/* Convert tree expression to rtl instructions, for GNU compiler.
Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "machmode.h"
#include "rtl.h"
#include "tree.h"
#include "flags.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "except.h"
#include "function.h"
#include "insn-config.h"
#include "insn-attr.h"
/* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
#include "expr.h"
#include "optabs.h"
#include "libfuncs.h"
#include "recog.h"
#include "reload.h"
#include "output.h"
#include "typeclass.h"
#include "toplev.h"
#include "langhooks.h"
#include "intl.h"
#include "tm_p.h"
#include "tree-iterator.h"
#include "tree-pass.h"
#include "tree-flow.h"
#include "target.h"
#include "common/common-target.h"
#include "timevar.h"
#include "df.h"
#include "diagnostic.h"
#include "ssaexpand.h"
#include "target-globals.h"
#include "params.h"
/* Decide whether a function's arguments should be processed
from first to last or from last to first.
They should if the stack and args grow in opposite directions, but
only if we have push insns. */
#ifdef PUSH_ROUNDING
#ifndef PUSH_ARGS_REVERSED
#if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
#define PUSH_ARGS_REVERSED /* If it's last to first. */
#endif
#endif
#endif
#ifndef STACK_PUSH_CODE
#ifdef STACK_GROWS_DOWNWARD
#define STACK_PUSH_CODE PRE_DEC
#else
#define STACK_PUSH_CODE PRE_INC
#endif
#endif
/* If this is nonzero, we do not bother generating VOLATILE
around volatile memory references, and we are willing to
output indirect addresses. If cse is to follow, we reject
indirect addresses so a useful potential cse is generated;
if it is used only once, instruction combination will produce
the same indirect address eventually. */
int cse_not_expected;
/* This structure is used by move_by_pieces to describe the move to
be performed. */
struct move_by_pieces_d
{
rtx to;
rtx to_addr;
int autinc_to;
int explicit_inc_to;
rtx from;
rtx from_addr;
int autinc_from;
int explicit_inc_from;
unsigned HOST_WIDE_INT len;
HOST_WIDE_INT offset;
int reverse;
};
/* This structure is used by store_by_pieces to describe the clear to
be performed. */
struct store_by_pieces_d
{
rtx to;
rtx to_addr;
int autinc_to;
int explicit_inc_to;
unsigned HOST_WIDE_INT len;
HOST_WIDE_INT offset;
rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
void *constfundata;
int reverse;
};
static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
unsigned int,
unsigned int);
static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
struct move_by_pieces_d *);
static bool block_move_libcall_safe_for_call_parm (void);
static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
static tree emit_block_move_libcall_fn (int);
static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
struct store_by_pieces_d *);
static tree clear_storage_libcall_fn (int);
static rtx compress_float_constant (rtx, rtx);
static rtx get_subtarget (rtx);
static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
HOST_WIDE_INT, enum machine_mode,
tree, tree, int, alias_set_type);
static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
enum machine_mode,
tree, tree, alias_set_type, bool);
static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
static int is_aligning_offset (const_tree, const_tree);
static void expand_operands (tree, tree, rtx, rtx*, rtx*,
enum expand_modifier);
static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
static rtx do_store_flag (sepops, rtx, enum machine_mode);
#ifdef PUSH_ROUNDING
static void emit_single_push_insn (enum machine_mode, rtx, tree);
#endif
static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
static rtx const_vector_from_tree (tree);
static void write_complex_part (rtx, rtx, bool);
/* This macro is used to determine whether move_by_pieces should be called
to perform a structure copy. */
#ifndef MOVE_BY_PIECES_P
#define MOVE_BY_PIECES_P(SIZE, ALIGN) \
(move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
< (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
#endif
/* This macro is used to determine whether clear_by_pieces should be
called to clear storage. */
#ifndef CLEAR_BY_PIECES_P
#define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
(move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
< (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
#endif
/* This macro is used to determine whether store_by_pieces should be
called to "memset" storage with byte values other than zero. */
#ifndef SET_BY_PIECES_P
#define SET_BY_PIECES_P(SIZE, ALIGN) \
(move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
< (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
#endif
/* This macro is used to determine whether store_by_pieces should be
called to "memcpy" storage when the source is a constant string. */
#ifndef STORE_BY_PIECES_P
#define STORE_BY_PIECES_P(SIZE, ALIGN) \
(move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
< (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
#endif
/* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
#ifndef SLOW_UNALIGNED_ACCESS
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
#endif
/* This is run to set up which modes can be used
directly in memory and to initialize the block move optab. It is run
at the beginning of compilation and when the target is reinitialized. */
void
init_expr_target (void)
{
rtx insn, pat;
enum machine_mode mode;
int num_clobbers;
rtx mem, mem1;
rtx reg;
/* Try indexing by frame ptr and try by stack ptr.
It is known that on the Convex the stack ptr isn't a valid index.
With luck, one or the other is valid on any machine. */
mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
/* A scratch register we can modify in-place below to avoid
useless RTL allocations. */
reg = gen_rtx_REG (VOIDmode, -1);
insn = rtx_alloc (INSN);
pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
PATTERN (insn) = pat;
for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
mode = (enum machine_mode) ((int) mode + 1))
{
int regno;
direct_load[(int) mode] = direct_store[(int) mode] = 0;
PUT_MODE (mem, mode);
PUT_MODE (mem1, mode);
PUT_MODE (reg, mode);
/* See if there is some register that can be used in this mode and
directly loaded or stored from memory. */
if (mode != VOIDmode && mode != BLKmode)
for (regno = 0; regno < FIRST_PSEUDO_REGISTER
&& (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
regno++)
{
if (! HARD_REGNO_MODE_OK (regno, mode))
continue;
SET_REGNO (reg, regno);
SET_SRC (pat) = mem;
SET_DEST (pat) = reg;
if (recog (pat, insn, &num_clobbers) >= 0)
direct_load[(int) mode] = 1;
SET_SRC (pat) = mem1;
SET_DEST (pat) = reg;
if (recog (pat, insn, &num_clobbers) >= 0)
direct_load[(int) mode] = 1;
SET_SRC (pat) = reg;
SET_DEST (pat) = mem;
if (recog (pat, insn, &num_clobbers) >= 0)
direct_store[(int) mode] = 1;
SET_SRC (pat) = reg;
SET_DEST (pat) = mem1;
if (recog (pat, insn, &num_clobbers) >= 0)
direct_store[(int) mode] = 1;
}
}
mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
{
enum machine_mode srcmode;
for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
srcmode = GET_MODE_WIDER_MODE (srcmode))
{
enum insn_code ic;
ic = can_extend_p (mode, srcmode, 0);
if (ic == CODE_FOR_nothing)
continue;
PUT_MODE (mem, srcmode);
if (insn_operand_matches (ic, 1, mem))
float_extend_from_mem[mode][srcmode] = true;
}
}
}
/* This is run at the start of compiling a function. */
void
init_expr (void)
{
memset (&crtl->expr, 0, sizeof (crtl->expr));
}
/* Copy data from FROM to TO, where the machine modes are not the same.
Both modes may be integer, or both may be floating, or both may be
fixed-point.
UNSIGNEDP should be nonzero if FROM is an unsigned type.
This causes zero-extension instead of sign-extension. */
void
convert_move (rtx to, rtx from, int unsignedp)
{
enum machine_mode to_mode = GET_MODE (to);
enum machine_mode from_mode = GET_MODE (from);
int to_real = SCALAR_FLOAT_MODE_P (to_mode);
int from_real = SCALAR_FLOAT_MODE_P (from_mode);
enum insn_code code;
rtx libcall;
/* rtx code for making an equivalent value. */
enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
: (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
gcc_assert (to_real == from_real);
gcc_assert (to_mode != BLKmode);
gcc_assert (from_mode != BLKmode);
/* If the source and destination are already the same, then there's
nothing to do. */
if (to == from)
return;
/* If FROM is a SUBREG that indicates that we have already done at least
the required extension, strip it. We don't handle such SUBREGs as
TO here. */
if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
&& (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from)))
>= GET_MODE_PRECISION (to_mode))
&& SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
from = gen_lowpart (to_mode, from), from_mode = to_mode;
gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
if (to_mode == from_mode
|| (from_mode == VOIDmode && CONSTANT_P (from)))
{
emit_move_insn (to, from);
return;
}
if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
{
gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
if (VECTOR_MODE_P (to_mode))
from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
else
to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
emit_move_insn (to, from);
return;
}
if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
{
convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
return;
}
if (to_real)
{
rtx value, insns;
convert_optab tab;
gcc_assert ((GET_MODE_PRECISION (from_mode)
!= GET_MODE_PRECISION (to_mode))
|| (DECIMAL_FLOAT_MODE_P (from_mode)
!= DECIMAL_FLOAT_MODE_P (to_mode)));
if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
/* Conversion between decimal float and binary float, same size. */
tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
tab = sext_optab;
else
tab = trunc_optab;
/* Try converting directly if the insn is supported. */
code = convert_optab_handler (tab, to_mode, from_mode);
if (code != CODE_FOR_nothing)
{
emit_unop_insn (code, to, from,
tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
return;
}
/* Otherwise use a libcall. */
libcall = convert_optab_libfunc (tab, to_mode, from_mode);
/* Is this conversion implemented yet? */
gcc_assert (libcall);
start_sequence ();
value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
1, from, from_mode);
insns = get_insns ();
end_sequence ();
emit_libcall_block (insns, to, value,
tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
from)
: gen_rtx_FLOAT_EXTEND (to_mode, from));
return;
}
/* Handle pointer conversion. */ /* SPEE 900220. */
/* Targets are expected to provide conversion insns between PxImode and
xImode for all MODE_PARTIAL_INT modes they use, but no others. */
if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
{
enum machine_mode full_mode
= smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
!= CODE_FOR_nothing);
if (full_mode != from_mode)
from = convert_to_mode (full_mode, from, unsignedp);
emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
to, from, UNKNOWN);
return;
}
if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
{
rtx new_from;
enum machine_mode full_mode
= smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)
!= CODE_FOR_nothing);
if (to_mode == full_mode)
{
emit_unop_insn (convert_optab_handler (sext_optab, full_mode,
from_mode),
to, from, UNKNOWN);
return;
}
new_from = gen_reg_rtx (full_mode);
emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode),
new_from, from, UNKNOWN);
/* else proceed to integer conversions below. */
from_mode = full_mode;
from = new_from;
}
/* Make sure both are fixed-point modes or both are not. */
gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
{
/* If we widen from_mode to to_mode and they are in the same class,
we won't saturate the result.
Otherwise, always saturate the result to play safe. */
if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
&& GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
expand_fixed_convert (to, from, 0, 0);
else
expand_fixed_convert (to, from, 0, 1);
return;
}
/* Now both modes are integers. */
/* Handle expanding beyond a word. */
if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
&& GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
{
rtx insns;
rtx lowpart;
rtx fill_value;
rtx lowfrom;
int i;
enum machine_mode lowpart_mode;
int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
/* Try converting directly if the insn is supported. */
if ((code = can_extend_p (to_mode, from_mode, unsignedp))
!= CODE_FOR_nothing)
{
/* If FROM is a SUBREG, put it into a register. Do this
so that we always generate the same set of insns for
better cse'ing; if an intermediate assignment occurred,
we won't be doing the operation directly on the SUBREG. */
if (optimize > 0 && GET_CODE (from) == SUBREG)
from = force_reg (from_mode, from);
emit_unop_insn (code, to, from, equiv_code);
return;
}
/* Next, try converting via full word. */
else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
&& ((code = can_extend_p (to_mode, word_mode, unsignedp))
!= CODE_FOR_nothing))
{
rtx word_to = gen_reg_rtx (word_mode);
if (REG_P (to))
{
if (reg_overlap_mentioned_p (to, from))
from = force_reg (from_mode, from);
emit_clobber (to);
}
convert_move (word_to, from, unsignedp);
emit_unop_insn (code, to, word_to, equiv_code);
return;
}
/* No special multiword conversion insn; do it by hand. */
start_sequence ();
/* Since we will turn this into a no conflict block, we must ensure
that the source does not overlap the target. */
if (reg_overlap_mentioned_p (to, from))
from = force_reg (from_mode, from);
/* Get a copy of FROM widened to a word, if necessary. */
if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
lowpart_mode = word_mode;
else
lowpart_mode = from_mode;
lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
lowpart = gen_lowpart (lowpart_mode, to);
emit_move_insn (lowpart, lowfrom);
/* Compute the value to put in each remaining word. */
if (unsignedp)
fill_value = const0_rtx;
else
fill_value = emit_store_flag (gen_reg_rtx (word_mode),
LT, lowfrom, const0_rtx,
VOIDmode, 0, -1);
/* Fill the remaining words. */
for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
{
int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
rtx subword = operand_subword (to, index, 1, to_mode);
gcc_assert (subword);
if (fill_value != subword)
emit_move_insn (subword, fill_value);
}
insns = get_insns ();
end_sequence ();
emit_insn (insns);
return;
}
/* Truncating multi-word to a word or less. */
if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
&& GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
{
if (!((MEM_P (from)
&& ! MEM_VOLATILE_P (from)
&& direct_load[(int) to_mode]
&& ! mode_dependent_address_p (XEXP (from, 0)))
|| REG_P (from)
|| GET_CODE (from) == SUBREG))
from = force_reg (from_mode, from);
convert_move (to, gen_lowpart (word_mode, from), 0);
return;
}
/* Now follow all the conversions between integers
no more than a word long. */
/* For truncation, usually we can just refer to FROM in a narrower mode. */
if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
&& TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
{
if (!((MEM_P (from)
&& ! MEM_VOLATILE_P (from)
&& direct_load[(int) to_mode]
&& ! mode_dependent_address_p (XEXP (from, 0)))
|| REG_P (from)
|| GET_CODE (from) == SUBREG))
from = force_reg (from_mode, from);
if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
&& ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
from = copy_to_reg (from);
emit_move_insn (to, gen_lowpart (to_mode, from));
return;
}
/* Handle extension. */
if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
{
/* Convert directly if that works. */
if ((code = can_extend_p (to_mode, from_mode, unsignedp))
!= CODE_FOR_nothing)
{
emit_unop_insn (code, to, from, equiv_code);
return;
}
else
{
enum machine_mode intermediate;
rtx tmp;
int shift_amount;
/* Search for a mode to convert via. */
for (intermediate = from_mode; intermediate != VOIDmode;
intermediate = GET_MODE_WIDER_MODE (intermediate))
if (((can_extend_p (to_mode, intermediate, unsignedp)
!= CODE_FOR_nothing)
|| (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
&& TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate)))
&& (can_extend_p (intermediate, from_mode, unsignedp)
!= CODE_FOR_nothing))
{
convert_move (to, convert_to_mode (intermediate, from,
unsignedp), unsignedp);
return;
}
/* No suitable intermediate mode.
Generate what we need with shifts. */
shift_amount = (GET_MODE_PRECISION (to_mode)
- GET_MODE_PRECISION (from_mode));
from = gen_lowpart (to_mode, force_reg (from_mode, from));
tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
to, unsignedp);
tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
to, unsignedp);
if (tmp != to)
emit_move_insn (to, tmp);
return;
}
}
/* Support special truncate insns for certain modes. */
if (convert_optab_handler (trunc_optab, to_mode,
from_mode) != CODE_FOR_nothing)
{
emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
to, from, UNKNOWN);
return;
}
/* Handle truncation of volatile memrefs, and so on;
the things that couldn't be truncated directly,
and for which there was no special instruction.
??? Code above formerly short-circuited this, for most integer
mode pairs, with a force_reg in from_mode followed by a recursive
call to this routine. Appears always to have been wrong. */
if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
{
rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
emit_move_insn (to, temp);
return;
}
/* Mode combination is not recognized. */
gcc_unreachable ();
}
/* Return an rtx for a value that would result
from converting X to mode MODE.
Both X and MODE may be floating, or both integer.
UNSIGNEDP is nonzero if X is an unsigned value.
This can be done by referring to a part of X in place
or by copying to a new temporary with conversion. */
rtx
convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
{
return convert_modes (mode, VOIDmode, x, unsignedp);
}
/* Return an rtx for a value that would result
from converting X from mode OLDMODE to mode MODE.
Both modes may be floating, or both integer.
UNSIGNEDP is nonzero if X is an unsigned value.
This can be done by referring to a part of X in place
or by copying to a new temporary with conversion.
You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
rtx
convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
{
rtx temp;
/* If FROM is a SUBREG that indicates that we have already done at least
the required extension, strip it. */
if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
&& GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
&& SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
x = gen_lowpart (mode, x);
if (GET_MODE (x) != VOIDmode)
oldmode = GET_MODE (x);
if (mode == oldmode)
return x;
/* There is one case that we must handle specially: If we are converting
a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
we are to interpret the constant as unsigned, gen_lowpart will do
the wrong if the constant appears negative. What we want to do is
make the high-order word of the constant zero, not all ones. */
if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
&& CONST_INT_P (x) && INTVAL (x) < 0)
{
double_int val = uhwi_to_double_int (INTVAL (x));
/* We need to zero extend VAL. */
if (oldmode != VOIDmode)
val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
return immed_double_int_const (val, mode);
}
/* We can do this with a gen_lowpart if both desired and current modes
are integer, and this is either a constant integer, a register, or a
non-volatile MEM. Except for the constant case where MODE is no
wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
if ((CONST_INT_P (x)
&& GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT)
|| (GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_CLASS (oldmode) == MODE_INT
&& (GET_CODE (x) == CONST_DOUBLE
|| (GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (oldmode)
&& ((MEM_P (x) && ! MEM_VOLATILE_P (x)
&& direct_load[(int) mode])
|| (REG_P (x)
&& (! HARD_REGISTER_P (x)
|| HARD_REGNO_MODE_OK (REGNO (x), mode))
&& TRULY_NOOP_TRUNCATION_MODES_P (mode,
GET_MODE (x))))))))
{
/* ?? If we don't know OLDMODE, we have to assume here that
X does not need sign- or zero-extension. This may not be
the case, but it's the best we can do. */
if (CONST_INT_P (x) && oldmode != VOIDmode
&& GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (oldmode))
{
HOST_WIDE_INT val = INTVAL (x);
/* We must sign or zero-extend in this case. Start by
zero-extending, then sign extend if we need to. */
val &= GET_MODE_MASK (oldmode);
if (! unsignedp
&& val_signbit_known_set_p (oldmode, val))
val |= ~GET_MODE_MASK (oldmode);
return gen_int_mode (val, mode);
}
return gen_lowpart (mode, x);
}
/* Converting from integer constant into mode is always equivalent to an
subreg operation. */
if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
{
gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
return simplify_gen_subreg (mode, x, oldmode, 0);
}
temp = gen_reg_rtx (mode);
convert_move (temp, x, unsignedp);
return temp;
}
/* Return the largest alignment we can use for doing a move (or store)
of MAX_PIECES. ALIGN is the largest alignment we could use. */
static unsigned int
alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
{
enum machine_mode tmode;
tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
if (align >= GET_MODE_ALIGNMENT (tmode))
align = GET_MODE_ALIGNMENT (tmode);
else
{
enum machine_mode tmode, xmode;
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
tmode != VOIDmode;
xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
if (GET_MODE_SIZE (tmode) > max_pieces
|| SLOW_UNALIGNED_ACCESS (tmode, align))
break;
align = MAX (align, GET_MODE_ALIGNMENT (xmode));
}
return align;
}
/* Return the widest integer mode no wider than SIZE. If no such mode
can be found, return VOIDmode. */
static enum machine_mode
widest_int_mode_for_size (unsigned int size)
{
enum machine_mode tmode, mode = VOIDmode;
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
if (GET_MODE_SIZE (tmode) < size)
mode = tmode;
return mode;
}
/* STORE_MAX_PIECES is the number of bytes at a time that we can
store efficiently. Due to internal GCC limitations, this is
MOVE_MAX_PIECES limited by the number of bytes GCC can represent
for an immediate constant. */
#define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
/* Determine whether the LEN bytes can be moved by using several move
instructions. Return nonzero if a call to move_by_pieces should
succeed. */
int
can_move_by_pieces (unsigned HOST_WIDE_INT len,
unsigned int align ATTRIBUTE_UNUSED)
{
return MOVE_BY_PIECES_P (len, align);
}
/* Generate several move instructions to copy LEN bytes from block FROM to
block TO. (These are MEM rtx's with BLKmode).
If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
used to push FROM to the stack.
ALIGN is maximum stack alignment we can assume.
If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
mempcpy, and if ENDP is 2 return memory the end minus one byte ala
stpcpy. */
rtx
move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
unsigned int align, int endp)
{
struct move_by_pieces_d data;
enum machine_mode to_addr_mode, from_addr_mode
= targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
rtx to_addr, from_addr = XEXP (from, 0);
unsigned int max_size = MOVE_MAX_PIECES + 1;
enum insn_code icode;
align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
data.offset = 0;
data.from_addr = from_addr;
if (to)
{
to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
to_addr = XEXP (to, 0);
data.to = to;
data.autinc_to
= (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
|| GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
data.reverse
= (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
}
else
{
to_addr_mode = VOIDmode;
to_addr = NULL_RTX;
data.to = NULL_RTX;
data.autinc_to = 1;
#ifdef STACK_GROWS_DOWNWARD
data.reverse = 1;
#else
data.reverse = 0;
#endif
}
data.to_addr = to_addr;
data.from = from;
data.autinc_from
= (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
|| GET_CODE (from_addr) == POST_INC
|| GET_CODE (from_addr) == POST_DEC);
data.explicit_inc_from = 0;
data.explicit_inc_to = 0;
if (data.reverse) data.offset = len;
data.len = len;
/* If copying requires more than two move insns,
copy addresses to registers (to make displacements shorter)
and use post-increment if available. */
if (!(data.autinc_from && data.autinc_to)
&& move_by_pieces_ninsns (len, align, max_size) > 2)
{
/* Find the mode of the largest move...
MODE might not be used depending on the definitions of the
USE_* macros below. */
enum machine_mode mode ATTRIBUTE_UNUSED
= widest_int_mode_for_size (max_size);
if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
{
data.from_addr = copy_to_mode_reg (from_addr_mode,
plus_constant (from_addr, len));
data.autinc_from = 1;
data.explicit_inc_from = -1;
}
if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
{
data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
data.autinc_from = 1;
data.explicit_inc_from = 1;
}
if (!data.autinc_from && CONSTANT_P (from_addr))
data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
{
data.to_addr = copy_to_mode_reg (to_addr_mode,
plus_constant (to_addr, len));
data.autinc_to = 1;
data.explicit_inc_to = -1;
}
if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
{
data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
data.autinc_to = 1;
data.explicit_inc_to = 1;
}
if (!data.autinc_to && CONSTANT_P (to_addr))
data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
}
align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
/* First move what we can in the largest integer mode, then go to
successively smaller modes. */
while (max_size > 1)
{
enum machine_mode mode = widest_int_mode_for_size (max_size);
if (mode == VOIDmode)
break;
icode = optab_handler (mov_optab, mode);
if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
move_by_pieces_1 (GEN_FCN (icode), mode, &data);
max_size = GET_MODE_SIZE (mode);
}
/* The code above should have handled everything. */
gcc_assert (!data.len);
if (endp)
{
rtx to1;
gcc_assert (!data.reverse);
if (data.autinc_to)
{
if (endp == 2)
{
if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
else
data.to_addr = copy_to_mode_reg (to_addr_mode,
plus_constant (data.to_addr,
-1));
}
to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
data.offset);
}
else
{
if (endp == 2)
--data.offset;
to1 = adjust_address (data.to, QImode, data.offset);
}
return to1;
}
else
return data.to;
}
/* Return number of insns required to move L bytes by pieces.
ALIGN (in bits) is maximum alignment we can assume. */
static unsigned HOST_WIDE_INT
move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
unsigned int max_size)
{
unsigned HOST_WIDE_INT n_insns = 0;
align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
while (max_size > 1)
{
enum machine_mode mode;
enum insn_code icode;
mode = widest_int_mode_for_size (max_size);
if (mode == VOIDmode)
break;
icode = optab_handler (mov_optab, mode);
if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
max_size = GET_MODE_SIZE (mode);
}
gcc_assert (!l);
return n_insns;
}
/* Subroutine of move_by_pieces. Move as many bytes as appropriate
with move instructions for mode MODE. GENFUN is the gen_... function
to make a move insn for that mode. DATA has all the other info. */
static void
move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
struct move_by_pieces_d *data)
{
unsigned int size = GET_MODE_SIZE (mode);
rtx to1 = NULL_RTX, from1;
while (data->len >= size)
{
if (data->reverse)
data->offset -= size;
if (data->to)
{
if (data->autinc_to)
to1 = adjust_automodify_address (data->to, mode, data->to_addr,
data->offset);
else
to1 = adjust_address (data->to, mode, data->offset);
}
if (data->autinc_from)
from1 = adjust_automodify_address (data->from, mode, data->from_addr,
data->offset);
else
from1 = adjust_address (data->from, mode, data->offset);
if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
emit_insn (gen_add2_insn (data->to_addr,
GEN_INT (-(HOST_WIDE_INT)size)));
if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
emit_insn (gen_add2_insn (data->from_addr,
GEN_INT (-(HOST_WIDE_INT)size)));
if (data->to)
emit_insn ((*genfun) (to1, from1));
else
{
#ifdef PUSH_ROUNDING
emit_single_push_insn (mode, from1, NULL);
#else
gcc_unreachable ();
#endif
}
if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
if (! data->reverse)
data->offset += size;
data->len -= size;
}
}
/* Emit code to move a block Y to a block X. This may be done with
string-move instructions, with multiple scalar move instructions,
or with a library call.
Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
SIZE is an rtx that says how long they are.
ALIGN is the maximum alignment we can assume they have.
METHOD describes what kind of copy this is, and what mechanisms may be used.
Return the address of the new block, if memcpy is called and returns it,
0 otherwise. */
rtx
emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
unsigned int expected_align, HOST_WIDE_INT expected_size)
{
bool may_use_call;
rtx retval = 0;
unsigned int align;
gcc_assert (size);
if (CONST_INT_P (size)
&& INTVAL (size) == 0)
return 0;
switch (method)
{
case BLOCK_OP_NORMAL:
case BLOCK_OP_TAILCALL:
may_use_call = true;
break;
case BLOCK_OP_CALL_PARM:
may_use_call = block_move_libcall_safe_for_call_parm ();
/* Make inhibit_defer_pop nonzero around the library call
to force it to pop the arguments right away. */
NO_DEFER_POP;
break;
case BLOCK_OP_NO_LIBCALL:
may_use_call = false;
break;
default:
gcc_unreachable ();
}
gcc_assert (MEM_P (x) && MEM_P (y));
align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
gcc_assert (align >= BITS_PER_UNIT);
/* Make sure we've got BLKmode addresses; store_one_arg can decide that
block copy is more efficient for other large modes, e.g. DCmode. */
x = adjust_address (x, BLKmode, 0);
y = adjust_address (y, BLKmode, 0);
/* Set MEM_SIZE as appropriate for this block copy. The main place this
can be incorrect is coming from __builtin_memcpy. */
if (CONST_INT_P (size))
{
x = shallow_copy_rtx (x);
y = shallow_copy_rtx (y);
set_mem_size (x, INTVAL (size));
set_mem_size (y, INTVAL (size));
}
if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
move_by_pieces (x, y, INTVAL (size), align, 0);
else if (emit_block_move_via_movmem (x, y, size, align,
expected_align, expected_size))
;
else if (may_use_call
&& ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
&& ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
{
/* Since x and y are passed to a libcall, mark the corresponding
tree EXPR as addressable. */
tree y_expr = MEM_EXPR (y);
tree x_expr = MEM_EXPR (x);
if (y_expr)
mark_addressable (y_expr);
if (x_expr)
mark_addressable (x_expr);
retval = emit_block_move_via_libcall (x, y, size,
method == BLOCK_OP_TAILCALL);
}
else
emit_block_move_via_loop (x, y, size, align);
if (method == BLOCK_OP_CALL_PARM)
OK_DEFER_POP;
return retval;
}
rtx
emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
{
return emit_block_move_hints (x, y, size, method, 0, -1);
}
/* A subroutine of emit_block_move. Returns true if calling the
block move libcall will not clobber any parameters which may have
already been placed on the stack. */
static bool
block_move_libcall_safe_for_call_parm (void)
{
#if defined (REG_PARM_STACK_SPACE)
tree fn;
#endif
/* If arguments are pushed on the stack, then they're safe. */
if (PUSH_ARGS)
return true;
/* If registers go on the stack anyway, any argument is sure to clobber
an outgoing argument. */
#if defined (REG_PARM_STACK_SPACE)
fn = emit_block_move_libcall_fn (false);
/* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
depend on its argument. */
(void) fn;
if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
&& REG_PARM_STACK_SPACE (fn) != 0)
return false;
#endif
/* If any argument goes in memory, then it might clobber an outgoing
argument. */
{
CUMULATIVE_ARGS args_so_far_v;
cumulative_args_t args_so_far;
tree fn, arg;
fn = emit_block_move_libcall_fn (false);
INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
args_so_far = pack_cumulative_args (&args_so_far_v);
arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
{
enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
rtx tmp = targetm.calls.function_arg (args_so_far, mode,
NULL_TREE, true);
if (!tmp || !REG_P (tmp))
return false;
if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
return false;
targetm.calls.function_arg_advance (args_so_far, mode,
NULL_TREE, true);
}
}
return true;
}
/* A subroutine of emit_block_move. Expand a movmem pattern;
return true if successful. */
static bool
emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
unsigned int expected_align, HOST_WIDE_INT expected_size)
{
int save_volatile_ok = volatile_ok;
enum machine_mode mode;
if (expected_align < align)
expected_align = align;
/* Since this is a move insn, we don't care about volatility. */
volatile_ok = 1;
/* Try the most limited insn first, because there's no point
including more than one in the machine description unless
the more limited one has some advantage. */
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
{
enum insn_code code = direct_optab_handler (movmem_optab, mode);
if (code != CODE_FOR_nothing
/* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
here because if SIZE is less than the mode mask, as it is
returned by the macro, it will definitely be less than the
actual mode mask. */
&& ((CONST_INT_P (size)
&& ((unsigned HOST_WIDE_INT) INTVAL (size)
<= (GET_MODE_MASK (mode) >> 1)))
|| GET_MODE_BITSIZE (mode) >= BITS_PER_WORD))
{
struct expand_operand ops[6];
unsigned int nops;
/* ??? When called via emit_block_move_for_call, it'd be
nice if there were some way to inform the backend, so
that it doesn't fail the expansion because it thinks
emitting the libcall would be more efficient. */
nops = insn_data[(int) code].n_generator_args;
gcc_assert (nops == 4 || nops == 6);
create_fixed_operand (&ops[0], x);
create_fixed_operand (&ops[1], y);
/* The check above guarantees that this size conversion is valid. */
create_convert_operand_to (&ops[2], size, mode, true);
create_integer_operand (&ops[3], align / BITS_PER_UNIT);
if (nops == 6)
{
create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
create_integer_operand (&ops[5], expected_size);
}
if (maybe_expand_insn (code, nops, ops))
{
volatile_ok = save_volatile_ok;
return true;
}
}
}
volatile_ok = save_volatile_ok;
return false;
}
/* A subroutine of emit_block_move. Expand a call to memcpy.
Return the return value from memcpy, 0 otherwise. */
rtx
emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
{
rtx dst_addr, src_addr;
tree call_expr, fn, src_tree, dst_tree, size_tree;
enum machine_mode size_mode;
rtx retval;
/* Emit code to copy the addresses of DST and SRC and SIZE into new
pseudos. We can then place those new pseudos into a VAR_DECL and
use them later. */
dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
dst_addr = convert_memory_address (ptr_mode, dst_addr);
src_addr = convert_memory_address (ptr_mode, src_addr);
dst_tree = make_tree (ptr_type_node, dst_addr);
src_tree = make_tree (ptr_type_node, src_addr);
size_mode = TYPE_MODE (sizetype);
size = convert_to_mode (size_mode, size, 1);
size = copy_to_mode_reg (size_mode, size);
/* It is incorrect to use the libcall calling conventions to call
memcpy in this context. This could be a user call to memcpy and
the user may wish to examine the return value from memcpy. For
targets where libcalls and normal calls have different conventions
for returning pointers, we could end up generating incorrect code. */
size_tree = make_tree (sizetype, size);
fn = emit_block_move_libcall_fn (true);
call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
CALL_EXPR_TAILCALL (call_expr) = tailcall;
retval = expand_normal (call_expr);
return retval;
}
/* A subroutine of emit_block_move_via_libcall. Create the tree node
for the function we use for block copies. The first time FOR_CALL
is true, we call assemble_external. */
static GTY(()) tree block_move_fn;
void
init_block_move_fn (const char *asmspec)
{
if (!block_move_fn)
{
tree args, fn;
fn = get_identifier ("memcpy");
args = build_function_type_list (ptr_type_node, ptr_type_node,
const_ptr_type_node, sizetype,
NULL_TREE);
fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
DECL_EXTERNAL (fn) = 1;
TREE_PUBLIC (fn) = 1;
DECL_ARTIFICIAL (fn) = 1;
TREE_NOTHROW (fn) = 1;
DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
DECL_VISIBILITY_SPECIFIED (fn) = 1;
block_move_fn = fn;
}
if (asmspec)
set_user_assembler_name (block_move_fn, asmspec);
}
static tree
emit_block_move_libcall_fn (int for_call)
{
static bool emitted_extern;
if (!block_move_fn)
init_block_move_fn (NULL);
if (for_call && !emitted_extern)
{
emitted_extern = true;
make_decl_rtl (block_move_fn);
assemble_external (block_move_fn);
}
return block_move_fn;
}
/* A subroutine of emit_block_move. Copy the data via an explicit
loop. This is used only when libcalls are forbidden. */
/* ??? It'd be nice to copy in hunks larger than QImode. */
static void
emit_block_move_via_loop (rtx x, rtx y, rtx size,
unsigned int align ATTRIBUTE_UNUSED)
{
rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
enum machine_mode x_addr_mode
= targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
enum machine_mode y_addr_mode
= targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
enum machine_mode iter_mode;
iter_mode = GET_MODE (size);
if (iter_mode == VOIDmode)
iter_mode = word_mode;
top_label = gen_label_rtx ();
cmp_label = gen_label_rtx ();
iter = gen_reg_rtx (iter_mode);
emit_move_insn (iter, const0_rtx);
x_addr = force_operand (XEXP (x, 0), NULL_RTX);
y_addr = force_operand (XEXP (y, 0), NULL_RTX);
do_pending_stack_adjust ();
emit_jump (cmp_label);
emit_label (top_label);
tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
if (x_addr_mode != y_addr_mode)
tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
x = change_address (x, QImode, x_addr);
y = change_address (y, QImode, y_addr);
emit_move_insn (x, y);
tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
true, OPTAB_LIB_WIDEN);
if (tmp != iter)
emit_move_insn (iter, tmp);
emit_label (cmp_label);
emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
true, top_label);
}
/* Copy all or part of a value X into registers starting at REGNO.
The number of registers to be filled is NREGS. */
void
move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
{
int i;
#ifdef HAVE_load_multiple
rtx pat;
rtx last;
#endif
if (nregs == 0)
return;
if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
x = validize_mem (force_const_mem (mode, x));
/* See if the machine can do this with a load multiple insn. */
#ifdef HAVE_load_multiple
if (HAVE_load_multiple)
{
last = get_last_insn ();
pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
GEN_INT (nregs));
if (pat)
{
emit_insn (pat);
return;
}
else
delete_insns_since (last);
}
#endif
for (i = 0; i < nregs; i++)
emit_move_insn (gen_rtx_REG (word_mode, regno + i),
operand_subword_force (x, i, mode));
}
/* Copy all or part of a BLKmode value X out of registers starting at REGNO.
The number of registers to be filled is NREGS. */
void
move_block_from_reg (int regno, rtx x, int nregs)
{
int i;
if (nregs == 0)
return;
/* See if the machine can do this with a store multiple insn. */
#ifdef HAVE_store_multiple
if (HAVE_store_multiple)
{
rtx last = get_last_insn ();
rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
GEN_INT (nregs));
if (pat)
{
emit_insn (pat);
return;
}
else
delete_insns_since (last);
}
#endif
for (i = 0; i < nregs; i++)
{
rtx tem = operand_subword (x, i, 1, BLKmode);
gcc_assert (tem);
emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
}
}
/* Generate a PARALLEL rtx for a new non-consecutive group of registers from
ORIG, where ORIG is a non-consecutive group of registers represented by
a PARALLEL. The clone is identical to the original except in that the
original set of registers is replaced by a new set of pseudo registers.
The new set has the same modes as the original set. */
rtx
gen_group_rtx (rtx orig)
{
int i, length;
rtx *tmps;
gcc_assert (GET_CODE (orig) == PARALLEL);
length = XVECLEN (orig, 0);
tmps = XALLOCAVEC (rtx, length);
/* Skip a NULL entry in first slot. */
i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
if (i)
tmps[0] = 0;
for (; i < length; i++)
{
enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
}
return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
}
/* A subroutine of emit_group_load. Arguments as for emit_group_load,
except that values are placed in TMPS[i], and must later be moved
into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
static void
emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
{
rtx src;
int start, i;
enum machine_mode m = GET_MODE (orig_src);
gcc_assert (GET_CODE (dst) == PARALLEL);
if (m != VOIDmode
&& !SCALAR_INT_MODE_P (m)
&& !MEM_P (orig_src)
&& GET_CODE (orig_src) != CONCAT)
{
enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
if (imode == BLKmode)
src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
else
src = gen_reg_rtx (imode);
if (imode != BLKmode)
src = gen_lowpart (GET_MODE (orig_src), src);
emit_move_insn (src, orig_src);
/* ...and back again. */
if (imode != BLKmode)
src = gen_lowpart (imode, src);
emit_group_load_1 (tmps, dst, src, type, ssize);
return;
}
/* Check for a NULL entry, used to indicate that the parameter goes
both on the stack and in registers. */
if (XEXP (XVECEXP (dst, 0, 0), 0))
start = 0;
else
start = 1;
/* Process the pieces. */
for (i = start; i < XVECLEN (dst, 0); i++)
{
enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
unsigned int bytelen = GET_MODE_SIZE (mode);
int shift = 0;
/* Handle trailing fragments that run over the size of the struct. */
if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
{
/* Arrange to shift the fragment to where it belongs.
extract_bit_field loads to the lsb of the reg. */
if (
#ifdef BLOCK_REG_PADDING
BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
== (BYTES_BIG_ENDIAN ? upward : downward)
#else
BYTES_BIG_ENDIAN
#endif
)
shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
bytelen = ssize - bytepos;
gcc_assert (bytelen > 0);
}
/* If we won't be loading directly from memory, protect the real source
from strange tricks we might play; but make sure that the source can
be loaded directly into the destination. */
src = orig_src;
if (!MEM_P (orig_src)
&& (!CONSTANT_P (orig_src)
|| (GET_MODE (orig_src) != mode
&& GET_MODE (orig_src) != VOIDmode)))
{
if (GET_MODE (orig_src) == VOIDmode)
src = gen_reg_rtx (mode);
else
src = gen_reg_rtx (GET_MODE (orig_src));
emit_move_insn (src, orig_src);
}
/* Optimize the access just a bit. */
if (MEM_P (src)
&& (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
|| MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
&& bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
&& bytelen == GET_MODE_SIZE (mode))
{
tmps[i] = gen_reg_rtx (mode);
emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
}
else if (COMPLEX_MODE_P (mode)
&& GET_MODE (src) == mode
&& bytelen == GET_MODE_SIZE (mode))
/* Let emit_move_complex do the bulk of the work. */
tmps[i] = src;
else if (GET_CODE (src) == CONCAT)
{
unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
if ((bytepos == 0 && bytelen == slen0)
|| (bytepos != 0 && bytepos + bytelen <= slen))
{
/* The following assumes that the concatenated objects all
have the same size. In this case, a simple calculation
can be used to determine the object and the bit field
to be extracted. */
tmps[i] = XEXP (src, bytepos / slen0);
if (! CONSTANT_P (tmps[i])
&& (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
(bytepos % slen0) * BITS_PER_UNIT,
1, false, NULL_RTX, mode, mode);
}
else
{
rtx mem;
gcc_assert (!bytepos);
mem = assign_stack_temp (GET_MODE (src), slen, 0);
emit_move_insn (mem, src);
tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
0, 1, false, NULL_RTX, mode, mode);
}
}
/* FIXME: A SIMD parallel will eventually lead to a subreg of a
SIMD register, which is currently broken. While we get GCC
to emit proper RTL for these cases, let's dump to memory. */
else if (VECTOR_MODE_P (GET_MODE (dst))
&& REG_P (src))
{
int slen = GET_MODE_SIZE (GET_MODE (src));
rtx mem;
mem = assign_stack_temp (GET_MODE (src), slen, 0);
emit_move_insn (mem, src);
tmps[i] = adjust_address (mem, mode, (int) bytepos);
}
else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
&& XVECLEN (dst, 0) > 1)
tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
else if (CONSTANT_P (src))
{
HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
if (len == ssize)
tmps[i] = src;
else
{
rtx first, second;
gcc_assert (2 * len == ssize);
split_double (src, &first, &second);
if (i)
tmps[i] = second;
else
tmps[i] = first;
}
}
else if (REG_P (src) && GET_MODE (src) == mode)
tmps[i] = src;
else
tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
bytepos * BITS_PER_UNIT, 1, false, NULL_RTX,
mode, mode);
if (shift)
tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
shift, tmps[i], 0);
}
}
/* Emit code to move a block SRC of type TYPE to a block DST,
where DST is non-consecutive registers represented by a PARALLEL.
SSIZE represents the total size of block ORIG_SRC in bytes, or -1
if not known. */
void
emit_group_load (rtx dst, rtx src, tree type, int ssize)
{
rtx *tmps;
int i;
tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
emit_group_load_1 (tmps, dst, src, type, ssize);
/* Copy the extracted pieces into the proper (probable) hard regs. */
for (i = 0; i < XVECLEN (dst, 0); i++)
{
rtx d = XEXP (XVECEXP (dst, 0, i), 0);
if (d == NULL)
continue;
emit_move_insn (d, tmps[i]);
}
}
/* Similar, but load SRC into new pseudos in a format that looks like
PARALLEL. This can later be fed to emit_group_move to get things
in the right place. */
rtx
emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
{
rtvec vec;
int i;
vec = rtvec_alloc (XVECLEN (parallel, 0));
emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
/* Convert the vector to look just like the original PARALLEL, except
with the computed values. */
for (i = 0; i < XVECLEN (parallel, 0); i++)
{
rtx e = XVECEXP (parallel, 0, i);
rtx d = XEXP (e, 0);
if (d)
{
d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
}
RTVEC_ELT (vec, i) = e;
}
return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
}
/* Emit code to move a block SRC to block DST, where SRC and DST are
non-consecutive groups of registers, each represented by a PARALLEL. */
void
emit_group_move (rtx dst, rtx src)
{
int i;
gcc_assert (GET_CODE (src) == PARALLEL
&& GET_CODE (dst) == PARALLEL
&& XVECLEN (src, 0) == XVECLEN (dst, 0));
/* Skip first entry if NULL. */
for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
XEXP (XVECEXP (src, 0, i), 0));
}
/* Move a group of registers represented by a PARALLEL into pseudos. */
rtx
emit_group_move_into_temps (rtx src)
{
rtvec vec = rtvec_alloc (XVECLEN (src, 0));
int i;
for (i = 0; i < XVECLEN (src, 0); i++)
{
rtx e = XVECEXP (src, 0, i);
rtx d = XEXP (e, 0);
if (d)
e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
RTVEC_ELT (vec, i) = e;
}
return gen_rtx_PARALLEL (GET_MODE (src), vec);
}
/* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
where SRC is non-consecutive registers represented by a PARALLEL.
SSIZE represents the total size of block ORIG_DST, or -1 if not
known. */
void
emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
{
rtx *tmps, dst;
int start, finish, i;
enum machine_mode m = GET_MODE (orig_dst);
gcc_assert (GET_CODE (src) == PARALLEL);
if (!SCALAR_INT_MODE_P (m)
&& !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
{
enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
if (imode == BLKmode)
dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
else
dst = gen_reg_rtx (imode);
emit_group_store (dst, src, type, ssize);
if (imode != BLKmode)
dst = gen_lowpart (GET_MODE (orig_dst), dst);
emit_move_insn (orig_dst, dst);
return;
}
/* Check for a NULL entry, used to indicate that the parameter goes
both on the stack and in registers. */
if (XEXP (XVECEXP (src, 0, 0), 0))
start = 0;
else
start = 1;
finish = XVECLEN (src, 0);
tmps = XALLOCAVEC (rtx, finish);
/* Copy the (probable) hard regs into pseudos. */
for (i = start; i < finish; i++)
{
rtx reg = XEXP (XVECEXP (src, 0, i), 0);
if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
{
tmps[i] = gen_reg_rtx (GET_MODE (reg));
emit_move_insn (tmps[i], reg);
}
else
tmps[i] = reg;
}
/* If we won't be storing directly into memory, protect the real destination
from strange tricks we might play. */
dst = orig_dst;
if (GET_CODE (dst) == PARALLEL)
{
rtx temp;
/* We can get a PARALLEL dst if there is a conditional expression in
a return statement. In that case, the dst and src are the same,
so no action is necessary. */
if (rtx_equal_p (dst, src))
return;
/* It is unclear if we can ever reach here, but we may as well handle
it. Allocate a temporary, and split this into a store/load to/from
the temporary. */
temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
emit_group_store (temp, src, type, ssize);
emit_group_load (dst, temp, type, ssize);
return;
}
else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
{
enum machine_mode outer = GET_MODE (dst);
enum machine_mode inner;
HOST_WIDE_INT bytepos;
bool done = false;
rtx temp;
if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
dst = gen_reg_rtx (outer);
/* Make life a bit easier for combine. */
/* If the first element of the vector is the low part
of the destination mode, use a paradoxical subreg to
initialize the destination. */
if (start < finish)
{
inner = GET_MODE (tmps[start]);
bytepos = subreg_lowpart_offset (inner, outer);
if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
{
temp = simplify_gen_subreg (outer, tmps[start],
inner, 0);
if (temp)
{
emit_move_insn (dst, temp);
done = true;
start++;
}
}
}
/* If the first element wasn't the low part, try the last. */
if (!done
&& start < finish - 1)
{
inner = GET_MODE (tmps[finish - 1]);
bytepos = subreg_lowpart_offset (inner, outer);
if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
{
temp = simplify_gen_subreg (outer, tmps[finish - 1],
inner, 0);
if (temp)
{
emit_move_insn (dst, temp);
done = true;
finish--;
}
}
}
/* Otherwise, simply initialize the result to zero. */
if (!done)
emit_move_insn (dst, CONST0_RTX (outer));
}
/* Process the pieces. */
for (i = start; i < finish; i++)
{
HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
enum machine_mode mode = GET_MODE (tmps[i]);
unsigned int bytelen = GET_MODE_SIZE (mode);
unsigned int adj_bytelen = bytelen;
rtx dest = dst;
/* Handle trailing fragments that run over the size of the struct. */
if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
adj_bytelen = ssize - bytepos;
if (GET_CODE (dst) == CONCAT)
{
if (bytepos + adj_bytelen
<= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
dest = XEXP (dst, 0);
else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
{
bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
dest = XEXP (dst, 1);
}
else
{
enum machine_mode dest_mode = GET_MODE (dest);
enum machine_mode tmp_mode = GET_MODE (tmps[i]);
gcc_assert (bytepos == 0 && XVECLEN (src, 0));
if (GET_MODE_ALIGNMENT (dest_mode)
>= GET_MODE_ALIGNMENT (tmp_mode))
{
dest = assign_stack_temp (dest_mode,
GET_MODE_SIZE (dest_mode),
0);
emit_move_insn (adjust_address (dest,
tmp_mode,
bytepos),
tmps[i]);
dst = dest;
}
else
{
dest = assign_stack_temp (tmp_mode,
GET_MODE_SIZE (tmp_mode),
0);
emit_move_insn (dest, tmps[i]);
dst = adjust_address (dest, dest_mode, bytepos);
}
break;
}
}
if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
{
/* store_bit_field always takes its value from the lsb.
Move the fragment to the lsb if it's not already there. */
if (
#ifdef BLOCK_REG_PADDING
BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
== (BYTES_BIG_ENDIAN ? upward : downward)
#else
BYTES_BIG_ENDIAN
#endif
)
{
int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
shift, tmps[i], 0);
}
bytelen = adj_bytelen;
}
/* Optimize the access just a bit. */
if (MEM_P (dest)
&& (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
|| MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
&& bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
&& bytelen == GET_MODE_SIZE (mode))
emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
else
store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
0, 0, mode, tmps[i]);
}
/* Copy from the pseudo into the (probable) hard reg. */
if (orig_dst != dst)
emit_move_insn (orig_dst, dst);
}
/* Generate code to copy a BLKmode object of TYPE out of a
set of registers starting with SRCREG into TGTBLK. If TGTBLK
is null, a stack temporary is created. TGTBLK is returned.
The purpose of this routine is to handle functions that return
BLKmode structures in registers. Some machines (the PA for example)
want to return all small structures in registers regardless of the
structure's alignment. */
rtx
copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
{
unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
rtx src = NULL, dst = NULL;
unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
enum machine_mode copy_mode;
if (tgtblk == 0)
{
tgtblk = assign_temp (build_qualified_type (type,
(TYPE_QUALS (type)
| TYPE_QUAL_CONST)),
0, 1, 1);
preserve_temp_slots (tgtblk);
}
/* This code assumes srcreg is at least a full word. If it isn't, copy it
into a new pseudo which is a full word. */
if (GET_MODE (srcreg) != BLKmode
&& GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
/* If the structure doesn't take up a whole number of words, see whether
SRCREG is padded on the left or on the right. If it's on the left,
set PADDING_CORRECTION to the number of bits to skip.
In most ABIs, the structure will be returned at the least end of
the register, which translates to right padding on little-endian
targets and left padding on big-endian targets. The opposite
holds if the structure is returned at the most significant
end of the register. */
if (bytes % UNITS_PER_WORD != 0
&& (targetm.calls.return_in_msb (type)
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN))
padding_correction
= (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
/* Copy the structure BITSIZE bits at a time. If the target lives in
memory, take care of not reading/writing past its end by selecting
a copy mode suited to BITSIZE. This should always be possible given
how it is computed.
