITH_CLEANUP_EXPR_RTL (exp) == 0) { WITH_CLEANUP_EXPR_RTL (exp) = expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier); expand_decl_cleanup_eh (NULL_TREE, TREE_OPERAND (exp, 1), CLEANUP_EH_ONLY (exp)); /* That's it for this cleanup. */ TREE_OPERAND (exp, 1) = 0; } return WITH_CLEANUP_EXPR_RTL (exp); case CLEANUP_POINT_EXPR: { /* Start a new binding layer that will keep track of all cleanup actions to be performed. */ expand_start_bindings (2); target_temp_slot_level = temp_slot_level; op0 = expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier); /* If we're going to use this value, load it up now. */ if (! ignore) op0 = force_not_mem (op0); preserve_temp_slots (op0); expand_end_bindings (NULL_TREE, 0, 0); } return op0; case CALL_EXPR: /* Check for a built-in function. */ if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) == FUNCTION_DECL) && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))) { if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) == BUILT_IN_FRONTEND) return (*lang_hooks.expand_expr) (exp, original_target, tmode, modifier, alt_rtl); else return expand_builtin (exp, target, subtarget, tmode, ignore); } return expand_call (exp, target, ignore); case NON_LVALUE_EXPR: case NOP_EXPR: case CONVERT_EXPR: case REFERENCE_EXPR: if (TREE_OPERAND (exp, 0) == error_mark_node) return const0_rtx; if (TREE_CODE (type) == UNION_TYPE) { tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0)); /* If both input and output are BLKmode, this conversion isn't doing anything except possibly changing memory attribute. */ if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode) { rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier); result = copy_rtx (result); set_mem_attributes (result, exp, 0); return result; } if (target == 0) { if (TYPE_MODE (type) != BLKmode) target = gen_reg_rtx (TYPE_MODE (type)); else target = assign_temp (type, 0, 1, 1); } if (GET_CODE (target) == MEM) /* Store data into beginning of memory target. */ store_expr (TREE_OPERAND (exp, 0), adjust_address (target, TYPE_MODE (valtype), 0), modifier == EXPAND_STACK_PARM ? 2 : 0); else if (GET_CODE (target) == REG) /* Store this field into a union of the proper type. */ store_field (target, MIN ((int_size_in_bytes (TREE_TYPE (TREE_OPERAND (exp, 0))) * BITS_PER_UNIT), (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)), 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0), VOIDmode, 0, type, 0); else abort (); /* Return the entire union. */ return target; } if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))) { op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, modifier); /* If the signedness of the conversion differs and OP0 is a promoted SUBREG, clear that indication since we now have to do the proper extension. */ if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp && GET_CODE (op0) == SUBREG) SUBREG_PROMOTED_VAR_P (op0) = 0; return op0; } op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier); if (GET_MODE (op0) == mode) return op0; /* If OP0 is a constant, just convert it into the proper mode. */ if (CONSTANT_P (op0)) { tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0)); enum machine_mode inner_mode = TYPE_MODE (inner_type); if (modifier == EXPAND_INITIALIZER) return simplify_gen_subreg (mode, op0, inner_mode, subreg_lowpart_offset (mode, inner_mode)); else return convert_modes (mode, inner_mode, op0, TREE_UNSIGNED (inner_type)); } if (modifier == EXPAND_INITIALIZER) return gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0); if (target == 0) return convert_to_mode (mode, op0, TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0)))); else convert_move (target, op0, TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0)))); return target; case VIEW_CONVERT_EXPR: op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier); /* If the input and output modes are both the same, we are done. Otherwise, if neither mode is BLKmode and both are integral and within a word, we can use gen_lowpart. If neither is true, make sure the operand is in memory and convert the MEM to the new mode. */ if (TYPE_MODE (type) == GET_MODE (op0)) ; else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT && GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_WORD && GET_MODE_SIZE (GET_MODE (op0)) <= UNITS_PER_WORD) op0 = gen_lowpart (TYPE_MODE (type), op0); else if (GET_CODE (op0) != MEM) { /* If the operand is not a MEM, force it into memory. Since we are going to be be changing the mode of the MEM, don't call force_const_mem for constants because we don't allow pool constants to change mode. */ tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0)); if (TREE_ADDRESSABLE (exp)) abort (); if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type)) target = assign_stack_temp_for_type (TYPE_MODE (inner_type), GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type); emit_move_insn (target, op0); op0 = target; } /* At this point, OP0 is in the correct mode. If the output type is such that the operand is known to be aligned, indicate that it is. Otherwise, we need only be concerned about alignment for non-BLKmode results. */ if (GET_CODE (op0) == MEM) { op0 = copy_rtx (op0); if (TYPE_ALIGN_OK (type)) set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type))); else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type))) { tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0)); HOST_WIDE_INT temp_size = MAX (int_size_in_bytes (inner_type), (HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type))); rtx new = assign_stack_temp_for_type (TYPE_MODE (type), temp_size, 0, type); rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0); if (TREE_ADDRESSABLE (exp)) abort (); if (GET_MODE (op0) == BLKmode) emit_block_move (new_with_op0_mode, op0, GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))), (modifier == EXPAND_STACK_PARM ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL)); else emit_move_insn (new_with_op0_mode, op0); op0 = new; } op0 = adjust_address (op0, TYPE_MODE (type), 0); } return op0; case PLUS_EXPR: this_optab = ! unsignedp && flag_trapv && (GET_MODE_CLASS (mode) == MODE_INT) ? addv_optab : add_optab; /* If we are adding a constant, an RTL_EXPR that is sp, fp, or ap, and something else, make sure we add the register to the constant and then to the other thing. This case can occur during strength reduction and doing it this way will produce better code if the frame pointer or argument pointer is eliminated. fold-const.c will ensure that the constant is always in the inner PLUS_EXPR, so the only case we need to do anything about is if sp, ap, or fp is our second argument, in which case we must swap the innermost first argument and our second argument. */ if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST && TREE_CODE (TREE_OPERAND (exp, 1)) == RTL_EXPR && (RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx || RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx || RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx)) { tree t = TREE_OPERAND (exp, 1); TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t; } /* If the result is to be ptr_mode and we are adding an integer to something, we might be forming a constant. So try to use plus_constant. If it produces a sum and we can't accept it, use force_operand. This allows P = &ARR[const] to generate efficient code on machines where a SYMBOL_REF is not a valid address. If this is an EXPAND_SUM call, always return the sum. */ if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER || (mode == ptr_mode && (unsignedp || ! flag_trapv))) { if (modifier == EXPAND_STACK_PARM) target = 0; if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT && TREE_CONSTANT (TREE_OPERAND (exp, 1))) { rtx constant_part; op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode, EXPAND_SUM); /* Use immed_double_const to ensure that the constant is truncated according to the mode of OP1, then sign extended to a HOST_WIDE_INT. Using the constant directly can result in non-canonical RTL in a 64x32 cross compile. */ constant_part = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)), (HOST_WIDE_INT) 0, TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1)))); op1 = plus_constant (op1, INTVAL (constant_part)); if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER) op1 = force_operand (op1, target); return op1; } else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT && TREE_CONSTANT (TREE_OPERAND (exp, 0))) { rtx constant_part; op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, (modifier == EXPAND_INITIALIZER ? EXPAND_INITIALIZER : EXPAND_SUM)); if (! CONSTANT_P (op0)) { op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, modifier); /* Return a PLUS if modifier says it's OK. */ if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER) return simplify_gen_binary (PLUS, mode, op0, op1); goto binop2; } /* Use immed_double_const to ensure that the constant is truncated according to the mode of OP1, then sign extended to a HOST_WIDE_INT. Using the constant directly can result in