We could probably emit more efficient code for machines which do not use
strict alignment, but it doesn't seem worth the effort at the current
time. */
copy_mode = word_mode;
if (MEM_P (tgtblk))
{
enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
if (mem_mode != BLKmode)
copy_mode = mem_mode;
}
for (bitpos = 0, xbitpos = padding_correction;
bitpos < bytes * BITS_PER_UNIT;
bitpos += bitsize, xbitpos += bitsize)
{
/* We need a new source operand each time xbitpos is on a
word boundary and when xbitpos == padding_correction
(the first time through). */
if (xbitpos % BITS_PER_WORD == 0
|| xbitpos == padding_correction)
src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
GET_MODE (srcreg));
/* We need a new destination operand each time bitpos is on
a word boundary. */
if (bitpos % BITS_PER_WORD == 0)
dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
/* Use xbitpos for the source extraction (right justified) and
bitpos for the destination store (left justified). */
store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
extract_bit_field (src, bitsize,
xbitpos % BITS_PER_WORD, 1, false,
NULL_RTX, copy_mode, copy_mode));
}
return tgtblk;
}
/* Copy BLKmode value SRC into a register of mode MODE. Return the
register if it contains any data, otherwise return null.
This is used on targets that return BLKmode values in registers. */
rtx
copy_blkmode_to_reg (enum machine_mode mode, tree src)
{
int i, n_regs;
unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
unsigned int bitsize;
rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
enum machine_mode dst_mode;
gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
x = expand_normal (src);
bytes = int_size_in_bytes (TREE_TYPE (src));
if (bytes == 0)
return NULL_RTX;
/* If the structure doesn't take up a whole number of words, see
whether the register value should be padded on the left or on
the right. Set PADDING_CORRECTION to the number of padding
bits needed on the left side.
In most ABIs, the structure will be returned at the least end of
the register, which translates to right padding on little-endian
targets and left padding on big-endian targets. The opposite
holds if the structure is returned at the most significant
end of the register. */
if (bytes % UNITS_PER_WORD != 0
&& (targetm.calls.return_in_msb (TREE_TYPE (src))
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN))
padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
* BITS_PER_UNIT));
n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
dst_words = XALLOCAVEC (rtx, n_regs);
bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
/* Copy the structure BITSIZE bits at a time. */
for (bitpos = 0, xbitpos = padding_correction;
bitpos < bytes * BITS_PER_UNIT;
bitpos += bitsize, xbitpos += bitsize)
{
/* We need a new destination pseudo each time xbitpos is
on a word boundary and when xbitpos == padding_correction
(the first time through). */
if (xbitpos % BITS_PER_WORD == 0
|| xbitpos == padding_correction)
{
/* Generate an appropriate register. */
dst_word = gen_reg_rtx (word_mode);
dst_words[xbitpos / BITS_PER_WORD] = dst_word;
/* Clear the destination before we move anything into it. */
emit_move_insn (dst_word, CONST0_RTX (word_mode));
}
/* We need a new source operand each time bitpos is on a word
boundary. */
if (bitpos % BITS_PER_WORD == 0)
src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
/* Use bitpos for the source extraction (left justified) and
xbitpos for the destination store (right justified). */
store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
0, 0, word_mode,
extract_bit_field (src_word, bitsize,
bitpos % BITS_PER_WORD, 1, false,
NULL_RTX, word_mode, word_mode));
}
if (mode == BLKmode)
{
/* Find the smallest integer mode large enough to hold the
entire structure. */
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
/* Have we found a large enough mode? */
if (GET_MODE_SIZE (mode) >= bytes)
break;
/* A suitable mode should have been found. */
gcc_assert (mode != VOIDmode);
}
if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
dst_mode = word_mode;
else
dst_mode = mode;
dst = gen_reg_rtx (dst_mode);
for (i = 0; i < n_regs; i++)
emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
if (mode != dst_mode)
dst = gen_lowpart (mode, dst);
return dst;
}
/* Add a USE expression for REG to the (possibly empty) list pointed
to by CALL_FUSAGE. REG must denote a hard register. */
void
use_reg_mode (rtx *call_fusage, rtx reg, enum machine_mode mode)
{
gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
*call_fusage
= gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
}
/* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
starting at REGNO. All of these registers must be hard registers. */
void
use_regs (rtx *call_fusage, int regno, int nregs)
{
int i;
gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
for (i = 0; i < nregs; i++)
use_reg (call_fusage, regno_reg_rtx[regno + i]);
}
/* Add USE expressions to *CALL_FUSAGE for each REG contained in the
PARALLEL REGS. This is for calls that pass values in multiple
non-contiguous locations. The Irix 6 ABI has examples of this. */
void
use_group_regs (rtx *call_fusage, rtx regs)
{
int i;
for (i = 0; i < XVECLEN (regs, 0); i++)
{
rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
/* A NULL entry means the parameter goes both on the stack and in
registers. This can also be a MEM for targets that pass values
partially on the stack and partially in registers. */
if (reg != 0 && REG_P (reg))
use_reg (call_fusage, reg);
}
}
/* Return the defining gimple statement for SSA_NAME NAME if it is an
assigment and the code of the expresion on the RHS is CODE. Return
NULL otherwise. */
static gimple
get_def_for_expr (tree name, enum tree_code code)
{
gimple def_stmt;
if (TREE_CODE (name) != SSA_NAME)
return NULL;
def_stmt = get_gimple_for_ssa_name (name);
if (!def_stmt
|| gimple_assign_rhs_code (def_stmt) != code)
return NULL;
return def_stmt;
}
/* Determine whether the LEN bytes generated by CONSTFUN can be
stored to memory using several move instructions. CONSTFUNDATA is
a pointer which will be passed as argument in every CONSTFUN call.
ALIGN is maximum alignment we can assume. MEMSETP is true if this is
a memset operation and false if it's a copy of a constant string.
Return nonzero if a call to store_by_pieces should succeed. */
int
can_store_by_pieces (unsigned HOST_WIDE_INT len,
rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
void *constfundata, unsigned int align, bool memsetp)
{
unsigned HOST_WIDE_INT l;
unsigned int max_size;
HOST_WIDE_INT offset = 0;
enum machine_mode mode;
enum insn_code icode;
int reverse;
/* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
rtx cst ATTRIBUTE_UNUSED;
if (len == 0)
return 1;
if (! (memsetp
? SET_BY_PIECES_P (len, align)
: STORE_BY_PIECES_P (len, align)))
return 0;
align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
/* We would first store what we can in the largest integer mode, then go to
successively smaller modes. */
for (reverse = 0;
reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
reverse++)
{
l = len;
max_size = STORE_MAX_PIECES + 1;
while (max_size > 1)
{
mode = widest_int_mode_for_size (max_size);
if (mode == VOIDmode)
break;
icode = optab_handler (mov_optab, mode);
if (icode != CODE_FOR_nothing
&& align >= GET_MODE_ALIGNMENT (mode))
{
unsigned int size = GET_MODE_SIZE (mode);
while (l >= size)
{
if (reverse)
offset -= size;
cst = (*constfun) (constfundata, offset, mode);
if (!targetm.legitimate_constant_p (mode, cst))
return 0;
if (!reverse)
offset += size;
l -= size;
}
}
max_size = GET_MODE_SIZE (mode);
}
/* The code above should have handled everything. */
gcc_assert (!l);
}
return 1;
}
/* Generate several move instructions to store LEN bytes generated by
CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
pointer which will be passed as argument in every CONSTFUN call.
ALIGN is maximum alignment we can assume. MEMSETP is true if this is
a memset operation and false if it's a copy of a constant string.
If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
mempcpy, and if ENDP is 2 return memory the end minus one byte ala
stpcpy. */
rtx
store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
void *constfundata, unsigned int align, bool memsetp, int endp)
{
enum machine_mode to_addr_mode
= targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
struct store_by_pieces_d data;
if (len == 0)
{
gcc_assert (endp != 2);
return to;
}
gcc_assert (memsetp
? SET_BY_PIECES_P (len, align)
: STORE_BY_PIECES_P (len, align));
data.constfun = constfun;
data.constfundata = constfundata;
data.len = len;
data.to = to;
store_by_pieces_1 (&data, align);
if (endp)
{
rtx to1;
gcc_assert (!data.reverse);
if (data.autinc_to)
{
if (endp == 2)
{
if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
else
data.to_addr = copy_to_mode_reg (to_addr_mode,
plus_constant (data.to_addr,
-1));
}
to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
data.offset);
}
else
{
if (endp == 2)
--data.offset;
to1 = adjust_address (data.to, QImode, data.offset);
}
return to1;
}
else
return data.to;
}
/* Generate several move instructions to clear LEN bytes of block TO. (A MEM
rtx with BLKmode). ALIGN is maximum alignment we can assume. */
static void
clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
{
struct store_by_pieces_d data;
if (len == 0)
return;
data.constfun = clear_by_pieces_1;
data.constfundata = NULL;
data.len = len;
data.to = to;
store_by_pieces_1 (&data, align);
}
/* Callback routine for clear_by_pieces.
Return const0_rtx unconditionally. */
static rtx
clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
return const0_rtx;
}
/* Subroutine of clear_by_pieces and store_by_pieces.
Generate several move instructions to store LEN bytes of block TO. (A MEM
rtx with BLKmode). ALIGN is maximum alignment we can assume. */
static void
store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
unsigned int align ATTRIBUTE_UNUSED)
{
enum machine_mode to_addr_mode
= targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
rtx to_addr = XEXP (data->to, 0);
unsigned int max_size = STORE_MAX_PIECES + 1;
enum insn_code icode;
data->offset = 0;
data->to_addr = to_addr;
data->autinc_to
= (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
|| GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
data->explicit_inc_to = 0;
data->reverse
= (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
if (data->reverse)
data->offset = data->len;
/* If storing requires more than two move insns,
copy addresses to registers (to make displacements shorter)
and use post-increment if available. */
if (!data->autinc_to
&& move_by_pieces_ninsns (data->len, align, max_size) > 2)
{
/* Determine the main mode we'll be using.
MODE might not be used depending on the definitions of the
USE_* macros below. */
enum machine_mode mode ATTRIBUTE_UNUSED
= widest_int_mode_for_size (max_size);
if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
{
data->to_addr = copy_to_mode_reg (to_addr_mode,
plus_constant (to_addr, data->len));
data->autinc_to = 1;
data->explicit_inc_to = -1;
}
if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
&& ! data->autinc_to)
{
data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
data->autinc_to = 1;
data->explicit_inc_to = 1;
}
if ( !data->autinc_to && CONSTANT_P (to_addr))
data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
}
align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
/* First store what we can in the largest integer mode, then go to
successively smaller modes. */
while (max_size > 1)
{
enum machine_mode mode = widest_int_mode_for_size (max_size);
if (mode == VOIDmode)
break;
icode = optab_handler (mov_optab, mode);
if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
store_by_pieces_2 (GEN_FCN (icode), mode, data);
max_size = GET_MODE_SIZE (mode);
}
/* The code above should have handled everything. */
gcc_assert (!data->len);
}
/* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
with move instructions for mode MODE. GENFUN is the gen_... function
to make a move insn for that mode. DATA has all the other info. */
static void
store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
struct store_by_pieces_d *data)
{
unsigned int size = GET_MODE_SIZE (mode);
rtx to1, cst;
while (data->len >= size)
{
if (data->reverse)
data->offset -= size;
if (data->autinc_to)
to1 = adjust_automodify_address (data->to, mode, data->to_addr,
data->offset);
else
to1 = adjust_address (data->to, mode, data->offset);
if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
emit_insn (gen_add2_insn (data->to_addr,
GEN_INT (-(HOST_WIDE_INT) size)));
cst = (*data->constfun) (data->constfundata, data->offset, mode);
emit_insn ((*genfun) (to1, cst));
if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
if (! data->reverse)
data->offset += size;
data->len -= size;
}
}
/* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
its length in bytes. */
rtx
clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
unsigned int expected_align, HOST_WIDE_INT expected_size)
{
enum machine_mode mode = GET_MODE (object);
unsigned int align;
gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
/* If OBJECT is not BLKmode and SIZE is the same size as its mode,
just move a zero. Otherwise, do this a piece at a time. */
if (mode != BLKmode
&& CONST_INT_P (size)
&& INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
{
rtx zero = CONST0_RTX (mode);
if (zero != NULL)
{
emit_move_insn (object, zero);
return NULL;
}
if (COMPLEX_MODE_P (mode))
{
zero = CONST0_RTX (GET_MODE_INNER (mode));
if (zero != NULL)
{
write_complex_part (object, zero, 0);
write_complex_part (object, zero, 1);
return NULL;
}
}
}
if (size == const0_rtx)
return NULL;
align = MEM_ALIGN (object);
if (CONST_INT_P (size)
&& CLEAR_BY_PIECES_P (INTVAL (size), align))
clear_by_pieces (object, INTVAL (size), align);
else if (set_storage_via_setmem (object, size, const0_rtx, align,
expected_align, expected_size))
;
else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
return set_storage_via_libcall (object, size, const0_rtx,
method == BLOCK_OP_TAILCALL);
else
gcc_unreachable ();
return NULL;
}
rtx
clear_storage (rtx object, rtx size, enum block_op_methods method)
{
return clear_storage_hints (object, size, method, 0, -1);
}
/* A subroutine of clear_storage. Expand a call to memset.
Return the return value of memset, 0 otherwise. */
rtx
set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
{
tree call_expr, fn, object_tree, size_tree, val_tree;
enum machine_mode size_mode;
rtx retval;
/* Emit code to copy OBJECT and SIZE into new pseudos. We can then
place those into new pseudos into a VAR_DECL and use them later. */
object = copy_to_mode_reg (Pmode, XEXP (object, 0));
size_mode = TYPE_MODE (sizetype);
size = convert_to_mode (size_mode, size, 1);
size = copy_to_mode_reg (size_mode, size);
/* It is incorrect to use the libcall calling conventions to call
memset in this context. This could be a user call to memset and
the user may wish to examine the return value from memset. For
targets where libcalls and normal calls have different conventions
for returning pointers, we could end up generating incorrect code. */
object_tree = make_tree (ptr_type_node, object);
if (!CONST_INT_P (val))
val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
size_tree = make_tree (sizetype, size);
val_tree = make_tree (integer_type_node, val);
fn = clear_storage_libcall_fn (true);
call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
CALL_EXPR_TAILCALL (call_expr) = tailcall;
retval = expand_normal (call_expr);
return retval;
}
/* A subroutine of set_storage_via_libcall. Create the tree node
for the function we use for block clears. The first time FOR_CALL
is true, we call assemble_external. */
tree block_clear_fn;
void
init_block_clear_fn (const char *asmspec)
{
if (!block_clear_fn)
{
tree fn, args;
fn = get_identifier ("memset");
args = build_function_type_list (ptr_type_node, ptr_type_node,
integer_type_node, sizetype,
NULL_TREE);
fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
DECL_EXTERNAL (fn) = 1;
TREE_PUBLIC (fn) = 1;
DECL_ARTIFICIAL (fn) = 1;
TREE_NOTHROW (fn) = 1;
DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
DECL_VISIBILITY_SPECIFIED (fn) = 1;
block_clear_fn = fn;
}
if (asmspec)
set_user_assembler_name (block_clear_fn, asmspec);
}
static tree
clear_storage_libcall_fn (int for_call)
{
static bool emitted_extern;
if (!block_clear_fn)
init_block_clear_fn (NULL);
if (for_call && !emitted_extern)
{
emitted_extern = true;
make_decl_rtl (block_clear_fn);
assemble_external (block_clear_fn);
}
return block_clear_fn;
}
/* Expand a setmem pattern; return true if successful. */
bool
set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
unsigned int expected_align, HOST_WIDE_INT expected_size)
{
/* Try the most limited insn first, because there's no point
including more than one in the machine description unless
the more limited one has some advantage. */
enum machine_mode mode;
if (expected_align < align)
expected_align = align;
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
{
enum insn_code code = direct_optab_handler (setmem_optab, mode);
if (code != CODE_FOR_nothing
/* We don't need MODE to be narrower than
BITS_PER_HOST_WIDE_INT here because if SIZE is less than
the mode mask, as it is returned by the macro, it will
definitely be less than the actual mode mask. */
&& ((CONST_INT_P (size)
&& ((unsigned HOST_WIDE_INT) INTVAL (size)
<= (GET_MODE_MASK (mode) >> 1)))
|| GET_MODE_BITSIZE (mode) >= BITS_PER_WORD))
{
struct expand_operand ops[6];
unsigned int nops;
nops = insn_data[(int) code].n_generator_args;
gcc_assert (nops == 4 || nops == 6);
create_fixed_operand (&ops[0], object);
/* The check above guarantees that this size conversion is valid. */
create_convert_operand_to (&ops[1], size, mode, true);
create_convert_operand_from (&ops[2], val, byte_mode, true);
create_integer_operand (&ops[3], align / BITS_PER_UNIT);
if (nops == 6)
{
create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
create_integer_operand (&ops[5], expected_size);
}
if (maybe_expand_insn (code, nops, ops))
return true;
}
}
return false;
}
/* Write to one of the components of the complex value CPLX. Write VAL to
the real part if IMAG_P is false, and the imaginary part if its true. */
static void
write_complex_part (rtx cplx, rtx val, bool imag_p)
{
enum machine_mode cmode;
enum machine_mode imode;
unsigned ibitsize;
if (GET_CODE (cplx) == CONCAT)
{
emit_move_insn (XEXP (cplx, imag_p), val);
return;
}
cmode = GET_MODE (cplx);
imode = GET_MODE_INNER (cmode);
ibitsize = GET_MODE_BITSIZE (imode);
/* For MEMs simplify_gen_subreg may generate an invalid new address
because, e.g., the original address is considered mode-dependent
by the target, which restricts simplify_subreg from invoking
adjust_address_nv. Instead of preparing fallback support for an
invalid address, we call adjust_address_nv directly. */
if (MEM_P (cplx))
{
emit_move_insn (adjust_address_nv (cplx, imode,
imag_p ? GET_MODE_SIZE (imode) : 0),
val);
return;
}
/* If the sub-object is at least word sized, then we know that subregging
will work. This special case is important, since store_bit_field
wants to operate on integer modes, and there's rarely an OImode to
correspond to TCmode. */
if (ibitsize >= BITS_PER_WORD
/* For hard regs we have exact predicates. Assume we can split
the original object if it spans an even number of hard regs.
This special case is important for SCmode on 64-bit platforms
where the natural size of floating-point regs is 32-bit. */
|| (REG_P (cplx)
&& REGNO (cplx) < FIRST_PSEUDO_REGISTER
&& hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
{
rtx part = simplify_gen_subreg (imode, cplx, cmode,
imag_p ? GET_MODE_SIZE (imode) : 0);
if (part)
{
emit_move_insn (part, val);
return;
}
else
/* simplify_gen_subreg may fail for sub-word MEMs. */
gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
}
store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val);
}
/* Extract one of the components of the complex value CPLX. Extract the
real part if IMAG_P is false, and the imaginary part if it's true. */
static rtx
read_complex_part (rtx cplx, bool imag_p)
{
enum machine_mode cmode, imode;
unsigned ibitsize;
if (GET_CODE (cplx) == CONCAT)
return XEXP (cplx, imag_p);
cmode = GET_MODE (cplx);
imode = GET_MODE_INNER (cmode);
ibitsize = GET_MODE_BITSIZE (imode);
/* Special case reads from complex constants that got spilled to memory. */
if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
{
tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
if (decl && TREE_CODE (decl) == COMPLEX_CST)
{
tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
if (CONSTANT_CLASS_P (part))
return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
}
}
/* For MEMs simplify_gen_subreg may generate an invalid new address
because, e.g., the original address is considered mode-dependent
by the target, which restricts simplify_subreg from invoking
adjust_address_nv. Instead of preparing fallback support for an
invalid address, we call adjust_address_nv directly. */
if (MEM_P (cplx))
return adjust_address_nv (cplx, imode,
imag_p ? GET_MODE_SIZE (imode) : 0);
/* If the sub-object is at least word sized, then we know that subregging
will work. This special case is important, since extract_bit_field
wants to operate on integer modes, and there's rarely an OImode to
correspond to TCmode. */
if (ibitsize >= BITS_PER_WORD
/* For hard regs we have exact predicates. Assume we can split
the original object if it spans an even number of hard regs.
This special case is important for SCmode on 64-bit platforms
where the natural size of floating-point regs is 32-bit. */
|| (REG_P (cplx)
&& REGNO (cplx) < FIRST_PSEUDO_REGISTER
&& hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
{
rtx ret = simplify_gen_subreg (imode, cplx, cmode,
imag_p ? GET_MODE_SIZE (imode) : 0);
if (ret)
return ret;
else
/* simplify_gen_subreg may fail for sub-word MEMs. */
gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
}
return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
true, false, NULL_RTX, imode, imode);
}
/* A subroutine of emit_move_insn_1. Yet another lowpart generator.
NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
represented in NEW_MODE. If FORCE is true, this will never happen, as
we'll force-create a SUBREG if needed. */
static rtx
emit_move_change_mode (enum machine_mode new_mode,
enum machine_mode old_mode, rtx x, bool force)
{
rtx ret;
if (push_operand (x, GET_MODE (x)))
{
ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
MEM_COPY_ATTRIBUTES (ret, x);
}
else if (MEM_P (x))
{
/* We don't have to worry about changing the address since the
size in bytes is supposed to be the same. */
if (reload_in_progress)
{
/* Copy the MEM to change the mode and move any
substitutions from the old MEM to the new one. */
ret = adjust_address_nv (x, new_mode, 0);
copy_replacements (x, ret);
}
else
ret = adjust_address (x, new_mode, 0);
}
else
{
/* Note that we do want simplify_subreg's behavior of validating
that the new mode is ok for a hard register. If we were to use
simplify_gen_subreg, we would create the subreg, but would
probably run into the target not being able to implement it. */
/* Except, of course, when FORCE is true, when this is exactly what
we want. Which is needed for CCmodes on some targets. */
if (force)
ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
else
ret = simplify_subreg (new_mode, x, old_mode, 0);
}
return ret;
}
/* A subroutine of emit_move_insn_1. Generate a move from Y into X using
an integer mode of the same size as MODE. Returns the instruction
emitted, or NULL if such a move could not be generated. */
static rtx
emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
{
enum machine_mode imode;
enum insn_code code;
/* There must exist a mode of the exact size we require. */
imode = int_mode_for_mode (mode);
if (imode == BLKmode)
return NULL_RTX;
/* The target must support moves in this mode. */
code = optab_handler (mov_optab, imode);
if (code == CODE_FOR_nothing)
return NULL_RTX;
x = emit_move_change_mode (imode, mode, x, force);
if (x == NULL_RTX)
return NULL_RTX;
y = emit_move_change_mode (imode, mode, y, force);
if (y == NULL_RTX)
return NULL_RTX;
return emit_insn (GEN_FCN (code) (x, y));
}
/* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
Return an equivalent MEM that does not use an auto-increment. */
static rtx
emit_move_resolve_push (enum machine_mode mode, rtx x)
{
enum rtx_code code = GET_CODE (XEXP (x, 0));
HOST_WIDE_INT adjust;
rtx temp;
adjust = GET_MODE_SIZE (mode);
#ifdef PUSH_ROUNDING
adjust = PUSH_ROUNDING (adjust);
#endif
if (code == PRE_DEC || code == POST_DEC)
adjust = -adjust;
else if (code == PRE_MODIFY || code == POST_MODIFY)
{
rtx expr = XEXP (XEXP (x, 0), 1);
HOST_WIDE_INT val;
gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
gcc_assert (CONST_INT_P (XEXP (expr, 1)));
val = INTVAL (XEXP (expr, 1));
if (GET_CODE (expr) == MINUS)
val = -val;
gcc_assert (adjust == val || adjust == -val);
adjust = val;
}
/* Do not use anti_adjust_stack, since we don't want to update
stack_pointer_delta. */
temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
GEN_INT (adjust), stack_pointer_rtx,
0, OPTAB_LIB_WIDEN);
if (temp != stack_pointer_rtx)
emit_move_insn (stack_pointer_rtx, temp);
switch (code)
{
case PRE_INC:
case PRE_DEC:
case PRE_MODIFY:
temp = stack_pointer_rtx;
break;
case POST_INC:
case POST_DEC:
case POST_MODIFY:
temp = plus_constant (stack_pointer_rtx, -adjust);
break;
default:
gcc_unreachable ();
}
return replace_equiv_address (x, temp);
}
/* A subroutine of emit_move_complex. Generate a move from Y into X.
X is known to satisfy push_operand, and MODE is known to be complex.
Returns the last instruction emitted. */
rtx
emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
{
enum machine_mode submode = GET_MODE_INNER (mode);
bool imag_first;
#ifdef PUSH_ROUNDING
unsigned int submodesize = GET_MODE_SIZE (submode);
/* In case we output to the stack, but the size is smaller than the
machine can push exactly, we need to use move instructions. */
if (PUSH_ROUNDING (submodesize) != submodesize)
{
x = emit_move_resolve_push (mode, x);
return emit_move_insn (x, y);
}
#endif
/* Note that the real part always precedes the imag part in memory
regardless of machine's endianness. */
switch (GET_CODE (XEXP (x, 0)))
{
case PRE_DEC:
case POST_DEC:
imag_first = true;
break;
case PRE_INC:
case POST_INC:
imag_first = false;
break;
default:
gcc_unreachable ();
}
emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
read_complex_part (y, imag_first));
return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
read_complex_part (y, !imag_first));
}
/* A subroutine of emit_move_complex. Perform the move from Y to X
via two moves of the parts. Returns the last instruction emitted. */
rtx
emit_move_complex_parts (rtx x, rtx y)
{
/* Show the output dies here. This is necessary for SUBREGs
of pseudos since we cannot track their lifetimes correctly;
hard regs shouldn't appear here except as return values. */
if (!reload_completed && !reload_in_progress
&& REG_P (x) && !reg_overlap_mentioned_p (x, y))
emit_clobber (x);
write_complex_part (x, read_complex_part (y, false), false);
write_complex_part (x, read_complex_part (y, true), true);
return get_last_insn ();
}
/* A subroutine of emit_move_insn_1. Generate a move from Y into X.
MODE is known to be complex. Returns the last instruction emitted. */
static rtx
emit_move_complex (enum machine_mode mode, rtx x, rtx y)
{
bool try_int;
/* Need to take special care for pushes, to maintain proper ordering
of the data, and possibly extra padding. */
if (push_operand (x, mode))
return emit_move_complex_push (mode, x, y);
/* See if we can coerce the target into moving both values at once. */
/* Move floating point as parts. */
if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
&& optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing)
try_int = false;
/* Not possible if the values are inherently not adjacent. */
else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
try_int = false;
/* Is possible if both are registers (or subregs of registers). */
else if (register_operand (x, mode) && register_operand (y, mode))
try_int = true;
/* If one of the operands is a memory, and alignment constraints
are friendly enough, we may be able to do combined memory operations.
We do not attempt this if Y is a constant because that combination is
usually better with the by-parts thing below. */
else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
&& (!STRICT_ALIGNMENT
|| get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
try_int = true;
else
try_int = false;
if (try_int)
{
rtx ret;
/* For memory to memory moves, optimal behavior can be had with the
existing block move logic. */
if (MEM_P (x) && MEM_P (y))
{
emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
BLOCK_OP_NO_LIBCALL);
return get_last_insn ();
}
ret = emit_move_via_integer (mode, x, y, true);
if (ret)
return ret;
}
return emit_move_complex_parts (x, y);
}
/* A subroutine of emit_move_insn_1. Generate a move from Y into X.
MODE is known to be MODE_CC. Returns the last instruction emitted. */
static rtx
emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
{
rtx ret;
/* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
if (mode != CCmode)
{
enum insn_code code = optab_handler (mov_optab, CCmode);
if (code != CODE_FOR_nothing)
{
x = emit_move_change_mode (CCmode, mode, x, true);
y = emit_move_change_mode (CCmode, mode, y, true);
return emit_insn (GEN_FCN (code) (x, y));
}
}
/* Otherwise, find the MODE_INT mode of the same width. */
ret = emit_move_via_integer (mode, x, y, false);
gcc_assert (ret != NULL);
return ret;
}
/* Return true if word I of OP lies entirely in the
undefined bits of a paradoxical subreg. */
static bool
undefined_operand_subword_p (const_rtx op, int i)
{
enum machine_mode innermode, innermostmode;
int offset;
if (GET_CODE (op) != SUBREG)
return false;
innermode = GET_MODE (op);
innermostmode = GET_MODE (SUBREG_REG (op));
offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
/* The SUBREG_BYTE represents offset, as if the value were stored in
memory, except for a paradoxical subreg where we define
SUBREG_BYTE to be 0; undo this exception as in
simplify_subreg. */
if (SUBREG_BYTE (op) == 0
&& GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
{
int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
if (WORDS_BIG_ENDIAN)
offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
if (BYTES_BIG_ENDIAN)
offset += difference % UNITS_PER_WORD;
}
if (offset >= GET_MODE_SIZE (innermostmode)
|| offset <= -GET_MODE_SIZE (word_mode))
return true;
return false;
}
/* A subroutine of emit_move_insn_1. Generate a move from Y into X.
MODE is any multi-word or full-word mode that lacks a move_insn
pattern. Note that you will get better code if you define such
patterns, even if they must turn into multiple assembler instructions. */
static rtx
emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
{
rtx last_insn = 0;
rtx seq, inner;
bool need_clobber;
int i;
gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
/* If X is a push on the stack, do the push now and replace
X with a reference to the stack pointer. */
if (push_operand (x, mode))
x = emit_move_resolve_push (mode, x);
/* If we are in reload, see if either operand is a MEM whose address
is scheduled for replacement. */
if (reload_in_progress && MEM_P (x)
&& (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
x = replace_equiv_address_nv (x, inner);
if (reload_in_progress && MEM_P (y)
&& (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
y = replace_equiv_address_nv (y, inner);
start_sequence ();
need_clobber = false;
for (i = 0;
i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
i++)
{
rtx xpart = operand_subword (x, i, 1, mode);
rtx ypart;
/* Do not generate code for a move if it would come entirely
from the undefined bits of a paradoxical subreg. */
if (undefined_operand_subword_p (y, i))
continue;
ypart = operand_subword (y, i, 1, mode);
/* If we can't get a part of Y, put Y into memory if it is a
constant. Otherwise, force it into a register. Then we must
be able to get a part of Y. */
if (ypart == 0 && CONSTANT_P (y))
{
y = use_anchored_address (force_const_mem (mode, y));
ypart = operand_subword (y, i, 1, mode);
}
else if (ypart == 0)
ypart = operand_subword_force (y, i, mode);
gcc_assert (xpart && ypart);
need_clobber |= (GET_CODE (xpart) == SUBREG);
last_insn = emit_move_insn (xpart, ypart);
}
seq = get_insns ();
end_sequence ();
/* Show the output dies here. This is necessary for SUBREGs
of pseudos since we cannot track their lifetimes correctly;
hard regs shouldn't appear here except as return values.
We never want to emit such a clobber after reload. */
if (x != y
&& ! (reload_in_progress || reload_completed)
&& need_clobber != 0)
emit_clobber (x);
emit_insn (seq);
return last_insn;
}
/* Low level part of emit_move_insn.
Called just like emit_move_insn, but assumes X and Y
are basically valid. */
rtx
emit_move_insn_1 (rtx x, rtx y)
{
enum machine_mode mode = GET_MODE (x);
enum insn_code code;
gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
code = optab_handler (mov_optab, mode);
if (code != CODE_FOR_nothing)
return emit_insn (GEN_FCN (code) (x, y));
/* Expand complex moves by moving real part and imag part. */
if (COMPLEX_MODE_P (mode))
return emit_move_complex (mode, x, y);
if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
|| ALL_FIXED_POINT_MODE_P (mode))
{
rtx result = emit_move_via_integer (mode, x, y, true);
/* If we can't find an integer mode, use multi words. */
if (result)
return result;
else
return emit_move_multi_word (mode, x, y);
}
if (GET_MODE_CLASS (mode) == MODE_CC)
return emit_move_ccmode (mode, x, y);
/* Try using a move pattern for the corresponding integer mode. This is
only safe when simplify_subreg can convert MODE constants into integer
constants. At present, it can only do this reliably if the value
fits within a HOST_WIDE_INT. */
if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
{
rtx ret = emit_move_via_integer (mode, x, y, false);
if (ret)
return ret;
}
return emit_move_multi_word (mode, x, y);
}
/* Generate code to copy Y into X.
Both Y and X must have the same mode, except that
Y can be a constant with VOIDmode.
This mode cannot be BLKmode; use emit_block_move for that.
Return the last instruction emitted. */
rtx
emit_move_insn (rtx x, rtx y)
{
enum machine_mode mode = GET_MODE (x);
rtx y_cst = NULL_RTX;
rtx last_insn, set;
gcc_assert (mode != BLKmode
&& (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
if (CONSTANT_P (y))
{
if (optimize
&& SCALAR_FLOAT_MODE_P (GET_MODE (x))
&& (last_insn = compress_float_constant (x, y)))
return last_insn;
y_cst = y;
if (!targetm.legitimate_constant_p (mode, y))
{
y = force_const_mem (mode, y);
/* If the target's cannot_force_const_mem prevented the spill,
assume that the target's move expanders will also take care
of the non-legitimate constant. */
if (!y)
y = y_cst;
else
y = use_anchored_address (y);
}
}
/* If X or Y are memory references, verify that their addresses are valid
for the machine. */
if (MEM_P (x)
&& (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
MEM_ADDR_SPACE (x))
&& ! push_operand (x, GET_MODE (x))))
x = validize_mem (x);
if (MEM_P (y)
&& ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
MEM_ADDR_SPACE (y)))
y = validize_mem (y);
gcc_assert (mode != BLKmode);
last_insn = emit_move_insn_1 (x, y);
if (y_cst && REG_P (x)
&& (set = single_set (last_insn)) != NULL_RTX
&& SET_DEST (set) == x
&& ! rtx_equal_p (y_cst, SET_SRC (set)))
set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
return last_insn;
}
/* If Y is representable exactly in a narrower mode, and the target can
perform the extension directly from constant or memory, then emit the
move as an extension. */
static rtx
compress_float_constant (rtx x, rtx y)
{
enum machine_mode dstmode = GET_MODE (x);
enum machine_mode orig_srcmode = GET_MODE (y);
enum machine_mode srcmode;
REAL_VALUE_TYPE r;
int oldcost, newcost;
bool speed = optimize_insn_for_speed_p ();
REAL_VALUE_FROM_CONST_DOUBLE (r, y);
if (targetm.legitimate_constant_p (dstmode, y))
oldcost = set_src_cost (y, speed);
else
oldcost = set_src_cost (force_const_mem (dstmode, y), speed);
for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
srcmode != orig_srcmode;
srcmode = GET_MODE_WIDER_MODE (srcmode))
{
enum insn_code ic;
rtx trunc_y, last_insn;
/* Skip if the target can't extend this way. */
ic = can_extend_p (dstmode, srcmode, 0);
if (ic == CODE_FOR_nothing)
continue;
/* Skip if the narrowed value isn't exact. */
if (! exact_real_truncate (srcmode, &r))
continue;
trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
if (targetm.legitimate_constant_p (srcmode, trunc_y))
{
/* Skip if the target needs extra instructions to perform
the extension. */
if (!insn_operand_matches (ic, 1, trunc_y))
continue;
/* This is valid, but may not be cheaper than the original. */
newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
speed);
if (oldcost < newcost)
continue;
}
else if (float_extend_from_mem[dstmode][srcmode])
{
trunc_y = force_const_mem (srcmode, trunc_y);
/* This is valid, but may not be cheaper than the original. */
newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
speed);
if (oldcost < newcost)
continue;
trunc_y = validize_mem (trunc_y);
}
else
continue;
/* For CSE's benefit, force the compressed constant pool entry
into a new pseudo. This constant may be used in different modes,
and if not, combine will put things back together for us. */
trunc_y = force_reg (srcmode, trunc_y);
emit_unop_insn (ic, x, trunc_y, UNKNOWN);
last_insn = get_last_insn ();
if (REG_P (x))
set_unique_reg_note (last_insn, REG_EQUAL, y);
return last_insn;
}
return NULL_RTX;
}
/* Pushing data onto the stack. */
/* Push a block of length SIZE (perhaps variable)
and return an rtx to address the beginning of the block.
The value may be virtual_outgoing_args_rtx.
EXTRA is the number of bytes of padding to push in addition to SIZE.
BELOW nonzero means this padding comes at low addresses;
otherwise, the padding comes at high addresses. */
rtx
push_block (rtx size, int extra, int below)
{
rtx temp;
size = convert_modes (Pmode, ptr_mode, size, 1);
if (CONSTANT_P (size))
anti_adjust_stack (plus_constant (size, extra));
else if (REG_P (size) && extra == 0)
anti_adjust_stack (size);
else
{
temp = copy_to_mode_reg (Pmode, size);
if (extra != 0)
temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
temp, 0, OPTAB_LIB_WIDEN);
anti_adjust_stack (temp);
}
#ifndef STACK_GROWS_DOWNWARD
if (0)
#else
if (1)
#endif
{
temp = virtual_outgoing_args_rtx;
if (extra != 0 && below)
temp = plus_constant (temp, extra);
}
else
{
if (CONST_INT_P (size))
temp = plus_constant (virtual_outgoing_args_rtx,
-INTVAL (size) - (below ? 0 : extra));
else if (extra != 0 && !below)
temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
negate_rtx (Pmode, plus_constant (size, extra)));
else
temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
negate_rtx (Pmode, size));
}
return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
}
/* A utility routine that returns the base of an auto-inc memory, or NULL. */
static rtx
mem_autoinc_base (rtx mem)
{
if (MEM_P (mem))
{
rtx addr = XEXP (mem, 0);
if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
return XEXP (addr, 0);
}
return NULL;
}
/* A utility routine used here, in reload, and in try_split. The insns
after PREV up to and including LAST are known to adjust the stack,
with a final value of END_ARGS_SIZE. Iterate backward from LAST
placing notes as appropriate. PREV may be NULL, indicating the
entire insn sequence prior to LAST should be scanned.
The set of allowed stack pointer modifications is small:
(1) One or more auto-inc style memory references (aka pushes),
(2) One or more addition/subtraction with the SP as destination,
(3) A single move insn with the SP as destination,
(4) A call_pop insn.
Insns in the sequence that do not modify the SP are ignored.
The return value is the amount of adjustment that can be trivially
verified, via immediate operand or auto-inc. If the adjustment
cannot be trivially extracted, the return value is INT_MIN. */
HOST_WIDE_INT
find_args_size_adjust (rtx insn)
{
rtx dest, set, pat;
int i;
pat = PATTERN (insn);
set = NULL;
/* Look for a call_pop pattern. */
if (CALL_P (insn))
{
/* We have to allow non-call_pop patterns for the case
of emit_single_push_insn of a TLS address. */
if (GET_CODE (pat) != PARALLEL)
return 0;
/* All call_pop have a stack pointer adjust in the parallel.
The call itself is always first, and the stack adjust is
usually last, so search from the end. */
for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
{
set = XVECEXP (pat, 0, i);
if (GET_CODE (set) != SET)
continue;
dest = SET_DEST (set);
if (dest == stack_pointer_rtx)
break;
}
/* We'd better have found the stack pointer adjust. */
if (i == 0)
return 0;
/* Fall through to process the extracted SET and DEST
as if it was a standalone insn. */
}
else if (GET_CODE (pat) == SET)
set = pat;
else if ((set = single_set (insn)) != NULL)
;
else if (GET_CODE (pat) == PARALLEL)
{
/* ??? Some older ports use a parallel with a stack adjust
and a store for a PUSH_ROUNDING pattern, rather than a
PRE/POST_MODIFY rtx. Don't force them to update yet... */
/* ??? See h8300 and m68k, pushqi1. */
for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
{
set = XVECEXP (pat, 0, i);
if (GET_CODE (set) != SET)
continue;
dest = SET_DEST (set);
if (dest == stack_pointer_rtx)
break;
/* We do not expect an auto-inc of the sp in the parallel. */
gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
!= stack_pointer_rtx);
}
if (i < 0)
return 0;
}
else
return 0;
dest = SET_DEST (set);
/* Look for direct modifications of the stack pointer. */
if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
{
/* Look for a trivial adjustment, otherwise assume nothing. */
/* Note that the SPU restore_stack_block pattern refers to
the stack pointer in V4SImode. Consider that non-trivial. */
if (SCALAR_INT_MODE_P (GET_MODE (dest))
&& GET_CODE (SET_SRC (set)) == PLUS
&& XEXP (SET_SRC (set), 0) == stack_pointer_rtx
&& CONST_INT_P (XEXP (SET_SRC (set), 1)))
return INTVAL (XEXP (SET_SRC (set), 1));
/* ??? Reload can generate no-op moves, which will be cleaned
up later. Recognize it and continue searching. */
else if (rtx_equal_p (dest, SET_SRC (set)))
return 0;
else
return HOST_WIDE_INT_MIN;
}
else
{
rtx mem, addr;
/* Otherwise only think about autoinc patterns. */
if (mem_autoinc_base (dest) == stack_pointer_rtx)
{
mem = dest;
gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
!= stack_pointer_rtx);
}
else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
mem = SET_SRC (set);
else
return 0;
addr = XEXP (mem, 0);
switch (GET_CODE (addr))
{
case PRE_INC:
case POST_INC:
return GET_MODE_SIZE (GET_MODE (mem));
case PRE_DEC:
case POST_DEC:
return -GET_MODE_SIZE (GET_MODE (mem));
case PRE_MODIFY:
case POST_MODIFY:
addr = XEXP (addr, 1);
gcc_assert (GET_CODE (addr) == PLUS);
gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
gcc_assert (CONST_INT_P (XEXP (addr, 1)));
return INTVAL (XEXP (addr, 1));
default:
gcc_unreachable ();
}
}
}
int
fixup_args_size_notes (rtx prev, rtx last, int end_args_size)
{
int args_size = end_args_size;
bool saw_unknown = false;
rtx insn;
for (insn = last; insn != prev; insn = PREV_INSN (insn))
{
HOST_WIDE_INT this_delta;
if (!NONDEBUG_INSN_P (insn))
continue;
this_delta = find_args_size_adjust (insn);
if (this_delta == 0)
continue;
gcc_assert (!saw_unknown);
if (this_delta == HOST_WIDE_INT_MIN)
saw_unknown = true;
add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
#ifdef STACK_GROWS_DOWNWARD
this_delta = -this_delta;
#endif
args_size -= this_delta;
}
return saw_unknown ? INT_MIN : args_size;
}
#ifdef PUSH_ROUNDING
/* Emit single push insn. */
static void
emit_single_push_insn_1 (enum machine_mode mode, rtx x, tree type)
{
rtx dest_addr;
unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
rtx dest;
enum insn_code icode;
stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
/* If there is push pattern, use it. Otherwise try old way of throwing
MEM representing push operation to move expander. */
icode = optab_handler (push_optab, mode);
if (icode != CODE_FOR_nothing)
{
struct expand_operand ops[1];
create_input_operand (&ops[0], x, mode);
if (maybe_expand_insn (icode, 1, ops))
return;
}
if (GET_MODE_SIZE (mode) == rounded_size)
dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
/* If we are to pad downward, adjust the stack pointer first and
then store X into the stack location using an offset. This is
because emit_move_insn does not know how to pad; it does not have
access to type. */
else if (FUNCTION_ARG_PADDING (mode, type) == downward)
{
unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
HOST_WIDE_INT offset;
emit_move_insn (stack_pointer_rtx,
expand_binop (Pmode,
#ifdef STACK_GROWS_DOWNWARD
sub_optab,
#else
add_optab,
#endif
stack_pointer_rtx,
GEN_INT (rounded_size),
NULL_RTX, 0, OPTAB_LIB_WIDEN));
offset = (HOST_WIDE_INT) padding_size;
#ifdef STACK_GROWS_DOWNWARD
if (STACK_PUSH_CODE == POST_DEC)
/* We have already decremented the stack pointer, so get the
previous value. */
offset += (HOST_WIDE_INT) rounded_size;
#else
if (STACK_PUSH_CODE == POST_INC)
/* We have already incremented the stack pointer, so get the
previous value. */
offset -= (HOST_WIDE_INT) rounded_size;
#endif
dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
}
else
{
#ifdef STACK_GROWS_DOWNWARD
/* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
GEN_INT (-(HOST_WIDE_INT) rounded_size));
#else
/* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
GEN_INT (rounded_size));
#endif
dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
}
dest = gen_rtx_MEM (mode, dest_addr);
if (type != 0)
{
set_mem_attributes (dest, type, 1);
if (flag_optimize_sibling_calls)
/* Function incoming arguments may overlap with sibling call
outgoing arguments and we cannot allow reordering of reads
from function arguments with stores to outgoing arguments
of sibling calls. */
set_mem_alias_set (dest, 0);
}
emit_move_insn (dest, x);
}
/* Emit and annotate a single push insn. */
static void
emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
{
int delta, old_delta = stack_pointer_delta;
rtx prev = get_last_insn ();
rtx last;
emit_single_push_insn_1 (mode, x, type);
last = get_last_insn ();
/* Notice the common case where we emitted exactly one insn. */
if (PREV_INSN (last) == prev)
{
add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
return;
}
delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
gcc_assert (delta == INT_MIN || delta == old_delta);
}
#endif
/* Generate code to push X onto the stack, assuming it has mode MODE and
type TYPE.
MODE is redundant except when X is a CONST_INT (since they don't
carry mode info).
SIZE is an rtx for the size of data to be copied (in bytes),
needed only if X is BLKmode.
ALIGN (in bits) is maximum alignment we can assume.
If PARTIAL and REG are both nonzero, then copy that many of the first
bytes of X into registers starting with REG, and push the rest of X.
The amount of space pushed is decreased by PARTIAL bytes.
REG must be a hard register in this case.
If REG is zero but PARTIAL is not, take any all others actions for an
argument partially in registers, but do not actually load any
registers.
EXTRA is the amount in bytes of extra space to leave next to this arg.
This is ignored if an argument block has already been allocated.
On a machine that lacks real push insns, ARGS_ADDR is the address of
the bottom of the argument block for this call. We use indexing off there
to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
argument block has not been preallocated.
ARGS_SO_FAR is the size of args previously pushed for this call.
REG_PARM_STACK_SPACE is nonzero if functions require stack space
for arguments passed in registers. If nonzero, it will be the number
of bytes required. */
void
emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
unsigned int align, int partial, rtx reg, int extra,
rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
rtx alignment_pad)
{
rtx xinner;
enum direction stack_direction
#ifdef STACK_GROWS_DOWNWARD
= downward;
#else
= upward;
#endif
/* Decide where to pad the argument: `downward' for below,
`upward' for above, or `none' for don't pad it.
Default is below for small data on big-endian machines; else above. */
enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
/* Invert direction if stack is post-decrement.
FIXME: why? */
if (STACK_PUSH_CODE == POST_DEC)
if (where_pad != none)
where_pad = (where_pad == downward ? upward : downward);
xinner = x;
if (mode == BLKmode
|| (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
{
/* Copy a block into the stack, entirely or partially. */
rtx temp;
int used;
int offset;
int skip;
offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
used = partial - offset;
if (mode != BLKmode)
{
/* A value is to be stored in an insufficiently aligned
stack slot; copy via a suitably aligned slot if
necessary. */
size = GEN_INT (GET_MODE_SIZE (mode));
if (!MEM_P (xinner))
{
temp = assign_temp (type, 0, 1, 1);
emit_move_insn (temp, xinner);
xinner = temp;
}
}
gcc_assert (size);
/* USED is now the # of bytes we need not copy to the stack
because registers will take care of them. */
if (partial != 0)
xinner = adjust_address (xinner, BLKmode, used);
/* If the partial register-part of the arg counts in its stack size,
skip the part of stack space corresponding to the registers.
Otherwise, start copying to the beginning of the stack space,
by setting SKIP to 0. */
skip = (reg_parm_stack_space == 0) ? 0 : used;
#ifdef PUSH_ROUNDING
/* Do it with several push insns if that doesn't take lots of insns
and if there is no difficulty with push insns that skip bytes
on the stack for alignment purposes. */
if (args_addr == 0
&& PUSH_ARGS
&& CONST_INT_P (size)
&& skip == 0
&& MEM_ALIGN (xinner) >= align
&& (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
/* Here we avoid the case of a structure whose weak alignment
forces many pushes of a small amount of data,
and such small pushes do rounding that causes trouble. */
&& ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
|| align >= BIGGEST_ALIGNMENT
|| (PUSH_ROUNDING (align / BITS_PER_UNIT)
== (align / BITS_PER_UNIT)))
&& (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
{
/* Push padding now if padding above and stack grows down,
or if padding below and stack grows up.
But if space already allocated, this has already been done. */
if (extra && args_addr == 0
&& where_pad != none && where_pad != stack_direction)
anti_adjust_stack (GEN_INT (extra));
move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
}
else
#endif /* PUSH_ROUNDING */
{
rtx target;
/* Otherwise make space on the stack and copy the data
to the address of that space. */
/* Deduct words put into registers from the size we must copy. */
if (partial != 0)
{
if (CONST_INT_P (size))
size = GEN_INT (INTVAL (size) - used);
else
size = expand_binop (GET_MODE (size), sub_optab, size,
GEN_INT (used), NULL_RTX, 0,
OPTAB_LIB_WIDEN);
}
/* Get the address of the stack space.
In this case, we do not deal with EXTRA separately.