non-canonical RTL in a 64x32 cross compile. */ constant_part = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)), (HOST_WIDE_INT) 0, TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))); op0 = plus_constant (op0, INTVAL (constant_part)); if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER) op0 = force_operand (op0, target); return op0; } } /* No sense saving up arithmetic to be done if it's all in the wrong mode to form part of an address. And force_operand won't know whether to sign-extend or zero-extend. */ if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER) || mode != ptr_mode) { expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1), subtarget, &op0, &op1, 0); if (op0 == const0_rtx) return op1; if (op1 == const0_rtx) return op0; goto binop2; } expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1), subtarget, &op0, &op1, modifier); return simplify_gen_binary (PLUS, mode, op0, op1); case MINUS_EXPR: /* For initializers, we are allowed to return a MINUS of two symbolic constants. Here we handle all cases when both operands are constant. */ /* Handle difference of two symbolic constants, for the sake of an initializer. */ if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER) && really_constant_p (TREE_OPERAND (exp, 0)) && really_constant_p (TREE_OPERAND (exp, 1))) { expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1), NULL_RTX, &op0, &op1, modifier); /* If the last operand is a CONST_INT, use plus_constant of the negated constant. Else make the MINUS. */ if (GET_CODE (op1) == CONST_INT) return plus_constant (op0, - INTVAL (op1)); else return gen_rtx_MINUS (mode, op0, op1); } this_optab = ! unsignedp && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT) ? subv_optab : sub_optab; /* No sense saving up arithmetic to be done if it's all in the wrong mode to form part of an address. And force_operand won't know whether to sign-extend or zero-extend. */ if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER) || mode != ptr_mode) goto binop; expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1), subtarget, &op0, &op1, modifier); /* Convert A - const to A + (-const). */ if (GET_CODE (op1) == CONST_INT) { op1 = negate_rtx (mode, op1); return simplify_gen_binary (PLUS, mode, op0, op1); } goto binop2; case MULT_EXPR: /* If first operand is constant, swap them. Thus the following special case checks need only check the second operand. */ if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST) { tree t1 = TREE_OPERAND (exp, 0); TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1); TREE_OPERAND (exp, 1) = t1; } /* Attempt to return something suitable for generating an indexed address, for machines that support that. */ if (modifier == EXPAND_SUM && mode == ptr_mode && host_integerp (TREE_OPERAND (exp, 1), 0)) { tree exp1 = TREE_OPERAND (exp, 1); op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, EXPAND_SUM); if (GET_CODE (op0) != REG) op0 = force_operand (op0, NULL_RTX); if (GET_CODE (op0) != REG) op0 = copy_to_mode_reg (mode, op0); return gen_rtx_MULT (mode, op0, gen_int_mode (tree_low_cst (exp1, 0), TYPE_MODE (TREE_TYPE (exp1)))); } if (modifier == EXPAND_STACK_PARM) target = 0; /* Check for multiplying things that have been extended from a narrower type. If this machine supports multiplying in that narrower type with a result in the desired type, do it that way, and avoid the explicit type-conversion. */ if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR && TREE_CODE (type) == INTEGER_TYPE && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))) < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0)))) && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST && int_fits_type_p (TREE_OPERAND (exp, 1), TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))) /* Don't use a widening multiply if a shift will do. */ && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1)))) > HOST_BITS_PER_WIDE_INT) || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0)) || (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0))) == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))) /* If both operands are extended, they must either both be zero-extended or both be sign-extended. */ && (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0))) == TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))))))) { enum machine_mode innermode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))); optab other_optab = (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))) ? smul_widen_optab : umul_widen_optab); this_optab = (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))) ? umul_widen_optab : smul_widen_optab); if (mode == GET_MODE_WIDER_MODE (innermode)) { if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) { if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST) expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0), TREE_OPERAND (exp, 1), NULL_RTX, &op0, &op1, 0); else expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0), TREE_OPERAND (TREE_OPERAND (exp, 1), 0), NULL_RTX, &op0, &op1, 0); goto binop2; } else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing && innermode == word_mode) { rtx htem; op0 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 0), 0), NULL_RTX, VOIDmode, 0); if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST) op1 = convert_modes (innermode, mode, expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0), unsignedp); else op1 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 1), 0), NULL_RTX, VOIDmode, 0); temp = expand_binop (mode, other_optab, op0, op1, target, unsignedp, OPTAB_LIB_WIDEN); htem = expand_mult_highpart_adjust (innermode, gen_highpart (innermode, temp), op0, op1, gen_highpart (innermode, temp), unsignedp); emit_move_insn (gen_highpart (innermode, temp), htem); return temp; } } } expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1), subtarget, &op0, &op1, 0); return expand_mult (mode, op0, op1, target, unsignedp); case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR: case ROUND_DIV_EXPR: case EXACT_DIV_EXPR: if (modifier == EXPAND_STACK_PARM) target = 0; /* Possible optimization: compute the dividend with EXPAND_SUM then if the divisor is constant can optimize the case where some terms of the dividend have coeffs divisible by it. */ expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1), subtarget, &op0, &op1, 0); return expand_divmod (0, code, mode, op0, op1, target, unsignedp); case RDIV_EXPR: /* Emit a/b as a*(1/b). Later we may manage CSE the reciprocal saving expensive divide. If not, combine will rebuild the original computation. */ if (flag_unsafe_math_optimizations && optimize && !optimize_size && TREE_CODE (type) == REAL_TYPE && !real_onep (TREE_OPERAND (exp, 0))) return expand_expr (build (MULT_EXPR, type, TREE_OPERAND (exp, 0), build (RDIV_EXPR, type, build_real (type, dconst1), TREE_OPERAND (exp, 1))), target, tmode, modifier); this_optab = sdiv_optab; goto binop; case TRUNC_MOD_EXPR: case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR: case ROUND_MOD_EXPR: if (modifier == EXPAND_STACK_PARM) target = 0; expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1), subtarget, &op0, &op1, 0); return expand_divmod (1, code, mode, op0, op1, target, unsignedp); case FIX_ROUND_EXPR: case FIX_FLOOR_EXPR: case FIX_CEIL_EXPR: abort (); /* Not used for C. */ case FIX_TRUNC_EXPR: op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0); if (target == 0 || modifier == EXPAND_STACK_PARM) target = gen_reg_rtx (mode); expand_fix (target, op0, unsignedp); return target; case FLOAT_EXPR: op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0); if (target == 0 || modifier == EXPAND_STACK_PARM) target = gen_reg_rtx (mode); /* expand_float can't figure out what to do if FROM has VOIDmode. So give it the correct mode. With -O, cse will optimize this. */ if (GET_MODE (op0) == VOIDmode) op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))), op0); expand_float (target, op0, TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0)))); return target; case NEGATE_EXPR: op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0); if (modifier == EXPAND_STACK_PARM) target = 0; temp = expand_unop (mode, ! unsignedp && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT) ? negv_optab : neg_optab, op0, target, 0); if (temp == 0) abort (); return temp; case ABS_EXPR: op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0); if (modifier == EXPAND_STACK_PARM) target = 0; /* ABS_EXPR is not valid for complex arguments. */ if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) abort (); /* Unsigned abs is simply the operand. Testing here means we don't risk generating incorrect code below. */ if (TREE_UNSIGNED (type)) return op0; return expand_abs (mode, op0, target, unsignedp, safe_from_p (target, TREE_OPERAND (exp, 0), 1)); case MAX_EXPR: case MIN_EXPR: target = original_target; if (target == 0 || modifier == EXPAND_STACK_PARM || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target)) || GET_MODE (target) != mode || (GET_CODE (target) == REG && REGNO (target) < FIRST_PSEUDO_REGISTER)) target = gen_reg_rtx (mode); expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1), target, &op0, &op1, 0); /* First try to do it with a special MIN or MAX instruction. If that does not win, use a conditional jump to select the proper value. */ this_optab = (TREE_UNSIGNED (type) ? (code == MIN_EXPR ? umin_optab : umax_optab) : (code == MIN_EXPR ? smin_optab : smax_optab)); temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp, OPTAB_WIDEN); if (temp != 0) return temp; /* At this point, a MEM target is no longer useful; we will get better code without it. */ if (GET_CODE (target) == MEM) target = gen_reg_rtx (mode); /* If op1 was placed in target, swap op0 and op1. */ if (target != op0 && target == op1) { rtx tem = op0; op0 = op1; op1 = tem; } if (target != op0) emit_move_insn (target, op0); op0 = gen_label_rtx (); /* If this mode is an integer too wide to compare properly, compare word by word. Rely on cse to optimize constant cases. */ if (GET_MODE_CLASS (mode) == MODE_INT && ! can_compare_p (GE, mode, ccp_jump)) { if (code == MAX_EXPR) do_jump_by_parts_greater_rtx (mode, TREE_UNSIGNED (type), target, op1, NULL_RTX, op0); else do_jump_by_parts_greater_rtx (mode, TREE_UNSIGNED (type), op1, target, NULL_RTX, op0); } else { int unsignedp = TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 1))); do_compare_rtx_and_jump (target, op1, code == MAX_EXPR ? GE : LE, unsignedp, mode, NULL_RTX, NULL_RTX, op0); } emit_move_insn (target, op1); emit_label (op0); return target; case BIT_NOT_EXPR: op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0); if (modifier == EXPAND_STACK_PARM) target = 0; temp = expand_unop (mode, one_cmpl_optab, op0, target, 1); if (temp == 0) abort (); return temp; /* ??? Can optimize bitwise operations with one arg constant. Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b) and (a bitwise1 b) bitwise2 b (etc) but that is probably not worth while. */ /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two boolean values when we want in all cases to compute both of them. In general it is fastest to do TRUTH_AND_EXPR by computing both operands as actual zero-or-1 values and then bitwise anding. In cases where there cannot be any side effects, better code would be made by treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is how to recognize those cases. */ case TRUTH_AND_EXPR: case BIT_AND_EXPR: this_optab = and_optab; goto binop; case TRUTH_OR_EXPR: case BIT_IOR_EXPR: this_optab = ior_optab; goto binop; case TRUTH_XOR_EXPR: case BIT_XOR_EXPR: this_optab = xor_optab; goto binop; case LSHIFT_EXPR: case RSHIFT_EXPR: case LROTATE_EXPR: case RROTATE_EXPR: if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1)) subtarget = 0; if (modifier == EXPAND_STACK_PARM) target = 0; op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0); return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target, unsignedp); /* Could determine the answer when only additive constants differ. Also, the addition of one can be handled by changing the condition. */ case LT_EXPR: case LE_EXPR: case GT_EXPR: case GE_EXPR: case EQ_EXPR: case NE_EXPR: case UNORDERED_EXPR: case ORDERED_EXPR: case UNLT_EXPR: case UNLE_EXPR: case UNGT_EXPR: case UNGE_EXPR: case UNEQ_EXPR: temp = do_store_flag (exp, modifier != EXPAND_STACK_PARM ? target : NULL_RTX, tmode != VOIDmode ? tmode : mode, 0); if (temp != 0) return temp; /* For foo != 0, load foo, and if it is nonzero load 1 instead. */ if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1)) && original_target && GET_CODE (original_target) == REG && (GET_MODE (original_target) == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))) { temp = expand_expr (TREE_OPERAND (exp, 0), original_target, VOIDmode, 0); /* If temp is constant, we can just compute the result. */ if (GET_CODE (temp) == CONST_INT) { if (INTVAL (temp) != 0) emit_move_insn (target, const1_rtx); else emit_move_insn (target, const0_rtx); return target; } if (temp != original_target) { enum machine_mode mode1 = GET_MODE (temp); if (mode1 == VOIDmode) mode1 = tmode != VOIDmode ? tmode : mode; temp = copy_to_mode_reg (mode1, temp); } op1 = gen_label_rtx (); emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX, GET_MODE (temp), unsignedp, op1); emit_move_insn (temp, const1_rtx); emit_label (op1); return temp; } /* If no set-flag instruction, must generate a conditional store into a temporary variable. Drop through and handle this like && and ||. */ case TRUTH_ANDIF_EXPR: case TRUTH_ORIF_EXPR: if (! ignore && (target == 0 || modifier == EXPAND_STACK_PARM || ! safe_from_p (target, exp, 1) /* Make sure we don't have a hard reg (such as function's return value) live across basic blocks, if not optimizing. */ || (!optimize && GET_CODE (target) == REG && REGNO (target) < FIRST_PSEUDO_REGISTER))) target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode); if (target) emit_clr_insn (target); op1 = gen_label_rtx (); jumpifnot (exp, op1); if (target) emit_0_to_1_insn (target); emit_label (op1); return ignore ? const0_rtx : target; case TRUTH_NOT_EXPR: if (modifier == EXPAND_STACK_PARM) target = 0; op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0); /* The parser is careful to generate TRUTH_NOT_EXPR only with operands that are always zero or one. */ temp = expand_binop (mode, xor_optab, op0, const1_rtx, target, 1, OPTAB_LIB_WIDEN); if (temp == 0) abort (); return temp; case COMPOUND_EXPR: expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0); emit_queue (); return expand_expr_real (TREE_OPERAND (exp, 1), (ignore ? const0_rtx : target), VOIDmode, modifier, alt_rtl); case COND_EXPR: /* If we would have a "singleton" (see below) were it not for a conversion in each arm, bring that conversion back out. */ if (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR && TREE_CODE (TREE_OPERAND (exp, 2)) == NOP_EXPR && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)) == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 2), 0)))) { tree iftrue = TREE_OPERAND (TREE_OPERAND (exp, 1), 0); tree iffalse = TREE_OPERAND (TREE_OPERAND (exp, 2), 0); if ((TREE_CODE_CLASS (TREE_CODE (iftrue)) == '2' && operand_equal_p (iffalse, TREE_OPERAND (iftrue, 0), 0)) || (TREE_CODE_CLASS (TREE_CODE (iffalse)) == '2' && operand_equal_p (iftrue, TREE_OPERAND (iffalse, 0), 0)) || (TREE_CODE_CLASS (TREE_CODE (iftrue)) == '1' && operand_equal_p (iffalse, TREE_OPERAND (iftrue, 0), 0)) || (TREE_CODE_CLASS (TREE_CODE (iffalse)) == '1' && operand_equal_p (iftrue, TREE_OPERAND (iffalse, 0), 0))) return expand_expr (build1 (NOP_EXPR, type, build (COND_EXPR, TREE_TYPE (iftrue), TREE_OPERAND (exp, 0), iftrue, iffalse)), target, tmode, modifier); } { /* Note that COND_EXPRs whose type is a structure or union are required to be constructed to contain assignments of a temporary variable, so that we can evaluate them here for side effect only. If type is void, we must do likewise. */ /* If an arm of the branch requires a cleanup, only that cleanup is performed. */ tree singleton = 0; tree binary_op = 0, unary_op = 0; /* If this is (A ? 1 : 0) and A is a condition, just evaluate it and convert it to our mode, if necessary. */ if (integer_onep (TREE_OPERAND (exp, 1)) && integer_zerop (TREE_OPERAND (exp, 2)) && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<') { if (ignore) { expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier); return const0_rtx; } if (modifier == EXPAND_STACK_PARM) target = 0; op0 = expand_expr (TREE_OPERAND (exp, 0), target, mode, modifier); if (GET_MODE (op0) == mode) return op0; if (target == 0) target = gen_reg_rtx (mode); convert_move (target, op0, unsignedp); return target; } /* Check for X ? A + B : A. If we have this, we can copy A to the output and conditionally add B. Similarly for unary operations. Don't do this if X has side-effects because those side effects might affect A or B and the "?" operation is a sequence point in ANSI. (operand_equal_p tests for side effects.) */ if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 1))) == '2' && operand_equal_p (TREE_OPERAND (exp, 2), TREE_OPERAND (TREE_OPERAND (exp, 1), 0), 0)) singleton = TREE_OPERAND (exp, 2), binary_op = TREE_OPERAND (exp, 1); else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 2))) == '2' && operand_equal_p (TREE_OPERAND (exp, 1), TREE_OPERAND (TREE_OPERAND (exp, 2), 0), 0)) singleton = TREE_OPERAND (exp, 1), binary_op = TREE_OPERAND (exp, 2); else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 1))) == '1' && operand_equal_p (TREE_OPERAND (exp, 2), TREE_OPERAND (TREE_OPERAND (exp, 1), 0), 0)) singleton = TREE_OPERAND (exp, 2), unary_op = TREE_OPERAND (exp, 1); else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 2))) == '1' && operand_equal_p (TREE_OPERAND (exp, 1), TREE_OPERAND (TREE_OPERAND (exp, 2), 0), 0)) singleton = TREE_OPERAND (exp, 1), unary_op = TREE_OPERAND (exp, 2); /* If we are not to produce a result, we have no target. Otherwise, if a target was specified use it; it will not be used as an intermediate target unless it is safe. If