A single stack adjust will do. */
if (! args_addr)
{
temp = push_block (size, extra, where_pad == downward);
extra = 0;
}
else if (CONST_INT_P (args_so_far))
temp = memory_address (BLKmode,
plus_constant (args_addr,
skip + INTVAL (args_so_far)));
else
temp = memory_address (BLKmode,
plus_constant (gen_rtx_PLUS (Pmode,
args_addr,
args_so_far),
skip));
if (!ACCUMULATE_OUTGOING_ARGS)
{
/* If the source is referenced relative to the stack pointer,
copy it to another register to stabilize it. We do not need
to do this if we know that we won't be changing sp. */
if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
|| reg_mentioned_p (virtual_outgoing_args_rtx, temp))
temp = copy_to_reg (temp);
}
target = gen_rtx_MEM (BLKmode, temp);
/* We do *not* set_mem_attributes here, because incoming arguments
may overlap with sibling call outgoing arguments and we cannot
allow reordering of reads from function arguments with stores
to outgoing arguments of sibling calls. We do, however, want
to record the alignment of the stack slot. */
/* ALIGN may well be better aligned than TYPE, e.g. due to
PARM_BOUNDARY. Assume the caller isn't lying. */
set_mem_align (target, align);
emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
}
}
else if (partial > 0)
{
/* Scalar partly in registers. */
int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
int i;
int not_stack;
/* # bytes of start of argument
that we must make space for but need not store. */
int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
int args_offset = INTVAL (args_so_far);
int skip;
/* Push padding now if padding above and stack grows down,
or if padding below and stack grows up.
But if space already allocated, this has already been done. */
if (extra && args_addr == 0
&& where_pad != none && where_pad != stack_direction)
anti_adjust_stack (GEN_INT (extra));
/* If we make space by pushing it, we might as well push
the real data. Otherwise, we can leave OFFSET nonzero
and leave the space uninitialized. */
if (args_addr == 0)
offset = 0;
/* Now NOT_STACK gets the number of words that we don't need to
allocate on the stack. Convert OFFSET to words too. */
not_stack = (partial - offset) / UNITS_PER_WORD;
offset /= UNITS_PER_WORD;
/* If the partial register-part of the arg counts in its stack size,
skip the part of stack space corresponding to the registers.
Otherwise, start copying to the beginning of the stack space,
by setting SKIP to 0. */
skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
x = validize_mem (force_const_mem (mode, x));
/* If X is a hard register in a non-integer mode, copy it into a pseudo;
SUBREGs of such registers are not allowed. */
if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
&& GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
x = copy_to_reg (x);
/* Loop over all the words allocated on the stack for this arg. */
/* We can do it by words, because any scalar bigger than a word
has a size a multiple of a word. */
#ifndef PUSH_ARGS_REVERSED
for (i = not_stack; i < size; i++)
#else
for (i = size - 1; i >= not_stack; i--)
#endif
if (i >= not_stack + offset)
emit_push_insn (operand_subword_force (x, i, mode),
word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
0, args_addr,
GEN_INT (args_offset + ((i - not_stack + skip)
* UNITS_PER_WORD)),
reg_parm_stack_space, alignment_pad);
}
else
{
rtx addr;
rtx dest;
/* Push padding now if padding above and stack grows down,
or if padding below and stack grows up.
But if space already allocated, this has already been done. */
if (extra && args_addr == 0
&& where_pad != none && where_pad != stack_direction)
anti_adjust_stack (GEN_INT (extra));
#ifdef PUSH_ROUNDING
if (args_addr == 0 && PUSH_ARGS)
emit_single_push_insn (mode, x, type);
else
#endif
{
if (CONST_INT_P (args_so_far))
addr
= memory_address (mode,
plus_constant (args_addr,
INTVAL (args_so_far)));
else
addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
args_so_far));
dest = gen_rtx_MEM (mode, addr);
/* We do *not* set_mem_attributes here, because incoming arguments
may overlap with sibling call outgoing arguments and we cannot
allow reordering of reads from function arguments with stores
to outgoing arguments of sibling calls. We do, however, want
to record the alignment of the stack slot. */
/* ALIGN may well be better aligned than TYPE, e.g. due to
PARM_BOUNDARY. Assume the caller isn't lying. */
set_mem_align (dest, align);
emit_move_insn (dest, x);
}
}
/* If part should go in registers, copy that part
into the appropriate registers. Do this now, at the end,
since mem-to-mem copies above may do function calls. */
if (partial > 0 && reg != 0)
{
/* Handle calls that pass values in multiple non-contiguous locations.
The Irix 6 ABI has examples of this. */
if (GET_CODE (reg) == PARALLEL)
emit_group_load (reg, x, type, -1);
else
{
gcc_assert (partial % UNITS_PER_WORD == 0);
move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
}
}
if (extra && args_addr == 0 && where_pad == stack_direction)
anti_adjust_stack (GEN_INT (extra));
if (alignment_pad && args_addr == 0)
anti_adjust_stack (alignment_pad);
}
/* Return X if X can be used as a subtarget in a sequence of arithmetic
operations. */
static rtx
get_subtarget (rtx x)
{
return (optimize
|| x == 0
/* Only registers can be subtargets. */
|| !REG_P (x)
/* Don't use hard regs to avoid extending their life. */
|| REGNO (x) < FIRST_PSEUDO_REGISTER
? 0 : x);
}
/* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
FIELD is a bitfield. Returns true if the optimization was successful,
and there's nothing else to do. */
static bool
optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
unsigned HOST_WIDE_INT bitpos,
unsigned HOST_WIDE_INT bitregion_start,
unsigned HOST_WIDE_INT bitregion_end,
enum machine_mode mode1, rtx str_rtx,
tree to, tree src)
{
enum machine_mode str_mode = GET_MODE (str_rtx);
unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
tree op0, op1;
rtx value, result;
optab binop;
gimple srcstmt;
enum tree_code code;
if (mode1 != VOIDmode
|| bitsize >= BITS_PER_WORD
|| str_bitsize > BITS_PER_WORD
|| TREE_SIDE_EFFECTS (to)
|| TREE_THIS_VOLATILE (to))
return false;
STRIP_NOPS (src);
if (TREE_CODE (src) != SSA_NAME)
return false;
if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
return false;
srcstmt = get_gimple_for_ssa_name (src);
if (!srcstmt
|| TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
return false;
code = gimple_assign_rhs_code (srcstmt);
op0 = gimple_assign_rhs1 (srcstmt);
/* If OP0 is an SSA_NAME, then we want to walk the use-def chain
to find its initialization. Hopefully the initialization will
be from a bitfield load. */
if (TREE_CODE (op0) == SSA_NAME)
{
gimple op0stmt = get_gimple_for_ssa_name (op0);
/* We want to eventually have OP0 be the same as TO, which
should be a bitfield. */
if (!op0stmt
|| !is_gimple_assign (op0stmt)
|| gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
return false;
op0 = gimple_assign_rhs1 (op0stmt);
}
op1 = gimple_assign_rhs2 (srcstmt);
if (!operand_equal_p (to, op0, 0))
return false;
if (MEM_P (str_rtx))
{
unsigned HOST_WIDE_INT offset1;
if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
str_mode = word_mode;
str_mode = get_best_mode (bitsize, bitpos,
bitregion_start, bitregion_end,
MEM_ALIGN (str_rtx), str_mode, 0);
if (str_mode == VOIDmode)
return false;
str_bitsize = GET_MODE_BITSIZE (str_mode);
offset1 = bitpos;
bitpos %= str_bitsize;
offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
str_rtx = adjust_address (str_rtx, str_mode, offset1);
}
else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
return false;
/* If the bit field covers the whole REG/MEM, store_field
will likely generate better code. */
if (bitsize >= str_bitsize)
return false;
/* We can't handle fields split across multiple entities. */
if (bitpos + bitsize > str_bitsize)
return false;
if (BYTES_BIG_ENDIAN)
bitpos = str_bitsize - bitpos - bitsize;
switch (code)
{
case PLUS_EXPR:
case MINUS_EXPR:
/* For now, just optimize the case of the topmost bitfield
where we don't need to do any masking and also
1 bit bitfields where xor can be used.
We might win by one instruction for the other bitfields
too if insv/extv instructions aren't used, so that
can be added later. */
if (bitpos + bitsize != str_bitsize
&& (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
break;
value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
value = convert_modes (str_mode,
TYPE_MODE (TREE_TYPE (op1)), value,
TYPE_UNSIGNED (TREE_TYPE (op1)));
/* We may be accessing data outside the field, which means
we can alias adjacent data. */
if (MEM_P (str_rtx))
{
str_rtx = shallow_copy_rtx (str_rtx);
set_mem_alias_set (str_rtx, 0);
set_mem_expr (str_rtx, 0);
}
binop = code == PLUS_EXPR ? add_optab : sub_optab;
if (bitsize == 1 && bitpos + bitsize != str_bitsize)
{
value = expand_and (str_mode, value, const1_rtx, NULL);
binop = xor_optab;
}
value = expand_shift (LSHIFT_EXPR, str_mode, value,
bitpos, NULL_RTX, 1);
result = expand_binop (str_mode, binop, str_rtx,
value, str_rtx, 1, OPTAB_WIDEN);
if (result != str_rtx)
emit_move_insn (str_rtx, result);
return true;
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
if (TREE_CODE (op1) != INTEGER_CST)
break;
value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
value = convert_modes (GET_MODE (str_rtx),
TYPE_MODE (TREE_TYPE (op1)), value,
TYPE_UNSIGNED (TREE_TYPE (op1)));
/* We may be accessing data outside the field, which means
we can alias adjacent data. */
if (MEM_P (str_rtx))
{
str_rtx = shallow_copy_rtx (str_rtx);
set_mem_alias_set (str_rtx, 0);
set_mem_expr (str_rtx, 0);
}
binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
{
rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
- 1);
value = expand_and (GET_MODE (str_rtx), value, mask,
NULL_RTX);
}
value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
bitpos, NULL_RTX, 1);
result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
value, str_rtx, 1, OPTAB_WIDEN);
if (result != str_rtx)
emit_move_insn (str_rtx, result);
return true;
default:
break;
}
return false;
}
/* In the C++ memory model, consecutive bit fields in a structure are
considered one memory location.
Given a COMPONENT_REF, this function returns the bit range of
consecutive bits in which this COMPONENT_REF belongs in. The
values are returned in *BITSTART and *BITEND. If either the C++
memory model is not activated, or this memory access is not thread
visible, 0 is returned in *BITSTART and *BITEND.
EXP is the COMPONENT_REF.
INNERDECL is the actual object being referenced.
BITPOS is the position in bits where the bit starts within the structure.
BITSIZE is size in bits of the field being referenced in EXP.
For example, while storing into FOO.A here...
struct {
BIT 0:
unsigned int a : 4;
unsigned int b : 1;
BIT 8:
unsigned char c;
unsigned int d : 6;
} foo;
...we are not allowed to store past , so for the layout above, a
range of 0..7 (because no one cares if we store into the
padding). */
static void
get_bit_range (unsigned HOST_WIDE_INT *bitstart,
unsigned HOST_WIDE_INT *bitend,
tree exp, tree innerdecl,
HOST_WIDE_INT bitpos, HOST_WIDE_INT bitsize)
{
tree field, record_type, fld;
bool found_field = false;
bool prev_field_is_bitfield;
gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
/* If other threads can't see this value, no need to restrict stores. */
if (ALLOW_STORE_DATA_RACES
|| ((TREE_CODE (innerdecl) == MEM_REF
|| TREE_CODE (innerdecl) == TARGET_MEM_REF)
&& !ptr_deref_may_alias_global_p (TREE_OPERAND (innerdecl, 0)))
|| (DECL_P (innerdecl)
&& ((TREE_CODE (innerdecl) == VAR_DECL
&& DECL_THREAD_LOCAL_P (innerdecl))
|| !TREE_STATIC (innerdecl))))
{
*bitstart = *bitend = 0;
return;
}
/* Bit field we're storing into. */
field = TREE_OPERAND (exp, 1);
record_type = DECL_FIELD_CONTEXT (field);
/* Count the contiguous bitfields for the memory location that
contains FIELD. */
*bitstart = 0;
prev_field_is_bitfield = true;
for (fld = TYPE_FIELDS (record_type); fld; fld = DECL_CHAIN (fld))
{
tree t, offset;
enum machine_mode mode;
int unsignedp, volatilep;
if (TREE_CODE (fld) != FIELD_DECL)
continue;
t = build3 (COMPONENT_REF, TREE_TYPE (exp),
unshare_expr (TREE_OPERAND (exp, 0)),
fld, NULL_TREE);
get_inner_reference (t, &bitsize, &bitpos, &offset,
&mode, &unsignedp, &volatilep, true);
if (field == fld)
found_field = true;
if (DECL_BIT_FIELD_TYPE (fld) && bitsize > 0)
{
if (prev_field_is_bitfield == false)
{
*bitstart = bitpos;
prev_field_is_bitfield = true;
}
}
else
{
prev_field_is_bitfield = false;
if (found_field)
break;
}
}
gcc_assert (found_field);
if (fld)
{
/* We found the end of the bit field sequence. Include the
padding up to the next field and be done. */
*bitend = bitpos - 1;
}
else
{
/* If this is the last element in the structure, include the padding
at the end of structure. */
*bitend = TREE_INT_CST_LOW (TYPE_SIZE (record_type)) - 1;
}
}
/* Return the alignment of the object EXP, also considering its type
when we do not know of explicit misalignment.
??? Note that, in the general case, the type of an expression is not kept
consistent with misalignment information by the front-end, for
example when taking the address of a member of a packed structure.
However, in most of the cases, expressions have the alignment of
their type, so we optimistically fall back to the alignment of the
type when we cannot compute a misalignment. */
static unsigned int
get_object_or_type_alignment (tree exp)
{
unsigned HOST_WIDE_INT misalign;
unsigned int align = get_object_alignment_1 (exp, &misalign);
if (misalign != 0)
align = (misalign & -misalign);
else
align = MAX (TYPE_ALIGN (TREE_TYPE (exp)), align);
return align;
}
/* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
is true, try generating a nontemporal store. */
void
expand_assignment (tree to, tree from, bool nontemporal)
{
rtx to_rtx = 0;
rtx result;
enum machine_mode mode;
unsigned int align;
enum insn_code icode;
/* Don't crash if the lhs of the assignment was erroneous. */
if (TREE_CODE (to) == ERROR_MARK)
{
expand_normal (from);
return;
}
/* Optimize away no-op moves without side-effects. */
if (operand_equal_p (to, from, 0))
return;
mode = TYPE_MODE (TREE_TYPE (to));
if ((TREE_CODE (to) == MEM_REF
|| TREE_CODE (to) == TARGET_MEM_REF)
&& mode != BLKmode
&& ((align = get_object_or_type_alignment (to))
< GET_MODE_ALIGNMENT (mode))
&& ((icode = optab_handler (movmisalign_optab, mode))
!= CODE_FOR_nothing))
{
struct expand_operand ops[2];
enum machine_mode address_mode;
rtx reg, op0, mem;
reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
reg = force_not_mem (reg);
if (TREE_CODE (to) == MEM_REF)
{
addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 1))));
tree base = TREE_OPERAND (to, 0);
address_mode = targetm.addr_space.address_mode (as);
op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_NORMAL);
op0 = convert_memory_address_addr_space (address_mode, op0, as);
if (!integer_zerop (TREE_OPERAND (to, 1)))
{
rtx off
= immed_double_int_const (mem_ref_offset (to), address_mode);
op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
}
op0 = memory_address_addr_space (mode, op0, as);
mem = gen_rtx_MEM (mode, op0);
set_mem_attributes (mem, to, 0);
set_mem_addr_space (mem, as);
}
else if (TREE_CODE (to) == TARGET_MEM_REF)
{
addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (to));
struct mem_address addr;
get_address_description (to, &addr);
op0 = addr_for_mem_ref (&addr, as, true);
op0 = memory_address_addr_space (mode, op0, as);
mem = gen_rtx_MEM (mode, op0);
set_mem_attributes (mem, to, 0);
set_mem_addr_space (mem, as);
}
else
gcc_unreachable ();
if (TREE_THIS_VOLATILE (to))
MEM_VOLATILE_P (mem) = 1;
create_fixed_operand (&ops[0], mem);
create_input_operand (&ops[1], reg, mode);
/* The movmisalign pattern cannot fail, else the assignment would
silently be omitted. */
expand_insn (icode, 2, ops);
return;
}
/* Assignment of a structure component needs special treatment
if the structure component's rtx is not simply a MEM.
Assignment of an array element at a constant index, and assignment of
an array element in an unaligned packed structure field, has the same
problem. */
if (handled_component_p (to)
/* ??? We only need to handle MEM_REF here if the access is not
a full access of the base object. */
|| (TREE_CODE (to) == MEM_REF
&& TREE_CODE (TREE_OPERAND (to, 0)) == ADDR_EXPR)
|| TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
{
enum machine_mode mode1;
HOST_WIDE_INT bitsize, bitpos;
unsigned HOST_WIDE_INT bitregion_start = 0;
unsigned HOST_WIDE_INT bitregion_end = 0;
tree offset;
int unsignedp;
int volatilep = 0;
tree tem;
push_temp_slots ();
tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
&unsignedp, &volatilep, true);
if (TREE_CODE (to) == COMPONENT_REF
&& DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
get_bit_range (&bitregion_start, &bitregion_end,
to, tem, bitpos, bitsize);
/* If we are going to use store_bit_field and extract_bit_field,
make sure to_rtx will be safe for multiple use. */
to_rtx = expand_normal (tem);
/* If the bitfield is volatile, we want to access it in the
field's mode, not the computed mode.
If a MEM has VOIDmode (external with incomplete type),
use BLKmode for it instead. */
if (MEM_P (to_rtx))
{
if (volatilep && flag_strict_volatile_bitfields > 0)
to_rtx = adjust_address (to_rtx, mode1, 0);
else if (GET_MODE (to_rtx) == VOIDmode)
to_rtx = adjust_address (to_rtx, BLKmode, 0);
}
if (offset != 0)
{
enum machine_mode address_mode;
rtx offset_rtx;
if (!MEM_P (to_rtx))
{
/* We can get constant negative offsets into arrays with broken
user code. Translate this to a trap instead of ICEing. */
gcc_assert (TREE_CODE (offset) == INTEGER_CST);
expand_builtin_trap ();
to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
}
offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
address_mode
= targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
if (GET_MODE (offset_rtx) != address_mode)
offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
/* A constant address in TO_RTX can have VOIDmode, we must not try
to call force_reg for that case. Avoid that case. */
if (MEM_P (to_rtx)
&& GET_MODE (to_rtx) == BLKmode
&& GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
&& bitsize > 0
&& (bitpos % bitsize) == 0
&& (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
&& MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
{
to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
bitpos = 0;
}
to_rtx = offset_address (to_rtx, offset_rtx,
highest_pow2_factor_for_target (to,
offset));
}
/* No action is needed if the target is not a memory and the field
lies completely outside that target. This can occur if the source
code contains an out-of-bounds access to a small array. */
if (!MEM_P (to_rtx)
&& GET_MODE (to_rtx) != BLKmode
&& (unsigned HOST_WIDE_INT) bitpos
>= GET_MODE_PRECISION (GET_MODE (to_rtx)))
{
expand_normal (from);
result = NULL;
}
/* Handle expand_expr of a complex value returning a CONCAT. */
else if (GET_CODE (to_rtx) == CONCAT)
{
unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
&& bitpos == 0
&& bitsize == mode_bitsize)
result = store_expr (from, to_rtx, false, nontemporal);
else if (bitsize == mode_bitsize / 2
&& (bitpos == 0 || bitpos == mode_bitsize / 2))
result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
nontemporal);
else if (bitpos + bitsize <= mode_bitsize / 2)
result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
bitregion_start, bitregion_end,
mode1, from, TREE_TYPE (tem),
get_alias_set (to), nontemporal);
else if (bitpos >= mode_bitsize / 2)
result = store_field (XEXP (to_rtx, 1), bitsize,
bitpos - mode_bitsize / 2,
bitregion_start, bitregion_end,
mode1, from,
TREE_TYPE (tem), get_alias_set (to),
nontemporal);
else if (bitpos == 0 && bitsize == mode_bitsize)
{
rtx from_rtx;
result = expand_normal (from);
from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
TYPE_MODE (TREE_TYPE (from)), 0);
emit_move_insn (XEXP (to_rtx, 0),
read_complex_part (from_rtx, false));
emit_move_insn (XEXP (to_rtx, 1),
read_complex_part (from_rtx, true));
}
else
{
rtx temp = assign_stack_temp (GET_MODE (to_rtx),
GET_MODE_SIZE (GET_MODE (to_rtx)),
0);
write_complex_part (temp, XEXP (to_rtx, 0), false);
write_complex_part (temp, XEXP (to_rtx, 1), true);
result = store_field (temp, bitsize, bitpos,
bitregion_start, bitregion_end,
mode1, from,
TREE_TYPE (tem), get_alias_set (to),
nontemporal);
emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
}
}
else
{
if (MEM_P (to_rtx))
{
/* If the field is at offset zero, we could have been given the
DECL_RTX of the parent struct. Don't munge it. */
to_rtx = shallow_copy_rtx (to_rtx);
set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
/* Deal with volatile and readonly fields. The former is only
done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
if (volatilep)
MEM_VOLATILE_P (to_rtx) = 1;
if (component_uses_parent_alias_set (to))
MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
}
if (optimize_bitfield_assignment_op (bitsize, bitpos,
bitregion_start, bitregion_end,
mode1,
to_rtx, to, from))
result = NULL;
else
result = store_field (to_rtx, bitsize, bitpos,
bitregion_start, bitregion_end,
mode1, from,
TREE_TYPE (tem), get_alias_set (to),
nontemporal);
}
if (result)
preserve_temp_slots (result);
free_temp_slots ();
pop_temp_slots ();
return;
}
/* If the rhs is a function call and its value is not an aggregate,
call the function before we start to compute the lhs.
This is needed for correct code for cases such as
val = setjmp (buf) on machines where reference to val
requires loading up part of an address in a separate insn.
Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
since it might be a promoted variable where the zero- or sign- extension
needs to be done. Handling this in the normal way is safe because no
computation is done before the call. The same is true for SSA names. */
if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
&& COMPLETE_TYPE_P (TREE_TYPE (from))
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
&& ! (((TREE_CODE (to) == VAR_DECL
|| TREE_CODE (to) == PARM_DECL
|| TREE_CODE (to) == RESULT_DECL)
&& REG_P (DECL_RTL (to)))
|| TREE_CODE (to) == SSA_NAME))
{
rtx value;
push_temp_slots ();
value = expand_normal (from);
if (to_rtx == 0)
to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
/* Handle calls that return values in multiple non-contiguous locations.
The Irix 6 ABI has examples of this. */
if (GET_CODE (to_rtx) == PARALLEL)
emit_group_load (to_rtx, value, TREE_TYPE (from),
int_size_in_bytes (TREE_TYPE (from)));
else if (GET_MODE (to_rtx) == BLKmode)
emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
else
{
if (POINTER_TYPE_P (TREE_TYPE (to)))
value = convert_memory_address_addr_space
(GET_MODE (to_rtx), value,
TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
emit_move_insn (to_rtx, value);
}
preserve_temp_slots (to_rtx);
free_temp_slots ();
pop_temp_slots ();
return;
}
/* Ordinary treatment. Expand TO to get a REG or MEM rtx.
Don't re-expand if it was expanded already (in COMPONENT_REF case). */
if (to_rtx == 0)
to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
/* Don't move directly into a return register. */
if (TREE_CODE (to) == RESULT_DECL
&& (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
{
rtx temp;
push_temp_slots ();
if (REG_P (to_rtx) && TYPE_MODE (TREE_TYPE (from)) == BLKmode)
temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
else
temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
if (GET_CODE (to_rtx) == PARALLEL)
emit_group_load (to_rtx, temp, TREE_TYPE (from),
int_size_in_bytes (TREE_TYPE (from)));
else if (temp)
emit_move_insn (to_rtx, temp);
preserve_temp_slots (to_rtx);
free_temp_slots ();
pop_temp_slots ();
return;
}
/* In case we are returning the contents of an object which overlaps
the place the value is being stored, use a safe function when copying
a value through a pointer into a structure value return block. */
if (TREE_CODE (to) == RESULT_DECL
&& TREE_CODE (from) == INDIRECT_REF
&& ADDR_SPACE_GENERIC_P
(TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
&& refs_may_alias_p (to, from)
&& cfun->returns_struct
&& !cfun->returns_pcc_struct)
{
rtx from_rtx, size;
push_temp_slots ();
size = expr_size (from);
from_rtx = expand_normal (from);
emit_library_call (memmove_libfunc, LCT_NORMAL,
VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
XEXP (from_rtx, 0), Pmode,
convert_to_mode (TYPE_MODE (sizetype),
size, TYPE_UNSIGNED (sizetype)),
TYPE_MODE (sizetype));
preserve_temp_slots (to_rtx);
free_temp_slots ();
pop_temp_slots ();
return;
}
/* Compute FROM and store the value in the rtx we got. */
push_temp_slots ();
result = store_expr (from, to_rtx, 0, nontemporal);
preserve_temp_slots (result);
free_temp_slots ();
pop_temp_slots ();
return;
}
/* Emits nontemporal store insn that moves FROM to TO. Returns true if this
succeeded, false otherwise. */
bool
emit_storent_insn (rtx to, rtx from)
{
struct expand_operand ops[2];
enum machine_mode mode = GET_MODE (to);
enum insn_code code = optab_handler (storent_optab, mode);
if (code == CODE_FOR_nothing)
return false;
create_fixed_operand (&ops[0], to);
create_input_operand (&ops[1], from, mode);
return maybe_expand_insn (code, 2, ops);
}
/* Generate code for computing expression EXP,
and storing the value into TARGET.