no target, use a temporary. */ if (ignore) temp = 0; else if (modifier == EXPAND_STACK_PARM) temp = assign_temp (type, 0, 0, 1); else if (original_target && (safe_from_p (original_target, TREE_OPERAND (exp, 0), 1) || (singleton && GET_CODE (original_target) == REG && REGNO (original_target) >= FIRST_PSEUDO_REGISTER && original_target == var_rtx (singleton))) && GET_MODE (original_target) == mode #ifdef HAVE_conditional_move && (! can_conditionally_move_p (mode) || GET_CODE (original_target) == REG || TREE_ADDRESSABLE (type)) #endif && (GET_CODE (original_target) != MEM || TREE_ADDRESSABLE (type))) temp = original_target; else if (TREE_ADDRESSABLE (type)) abort (); else temp = assign_temp (type, 0, 0, 1); /* If we had X ? A + C : A, with C a constant power of 2, and we can do the test of X as a store-flag operation, do this as A + ((X != 0) << log C). Similarly for other simple binary operators. Only do for C == 1 if BRANCH_COST is low. */ if (temp && singleton && binary_op && (TREE_CODE (binary_op) == PLUS_EXPR || TREE_CODE (binary_op) == MINUS_EXPR || TREE_CODE (binary_op) == BIT_IOR_EXPR || TREE_CODE (binary_op) == BIT_XOR_EXPR) && (BRANCH_COST >= 3 ? integer_pow2p (TREE_OPERAND (binary_op, 1)) : integer_onep (TREE_OPERAND (binary_op, 1))) && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<') { rtx result; tree cond; optab boptab = (TREE_CODE (binary_op) == PLUS_EXPR ? (TYPE_TRAP_SIGNED (TREE_TYPE (binary_op)) ? addv_optab : add_optab) : TREE_CODE (binary_op) == MINUS_EXPR ? (TYPE_TRAP_SIGNED (TREE_TYPE (binary_op)) ? subv_optab : sub_optab) : TREE_CODE (binary_op) == BIT_IOR_EXPR ? ior_optab : xor_optab); /* If we had X ? A : A + 1, do this as A + (X == 0). */ if (singleton == TREE_OPERAND (exp, 1)) cond = invert_truthvalue (TREE_OPERAND (exp, 0)); else cond = TREE_OPERAND (exp, 0); result = do_store_flag (cond, (safe_from_p (temp, singleton, 1) ? temp : NULL_RTX), mode, BRANCH_COST <= 1); if (result != 0 && ! integer_onep (TREE_OPERAND (binary_op, 1))) result = expand_shift (LSHIFT_EXPR, mode, result, build_int_2 (tree_log2 (TREE_OPERAND (binary_op, 1)), 0), (safe_from_p (temp, singleton, 1) ? temp : NULL_RTX), 0); if (result) { op1 = expand_expr (singleton, NULL_RTX, VOIDmode, 0); return expand_binop (mode, boptab, op1, result, temp, unsignedp, OPTAB_LIB_WIDEN); } } do_pending_stack_adjust (); NO_DEFER_POP; op0 = gen_label_rtx (); if (singleton && ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0))) { if (temp != 0) { /* If the target conflicts with the other operand of the binary op, we can't use it. Also, we can't use the target if it is a hard register, because evaluating the condition might clobber it. */ if ((binary_op && ! safe_from_p (temp, TREE_OPERAND (binary_op, 1), 1)) || (GET_CODE (temp) == REG && REGNO (temp) < FIRST_PSEUDO_REGISTER)) temp = gen_reg_rtx (mode); store_expr (singleton, temp, modifier == EXPAND_STACK_PARM ? 2 : 0); } else expand_expr (singleton, ignore ? const0_rtx : NULL_RTX, VOIDmode, 0); if (singleton == TREE_OPERAND (exp, 1)) jumpif (TREE_OPERAND (exp, 0), op0); else jumpifnot (TREE_OPERAND (exp, 0), op0); start_cleanup_deferral (); if (binary_op && temp == 0) /* Just touch the other operand. */ expand_expr (TREE_OPERAND (binary_op, 1), ignore ? const0_rtx : NULL_RTX, VOIDmode, 0); else if (binary_op) store_expr (build (TREE_CODE (binary_op), type, make_tree (type, temp), TREE_OPERAND (binary_op, 1)), temp, modifier == EXPAND_STACK_PARM ? 2 : 0); else store_expr (build1 (TREE_CODE (unary_op), type, make_tree (type, temp)), temp, modifier == EXPAND_STACK_PARM ? 2 : 0); op1 = op0; } /* Check for A op 0 ? A : FOO and A op 0 ? FOO : A where OP is any comparison operator. If we have one of these cases, set the output to A, branch on A (cse will merge these two references), then set the output to FOO. */ else if (temp && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<' && integer_zerop (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) && operand_equal_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0), TREE_OPERAND (exp, 1), 0) && (! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0)) || TREE_CODE (TREE_OPERAND (exp, 1)) == SAVE_EXPR) && safe_from_p (temp, TREE_OPERAND (exp, 2), 1)) { if (GET_CODE (temp) == REG && REGNO (temp) < FIRST_PSEUDO_REGISTER) temp = gen_reg_rtx (mode); store_expr (TREE_OPERAND (exp, 1), temp, modifier == EXPAND_STACK_PARM ? 2 : 0); jumpif (TREE_OPERAND (exp, 0), op0); start_cleanup_deferral (); if (TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node) store_expr (TREE_OPERAND (exp, 2), temp, modifier == EXPAND_STACK_PARM ? 2 : 0); else expand_expr (TREE_OPERAND (exp, 2), ignore ? const0_rtx : NULL_RTX, VOIDmode, 0); op1 = op0; } else if (temp && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<' && integer_zerop (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) && operand_equal_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0), TREE_OPERAND (exp, 2), 0) && (! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0)) || TREE_CODE (TREE_OPERAND (exp, 2)) == SAVE_EXPR) && safe_from_p (temp, TREE_OPERAND (exp, 1), 1)) { if (GET_CODE (temp) == REG && REGNO (temp) < FIRST_PSEUDO_REGISTER) temp = gen_reg_rtx (mode); store_expr (TREE_OPERAND (exp, 2), temp, modifier == EXPAND_STACK_PARM ? 2 : 0); jumpifnot (TREE_OPERAND (exp, 0), op0); start_cleanup_deferral (); if (TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node) store_expr (TREE_OPERAND (exp, 1), temp, modifier == EXPAND_STACK_PARM ? 2 : 0); else expand_expr (TREE_OPERAND (exp, 1), ignore ? const0_rtx : NULL_RTX, VOIDmode, 0); op1 = op0; } else { op1 = gen_label_rtx (); jumpifnot (TREE_OPERAND (exp, 0), op0); start_cleanup_deferral (); /* One branch of the cond can be void, if it never returns. For example A ? throw : E */ if (temp != 0 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node) store_expr (TREE_OPERAND (exp, 1), temp, modifier == EXPAND_STACK_PARM ? 2 : 0); else expand_expr (TREE_OPERAND (exp, 1), ignore ? const0_rtx : NULL_RTX, VOIDmode, 0); end_cleanup_deferral (); emit_queue (); emit_jump_insn (gen_jump (op1)); emit_barrier (); emit_label (op0); start_cleanup_deferral (); if (temp != 0 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node) store_expr (TREE_OPERAND (exp, 2), temp, modifier == EXPAND_STACK_PARM ? 2 : 0); else expand_expr (TREE_OPERAND (exp, 2), ignore ? const0_rtx : NULL_RTX, VOIDmode, 0); } end_cleanup_deferral (); emit_queue (); emit_label (op1); OK_DEFER_POP; return temp; } case TARGET_EXPR: { /* Something needs to be initialized, but we didn't know where that thing was when building the tree. For example, it could be the return value of a function, or a parameter to a function which lays down in the stack, or a temporary variable which must be passed by reference. We guarantee that the expression will either be constructed or copied into our original target. */ tree slot = TREE_OPERAND (exp, 0); tree cleanups = NULL_TREE; tree exp1; if (TREE_CODE (slot) != VAR_DECL) abort (); if (! ignore) target = original_target; /* Set this here so that if we get a target that refers to a register variable that's already been used, put_reg_into_stack knows that it should fix up those uses. */ TREE_USED (slot) = 1; if (target == 0) { if (DECL_RTL_SET_P (slot)) { target = DECL_RTL (slot); /* If we have already expanded the slot, so don't do it again. (mrs) */ if (TREE_OPERAND (exp, 1) == NULL_TREE) return target; } else { target = assign_temp (type, 2, 0, 1); /* All temp slots at this level must not conflict. */ preserve_temp_slots (target); SET_DECL_RTL (slot, target); if (TREE_ADDRESSABLE (slot)) put_var_into_stack (slot, /*rescan=*/false); /* Since SLOT is not known to the called function to belong to its stack frame, we must build an explicit cleanup. This case occurs when we must build up a reference to pass the reference as an argument. In this case, it is very likely that such a reference need not be built here. */ if (TREE_OPERAND (exp, 2) == 0) TREE_OPERAND (exp, 2) = (*lang_hooks.maybe_build_cleanup) (slot); cleanups = TREE_OPERAND (exp, 2); } } else { /* This case does occur, when expanding a parameter which needs to be constructed on the stack. The target is the actual stack address that we want to initialize. The function we call will perform the cleanup in this case. */ /* If we have already assigned it space, use that space, not target that we were passed in, as our target parameter is only a hint. */ if (DECL_RTL_SET_P (slot)) { target = DECL_RTL (slot); /* If we have already expanded the slot, so don't do it again. (mrs) */ if (TREE_OPERAND (exp, 1) == NULL_TREE) return target; } else { SET_DECL_RTL (slot, target); /* If we must have an addressable slot, then make sure that the RTL that we just stored in slot is OK. */ if (TREE_ADDRESSABLE (slot)) put_var_into_stack (slot, /*rescan=*/true); } } exp1 = TREE_OPERAND (exp, 3) = TREE_OPERAND (exp, 1); /* Mark it as expanded. */ TREE_OPERAND (exp, 1) = NULL_TREE; store_expr (exp1, target, modifier == EXPAND_STACK_PARM ? 2 : 0); expand_decl_cleanup_eh (NULL_TREE, cleanups, CLEANUP_EH_ONLY (exp)); return target; } case INIT_EXPR: { tree lhs = TREE_OPERAND (exp, 0); tree rhs = TREE_OPERAND (exp, 1); temp = expand_assignment (lhs, rhs, ! ignore); return temp; } case MODIFY_EXPR: { /* If lhs is complex, expand calls in rhs before computing it. That's so we don't compute a pointer and save it over a call. If lhs is simple, compute it first so we can give it as a target if the rhs is just a call. This avoids an extra temp and copy and that prevents a partial-subsumption which makes bad code. Actually we could treat component_ref's of vars like vars. */ tree lhs = TREE_OPERAND (exp, 0); tree rhs = TREE_OPERAND (exp, 1); temp = 0; /* Check for |= or &= of a bitfield of size one into another bitfield of size 1. In this case, (unless we need the result of the assignment) we can do this more efficiently with a test followed by an assignment, if necessary. ??? At this point, we can't get a BIT_FIELD_REF here. But if things change so we do, this code should be enhanced to support it. */ if (ignore && TREE_CODE (lhs) == COMPONENT_REF && (TREE_CODE (rhs) == BIT_IOR_EXPR || TREE_CODE (rhs) == BIT_AND_EXPR) && TREE_OPERAND (rhs, 0) == lhs && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1))) && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1)))) { rtx label = gen_label_rtx (); do_jump (TREE_OPERAND (rhs, 1), TREE_CODE (rhs) == BIT_IOR_EXPR ? label : 0, TREE_CODE (rhs) == BIT_AND_EXPR ? label : 0); expand_assignment (lhs, convert (TREE_TYPE (rhs), (TREE_CODE (rhs) == BIT_IOR_EXPR ? integer_one_node : integer_zero_node)), 0); do_pending_stack_adjust (); emit_label (label); return const0_rtx; } temp = expand_assignment (lhs, rhs, ! ignore); return temp; } case RETURN_EXPR: if (!TREE_OPERAND (exp, 0)) expand_null_return (); else expand_return (TREE_OPERAND (exp, 0)); return const0_rtx; case PREINCREMENT_EXPR: case PREDECREMENT_EXPR: return expand_increment (exp, 0, ignore); case POSTINCREMENT_EXPR: case POSTDECREMENT_EXPR: /* Faster to treat as pre-increment if result is not used. */ return expand_increment (exp, ! ignore, ignore); case ADDR_EXPR: if (modifier == EXPAND_STACK_PARM) target = 0; /* Are we taking the address of a nested function? */ if (TREE_CODE (TREE_OPERAND (exp, 0)) == FUNCTION_DECL && decl_function_context (TREE_OPERAND (exp, 0)) != 0 && ! DECL_NO_STATIC_CHAIN (TREE_OPERAND (exp, 0)) && ! TREE_STATIC (exp)) { op0 = trampoline_address (TREE_OPERAND (exp, 0)); op0 = force_operand (op0, target); } /* If we are taking the address of something erroneous, just return a zero. */ else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ERROR_MARK) return const0_rtx; /* If we are taking the address of a constant and are at the top level, we have to use output_constant_def since we can't call force_const_mem at top level. */ else if (cfun == 0 && (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR || (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == 'c'))) op0 = XEXP (output_constant_def (TREE_OPERAND (exp, 0), 0), 0); else { /* We make sure to pass const0_rtx down if we came in with ignore set, to avoid doing the cleanups twice for something. */ op0 = expand_expr (TREE_OPERAND (exp, 0), ignore ? const0_rtx : NULL_RTX, VOIDmode, (modifier == EXPAND_INITIALIZER ? modifier : EXPAND_CONST_ADDRESS)); /* If we are going to ignore the result, OP0 will have been set to const0_rtx, so just return it. Don't get confused and think we are taking the address of the constant. */ if (ignore) return op0; /* Pass 1 for MODIFY, so that protect_from_queue doesn't get clever and returns a REG when given a MEM. */ op0 = protect_from_queue (op0, 1); /* We would like the object in memory. If it is a constant, we can have it be statically allocated into memory. For a non-constant, we need to allocate some memory and store the value into it. */ if (CONSTANT_P (op0)) op0 = force_const_mem (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))), op0); else if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG || GET_CODE (op0) == CONCAT || GET_CODE (op0) == ADDRESSOF || GET_CODE (op0) == PARALLEL || GET_CODE (op0) == LO_SUM) { /* If the operand is a SAVE_EXPR, we can deal with this by forcing the SAVE_EXPR into memory. */ if (TREE_CODE (TREE_OPERAND (exp, 0)) == SAVE_EXPR) { put_var_into_stack (TREE_OPERAND (exp, 0), /*rescan=*/true); op0 = SAVE_EXPR_RTL (TREE_OPERAND (exp, 0)); } else { /* If this object is in a register, it can't be BLKmode. */ tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0)); rtx memloc = assign_temp (inner_type, 1, 1, 1); if (GET_CODE (op0) == PARALLEL) /* Handle calls that pass values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ emit_group_store (memloc, op0, inner_type, int_size_in_bytes (inner_type)); else emit_move_insn (memloc, op0); op0 = memloc; } } if (GET_CODE (op0) != MEM) abort (); mark_temp_addr_taken (op0); if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER) { op0 = XEXP (op0, 0); if (GET_MODE (op0) == Pmode && mode == ptr_mode) op0 = convert_memory_address (ptr_mode, op0); return op0; } /* If OP0 is not aligned as least as much as the type requires, we need to make a temporary, copy OP0 to it, and take the address of the temporary. We want to use the alignment of the type, not of the operand. Note that this is incorrect for FUNCTION_TYPE, but the test for BLKmode means that can't happen. The test for BLKmode is because we never make mis-aligned MEMs with non-BLKmode. We don't need to do this at all if the machine doesn't have strict alignment. */ if (STRICT_ALIGNMENT && GET_MODE (op0) == BLKmode && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))) > MEM_ALIGN (op0)) && MEM_ALIGN (op0) < BIGGEST_ALIGNMENT) { tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0)); rtx new; if (TYPE_ALIGN_OK (inner_type)) abort (); if (TREE_ADDRESSABLE (inner_type)) { /* We can't make a bitwise copy of this object, so fail. */ error ("cannot take the address of an unaligned member"); return const0_rtx; } new = assign_stack_temp_for_type (TYPE_MODE (inner_type), MEM_SIZE (op0) ? INTVAL (MEM_SIZE (op0)) : int_size_in_bytes (inner_type), 1, build_qualified_type (inner_type, (TYPE_QUALS (inner_type) | TYPE_QUAL_CONST))); emit_block_move (new, op0, expr_size (TREE_OPERAND (exp, 0)), (modifier == EXPAND_STACK_PARM ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL)); op0 = new; } op0 = force_operand (XEXP (op0, 0), target); } if (flag_force_addr && GET_CODE (op0) != REG && modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_INITIALIZER && modifier != EXPAND_SUM) op0 = force_reg (Pmode, op0); if (GET_CODE (op0) == REG && ! REG_USERVAR_P (op0)) mark_reg_pointer (op0, TYPE_ALIGN (TREE_TYPE (type))); if (GET_MODE (op0) == Pmode && mode == ptr_mode) op0 = convert_memory_address (ptr_mode, op0); return op0; case ENTRY_VALUE_EXPR: abort (); /* COMPLEX type for Extended Pascal & Fortran */ case COMPLEX_EXPR: { enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp))); rtx insns; /* Get the rtx code of the operands. */ op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0); op1 = expand_expr (TREE_OPERAND (exp, 1), 0, VOIDmode, 0); if (! target) target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp))); start_sequence (); /* Move the real (op0) and imaginary (op1) parts to their location. */ emit_move_insn (gen_realpart (mode, target), op0); emit_move_insn (gen_imagpart (mode, target), op1); insns = get_insns (); end_sequence (); /* Complex construction should appear as a single unit. */ /* If TARGET is a CONCAT, we got insns like RD = RS, ID = IS, each with a separate pseudo as destination. It's not correct for flow to treat them as a unit. */ if (GET_CODE (target) != CONCAT) emit_no_conflict_block (insns, target, op0, op1, NULL_RTX); else emit_insn (insns); return target; } case REALPART_EXPR: op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0); return gen_realpart (mode, op0); case IMAGPART_EXPR: op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0); return gen_imagpart (mode, op0); case CONJ_EXPR: { enum machine_mode partmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp))); rtx imag_t; rtx insns; op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0); if (! target) target = gen_reg_rtx (mode); start_sequence (); /* Store the realpart and the negated imagpart to target. */ emit_move_insn (gen_realpart (partmode, target), gen_realpart (partmode, op0)); imag_t = gen_imagpart (partmode, target); temp = expand_unop (partmode, ! unsignedp && flag_trapv && (GET_MODE_CLASS(partmode) == MODE_INT) ? negv_optab : neg_optab, gen_imagpart (partmode, op0), imag_t, 0); if (temp != imag_t) emit_move_insn (imag_t, temp); insns = get_insns (); end_sequence (); /* Conjugate should appear as a single unit If TARGET is a CONCAT, we got insns like RD = RS, ID = - IS, each with a separate pseudo as destination. It's not correct for flow to treat them as a unit. */ if (GET_CODE (target) != CONCAT) emit_no_conflict_block (insns, target, op0, NULL_RTX, NULL_RTX); else emit_insn (insns); return target; } case