If the mode is BLKmode then we may return TARGET itself.
It turns out that in BLKmode it doesn't cause a problem.
because C has no operators that could combine two different
assignments into the same BLKmode object with different values
with no sequence point. Will other languages need this to
be more thorough?
If CALL_PARAM_P is nonzero, this is a store into a call param on the
stack, and block moves may need to be treated specially.
If NONTEMPORAL is true, try using a nontemporal store instruction. */
rtx
store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
{
rtx temp;
rtx alt_rtl = NULL_RTX;
location_t loc = EXPR_LOCATION (exp);
if (VOID_TYPE_P (TREE_TYPE (exp)))
{
/* C++ can generate ?: expressions with a throw expression in one
branch and an rvalue in the other. Here, we resolve attempts to
store the throw expression's nonexistent result. */
gcc_assert (!call_param_p);
expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
return NULL_RTX;
}
if (TREE_CODE (exp) == COMPOUND_EXPR)
{
/* Perform first part of compound expression, then assign from second
part. */
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
nontemporal);
}
else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
{
/* For conditional expression, get safe form of the target. Then
test the condition, doing the appropriate assignment on either
side. This avoids the creation of unnecessary temporaries.
For non-BLKmode, it is more efficient not to do this. */
rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
do_pending_stack_adjust ();
NO_DEFER_POP;
jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
nontemporal);
emit_jump_insn (gen_jump (lab2));
emit_barrier ();
emit_label (lab1);
store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
nontemporal);
emit_label (lab2);
OK_DEFER_POP;
return NULL_RTX;
}
else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
/* If this is a scalar in a register that is stored in a wider mode
than the declared mode, compute the result into its declared mode
and then convert to the wider mode. Our value is the computed
expression. */
{
rtx inner_target = 0;
/* We can do the conversion inside EXP, which will often result
in some optimizations. Do the conversion in two steps: first
change the signedness, if needed, then the extend. But don't
do this if the type of EXP is a subtype of something else
since then the conversion might involve more than just
converting modes. */
if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
&& TREE_TYPE (TREE_TYPE (exp)) == 0
&& GET_MODE_PRECISION (GET_MODE (target))
== TYPE_PRECISION (TREE_TYPE (exp)))
{
if (TYPE_UNSIGNED (TREE_TYPE (exp))
!= SUBREG_PROMOTED_UNSIGNED_P (target))
{
/* Some types, e.g. Fortran's logical*4, won't have a signed
version, so use the mode instead. */
tree ntype
= (signed_or_unsigned_type_for
(SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
if (ntype == NULL)
ntype = lang_hooks.types.type_for_mode
(TYPE_MODE (TREE_TYPE (exp)),
SUBREG_PROMOTED_UNSIGNED_P (target));
exp = fold_convert_loc (loc, ntype, exp);
}
exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
(GET_MODE (SUBREG_REG (target)),
SUBREG_PROMOTED_UNSIGNED_P (target)),
exp);
inner_target = SUBREG_REG (target);
}
temp = expand_expr (exp, inner_target, VOIDmode,
call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
/* If TEMP is a VOIDmode constant, use convert_modes to make
sure that we properly convert it. */
if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
{
temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
temp, SUBREG_PROMOTED_UNSIGNED_P (target));
temp = convert_modes (GET_MODE (SUBREG_REG (target)),
GET_MODE (target), temp,
SUBREG_PROMOTED_UNSIGNED_P (target));
}
convert_move (SUBREG_REG (target), temp,
SUBREG_PROMOTED_UNSIGNED_P (target));
return NULL_RTX;
}
else if ((TREE_CODE (exp) == STRING_CST
|| (TREE_CODE (exp) == MEM_REF
&& TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
== STRING_CST
&& integer_zerop (TREE_OPERAND (exp, 1))))
&& !nontemporal && !call_param_p
&& MEM_P (target))
{
/* Optimize initialization of an array with a STRING_CST. */
HOST_WIDE_INT exp_len, str_copy_len;
rtx dest_mem;
tree str = TREE_CODE (exp) == STRING_CST
? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
exp_len = int_expr_size (exp);
if (exp_len <= 0)
goto normal_expr;
if (TREE_STRING_LENGTH (str) <= 0)
goto normal_expr;
str_copy_len = strlen (TREE_STRING_POINTER (str));
if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
goto normal_expr;
str_copy_len = TREE_STRING_LENGTH (str);
if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
&& TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
{
str_copy_len += STORE_MAX_PIECES - 1;
str_copy_len &= ~(STORE_MAX_PIECES - 1);
}
str_copy_len = MIN (str_copy_len, exp_len);
if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
CONST_CAST (char *, TREE_STRING_POINTER (str)),
MEM_ALIGN (target), false))
goto normal_expr;
dest_mem = target;
dest_mem = store_by_pieces (dest_mem,
str_copy_len, builtin_strncpy_read_str,
CONST_CAST (char *,
TREE_STRING_POINTER (str)),
MEM_ALIGN (target), false,
exp_len > str_copy_len ? 1 : 0);
if (exp_len > str_copy_len)
clear_storage (adjust_address (dest_mem, BLKmode, 0),
GEN_INT (exp_len - str_copy_len),
BLOCK_OP_NORMAL);
return NULL_RTX;
}
else
{
rtx tmp_target;
normal_expr:
/* If we want to use a nontemporal store, force the value to
register first. */
tmp_target = nontemporal ? NULL_RTX : target;
temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
(call_param_p
? EXPAND_STACK_PARM : EXPAND_NORMAL),
&alt_rtl);
}
/* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
the same as that of TARGET, adjust the constant. This is needed, for
example, in case it is a CONST_DOUBLE and we want only a word-sized
value. */
if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
&& TREE_CODE (exp) != ERROR_MARK
&& GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
/* If value was not generated in the target, store it there.
Convert the value to TARGET's type first if necessary and emit the
pending incrementations that have been queued when expanding EXP.
Note that we cannot emit the whole queue blindly because this will
effectively disable the POST_INC optimization later.
If TEMP and TARGET compare equal according to rtx_equal_p, but
one or both of them are volatile memory refs, we have to distinguish
two cases:
- expand_expr has used TARGET. In this case, we must not generate
another copy. This can be detected by TARGET being equal according
to == .
- expand_expr has not used TARGET - that means that the source just
happens to have the same RTX form. Since temp will have been created
by expand_expr, it will compare unequal according to == .
We must generate a copy in this case, to reach the correct number
of volatile memory references. */
if ((! rtx_equal_p (temp, target)
|| (temp != target && (side_effects_p (temp)
|| side_effects_p (target))))
&& TREE_CODE (exp) != ERROR_MARK
/* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
but TARGET is not valid memory reference, TEMP will differ
from TARGET although it is really the same location. */
&& !(alt_rtl
&& rtx_equal_p (alt_rtl, target)
&& !side_effects_p (alt_rtl)
&& !side_effects_p (target))
/* If there's nothing to copy, don't bother. Don't call
expr_size unless necessary, because some front-ends (C++)
expr_size-hook must not be given objects that are not
supposed to be bit-copied or bit-initialized. */
&& expr_size (exp) != const0_rtx)
{
if (GET_MODE (temp) != GET_MODE (target)
&& GET_MODE (temp) != VOIDmode)
{
int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
if (GET_MODE (target) == BLKmode
&& GET_MODE (temp) == BLKmode)
emit_block_move (target, temp, expr_size (exp),
(call_param_p
? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL));
else if (GET_MODE (target) == BLKmode)
store_bit_field (target, INTVAL (expr_size (exp)) * BITS_PER_UNIT,
0, 0, 0, GET_MODE (temp), temp);
else
convert_move (target, temp, unsignedp);
}
else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
{
/* Handle copying a string constant into an array. The string
constant may be shorter than the array. So copy just the string's
actual length, and clear the rest. First get the size of the data
type of the string, which is actually the size of the target. */
rtx size = expr_size (exp);
if (CONST_INT_P (size)
&& INTVAL (size) < TREE_STRING_LENGTH (exp))
emit_block_move (target, temp, size,
(call_param_p
? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
else
{
enum machine_mode pointer_mode
= targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
enum machine_mode address_mode
= targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
/* Compute the size of the data to copy from the string. */
tree copy_size
= size_binop_loc (loc, MIN_EXPR,
make_tree (sizetype, size),
size_int (TREE_STRING_LENGTH (exp)));
rtx copy_size_rtx
= expand_expr (copy_size, NULL_RTX, VOIDmode,
(call_param_p
? EXPAND_STACK_PARM : EXPAND_NORMAL));
rtx label = 0;
/* Copy that much. */
copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
TYPE_UNSIGNED (sizetype));
emit_block_move (target, temp, copy_size_rtx,
(call_param_p
? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
/* Figure out how much is left in TARGET that we have to clear.
Do all calculations in pointer_mode. */
if (CONST_INT_P (copy_size_rtx))
{
size = plus_constant (size, -INTVAL (copy_size_rtx));
target = adjust_address (target, BLKmode,
INTVAL (copy_size_rtx));
}
else
{
size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
copy_size_rtx, NULL_RTX, 0,
OPTAB_LIB_WIDEN);
if (GET_MODE (copy_size_rtx) != address_mode)
copy_size_rtx = convert_to_mode (address_mode,
copy_size_rtx,
TYPE_UNSIGNED (sizetype));
target = offset_address (target, copy_size_rtx,
highest_pow2_factor (copy_size));
label = gen_label_rtx ();
emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
GET_MODE (size), 0, label);
}
if (size != const0_rtx)
clear_storage (target, size, BLOCK_OP_NORMAL);
if (label)
emit_label (label);
}
}
/* Handle calls that return values in multiple non-contiguous locations.
The Irix 6 ABI has examples of this. */
else if (GET_CODE (target) == PARALLEL)
emit_group_load (target, temp, TREE_TYPE (exp),
int_size_in_bytes (TREE_TYPE (exp)));
else if (GET_MODE (temp) == BLKmode)
emit_block_move (target, temp, expr_size (exp),
(call_param_p
? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
else if (nontemporal
&& emit_storent_insn (target, temp))
/* If we managed to emit a nontemporal store, there is nothing else to
do. */
;
else
{
temp = force_operand (temp, target);
if (temp != target)
emit_move_insn (target, temp);
}
}
return NULL_RTX;
}
/* Return true if field F of structure TYPE is a flexible array. */
static bool
flexible_array_member_p (const_tree f, const_tree type)
{
const_tree tf;
tf = TREE_TYPE (f);
return (DECL_CHAIN (f) == NULL
&& TREE_CODE (tf) == ARRAY_TYPE
&& TYPE_DOMAIN (tf)
&& TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
&& integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
&& !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
&& int_size_in_bytes (type) >= 0);
}
/* If FOR_CTOR_P, return the number of top-level elements that a constructor
must have in order for it to completely initialize a value of type TYPE.
Return -1 if the number isn't known.
If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
static HOST_WIDE_INT
count_type_elements (const_tree type, bool for_ctor_p)
{
switch (TREE_CODE (type))
{
case ARRAY_TYPE:
{
tree nelts;
nelts = array_type_nelts (type);
if (nelts && host_integerp (nelts, 1))
{
unsigned HOST_WIDE_INT n;
n = tree_low_cst (nelts, 1) + 1;
if (n == 0 || for_ctor_p)
return n;
else
return n * count_type_elements (TREE_TYPE (type), false);
}
return for_ctor_p ? -1 : 1;
}
case RECORD_TYPE:
{
unsigned HOST_WIDE_INT n;
tree f;
n = 0;
for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
if (TREE_CODE (f) == FIELD_DECL)
{
if (!for_ctor_p)
n += count_type_elements (TREE_TYPE (f), false);
else if (!flexible_array_member_p (f, type))
/* Don't count flexible arrays, which are not supposed
to be initialized. */
n += 1;
}
return n;
}
case UNION_TYPE:
case QUAL_UNION_TYPE:
{
tree f;
HOST_WIDE_INT n, m;
gcc_assert (!for_ctor_p);
/* Estimate the number of scalars in each field and pick the
maximum. Other estimates would do instead; the idea is simply
to make sure that the estimate is not sensitive to the ordering
of the fields. */
n = 1;
for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
if (TREE_CODE (f) == FIELD_DECL)
{
m = count_type_elements (TREE_TYPE (f), false);
/* If the field doesn't span the whole union, add an extra
scalar for the rest. */
if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
TYPE_SIZE (type)) != 1)
m++;
if (n < m)
n = m;
}
return n;
}
case COMPLEX_TYPE:
return 2;
case VECTOR_TYPE:
return TYPE_VECTOR_SUBPARTS (type);
case INTEGER_TYPE:
case REAL_TYPE:
case FIXED_POINT_TYPE:
case ENUMERAL_TYPE:
case BOOLEAN_TYPE:
case POINTER_TYPE:
case OFFSET_TYPE:
case REFERENCE_TYPE:
case NULLPTR_TYPE:
return 1;
case ERROR_MARK:
return 0;
case VOID_TYPE:
case METHOD_TYPE:
case FUNCTION_TYPE:
case LANG_TYPE:
default:
gcc_unreachable ();
}
}
/* Helper for categorize_ctor_elements. Identical interface. */
static bool
categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
HOST_WIDE_INT *p_init_elts, bool *p_complete)
{
unsigned HOST_WIDE_INT idx;
HOST_WIDE_INT nz_elts, init_elts, num_fields;
tree value, purpose, elt_type;
/* Whether CTOR is a valid constant initializer, in accordance with what
initializer_constant_valid_p does. If inferred from the constructor
elements, true until proven otherwise. */
bool const_from_elts_p = constructor_static_from_elts_p (ctor);
bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
nz_elts = 0;
init_elts = 0;
num_fields = 0;
elt_type = NULL_TREE;
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
{
HOST_WIDE_INT mult = 1;
if (TREE_CODE (purpose) == RANGE_EXPR)
{
tree lo_index = TREE_OPERAND (purpose, 0);
tree hi_index = TREE_OPERAND (purpose, 1);
if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
mult = (tree_low_cst (hi_index, 1)
- tree_low_cst (lo_index, 1) + 1);
}
num_fields += mult;
elt_type = TREE_TYPE (value);
switch (TREE_CODE (value))
{
case CONSTRUCTOR:
{
HOST_WIDE_INT nz = 0, ic = 0;
bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
p_complete);
nz_elts += mult * nz;
init_elts += mult * ic;
if (const_from_elts_p && const_p)
const_p = const_elt_p;
}
break;
case INTEGER_CST:
case REAL_CST:
case FIXED_CST:
if (!initializer_zerop (value))
nz_elts += mult;
init_elts += mult;
break;
case STRING_CST:
nz_elts += mult * TREE_STRING_LENGTH (value);
init_elts += mult * TREE_STRING_LENGTH (value);
break;
case COMPLEX_CST:
if (!initializer_zerop (TREE_REALPART (value)))
nz_elts += mult;
if (!initializer_zerop (TREE_IMAGPART (value)))
nz_elts += mult;
init_elts += mult;
break;
case VECTOR_CST:
{
tree v;
for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
{
if (!initializer_zerop (TREE_VALUE (v)))
nz_elts += mult;
init_elts += mult;
}
}
break;
default:
{
HOST_WIDE_INT tc = count_type_elements (elt_type, false);
nz_elts += mult * tc;
init_elts += mult * tc;
if (const_from_elts_p && const_p)
const_p = initializer_constant_valid_p (value, elt_type)
!= NULL_TREE;
}
break;
}
}
if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
num_fields, elt_type))
*p_complete = false;
*p_nz_elts += nz_elts;
*p_init_elts += init_elts;
return const_p;
}
/* Examine CTOR to discover:
* how many scalar fields are set to nonzero values,
and place it in *P_NZ_ELTS;
* how many scalar fields in total are in CTOR,
and place it in *P_ELT_COUNT.
* whether the constructor is complete -- in the sense that every
meaningful byte is explicitly given a value --
and place it in *P_COMPLETE.
Return whether or not CTOR is a valid static constant initializer, the same
as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
bool
categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
HOST_WIDE_INT *p_init_elts, bool *p_complete)
{
*p_nz_elts = 0;
*p_init_elts = 0;
*p_complete = true;
return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
}
/* TYPE is initialized by a constructor with NUM_ELTS elements, the last
of which had type LAST_TYPE. Each element was itself a complete
initializer, in the sense that every meaningful byte was explicitly
given a value. Return true if the same is true for the constructor
as a whole. */
bool
complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
const_tree last_type)
{
if (TREE_CODE (type) == UNION_TYPE
|| TREE_CODE (type) == QUAL_UNION_TYPE)
{
if (num_elts == 0)
return false;
gcc_assert (num_elts == 1 && last_type);
/* ??? We could look at each element of the union, and find the
largest element. Which would avoid comparing the size of the
initialized element against any tail padding in the union.
Doesn't seem worth the effort... */
return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
}
return count_type_elements (type, true) == num_elts;
}
/* Return 1 if EXP contains mostly (3/4) zeros. */
static int
mostly_zeros_p (const_tree exp)
{
if (TREE_CODE (exp) == CONSTRUCTOR)
{
HOST_WIDE_INT nz_elts, init_elts;
bool complete_p;
categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
return !complete_p || nz_elts < init_elts / 4;
}
return initializer_zerop (exp);
}
/* Return 1 if EXP contains all zeros. */
static int
all_zeros_p (const_tree exp)
{
if (TREE_CODE (exp) == CONSTRUCTOR)
{
HOST_WIDE_INT nz_elts, init_elts;
bool complete_p;
categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
return nz_elts == 0;
}
return initializer_zerop (exp);
}
/* Helper function for store_constructor.
TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
TYPE is the type of the CONSTRUCTOR, not the element type.
CLEARED is as for store_constructor.
ALIAS_SET is the alias set to use for any stores.
This provides a recursive shortcut back to store_constructor when it isn't
necessary to go through store_field. This is so that we can pass through
the cleared field to let store_constructor know that we may not have to
clear a substructure if the outer structure has already been cleared. */
static void
store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
HOST_WIDE_INT bitpos, enum machine_mode mode,
tree exp, tree type, int cleared,
alias_set_type alias_set)
{
if (TREE_CODE (exp) == CONSTRUCTOR
/* We can only call store_constructor recursively if the size and
bit position are on a byte boundary. */
&& bitpos % BITS_PER_UNIT == 0
&& (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
/* If we have a nonzero bitpos for a register target, then we just
let store_field do the bitfield handling. This is unlikely to
generate unnecessary clear instructions anyways. */
&& (bitpos == 0 || MEM_P (target)))
{
if (MEM_P (target))
target
= adjust_address (target,
GET_MODE (target) == BLKmode
|| 0 != (bitpos
% GET_MODE_ALIGNMENT (GET_MODE (target)))
? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
/* Update the alias set, if required. */
if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
&& MEM_ALIAS_SET (target) != 0)
{
target = copy_rtx (target);
set_mem_alias_set (target, alias_set);
}
store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
}
else
store_field (target, bitsize, bitpos, 0, 0, mode, exp, type, alias_set,
false);
}
/* Store the value of constructor EXP into the rtx TARGET.
TARGET is either a REG or a MEM; we know it cannot conflict, since
safe_from_p has been called.
CLEARED is true if TARGET is known to have been zero'd.