TRY_CATCH_EXPR: { tree handler = TREE_OPERAND (exp, 1); expand_eh_region_start (); op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0); expand_eh_region_end_cleanup (handler); return op0; } case TRY_FINALLY_EXPR: { tree try_block = TREE_OPERAND (exp, 0); tree finally_block = TREE_OPERAND (exp, 1); if (!optimize || unsafe_for_reeval (finally_block) > 1) { /* In this case, wrapping FINALLY_BLOCK in an UNSAVE_EXPR is not sufficient, so we cannot expand the block twice. So we play games with GOTO_SUBROUTINE_EXPR to let us expand the thing only once. */ /* When not optimizing, we go ahead with this form since (1) user breakpoints operate more predictably without code duplication, and (2) we're not running any of the global optimizers that would explode in time/space with the highly connected CFG created by the indirect branching. */ rtx finally_label = gen_label_rtx (); rtx done_label = gen_label_rtx (); rtx return_link = gen_reg_rtx (Pmode); tree cleanup = build (GOTO_SUBROUTINE_EXPR, void_type_node, (tree) finally_label, (tree) return_link); TREE_SIDE_EFFECTS (cleanup) = 1; /* Start a new binding layer that will keep track of all cleanup actions to be performed. */ expand_start_bindings (2); target_temp_slot_level = temp_slot_level; expand_decl_cleanup (NULL_TREE, cleanup); op0 = expand_expr (try_block, target, tmode, modifier); preserve_temp_slots (op0); expand_end_bindings (NULL_TREE, 0, 0); emit_jump (done_label); emit_label (finally_label); expand_expr (finally_block, const0_rtx, VOIDmode, 0); emit_indirect_jump (return_link); emit_label (done_label); } else { expand_start_bindings (2); target_temp_slot_level = temp_slot_level; expand_decl_cleanup (NULL_TREE, finally_block); op0 = expand_expr (try_block, target, tmode, modifier); preserve_temp_slots (op0); expand_end_bindings (NULL_TREE, 0, 0); } return op0; } case GOTO_SUBROUTINE_EXPR: { rtx subr = (rtx) TREE_OPERAND (exp, 0); rtx return_link = *(rtx *) &TREE_OPERAND (exp, 1); rtx return_address = gen_label_rtx (); emit_move_insn (return_link, gen_rtx_LABEL_REF (Pmode, return_address)); emit_jump (subr); emit_label (return_address); return const0_rtx; } case VA_ARG_EXPR: return expand_builtin_va_arg (TREE_OPERAND (exp, 0), type); case EXC_PTR_EXPR: return get_exception_pointer (cfun); case FDESC_EXPR: /* Function descriptors are not valid except for as initialization constants, and should not be expanded. */ abort (); default: return (*lang_hooks.expand_expr) (exp, original_target, tmode, modifier, alt_rtl); } /* Here to do an ordinary binary operator, generating an instruction from the optab already placed in `this_optab'. */ binop: expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1), subtarget, &op0, &op1, 0); binop2: if (modifier == EXPAND_STACK_PARM) target = 0; temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp, OPTAB_LIB_WIDEN); if (temp == 0) abort (); return temp; } /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that when applied to the address of EXP produces an address known to be aligned more than BIGGEST_ALIGNMENT. */ static int is_aligning_offset (tree offset, tree exp) { /* Strip off any conversions and WITH_RECORD_EXPR nodes. */ while (TREE_CODE (offset) == NON_LVALUE_EXPR || TREE_CODE (offset) == NOP_EXPR || TREE_CODE (offset) == CONVERT_EXPR || TREE_CODE (offset) == WITH_RECORD_EXPR) offset = TREE_OPERAND (offset, 0); /* We must now have a BIT_AND_EXPR with a constant that is one less than power of 2 and which is larger than BIGGEST_ALIGNMENT. */ if (TREE_CODE (offset) != BIT_AND_EXPR || !host_integerp (TREE_OPERAND (offset, 1), 1) || compare_tree_int (TREE_OPERAND (offset, 1), BIGGEST_ALIGNMENT) <= 0 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0) return 0; /* Look at the first operand of BIT_AND_EXPR and strip any conversion. It must be NEGATE_EXPR. Then strip any more conversions. */ offset = TREE_OPERAND (offset, 0); while (TREE_CODE (offset) == NON_LVALUE_EXPR || TREE_CODE (offset) == NOP_EXPR || TREE_CODE (offset) == CONVERT_EXPR) offset = TREE_OPERAND (offset, 0); if (TREE_CODE (offset) != NEGATE_EXPR) return 0; offset = TREE_OPERAND (offset, 0); while (TREE_CODE (offset) == NON_LVALUE_EXPR || TREE_CODE (offset) == NOP_EXPR || TREE_CODE (offset) == CONVERT_EXPR) offset = TREE_OPERAND (offset, 0); /* This must now be the address either of EXP or of a PLACEHOLDER_EXPR whose type is the same as EXP. */ return (TREE_CODE (offset) == ADDR_EXPR && (TREE_OPERAND (offset, 0) == exp || (TREE_CODE (TREE_OPERAND (offset, 0)) == PLACEHOLDER_EXPR && (TREE_TYPE (TREE_OPERAND (offset, 0)) == TREE_TYPE (exp))))); } /* Return the tree node if an ARG corresponds to a string constant or zero if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset in bytes within the string that ARG is accessing. The type of the offset will be `sizetype'. */ tree string_constant (tree arg, tree *ptr_offset) { STRIP_NOPS (arg); if (TREE_CODE (arg) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST) { *ptr_offset = size_zero_node; return TREE_OPERAND (arg, 0); } else if (TREE_CODE (arg) == PLUS_EXPR) { tree arg0 = TREE_OPERAND (arg, 0); tree arg1 = TREE_OPERAND (arg, 1); STRIP_NOPS (arg0); STRIP_NOPS (arg1); if (TREE_CODE (arg0) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST) { *ptr_offset = convert (sizetype, arg1); return TREE_OPERAND (arg0, 0); } else if (TREE_CODE (arg1) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST) { *ptr_offset = convert (sizetype, arg0); return TREE_OPERAND (arg1, 0); } } return 0; } /* Expand code for a post- or pre- increment or decrement and return the RTX for the result. POST is 1 for postinc/decrements and 0 for preinc/decrements. */ static rtx expand_increment (tree exp, int post, int ignore) { rtx op0, op1; rtx temp, value; tree incremented = TREE_OPERAND (exp, 0); optab this_optab = add_optab; int icode; enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp)); int op0_is_copy = 0; int single_insn = 0; /* 1 means we can't store into OP0 directly, because it is a subreg narrower than a word, and we don't dare clobber the rest of the word. */ int bad_subreg = 0; /* Stabilize any component ref that might need to be evaluated more than once below. */ if (!post || TREE_CODE (incremented) == BIT_FIELD_REF || (TREE_CODE (incremented) == COMPONENT_REF && (TREE_CODE (TREE_OPERAND (incremented, 0)) != INDIRECT_REF || DECL_BIT_FIELD (TREE_OPERAND (incremented, 1))))) incremented = stabilize_reference (incremented); /* Nested *INCREMENT_EXPRs can happen in C++. We must force innermost ones into save exprs so that they don't accidentally get evaluated more than once by the code below. */ if (TREE_CODE (incremented) == PREINCREMENT_EXPR || TREE_CODE (incremented) == PREDECREMENT_EXPR) incremented = save_expr (incremented); /* Compute the operands as RTX. Note whether OP0 is the actual lvalue or a copy of it: I believe it is a copy iff it is a register or subreg and insns were generated in computing it. */ temp = get_last_insn (); op0 = expand_expr (incremented, NULL_RTX, VOIDmode, 0); /* If OP0 is a SUBREG made for a promoted variable, we cannot increment in place but instead must do sign- or zero-extension during assignment, so we copy it into a new register and let the code below use it as a copy. Note that we can safely modify this SUBREG since it is know not to be shared (it was made by the expand_expr call above). */ if (GET_CODE (op0) == SUBREG && SUBREG_PROMOTED_VAR_P (op0)) { if (post) SUBREG_REG (op0) = copy_to_reg (SUBREG_REG (op0)); else bad_subreg = 1; } else if (GET_CODE (op0) == SUBREG && GET_MODE_BITSIZE (GET_MODE (op0)) < BITS_PER_WORD) { /* We cannot increment this SUBREG in place. If we are post-incrementing, get a copy of the old value. Otherwise, just mark that we cannot increment in place. */ if (post) op0 = copy_to_reg (op0); else bad_subreg = 1; } op0_is_copy = ((GET_CODE (op0) == SUBREG || GET_CODE (op0) == REG) && temp != get_last_insn ()); op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0); /* Decide whether incrementing or decrementing. */ if (TREE_CODE (exp) == POSTDECREMENT_EXPR || TREE_CODE (exp) == PREDECREMENT_EXPR) this_optab = sub_optab; /* Convert decrement by a constant into a negative increment. */ if (this_optab == sub_optab && GET_CODE (op1) == CONST_INT) { op1 = GEN_INT (-INTVAL (op1)); this_optab = add_optab; } if (TYPE_TRAP_SIGNED (TREE_TYPE (exp))) this_optab = this_optab == add_optab ? addv_optab : subv_optab; /* For a preincrement, see if we can do this with a single instruction. */ if (!post) { icode = (int) this_optab->handlers[(int) mode].insn_code; if (icode != (int) CODE_FOR_nothing /* Make sure that OP0 is valid for operands 0 and 1 of the insn we want to queue. */ && (*insn_data[icode].operand[0].predicate) (op0, mode) && (*insn_data[icode].operand[1].predicate) (op0, mode) && (*insn_data[icode].operand[2].predicate) (op1, mode)) single_insn = 1; } /* If OP0 is not the actual lvalue, but rather a copy in a register, then we cannot just increment OP0. We must therefore contrive to increment the original value. Then, for