SIZE is the number of bytes of TARGET we are allowed to modify: this
may not be the same as the size of EXP if we are assigning to a field
which has been packed to exclude padding bits. */
static void
store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
{
tree type = TREE_TYPE (exp);
#ifdef WORD_REGISTER_OPERATIONS
HOST_WIDE_INT exp_size = int_size_in_bytes (type);
#endif
switch (TREE_CODE (type))
{
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
{
unsigned HOST_WIDE_INT idx;
tree field, value;
/* If size is zero or the target is already cleared, do nothing. */
if (size == 0 || cleared)
cleared = 1;
/* We either clear the aggregate or indicate the value is dead. */
else if ((TREE_CODE (type) == UNION_TYPE
|| TREE_CODE (type) == QUAL_UNION_TYPE)
&& ! CONSTRUCTOR_ELTS (exp))
/* If the constructor is empty, clear the union. */
{
clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
cleared = 1;
}
/* If we are building a static constructor into a register,
set the initial value as zero so we can fold the value into
a constant. But if more than one register is involved,
this probably loses. */
else if (REG_P (target) && TREE_STATIC (exp)
&& GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
{
emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
cleared = 1;
}
/* If the constructor has fewer fields than the structure or
if we are initializing the structure to mostly zeros, clear
the whole structure first. Don't do this if TARGET is a
register whose mode size isn't equal to SIZE since
clear_storage can't handle this case. */
else if (size > 0
&& (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
!= fields_length (type))
|| mostly_zeros_p (exp))
&& (!REG_P (target)
|| ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
== size)))
{
clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
cleared = 1;
}
if (REG_P (target) && !cleared)
emit_clobber (target);
/* Store each element of the constructor into the
corresponding field of TARGET. */
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
{
enum machine_mode mode;
HOST_WIDE_INT bitsize;
HOST_WIDE_INT bitpos = 0;
tree offset;
rtx to_rtx = target;
/* Just ignore missing fields. We cleared the whole
structure, above, if any fields are missing. */
if (field == 0)
continue;
if (cleared && initializer_zerop (value))
continue;
if (host_integerp (DECL_SIZE (field), 1))
bitsize = tree_low_cst (DECL_SIZE (field), 1);
else
bitsize = -1;
mode = DECL_MODE (field);
if (DECL_BIT_FIELD (field))
mode = VOIDmode;
offset = DECL_FIELD_OFFSET (field);
if (host_integerp (offset, 0)
&& host_integerp (bit_position (field), 0))
{
bitpos = int_bit_position (field);
offset = 0;
}
else
bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
if (offset)
{
enum machine_mode address_mode;
rtx offset_rtx;
offset
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
make_tree (TREE_TYPE (exp),
target));
offset_rtx = expand_normal (offset);
gcc_assert (MEM_P (to_rtx));
address_mode
= targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
if (GET_MODE (offset_rtx) != address_mode)
offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
to_rtx = offset_address (to_rtx, offset_rtx,
highest_pow2_factor (offset));
}
#ifdef WORD_REGISTER_OPERATIONS
/* If this initializes a field that is smaller than a
word, at the start of a word, try to widen it to a full
word. This special case allows us to output C++ member
function initializations in a form that the optimizers
can understand. */
if (REG_P (target)
&& bitsize < BITS_PER_WORD
&& bitpos % BITS_PER_WORD == 0
&& GET_MODE_CLASS (mode) == MODE_INT
&& TREE_CODE (value) == INTEGER_CST
&& exp_size >= 0
&& bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
{
tree type = TREE_TYPE (value);
if (TYPE_PRECISION (type) < BITS_PER_WORD)
{
type = lang_hooks.types.type_for_size
(BITS_PER_WORD, TYPE_UNSIGNED (type));
value = fold_convert (type, value);
}
if (BYTES_BIG_ENDIAN)
value
= fold_build2 (LSHIFT_EXPR, type, value,
build_int_cst (type,
BITS_PER_WORD - bitsize));
bitsize = BITS_PER_WORD;
mode = word_mode;
}
#endif
if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
&& DECL_NONADDRESSABLE_P (field))
{
to_rtx = copy_rtx (to_rtx);
MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
}
store_constructor_field (to_rtx, bitsize, bitpos, mode,
value, type, cleared,
get_alias_set (TREE_TYPE (field)));
}
break;
}
case ARRAY_TYPE:
{
tree value, index;
unsigned HOST_WIDE_INT i;
int need_to_clear;
tree domain;
tree elttype = TREE_TYPE (type);
int const_bounds_p;
HOST_WIDE_INT minelt = 0;
HOST_WIDE_INT maxelt = 0;
domain = TYPE_DOMAIN (type);
const_bounds_p = (TYPE_MIN_VALUE (domain)
&& TYPE_MAX_VALUE (domain)
&& host_integerp (TYPE_MIN_VALUE (domain), 0)
&& host_integerp (TYPE_MAX_VALUE (domain), 0));
/* If we have constant bounds for the range of the type, get them. */
if (const_bounds_p)
{
minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
}
/* If the constructor has fewer elements than the array, clear
the whole array first. Similarly if this is static
constructor of a non-BLKmode object. */
if (cleared)
need_to_clear = 0;
else if (REG_P (target) && TREE_STATIC (exp))
need_to_clear = 1;
else
{
unsigned HOST_WIDE_INT idx;
tree index, value;
HOST_WIDE_INT count = 0, zero_count = 0;
need_to_clear = ! const_bounds_p;
/* This loop is a more accurate version of the loop in
mostly_zeros_p (it handles RANGE_EXPR in an index). It
is also needed to check for missing elements. */
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
{
HOST_WIDE_INT this_node_count;
if (need_to_clear)
break;
if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
{
tree lo_index = TREE_OPERAND (index, 0);
tree hi_index = TREE_OPERAND (index, 1);
if (! host_integerp (lo_index, 1)
|| ! host_integerp (hi_index, 1))
{
need_to_clear = 1;
break;
}
this_node_count = (tree_low_cst (hi_index, 1)
- tree_low_cst (lo_index, 1) + 1);
}
else
this_node_count = 1;
count += this_node_count;
if (mostly_zeros_p (value))
zero_count += this_node_count;
}
/* Clear the entire array first if there are any missing
elements, or if the incidence of zero elements is >=
75%. */
if (! need_to_clear
&& (count < maxelt - minelt + 1
|| 4 * zero_count >= 3 * count))
need_to_clear = 1;
}
if (need_to_clear && size > 0)
{
if (REG_P (target))
emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
else
clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
cleared = 1;
}
if (!cleared && REG_P (target))
/* Inform later passes that the old value is dead. */
emit_clobber (target);
/* Store each element of the constructor into the
corresponding element of TARGET, determined by counting the
elements. */
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
{
enum machine_mode mode;
HOST_WIDE_INT bitsize;
HOST_WIDE_INT bitpos;
rtx xtarget = target;
if (cleared && initializer_zerop (value))
continue;
mode = TYPE_MODE (elttype);
if (mode == BLKmode)
bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
? tree_low_cst (TYPE_SIZE (elttype), 1)
: -1);
else
bitsize = GET_MODE_BITSIZE (mode);
if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
{
tree lo_index = TREE_OPERAND (index, 0);
tree hi_index = TREE_OPERAND (index, 1);
rtx index_r, pos_rtx;
HOST_WIDE_INT lo, hi, count;
tree position;
/* If the range is constant and "small", unroll the loop. */
if (const_bounds_p
&& host_integerp (lo_index, 0)
&& host_integerp (hi_index, 0)
&& (lo = tree_low_cst (lo_index, 0),
hi = tree_low_cst (hi_index, 0),
count = hi - lo + 1,
(!MEM_P (target)
|| count <= 2
|| (host_integerp (TYPE_SIZE (elttype), 1)
&& (tree_low_cst (TYPE_SIZE (elttype), 1) * count
<= 40 * 8)))))
{
lo -= minelt; hi -= minelt;
for (; lo <= hi; lo++)
{
bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
if (MEM_P (target)
&& !MEM_KEEP_ALIAS_SET_P (target)
&& TREE_CODE (type) == ARRAY_TYPE
&& TYPE_NONALIASED_COMPONENT (type))
{
target = copy_rtx (target);
MEM_KEEP_ALIAS_SET_P (target) = 1;
}
store_constructor_field
(target, bitsize, bitpos, mode, value, type, cleared,
get_alias_set (elttype));
}
}
else
{
rtx loop_start = gen_label_rtx ();
rtx loop_end = gen_label_rtx ();
tree exit_cond;
expand_normal (hi_index);
index = build_decl (EXPR_LOCATION (exp),
VAR_DECL, NULL_TREE, domain);
index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
SET_DECL_RTL (index, index_r);
store_expr (lo_index, index_r, 0, false);
/* Build the head of the loop. */
do_pending_stack_adjust ();
emit_label (loop_start);
/* Assign value to element index. */
position =
fold_convert (ssizetype,
fold_build2 (MINUS_EXPR,
TREE_TYPE (index),
index,
TYPE_MIN_VALUE (domain)));
position =
size_binop (MULT_EXPR, position,
fold_convert (ssizetype,
TYPE_SIZE_UNIT (elttype)));
pos_rtx = expand_normal (position);
xtarget = offset_address (target, pos_rtx,
highest_pow2_factor (position));
xtarget = adjust_address (xtarget, mode, 0);
if (TREE_CODE (value) == CONSTRUCTOR)
store_constructor (value, xtarget, cleared,
bitsize / BITS_PER_UNIT);
else
store_expr (value, xtarget, 0, false);
/* Generate a conditional jump to exit the loop. */
exit_cond = build2 (LT_EXPR, integer_type_node,
index, hi_index);
jumpif (exit_cond, loop_end, -1);
/* Update the loop counter, and jump to the head of
the loop. */
expand_assignment (index,
build2 (PLUS_EXPR, TREE_TYPE (index),
index, integer_one_node),
false);
emit_jump (loop_start);
/* Build the end of the loop. */
emit_label (loop_end);
}
}
else if ((index != 0 && ! host_integerp (index, 0))
|| ! host_integerp (TYPE_SIZE (elttype), 1))
{
tree position;
if (index == 0)
index = ssize_int (1);
if (minelt)
index = fold_convert (ssizetype,
fold_build2 (MINUS_EXPR,
TREE_TYPE (index),
index,
TYPE_MIN_VALUE (domain)));
position =
size_binop (MULT_EXPR, index,
fold_convert (ssizetype,
TYPE_SIZE_UNIT (elttype)));
xtarget = offset_address (target,
expand_normal (position),
highest_pow2_factor (position));
xtarget = adjust_address (xtarget, mode, 0);
store_expr (value, xtarget, 0, false);
}
else
{
if (index != 0)
bitpos = ((tree_low_cst (index, 0) - minelt)
* tree_low_cst (TYPE_SIZE (elttype), 1));
else
bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
&& TREE_CODE (type) == ARRAY_TYPE
&& TYPE_NONALIASED_COMPONENT (type))
{
target = copy_rtx (target);
MEM_KEEP_ALIAS_SET_P (target) = 1;
}
store_constructor_field (target, bitsize, bitpos, mode, value,
type, cleared, get_alias_set (elttype));
}
}
break;
}
case VECTOR_TYPE:
{
unsigned HOST_WIDE_INT idx;
constructor_elt *ce;
int i;
int need_to_clear;
int icode = 0;
tree elttype = TREE_TYPE (type);
int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
enum machine_mode eltmode = TYPE_MODE (elttype);
HOST_WIDE_INT bitsize;
HOST_WIDE_INT bitpos;
rtvec vector = NULL;
unsigned n_elts;
alias_set_type alias;
gcc_assert (eltmode != BLKmode);
n_elts = TYPE_VECTOR_SUBPARTS (type);
if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
{
enum machine_mode mode = GET_MODE (target);
icode = (int) optab_handler (vec_init_optab, mode);
if (icode != CODE_FOR_nothing)
{
unsigned int i;
vector = rtvec_alloc (n_elts);
for (i = 0; i < n_elts; i++)
RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
}
}
/* If the constructor has fewer elements than the vector,
clear the whole array first. Similarly if this is static
constructor of a non-BLKmode object. */
if (cleared)
need_to_clear = 0;
else if (REG_P (target) && TREE_STATIC (exp))
need_to_clear = 1;
else
{
unsigned HOST_WIDE_INT count = 0, zero_count = 0;
tree value;
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
{
int n_elts_here = tree_low_cst
(int_const_binop (TRUNC_DIV_EXPR,
TYPE_SIZE (TREE_TYPE (value)),
TYPE_SIZE (elttype)), 1);
count += n_elts_here;
if (mostly_zeros_p (value))
zero_count += n_elts_here;
}
/* Clear the entire vector first if there are any missing elements,
or if the incidence of zero elements is >= 75%. */
need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
}
if (need_to_clear && size > 0 && !vector)
{
if (REG_P (target))
emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
else
clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
cleared = 1;
}
/* Inform later passes that the old value is dead. */
if (!cleared && !vector && REG_P (target))
emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
if (MEM_P (target))
alias = MEM_ALIAS_SET (target);
else
alias = get_alias_set (elttype);
/* Store each element of the constructor into the corresponding
element of TARGET, determined by counting the elements. */
for (idx = 0, i = 0;
VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
idx++, i += bitsize / elt_size)
{
HOST_WIDE_INT eltpos;
tree value = ce->value;
bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
if (cleared && initializer_zerop (value))
continue;
if (ce->index)
eltpos = tree_low_cst (ce->index, 1);
else
eltpos = i;
if (vector)
{
/* Vector CONSTRUCTORs should only be built from smaller
vectors in the case of BLKmode vectors. */
gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
RTVEC_ELT (vector, eltpos)
= expand_normal (value);
}
else
{
enum machine_mode value_mode =
TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
? TYPE_MODE (TREE_TYPE (value))
: eltmode;
bitpos = eltpos * elt_size;
store_constructor_field (target, bitsize, bitpos,
value_mode, value, type,
cleared, alias);
}
}
if (vector)
emit_insn (GEN_FCN (icode)
(target,
gen_rtx_PARALLEL (GET_MODE (target), vector)));
break;
}
default:
gcc_unreachable ();
}
}
/* Store the value of EXP (an expression tree)
into a subfield of TARGET which has mode MODE and occupies
BITSIZE bits, starting BITPOS bits from the start of TARGET.
If MODE is VOIDmode, it means that we are storing into a bit-field.
BITREGION_START is bitpos of the first bitfield in this region.
BITREGION_END is the bitpos of the ending bitfield in this region.
These two fields are 0, if the C++ memory model does not apply,
or we are not interested in keeping track of bitfield regions.
Always return const0_rtx unless we have something particular to
return.
TYPE is the type of the underlying object,
ALIAS_SET is the alias set for the destination. This value will
(in general) be different from that for TARGET, since TARGET is a
reference to the containing structure.
If NONTEMPORAL is true, try generating a nontemporal store. */
static rtx
store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
unsigned HOST_WIDE_INT bitregion_start,
unsigned HOST_WIDE_INT bitregion_end,
enum machine_mode mode, tree exp, tree type,
alias_set_type alias_set, bool nontemporal)
{
if (TREE_CODE (exp) == ERROR_MARK)
return const0_rtx;
/* If we have nothing to store, do nothing unless the expression has
side-effects. */
if (bitsize == 0)
return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* If we are storing into an unaligned field of an aligned union that is
in a register, we may have the mode of TARGET being an integer mode but
MODE == BLKmode. In that case, get an aligned object whose size and
alignment are the same as TARGET and store TARGET into it (we can avoid
the store if the field being stored is the entire width of TARGET). Then
call ourselves recursively to store the field into a BLKmode version of
that object. Finally, load from the object into TARGET. This is not
very efficient in general, but should only be slightly more expensive
than the otherwise-required unaligned accesses. Perhaps this can be
cleaned up later. It's tempting to make OBJECT readonly, but it's set
twice, once with emit_move_insn and once via store_field. */
if (mode == BLKmode
&& (REG_P (target) || GET_CODE (target) == SUBREG))
{
rtx object = assign_temp (type, 0, 1, 1);
rtx blk_object = adjust_address (object, BLKmode, 0);
if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
emit_move_insn (object, target);
store_field (blk_object, bitsize, bitpos,
bitregion_start, bitregion_end,
mode, exp, type, alias_set, nontemporal);
emit_move_insn (target, object);
/* We want to return the BLKmode version of the data. */
return blk_object;
}
if (GET_CODE (target) == CONCAT)
{
/* We're storing into a struct containing a single __complex. */
gcc_assert (!bitpos);
return store_expr (exp, target, 0, nontemporal);
}
/* If the structure is in a register or if the component
is a bit field, we cannot use addressing to access it.
Use bit-field techniques or SUBREG to store in it. */
if (mode == VOIDmode
|| (mode != BLKmode && ! direct_store[(int) mode]
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
|| REG_P (target)
|| GET_CODE (target) == SUBREG
/* If the field isn't aligned enough to store as an ordinary memref,
store it as a bit field. */
|| (mode != BLKmode
&& ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
|| bitpos % GET_MODE_ALIGNMENT (mode))
&& SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
|| (bitpos % BITS_PER_UNIT != 0)))
/* If the RHS and field are a constant size and the size of the
RHS isn't the same size as the bitfield, we must use bitfield
operations. */
|| (bitsize >= 0
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
&& compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
/* If we are expanding a MEM_REF of a non-BLKmode non-addressable
decl we must use bitfield operations. */
|| (bitsize >= 0
&& TREE_CODE (exp) == MEM_REF
&& TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
&& DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
&& !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
&& DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
{
rtx temp;
gimple nop_def;
/* If EXP is a NOP_EXPR of precision less than its mode, then that
implies a mask operation. If the precision is the same size as
the field we're storing into, that mask is redundant. This is
particularly common with bit field assignments generated by the
C front end. */
nop_def = get_def_for_expr (exp, NOP_EXPR);
if (nop_def)
{
tree type = TREE_TYPE (exp);
if (INTEGRAL_TYPE_P (type)
&& TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
&& bitsize == TYPE_PRECISION (type))
{
tree op = gimple_assign_rhs1 (nop_def);
type = TREE_TYPE (op);
if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
exp = op;
}
}
temp = expand_normal (exp);
/* If BITSIZE is narrower than the size of the type of EXP
we will be narrowing TEMP. Normally, what's wanted are the
low-order bits. However, if EXP's type is a record and this is
big-endian machine, we want the upper BITSIZE bits. */
if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
&& bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
&& TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
GET_MODE_BITSIZE (GET_MODE (temp)) - bitsize,
NULL_RTX, 1);
/* Unless MODE is VOIDmode or BLKmode, convert TEMP to
MODE. */
if (mode != VOIDmode && mode != BLKmode
&& mode != TYPE_MODE (TREE_TYPE (exp)))
temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
/* If the modes of TEMP and TARGET are both BLKmode, both
must be in memory and BITPOS must be aligned on a byte
boundary. If so, we simply do a block copy. Likewise
for a BLKmode-like TARGET. */
if (GET_MODE (temp) == BLKmode
&& (GET_MODE (target) == BLKmode
|| (MEM_P (target)
&& GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
&& (bitpos % BITS_PER_UNIT) == 0
&& (bitsize % BITS_PER_UNIT) == 0)))
{
gcc_assert (MEM_P (target) && MEM_P (temp)
&& (bitpos % BITS_PER_UNIT) == 0);
target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
emit_block_move (target, temp,
GEN_INT ((bitsize + BITS_PER_UNIT - 1)
/ BITS_PER_UNIT),
BLOCK_OP_NORMAL);
return const0_rtx;
}
/* Store the value in the bitfield. */
store_bit_field (target, bitsize, bitpos,
bitregion_start, bitregion_end,
mode, temp);
return const0_rtx;
}
else
{
/* Now build a reference to just the desired component. */
rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
if (to_rtx == target)
to_rtx = copy_rtx (to_rtx);
if (!MEM_SCALAR_P (to_rtx))
MEM_IN_STRUCT_P (to_rtx) = 1;
if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
set_mem_alias_set (to_rtx, alias_set);
return store_expr (exp, to_rtx, 0, nontemporal);
}
}
/* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
codes and find the ultimate containing object, which we return.
We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
bit position, and *PUNSIGNEDP to the signedness of the field.
If the position of the field is variable, we store a tree
giving the variable offset (in units) in *POFFSET.
This offset is in addition to the bit position.
If the position is not variable, we store 0 in *POFFSET.
If any of the extraction expressions is volatile,
we store 1 in *PVOLATILEP. Otherwise we don't change that.
If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
Otherwise, it is a mode that can be used to access the field.
If the field describes a variable-sized object, *PMODE is set to
BLKmode and *PBITSIZE is set to -1. An access cannot be made in
this case, but the address of the object can be found.
If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
look through nodes that serve as markers of a greater alignment than
the one that can be deduced from the expression. These nodes make it
possible for front-ends to prevent temporaries from being created by
the middle-end on alignment considerations. For that purpose, the
normal operating mode at high-level is to always pass FALSE so that
the ultimate containing object is really returned; moreover, the
associated predicate handled_component_p will always return TRUE
on these nodes, thus indicating that they are essentially handled
by get_inner_reference. TRUE should only be passed when the caller
is scanning the expression in order to build another representation
and specifically knows how to handle these nodes; as such, this is
the normal operating mode in the RTL expanders. */
tree
get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
HOST_WIDE_INT *pbitpos, tree *poffset,
enum machine_mode *pmode, int *punsignedp,
int *pvolatilep, bool keep_aligning)
{
tree size_tree = 0;
enum machine_mode mode = VOIDmode;
bool blkmode_bitfield = false;
tree offset = size_zero_node;
double_int bit_offset = double_int_zero;
/* First get the mode, signedness, and size. We do this from just the
outermost expression. */
*pbitsize = -1;
if (TREE_CODE (exp) == COMPONENT_REF)
{
tree field = TREE_OPERAND (exp, 1);
size_tree = DECL_SIZE (field);
if (!DECL_BIT_FIELD (field))
mode = DECL_MODE (field);
else if (DECL_MODE (field) == BLKmode)
blkmode_bitfield = true;
else if (TREE_THIS_VOLATILE (exp)
&& flag_strict_volatile_bitfields > 0)
/* Volatile bitfields should be accessed in the mode of the
field's type, not the mode computed based on the bit
size. */
mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
*punsignedp = DECL_UNSIGNED (field);
}
else if (TREE_CODE (exp) == BIT_FIELD_REF)
{
size_tree = TREE_OPERAND (exp, 1);
*punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
|| TYPE_UNSIGNED (TREE_TYPE (exp)));
/* For vector types, with the correct size of access, use the mode of
inner type. */
if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
&& TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
&& tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
mode = TYPE_MODE (TREE_TYPE (exp));
}
else
{
mode = TYPE_MODE (TREE_TYPE (exp));
*punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
if (mode == BLKmode)
size_tree = TYPE_SIZE (TREE_TYPE (exp));
else
*pbitsize = GET_MODE_BITSIZE (mode);
}
if (size_tree != 0)
{
if (! host_integerp (size_tree, 1))
mode = BLKmode, *pbitsize = -1;
else
*pbitsize = tree_low_cst (size_tree, 1);
}
/* Compute cumulative bit-offset for nested component-refs and array-refs,
and find the ultimate containing object. */
while (1)
{
switch (TREE_CODE (exp))
{
case BIT_FIELD_REF:
bit_offset
= double_int_add (bit_offset,
tree_to_double_int (TREE_OPERAND (exp, 2)));
break;
case COMPONENT_REF:
{
tree field = TREE_OPERAND (exp, 1);
tree this_offset = component_ref_field_offset (exp);
/* If this field hasn't been filled in yet, don't go past it.
This should only happen when folding expressions made during
type construction. */
if (this_offset == 0)
break;
offset = size_binop (PLUS_EXPR, offset, this_offset);
bit_offset = double_int_add (bit_offset,
tree_to_double_int
(DECL_FIELD_BIT_OFFSET (field)));
/* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
}
break;
case ARRAY_REF:
case ARRAY_RANGE_REF:
{
tree index = TREE_OPERAND (exp, 1);
tree low_bound = array_ref_low_bound (exp);
tree unit_size = array_ref_element_size (exp);
/* We assume all arrays have sizes that are a multiple of a byte.
First subtract the lower bound, if any, in the type of the
index, then convert to sizetype and multiply by the size of
the array element. */
if (! integer_zerop (low_bound))
index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
index, low_bound);
offset = size_binop (PLUS_EXPR, offset,
size_binop (MULT_EXPR,
fold_convert (sizetype, index),
unit_size));
}
break;
case REALPART_EXPR:
break;
case IMAGPART_EXPR:
bit_offset = double_int_add (bit_offset,
uhwi_to_double_int (*pbitsize));
break;
case VIEW_CONVERT_EXPR:
if (keep_aligning && STRICT_ALIGNMENT
&& (TYPE_ALIGN (TREE_TYPE (exp))
> TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
&& (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
< BIGGEST_ALIGNMENT)
&& (TYPE_ALIGN_OK (TREE_TYPE (exp))
|| TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
goto done;
break;
case MEM_REF:
/* Hand back the decl for MEM[&decl, off]. */
if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
{
tree off = TREE_OPERAND (exp, 1);
if (!integer_zerop (off))
{
double_int boff, coff = mem_ref_offset (exp);
boff = double_int_lshift (coff,
BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT, true);
bit_offset = double_int_add (bit_offset, boff);
}
exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
}
goto done;
default:
goto done;
}
/* If any reference in the chain is volatile, the effect is volatile. */
if (TREE_THIS_VOLATILE (exp))
*pvolatilep = 1;
exp = TREE_OPERAND (exp, 0);
}
done:
/* If OFFSET is constant, see if we can return the whole thing as a
constant bit position. Make sure to handle overflow during
this conversion. */
if (TREE_CODE (offset) == INTEGER_CST)
{
double_int tem = tree_to_double_int (offset);
tem = double_int_sext (tem, TYPE_PRECISION (sizetype));
tem = double_int_lshift (tem,
BITS_PER_UNIT == 8
? 3 : exact_log2 (BITS_PER_UNIT),
HOST_BITS_PER_DOUBLE_INT, true);
tem = double_int_add (tem, bit_offset);
if (double_int_fits_in_shwi_p (tem))
{
*pbitpos = double_int_to_shwi (tem);
*poffset = offset = NULL_TREE;
}
}
/* Otherwise, split it up. */
if (offset)
{
*pbitpos = double_int_to_shwi (bit_offset);
*poffset = offset;
}
/* We can use BLKmode for a byte-aligned BLKmode bitfield. */
if (mode == VOIDmode
&& blkmode_bitfield
&& (*pbitpos % BITS_PER_UNIT) == 0
&& (*pbitsize % BITS_PER_UNIT) == 0)
*pmode = BLKmode;
else
*pmode = mode;
return exp;
}
/* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
EXP is marked as PACKED. */
bool
contains_packed_reference (const_tree exp)
{
bool packed_p = false;
while (1)
{
switch (TREE_CODE (exp))
{
case COMPONENT_REF:
{
tree field = TREE_OPERAND (exp, 1);
packed_p = DECL_PACKED (field)
|| TYPE_PACKED (TREE_TYPE (field))
|| TYPE_PACKED (TREE_TYPE (exp));
if (packed_p)
goto done;
}
break;
case BIT_FIELD_REF:
case ARRAY_REF:
case ARRAY_RANGE_REF:
case REALPART_EXPR:
case IMAGPART_EXPR:
case VIEW_CONVERT_EXPR:
break;
default:
goto done;
}
exp = TREE_OPERAND (exp, 0);
}
done:
return packed_p;
}
/* Return a tree of sizetype representing the size, in bytes, of the element
of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
tree
array_ref_element_size (tree exp)
{
tree aligned_size = TREE_OPERAND (exp, 3);
tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
location_t loc = EXPR_LOCATION (exp);
/* If a size was specified in the ARRAY_REF, it's the size measured
in alignment units of the element type. So multiply by that value. */
if (aligned_size)
{
/* ??? tree_ssa_useless_type_conversion will eliminate casts to
sizetype from another type of the same width and signedness. */
if (TREE_TYPE (aligned_size) != sizetype)
aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
return size_binop_loc (loc, MULT_EXPR, aligned_size,
size_int (TYPE_ALIGN_UNIT (elmt_type)));
}
/* Otherwise, take the size from that of the element type. Substitute
any PLACEHOLDER_EXPR that we have. */
else
return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
}
/* Return a tree representing the lower bound of the array mentioned in
EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
tree
array_ref_low_bound (tree exp)
{
tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
/* If a lower bound is specified in EXP, use it. */
if (TREE_OPERAND (exp, 2))
return TREE_OPERAND (exp, 2);
/* Otherwise, if there is a domain type and it has a lower bound, use it,
substituting for a PLACEHOLDER_EXPR as needed. */
if (domain_type && TYPE_MIN_VALUE (domain_type))
return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
/* Otherwise, return a zero of the appropriate type. */
return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
}
/* Return a tree representing the upper bound of the array mentioned in
EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
tree
array_ref_up_bound (tree exp)
{
tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
/* If there is a domain type and it has an upper bound, use it, substituting
for a PLACEHOLDER_EXPR as needed. */
if (domain_type && TYPE_MAX_VALUE (domain_type))
return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
/* Otherwise fail. */
return NULL_TREE;
}
/* Return a tree representing the offset, in bytes, of the field referenced
by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
tree
component_ref_field_offset (tree exp)
{
tree aligned_offset = TREE_OPERAND (exp, 2);
tree field = TREE_OPERAND (exp, 1);
location_t loc = EXPR_LOCATION (exp);
/* If an offset was specified in the COMPONENT_REF, it's the offset measured
in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
value. */
if (aligned_offset)
{
/* ??? tree_ssa_useless_type_conversion will eliminate casts to
sizetype from another type of the same width and signedness. */
if (TREE_TYPE (aligned_offset) != sizetype)
aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
return size_binop_loc (loc, MULT_EXPR, aligned_offset,
size_int (DECL_OFFSET_ALIGN (field)
/ BITS_PER_UNIT));
}
/* Otherwise, take the offset from that of the field. Substitute
any PLACEHOLDER_EXPR that we have. */
else
return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
}
/* Alignment in bits the TARGET of an assignment may be assumed to have. */
static unsigned HOST_WIDE_INT
target_align (const_tree target)
{
/* We might have a chain of nested references with intermediate misaligning
bitfields components, so need to recurse to find out. */
unsigned HOST_WIDE_INT this_align, outer_align;
switch (TREE_CODE (target))
{
case BIT_FIELD_REF:
return 1;
case COMPONENT_REF:
this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
outer_align = target_align (TREE_OPERAND (target, 0));
return MIN (this_align, outer_align);
case ARRAY_REF:
case ARRAY_RANGE_REF:
this_align = TYPE_ALIGN (TREE_TYPE (target));
outer_align = target_align (TREE_OPERAND (target, 0));
return MIN (this_align, outer_align);
CASE_CONVERT:
case NON_LVALUE_EXPR:
case VIEW_CONVERT_EXPR:
this_align = TYPE_ALIGN (TREE_TYPE (target));
outer_align = target_align (TREE_OPERAND (target, 0));
return MAX (this_align, outer_align);
default:
return TYPE_ALIGN (TREE_TYPE (target));
}
}
/* Given an rtx VALUE that may contain additions and multiplications, return
an equivalent value that just refers to a register, memory, or constant.