postincrement, we can return OP0 since it is a copy of the old value. For preincrement, expand here unless we can do it with a single insn. Likewise if storing directly into OP0 would clobber high bits we need to preserve (bad_subreg). */ if (op0_is_copy || (!post && !single_insn) || bad_subreg) { /* This is the easiest way to increment the value wherever it is. Problems with multiple evaluation of INCREMENTED are prevented because either (1) it is a component_ref or preincrement, in which case it was stabilized above, or (2) it is an array_ref with constant index in an array in a register, which is safe to reevaluate. */ tree newexp = build (((TREE_CODE (exp) == POSTDECREMENT_EXPR || TREE_CODE (exp) == PREDECREMENT_EXPR) ? MINUS_EXPR : PLUS_EXPR), TREE_TYPE (exp), incremented, TREE_OPERAND (exp, 1)); while (TREE_CODE (incremented) == NOP_EXPR || TREE_CODE (incremented) == CONVERT_EXPR) { newexp = convert (TREE_TYPE (incremented), newexp); incremented = TREE_OPERAND (incremented, 0); } temp = expand_assignment (incremented, newexp, ! post && ! ignore); return post ? op0 : temp; } if (post) { /* We have a true reference to the value in OP0. If there is an insn to add or subtract in this mode, queue it. Queuing the increment insn avoids the register shuffling that often results if we must increment now and first save the old value for subsequent use. */ #if 0 /* Turned off to avoid making extra insn for indexed memref. */ op0 = stabilize (op0); #endif icode = (int) this_optab->handlers[(int) mode].insn_code; if (icode != (int) CODE_FOR_nothing /* Make sure that OP0 is valid for operands 0 and 1 of the insn we want to queue. */ && (*insn_data[icode].operand[0].predicate) (op0, mode) && (*insn_data[icode].operand[1].predicate) (op0, mode)) { if (! (*insn_data[icode].operand[2].predicate) (op1, mode)) op1 = force_reg (mode, op1); return enqueue_insn (op0, GEN_FCN (icode) (op0, op0, op1)); } if (icode != (int) CODE_FOR_nothing && GET_CODE (op0) == MEM) { rtx addr = (general_operand (XEXP (op0, 0), mode) ? force_reg (Pmode, XEXP (op0, 0)) : copy_to_reg (XEXP (op0, 0))); rtx temp, result; op0 = replace_equiv_address (op0, addr); temp = force_reg (GET_MODE (op0), op0); if (! (*insn_data[icode].operand[2].predicate) (op1, mode)) op1 = force_reg (mode, op1); /* The increment queue is LIFO, thus we have to `queue' the instructions in reverse order. */ enqueue_insn (op0, gen_move_insn (op0, temp)); result = enqueue_insn (temp, GEN_FCN (icode) (temp, temp, op1)); return result; } } /* Preincrement, or we can't increment with one simple insn. */ if (post) /* Save a copy of the value before inc or dec, to return it later. */ temp = value = copy_to_reg (op0); else /* Arrange to return the incremented value. */ /* Copy the rtx because expand_binop will protect from the queue, and the results of that would be invalid for us to return if our caller does emit_queue before using our result. */ temp = copy_rtx (value = op0); /* Increment however we can. */ op1 = expand_binop (mode, this_optab, value, op1, op0, TREE_UNSIGNED (TREE_TYPE (exp)), OPTAB_LIB_WIDEN); /* Make sure the value is stored into OP0. */ if (op1 != op0) emit_move_insn (op0, op1); return temp; } /* Generate code to calculate EXP using a store-flag instruction and return an rtx for the result. EXP is either a comparison or a TRUTH_NOT_EXPR whose operand is a comparison. If TARGET is nonzero, store the result there if convenient. If ONLY_CHEAP is nonzero, only do this if it is likely to be very cheap. Return zero if there is no suitable set-flag instruction available on this machine. Once expand_expr has been called on the arguments of the comparison, we are committed to doing the store flag, since it is not safe to re-evaluate the expression. We emit the store-flag insn by calling emit_store_flag, but only expand the arguments if we have a reason to believe that emit_store_flag will be successful. If we think that it will, but it isn't, we have to simulate the store-flag with a set/jump/set sequence. */ static rtx do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap) { enum rtx_code code; tree arg0, arg1, type; tree tem; enum machine_mode operand_mode; int invert = 0; int unsignedp; rtx op0, op1; enum insn_code icode; rtx subtarget = target; rtx result, label; /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the result at the end. We can't simply invert the test since it would have already been inverted if it were valid. This case occurs for some floating-point comparisons. */ if (TREE_CODE (exp) == TRUTH_NOT_EXPR) invert = 1, exp = TREE_OPERAND (exp, 0); arg0 = TREE_OPERAND (exp, 0); arg1 = TREE_OPERAND (exp, 1); /* Don't crash if the comparison was erroneous. */ if (arg0 == error_mark_node || arg1 == error_mark_node) return const0_rtx; type = TREE_TYPE (arg0); operand_mode = TYPE_MODE (type); unsignedp = TREE_UNSIGNED (type); /* We won't bother with BLKmode store-flag operations because it would mean passing a lot of information to emit_store_flag. */ if (operand_mode == BLKmode) return 0; /* We won't bother with store-flag operations involving function pointers when function pointers must be canonicalized before comparisons. */ #ifdef HAVE_canonicalize_funcptr_for_compare if (HAVE_canonicalize_funcptr_for_compare && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))) == FUNCTION_TYPE)) || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1)))) == FUNCTION_TYPE)))) return 0; #endif STRIP_NOPS (arg0); STRIP_NOPS (arg1); /* Get the rtx comparison code to use. We know that EXP is a comparison operation of some type. Some comparisons against 1 and -1 can be converted to comparisons with zero. Do so here so that the tests below will be aware that we have a comparison with zero. These tests will not catch constants in the first operand, but constants are rarely passed as the first operand. */ switch (TREE_CODE (exp)) { case EQ_EXPR: code = EQ; break; case NE_EXPR: code = NE; break; case LT_EXPR: if (integer_onep (arg1)) arg1 = integer_zero_node, code = unsignedp ? LEU : LE; else code = unsignedp ? LTU : LT; break; case LE_EXPR: if (! unsignedp && integer_all_onesp (arg1)) arg1 = integer_zero_node, code = LT; else code = unsignedp ? LEU : LE; break; case GT_EXPR: if (! unsignedp && integer_all_onesp (arg1)) arg1 = integer_zero_node, code = GE; else code = unsignedp ? GTU : GT; break; case GE_EXPR: if (integer_onep (arg1)) arg1 = integer_zero_node, code = unsignedp ? GTU : GT; else code = unsignedp ? GEU : GE; break; case UNORDERED_EXPR: code = UNORDERED; break; case ORDERED_EXPR: code = ORDERED; break; case UNLT_EXPR: code = UNLT; break; case UNLE_EXPR: code = UNLE; break; case UNGT_EXPR: code = UNGT; break; case UNGE_EXPR: code = UNGE; break; case UNEQ_EXPR: code = UNEQ; break; default: abort (); } /* Put a constant second. */ if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST) { tem = arg0; arg0 = arg1; arg1 = tem; code = swap_condition (code); } /* If this is an equality or inequality test of a single bit, we can do this by shifting the bit being tested to the low-order bit and masking the result with the constant 1. If the condition was EQ, we xor it with 1. This does not require an scc insn and is faster than an scc insn even if we have it. The code to make this transformation was moved into fold_single_bit_test, so we just call into the folder and expand its result. */ if ((code == NE || code == EQ) && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1) && integer_pow2p (TREE_OPERAND (arg0, 1))) { tree type = (*lang_hooks.types.type_for_mode) (mode, unsignedp); return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR, arg0, arg1, type), target, VOIDmode, EXPAND_NORMAL); } /* Now see if we are likely to be able to do this. Return if not. */ if (! can_compare_p (code, operand_mode, ccp_store_flag)) return 0; icode = setcc_gen_code[(int) code]; if (icode == CODE_FOR_nothing || (only_cheap && insn_data[(int) icode].operand[0].mode != mode)) { /* We can only do this if it is one of the special cases that can be handled without an scc insn. */ if ((code == LT && integer_zerop (arg1)) || (! only_cheap && code == GE && integer_zerop (arg1))) ; else if (BRANCH_COST >= 0 && ! only_cheap && (code == NE || code == EQ) && TREE_CODE (type) != REAL_TYPE && ((abs_optab->handlers[(int) operand_mode].insn_code != CODE_FOR_nothing) || (ffs_optab->handlers[(int) operand_mode].insn_code != CODE_FOR_nothing))) ; else return 0; } if (! get_subtarget (target) || GET_MODE (subtarget) != operand_mode) subtarget = 0; expand_operands (arg0, arg1, subtarget, &op0, &op1, 0); if (target == 0) target = gen_reg_rtx (mode); /* Pass copies of OP0 and OP1 in case they contain a QUEUED. This is safe because, if the emit_store_flag does anything it will succeed and OP0 and OP1 will not be used subsequently. */ result = emit_store_flag (target, code, queued_subexp_p (op0) ? copy_rtx (op0) : op0, queued_subexp_p (op1) ? copy_rtx (op1) : op1, operand_mode, unsignedp, 1); if (result) { if (invert) result = expand_binop (mode, xor_optab, result, const1_rtx, result, 0, OPTAB_LIB_WIDEN); return result; } /* If this failed, we have to do this with set/compare/jump/set code. */ if (GET_CODE (target) != REG || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1)) target = gen_reg_rtx (GET_MODE (target)); emit_move_insn (target, invert ? const0_rtx : const1_rtx); result = compare_from_rtx (op0, op1, code, unsignedp, operand_mode, NULL_RTX); if (GET_CODE (result) == CONST_INT) return (((result == const0_rtx && ! invert) || (result != const0_rtx && invert)) ? const0_rtx : const1_rtx); /* The code of RESULT may not match CODE if compare_from_rtx decided to swap its operands and reverse the original code. We know that compare_from_rtx returns either a CONST_INT or a new comparison code, so it is safe to just extract the code from RESULT. */ code = GET_CODE (result); label = gen_label_rtx (); if (bcc_gen_fctn[(int) code] == 0) abort (); emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label)); emit_move_insn (target, invert ? const1_rtx : const0_rtx); emit_label (label); return target; } /* Stubs in case we haven't got a casesi insn. */ #ifndef HAVE_casesi # define HAVE_casesi 0 # define gen_casesi(a, b, c, d, e) (0) # define CODE_FOR_casesi CODE_FOR_nothing #endif /* If the machine does not have a case insn that compares the bounds, this means extra overhead for dispatch tables, which raises the threshold for using them. */ #ifndef CASE_VALUES_THRESHOLD #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5) #endif /* CASE_VALUES_THRESHOLD */ unsigned int case_values_threshold (void) { return CASE_VALUES_THRESHOLD; } /* Attempt to generate a casesi instruction. Returns 1 if successful, 0 otherwise (i.e. if there is no casesi instruction). */ int try_casesi (tree index_type, tree index_expr, tree minval, tree range, rtx table_label ATTRIBUTE_UNUSED, rtx default_label) { enum machine_mode index_mode = SImode; int index_bits = GET_MODE_BITSIZE (index_mode); rtx op1, op2, index; enum machine_mode op_mode; if (! HAVE_casesi) return 0; /* Convert the index to SImode. */ if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode)) { enum machine_mode omode = TYPE_MODE (index_type); rtx rangertx = expand_expr (range, NULL_RTX, VOIDmode, 0); /* We must handle the endpoints in the original mode. */ index_expr = build (MINUS_EXPR, index_type, index_expr, minval); minval = integer_zero_node; index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0); emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX, omode, 1, default_label); /* Now we can safely truncate. */ index = convert_to_mode (index_mode, index, 0); } else { if (TYPE_MODE (index_type) != index_mode) { index_expr = convert ((*lang_hooks.types.type_for_size) (index_bits, 0), index_expr); index_type = TREE_TYPE (index_expr); } index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0); } emit_queue (); index = protect_from_queue (index, 0); do_pending_stack_adjust (); op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode; if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate) (index, op_mode)) index = copy_to_mode_reg (op_mode, index); op1 = expand_expr (minval, NULL_RTX, VOIDmode, 0); op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode; op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)), op1, TREE_UNSIGNED (TREE_TYPE (minval))); if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate) (op1, op_mode)) op1 = copy_to_mode_reg (op_mode, op1); op2 = expand_expr (range, NULL_RTX, VOIDmode, 0); op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode; op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)), op2, TREE_UNSIGNED (TREE_TYPE (range))); if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate) (op2, op_mode)) op2 = copy_to_mode_reg (op_mode, op2); emit_jump_insn (gen_casesi (index, op1, op2, table_label, default_label)); return 1; } /* Attempt to generate a tablejump instruction; same concept. */ #ifndef HAVE_tablejump #define HAVE_tablejump 0 #define gen_tablejump(x, y) (0) #endif /* Subroutine of the next function. INDEX is the value being switched on, with the lowest value in the table already subtracted. MODE is its expected mode (needed if INDEX is constant). RANGE is the length of the jump table. TABLE_LABEL is a CODE_LABEL rtx for the table itself. DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the index value is out of range. */ static void do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label, rtx default_label) { rtx temp, vector; if (INTVAL (range) > cfun->max_jumptable_ents) cfun->max_jumptable_ents = INTVAL (range); /* Do an unsigned comparison (in the proper mode) between the index expression and the value which represents the length of the range. Since we just finished subtracting the lower bound of the range from the index expression, this comparison allows us to simultaneously check that the original index expression value is both greater than or equal to the minimum value of the range and less than or equal to the maximum value of the range. */ emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1, default_label); /* If index is in range, it must fit in Pmode. Convert to Pmode so we can index with it. */ if (mode != Pmode) index = convert_to_mode (Pmode, index, 1); /* Don't let a MEM slip through, because then INDEX that comes out of PIC_CASE_VECTOR_ADDRESS won't be a valid address, and break_out_memory_refs will go to work on it and mess it up. */ #ifdef PIC_CASE_VECTOR_ADDRESS if (flag_pic && GET_CODE (index) != REG) index = copy_to_mode_reg (Pmode, index); #endif /* If flag_force_addr were to affect this address it could interfere with the tricky assumptions made about addresses that contain label-refs, which may be valid only very near the tablejump itself. */ /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the GET_MODE_SIZE, because this indicates how large insns are. The other uses should all be Pmode, because they are addresses. This code could fail if addresses and insns are not the same size. */ index = gen_rtx_PLUS (Pmode, gen_rtx_MULT (Pmode, index, GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))), gen_rtx_LABEL_REF (Pmode, table_label)); #ifdef PIC_CASE_VECTOR_ADDRESS if (flag_pic) index = PIC_CASE_VECTOR_ADDRESS (index); else #endif index = memory_address_noforce (CASE_VECTOR_MODE, index); temp = gen_reg_rtx (CASE_VECTOR_MODE); vector = gen_rtx_MEM (CASE_VECTOR_MODE, index); RTX_UNCHANGING_P (vector) = 1; MEM_NOTRAP_P (vector) = 1; convert_move (temp, vector, 0); emit_jump_insn (gen_tablejump (temp, table_label)); /* If we are generating PIC code or if the table is PC-relative, the table and JUMP_INSN must be adjacent, so don't output a BARRIER. */ if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic) emit_barrier (); } int try_tablejump (tree index_type, tree index_expr, tree minval, tree range, rtx table_label, rtx default_label) { rtx index; if (! HAVE_tablejump) return 0; index_expr = fold (build (MINUS_EXPR, index_type, convert (index_type, index_expr), convert (index_type, minval))); index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0); emit_queue (); index = protect_from_queue (index, 0); do_pending_stack_adjust (); do_tablejump (index, TYPE_MODE (index_type), convert_modes (TYPE_MODE (index_type), TYPE_MODE (TREE_TYPE (range)), expand_expr (range, NULL_RTX, VOIDmode, 0), TREE_UNSIGNED (TREE_TYPE (range))), table_label, default_label); return 1; } /* Nonzero if the mode is a valid vector mode for this architecture. This returns nonzero even if there is no hardware support for the vector mode, but we can emulate with narrower modes. */ int vector_mode_valid_p (enum machine_mode mode) { enum mode_class class = GET_MODE_CLASS (mode); enum machine_mode innermode; /* Doh! What's going on? */ if (class != MODE_VECTOR_INT && class != MODE_VECTOR_FLOAT) return 0; /* Hardware support. Woo hoo! */ if (VECTOR_MODE_SUPPORTED_P (mode)) return 1; innermode = GET_MODE_INNER (mode); /* We should probably return 1 if requesting V4DI and we have no DI, but we have V2DI, but this is probably very unlikely. */ /* If we have support for the inner mode, we can safely emulate it. We may not have V2DI, but me can emulate with a pair of DIs. */ return mov_optab->handlers[innermode].insn_code != CODE_FOR_nothing; } /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */ static rtx const_vector_from_tree (tree exp) { rtvec v; int units, i; tree link, elt; enum machine_mode inner, mode; mode = TYPE_MODE (TREE_TYPE (exp)); if (is_zeros_p (exp)) return CONST0_RTX (mode); units = GET_MODE_NUNITS (mode); inner = GET_MODE_INNER (mode); v = rtvec_alloc (units); link = TREE_VECTOR_CST_ELTS (exp); for (i = 0; link; link = TREE_CHAIN (link), ++i) { elt = TREE_VALUE (link); if (TREE_CODE (elt) == REAL_CST) RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt), inner); else RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt), TREE_INT_CST_HIGH (elt), inner); } /* Initialize remaining elements to 0. */ for (; i < units; ++i) RTVEC_ELT (v, i) = CONST0_RTX (inner); return gen_rtx_raw_CONST_VECTOR (mode, v); } #include "gt-expr.h"