This is done by generating instructions to perform the arithmetic and
returning a pseudo-register containing the value.
The returned value may be a REG, SUBREG, MEM or constant. */
rtx
force_operand (rtx value, rtx target)
{
rtx op1, op2;
/* Use subtarget as the target for operand 0 of a binary operation. */
rtx subtarget = get_subtarget (target);
enum rtx_code code = GET_CODE (value);
/* Check for subreg applied to an expression produced by loop optimizer. */
if (code == SUBREG
&& !REG_P (SUBREG_REG (value))
&& !MEM_P (SUBREG_REG (value)))
{
value
= simplify_gen_subreg (GET_MODE (value),
force_reg (GET_MODE (SUBREG_REG (value)),
force_operand (SUBREG_REG (value),
NULL_RTX)),
GET_MODE (SUBREG_REG (value)),
SUBREG_BYTE (value));
code = GET_CODE (value);
}
/* Check for a PIC address load. */
if ((code == PLUS || code == MINUS)
&& XEXP (value, 0) == pic_offset_table_rtx
&& (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
|| GET_CODE (XEXP (value, 1)) == LABEL_REF
|| GET_CODE (XEXP (value, 1)) == CONST))
{
if (!subtarget)
subtarget = gen_reg_rtx (GET_MODE (value));
emit_move_insn (subtarget, value);
return subtarget;
}
if (ARITHMETIC_P (value))
{
op2 = XEXP (value, 1);
if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
subtarget = 0;
if (code == MINUS && CONST_INT_P (op2))
{
code = PLUS;
op2 = negate_rtx (GET_MODE (value), op2);
}
/* Check for an addition with OP2 a constant integer and our first
operand a PLUS of a virtual register and something else. In that
case, we want to emit the sum of the virtual register and the
constant first and then add the other value. This allows virtual
register instantiation to simply modify the constant rather than
creating another one around this addition. */
if (code == PLUS && CONST_INT_P (op2)
&& GET_CODE (XEXP (value, 0)) == PLUS
&& REG_P (XEXP (XEXP (value, 0), 0))
&& REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
&& REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
{
rtx temp = expand_simple_binop (GET_MODE (value), code,
XEXP (XEXP (value, 0), 0), op2,
subtarget, 0, OPTAB_LIB_WIDEN);
return expand_simple_binop (GET_MODE (value), code, temp,
force_operand (XEXP (XEXP (value,
0), 1), 0),
target, 0, OPTAB_LIB_WIDEN);
}
op1 = force_operand (XEXP (value, 0), subtarget);
op2 = force_operand (op2, NULL_RTX);
switch (code)
{
case MULT:
return expand_mult (GET_MODE (value), op1, op2, target, 1);
case DIV:
if (!INTEGRAL_MODE_P (GET_MODE (value)))
return expand_simple_binop (GET_MODE (value), code, op1, op2,
target, 1, OPTAB_LIB_WIDEN);
else
return expand_divmod (0,
FLOAT_MODE_P (GET_MODE (value))
? RDIV_EXPR : TRUNC_DIV_EXPR,
GET_MODE (value), op1, op2, target, 0);
case MOD:
return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
target, 0);
case UDIV:
return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
target, 1);
case UMOD:
return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
target, 1);
case ASHIFTRT:
return expand_simple_binop (GET_MODE (value), code, op1, op2,
target, 0, OPTAB_LIB_WIDEN);
default:
return expand_simple_binop (GET_MODE (value), code, op1, op2,
target, 1, OPTAB_LIB_WIDEN);
}
}
if (UNARY_P (value))
{
if (!target)
target = gen_reg_rtx (GET_MODE (value));
op1 = force_operand (XEXP (value, 0), NULL_RTX);
switch (code)
{
case ZERO_EXTEND:
case SIGN_EXTEND:
case TRUNCATE:
case FLOAT_EXTEND:
case FLOAT_TRUNCATE:
convert_move (target, op1, code == ZERO_EXTEND);
return target;
case FIX:
case UNSIGNED_FIX:
expand_fix (target, op1, code == UNSIGNED_FIX);
return target;
case FLOAT:
case UNSIGNED_FLOAT:
expand_float (target, op1, code == UNSIGNED_FLOAT);
return target;
default:
return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
}
}
#ifdef INSN_SCHEDULING
/* On machines that have insn scheduling, we want all memory reference to be
explicit, so we need to deal with such paradoxical SUBREGs. */
if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
value
= simplify_gen_subreg (GET_MODE (value),
force_reg (GET_MODE (SUBREG_REG (value)),
force_operand (SUBREG_REG (value),
NULL_RTX)),
GET_MODE (SUBREG_REG (value)),
SUBREG_BYTE (value));
#endif
return value;
}
/* Subroutine of expand_expr: return nonzero iff there is no way that
EXP can reference X, which is being modified. TOP_P is nonzero if this
call is going to be used to determine whether we need a temporary
for EXP, as opposed to a recursive call to this function.
It is always safe for this routine to return zero since it merely
searches for optimization opportunities. */
int
safe_from_p (const_rtx x, tree exp, int top_p)
{
rtx exp_rtl = 0;
int i, nops;
if (x == 0
/* If EXP has varying size, we MUST use a target since we currently
have no way of allocating temporaries of variable size
(except for arrays that have TYPE_ARRAY_MAX_SIZE set).
So we assume here that something at a higher level has prevented a
clash. This is somewhat bogus, but the best we can do. Only
do this when X is BLKmode and when we are at the top level. */
|| (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
&& (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
|| TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
|| TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
!= INTEGER_CST)
&& GET_MODE (x) == BLKmode)
/* If X is in the outgoing argument area, it is always safe. */
|| (MEM_P (x)
&& (XEXP (x, 0) == virtual_outgoing_args_rtx
|| (GET_CODE (XEXP (x, 0)) == PLUS
&& XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
return 1;
/* If this is a subreg of a hard register, declare it unsafe, otherwise,
find the underlying pseudo. */
if (GET_CODE (x) == SUBREG)
{
x = SUBREG_REG (x);
if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
return 0;
}
/* Now look at our tree code and possibly recurse. */
switch (TREE_CODE_CLASS (TREE_CODE (exp)))
{
case tcc_declaration:
exp_rtl = DECL_RTL_IF_SET (exp);
break;
case tcc_constant:
return 1;
case tcc_exceptional:
if (TREE_CODE (exp) == TREE_LIST)
{
while (1)
{
if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
return 0;
exp = TREE_CHAIN (exp);
if (!exp)
return 1;
if (TREE_CODE (exp) != TREE_LIST)
return safe_from_p (x, exp, 0);
}
}
else if (TREE_CODE (exp) == CONSTRUCTOR)
{
constructor_elt *ce;
unsigned HOST_WIDE_INT idx;
FOR_EACH_VEC_ELT (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce)
if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
|| !safe_from_p (x, ce->value, 0))
return 0;
return 1;
}
else if (TREE_CODE (exp) == ERROR_MARK)
return 1; /* An already-visited SAVE_EXPR? */
else
return 0;
case tcc_statement:
/* The only case we look at here is the DECL_INITIAL inside a
DECL_EXPR. */
return (TREE_CODE (exp) != DECL_EXPR
|| TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
|| !DECL_INITIAL (DECL_EXPR_DECL (exp))
|| safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
case tcc_binary:
case tcc_comparison:
if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
return 0;
/* Fall through. */
case tcc_unary:
return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
case tcc_expression:
case tcc_reference:
case tcc_vl_exp:
/* Now do code-specific tests. EXP_RTL is set to any rtx we find in
the expression. If it is set, we conflict iff we are that rtx or
both are in memory. Otherwise, we check all operands of the
expression recursively. */
switch (TREE_CODE (exp))
{
case ADDR_EXPR:
/* If the operand is static or we are static, we can't conflict.
Likewise if we don't conflict with the operand at all. */
if (staticp (TREE_OPERAND (exp, 0))
|| TREE_STATIC (exp)
|| safe_from_p (x, TREE_OPERAND (exp, 0), 0))
return 1;
/* Otherwise, the only way this can conflict is if we are taking
the address of a DECL a that address if part of X, which is
very rare. */
exp = TREE_OPERAND (exp, 0);
if (DECL_P (exp))
{
if (!DECL_RTL_SET_P (exp)
|| !MEM_P (DECL_RTL (exp)))
return 0;
else
exp_rtl = XEXP (DECL_RTL (exp), 0);
}
break;
case MEM_REF:
if (MEM_P (x)
&& alias_sets_conflict_p (MEM_ALIAS_SET (x),
get_alias_set (exp)))
return 0;
break;
case CALL_EXPR:
/* Assume that the call will clobber all hard registers and
all of memory. */
if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
|| MEM_P (x))
return 0;
break;
case WITH_CLEANUP_EXPR:
case CLEANUP_POINT_EXPR:
/* Lowered by gimplify.c. */
gcc_unreachable ();
case SAVE_EXPR:
return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
default:
break;
}
/* If we have an rtx, we do not need to scan our operands. */
if (exp_rtl)
break;
nops = TREE_OPERAND_LENGTH (exp);
for (i = 0; i < nops; i++)
if (TREE_OPERAND (exp, i) != 0
&& ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
return 0;
break;
case tcc_type:
/* Should never get a type here. */
gcc_unreachable ();
}
/* If we have an rtl, find any enclosed object. Then see if we conflict
with it. */
if (exp_rtl)
{
if (GET_CODE (exp_rtl) == SUBREG)
{
exp_rtl = SUBREG_REG (exp_rtl);
if (REG_P (exp_rtl)
&& REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
return 0;
}
/* If the rtl is X, then it is not safe. Otherwise, it is unless both
are memory and they conflict. */
return ! (rtx_equal_p (x, exp_rtl)
|| (MEM_P (x) && MEM_P (exp_rtl)
&& true_dependence (exp_rtl, VOIDmode, x,
rtx_addr_varies_p)));
}
/* If we reach here, it is safe. */
return 1;
}
/* Return the highest power of two that EXP is known to be a multiple of.
This is used in updating alignment of MEMs in array references. */
unsigned HOST_WIDE_INT
highest_pow2_factor (const_tree exp)
{
unsigned HOST_WIDE_INT c0, c1;
switch (TREE_CODE (exp))
{
case INTEGER_CST:
/* We can find the lowest bit that's a one. If the low
HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
We need to handle this case since we can find it in a COND_EXPR,
a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
erroneous program, so return BIGGEST_ALIGNMENT to avoid any
later ICE. */
if (TREE_OVERFLOW (exp))
return BIGGEST_ALIGNMENT;
else
{
/* Note: tree_low_cst is intentionally not used here,
we don't care about the upper bits. */
c0 = TREE_INT_CST_LOW (exp);
c0 &= -c0;
return c0 ? c0 : BIGGEST_ALIGNMENT;
}
break;
case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
return MIN (c0, c1);
case MULT_EXPR:
c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
return c0 * c1;
case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
case CEIL_DIV_EXPR:
if (integer_pow2p (TREE_OPERAND (exp, 1))
&& host_integerp (TREE_OPERAND (exp, 1), 1))
{
c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
return MAX (1, c0 / c1);
}
break;
case BIT_AND_EXPR:
/* The highest power of two of a bit-and expression is the maximum of
that of its operands. We typically get here for a complex LHS and
a constant negative power of two on the RHS to force an explicit
alignment, so don't bother looking at the LHS. */
return highest_pow2_factor (TREE_OPERAND (exp, 1));
CASE_CONVERT:
case SAVE_EXPR:
return highest_pow2_factor (TREE_OPERAND (exp, 0));
case COMPOUND_EXPR:
return highest_pow2_factor (TREE_OPERAND (exp, 1));
case COND_EXPR:
c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
return MIN (c0, c1);
default:
break;
}
return 1;
}
/* Similar, except that the alignment requirements of TARGET are
taken into account. Assume it is at least as aligned as its
type, unless it is a COMPONENT_REF in which case the layout of
the structure gives the alignment. */
static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree target, const_tree exp)
{
unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
return MAX (factor, talign);
}
/* Subroutine of expand_expr. Expand the two operands of a binary
expression EXP0 and EXP1 placing the results in OP0 and OP1.
The value may be stored in TARGET if TARGET is nonzero. The
MODIFIER argument is as documented by expand_expr. */
static void
expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
enum expand_modifier modifier)
{
if (! safe_from_p (target, exp1, 1))
target = 0;
if (operand_equal_p (exp0, exp1, 0))
{
*op0 = expand_expr (exp0, target, VOIDmode, modifier);
*op1 = copy_rtx (*op0);
}
else
{
/* If we need to preserve evaluation order, copy exp0 into its own
temporary variable so that it can't be clobbered by exp1. */
if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
exp0 = save_expr (exp0);
*op0 = expand_expr (exp0, target, VOIDmode, modifier);
*op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
}
}
/* Return a MEM that contains constant EXP. DEFER is as for
output_constant_def and MODIFIER is as for expand_expr. */
static rtx
expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
{
rtx mem;
mem = output_constant_def (exp, defer);
if (modifier != EXPAND_INITIALIZER)
mem = use_anchored_address (mem);
return mem;
}
/* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
static rtx
expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
enum expand_modifier modifier, addr_space_t as)
{
rtx result, subtarget;
tree inner, offset;
HOST_WIDE_INT bitsize, bitpos;
int volatilep, unsignedp;
enum machine_mode mode1;
/* If we are taking the address of a constant and are at the top level,
we have to use output_constant_def since we can't call force_const_mem
at top level. */
/* ??? This should be considered a front-end bug. We should not be
generating ADDR_EXPR of something that isn't an LVALUE. The only
exception here is STRING_CST. */
if (CONSTANT_CLASS_P (exp))
return XEXP (expand_expr_constant (exp, 0, modifier), 0);
/* Everything must be something allowed by is_gimple_addressable. */
switch (TREE_CODE (exp))
{
case INDIRECT_REF:
/* This case will happen via recursion for &a->b. */
return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
case MEM_REF:
{
tree tem = TREE_OPERAND (exp, 0);
if (!integer_zerop (TREE_OPERAND (exp, 1)))
tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
return expand_expr (tem, target, tmode, modifier);
}
case CONST_DECL:
/* Expand the initializer like constants above. */
return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
case REALPART_EXPR:
/* The real part of the complex number is always first, therefore
the address is the same as the address of the parent object. */
offset = 0;
bitpos = 0;
inner = TREE_OPERAND (exp, 0);
break;
case IMAGPART_EXPR:
/* The imaginary part of the complex number is always second.
The expression is therefore always offset by the size of the
scalar type. */
offset = 0;
bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
inner = TREE_OPERAND (exp, 0);
break;
default:
/* If the object is a DECL, then expand it for its rtl. Don't bypass
expand_expr, as that can have various side effects; LABEL_DECLs for
example, may not have their DECL_RTL set yet. Expand the rtl of
CONSTRUCTORs too, which should yield a memory reference for the
constructor's contents. Assume language specific tree nodes can
be expanded in some interesting way. */
gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
if (DECL_P (exp)
|| TREE_CODE (exp) == CONSTRUCTOR
|| TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
{
result = expand_expr (exp, target, tmode,
modifier == EXPAND_INITIALIZER
? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
/* If the DECL isn't in memory, then the DECL wasn't properly
marked TREE_ADDRESSABLE, which will be either a front-end
or a tree optimizer bug. */
if (TREE_ADDRESSABLE (exp)
&& ! MEM_P (result)
&& ! targetm.calls.allocate_stack_slots_for_args())
{
error ("local frame unavailable (naked function?)");
return result;
}
else
gcc_assert (MEM_P (result));
result = XEXP (result, 0);
/* ??? Is this needed anymore? */
if (DECL_P (exp) && !TREE_USED (exp) == 0)
{
assemble_external (exp);
TREE_USED (exp) = 1;
}
if (modifier != EXPAND_INITIALIZER
&& modifier != EXPAND_CONST_ADDRESS)
result = force_operand (result, target);
return result;
}
/* Pass FALSE as the last argument to get_inner_reference although
we are expanding to RTL. The rationale is that we know how to
handle "aligning nodes" here: we can just bypass them because
they won't change the final object whose address will be returned
(they actually exist only for that purpose). */
inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
&mode1, &unsignedp, &volatilep, false);
break;
}
/* We must have made progress. */
gcc_assert (inner != exp);
subtarget = offset || bitpos ? NULL_RTX : target;
/* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
inner alignment, force the inner to be sufficiently aligned. */
if (CONSTANT_CLASS_P (inner)
&& TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
{
inner = copy_node (inner);
TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
}
result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
if (offset)
{
rtx tmp;
if (modifier != EXPAND_NORMAL)
result = force_operand (result, NULL);
tmp = expand_expr (offset, NULL_RTX, tmode,
modifier == EXPAND_INITIALIZER
? EXPAND_INITIALIZER : EXPAND_NORMAL);
result = convert_memory_address_addr_space (tmode, result, as);
tmp = convert_memory_address_addr_space (tmode, tmp, as);
if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
result = simplify_gen_binary (PLUS, tmode, result, tmp);
else
{
subtarget = bitpos ? NULL_RTX : target;
result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
1, OPTAB_LIB_WIDEN);
}
}
if (bitpos)
{
/* Someone beforehand should have rejected taking the address
of such an object. */
gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
result = plus_constant (result, bitpos / BITS_PER_UNIT);
if (modifier < EXPAND_SUM)
result = force_operand (result, target);
}
return result;
}
/* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
static rtx
expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
enum expand_modifier modifier)
{
addr_space_t as = ADDR_SPACE_GENERIC;
enum machine_mode address_mode = Pmode;
enum machine_mode pointer_mode = ptr_mode;
enum machine_mode rmode;
rtx result;
/* Target mode of VOIDmode says "whatever's natural". */
if (tmode == VOIDmode)
tmode = TYPE_MODE (TREE_TYPE (exp));
if (POINTER_TYPE_P (TREE_TYPE (exp)))
{
as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
address_mode = targetm.addr_space.address_mode (as);
pointer_mode = targetm.addr_space.pointer_mode (as);
}
/* We can get called with some Weird Things if the user does silliness
like "(short) &a". In that case, convert_memory_address won't do
the right thing, so ignore the given target mode. */
if (tmode != address_mode && tmode != pointer_mode)
tmode = address_mode;
result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
tmode, modifier, as);
/* Despite expand_expr claims concerning ignoring TMODE when not
strictly convenient, stuff breaks if we don't honor it. Note
that combined with the above, we only do this for pointer modes. */
rmode = GET_MODE (result);
if (rmode == VOIDmode)
rmode = tmode;
if (rmode != tmode)
result = convert_memory_address_addr_space (tmode, result, as);
return result;
}
/* Generate code for computing CONSTRUCTOR EXP.
An rtx for the computed value is returned. If AVOID_TEMP_MEM
is TRUE, instead of creating a temporary variable in memory
NULL is returned and the caller needs to handle it differently. */
static rtx
expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
bool avoid_temp_mem)
{
tree type = TREE_TYPE (exp);
enum machine_mode mode = TYPE_MODE (type);
/* Try to avoid creating a temporary at all. This is possible
if all of the initializer is zero.
FIXME: try to handle all [0..255] initializers we can handle
with memset. */
if (TREE_STATIC (exp)
&& !TREE_ADDRESSABLE (exp)
&& target != 0 && mode == BLKmode
&& all_zeros_p (exp))
{
clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
return target;
}
/* All elts simple constants => refer to a constant in memory. But
if this is a non-BLKmode mode, let it store a field at a time
since that should make a CONST_INT or CONST_DOUBLE when we
fold. Likewise, if we have a target we can use, it is best to
store directly into the target unless the type is large enough
that memcpy will be used. If we are making an initializer and
all operands are constant, put it in memory as well.
FIXME: Avoid trying to fill vector constructors piece-meal.
Output them with output_constant_def below unless we're sure
they're zeros. This should go away when vector initializers
are treated like VECTOR_CST instead of arrays. */
if ((TREE_STATIC (exp)
&& ((mode == BLKmode
&& ! (target != 0 && safe_from_p (target, exp, 1)))
|| TREE_ADDRESSABLE (exp)
|| (host_integerp (TYPE_SIZE_UNIT (type), 1)
&& (! MOVE_BY_PIECES_P
(tree_low_cst (TYPE_SIZE_UNIT (type), 1),
TYPE_ALIGN (type)))
&& ! mostly_zeros_p (exp))))
|| ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
&& TREE_CONSTANT (exp)))
{
rtx constructor;
if (avoid_temp_mem)
return NULL_RTX;
constructor = expand_expr_constant (exp, 1, modifier);
if (modifier != EXPAND_CONST_ADDRESS
&& modifier != EXPAND_INITIALIZER
&& modifier != EXPAND_SUM)
constructor = validize_mem (constructor);
return constructor;
}
/* Handle calls that pass values in multiple non-contiguous
locations. The Irix 6 ABI has examples of this. */
if (target == 0 || ! safe_from_p (target, exp, 1)
|| GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
{
if (avoid_temp_mem)
return NULL_RTX;
target
= assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
| (TREE_READONLY (exp)
* TYPE_QUAL_CONST))),
0, TREE_ADDRESSABLE (exp), 1);
}
store_constructor (exp, target, 0, int_expr_size (exp));
return target;
}
/* expand_expr: generate code for computing expression EXP.
An rtx for the computed value is returned. The value is never null.
In the case of a void EXP, const0_rtx is returned.
The value may be stored in TARGET if TARGET is nonzero.
TARGET is just a suggestion; callers must assume that
the rtx returned may not be the same as TARGET.
If TARGET is CONST0_RTX, it means that the value will be ignored.
If TMODE is not VOIDmode, it suggests generating the
result in mode TMODE. But this is done only when convenient.
Otherwise, TMODE is ignored and the value generated in its natural mode.
TMODE is just a suggestion; callers must assume that
the rtx returned may not have mode TMODE.
Note that TARGET may have neither TMODE nor MODE. In that case, it
probably will not be used.
If MODIFIER is EXPAND_SUM then when EXP is an addition
we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
or a nest of (PLUS ...) and (MINUS ...) where the terms are
products as above, or REG or MEM, or constant.
Ordinarily in such cases we would output mul or add instructions
and then return a pseudo reg containing the sum.
EXPAND_INITIALIZER is much like EXPAND_SUM except that
it also marks a label as absolutely required (it can't be dead).
It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
This is used for outputting expressions used in initializers.
EXPAND_CONST_ADDRESS says that it is okay to return a MEM
with a constant address even if that address is not normally legitimate.
EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
a call parameter. Such targets require special care as we haven't yet
marked TARGET so that it's safe from being trashed by libcalls. We
don't want to use TARGET for anything but the final result;
Intermediate values must go elsewhere. Additionally, calls to
emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
recursively. */
rtx
expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
enum expand_modifier modifier, rtx *alt_rtl)
{
rtx ret;
/* Handle ERROR_MARK before anybody tries to access its type. */
if (TREE_CODE (exp) == ERROR_MARK
|| (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
{
ret = CONST0_RTX (tmode);
return ret ? ret : const0_rtx;
}
/* If this is an expression of some kind and it has an associated line
number, then emit the line number before expanding the expression.
We need to save and restore the file and line information so that
errors discovered during expansion are emitted with the right
information. It would be better of the diagnostic routines
used the file/line information embedded in the tree nodes rather
than globals. */
if (cfun && EXPR_HAS_LOCATION (exp))
{
location_t saved_location = input_location;
location_t saved_curr_loc = get_curr_insn_source_location ();
tree saved_block = get_curr_insn_block ();
input_location = EXPR_LOCATION (exp);
set_curr_insn_source_location (input_location);
/* Record where the insns produced belong. */
set_curr_insn_block (TREE_BLOCK (exp));
ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
input_location = saved_location;
set_curr_insn_block (saved_block);
set_curr_insn_source_location (saved_curr_loc);
}
else
{
ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
}
return ret;
}
rtx
expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
enum expand_modifier modifier)
{
rtx op0, op1, op2, temp;
tree type;
int unsignedp;
enum machine_mode mode;
enum tree_code code = ops->code;
optab this_optab;
rtx subtarget, original_target;
int ignore;
bool reduce_bit_field;
location_t loc = ops->location;
tree treeop0, treeop1, treeop2;
#define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
? reduce_to_bit_field_precision ((expr), \
target, \
type) \
: (expr))
type = ops->type;
mode = TYPE_MODE (type);
unsignedp = TYPE_UNSIGNED (type);
treeop0 = ops->op0;
treeop1 = ops->op1;
treeop2 = ops->op2;
/* We should be called only on simple (binary or unary) expressions,
exactly those that are valid in gimple expressions that aren't
GIMPLE_SINGLE_RHS (or invalid). */
gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
|| get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
|| get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
ignore = (target == const0_rtx
|| ((CONVERT_EXPR_CODE_P (code)
|| code == COND_EXPR || code == VIEW_CONVERT_EXPR)
&& TREE_CODE (type) == VOID_TYPE));
/* We should be called only if we need the result. */
gcc_assert (!ignore);
/* An operation in what may be a bit-field type needs the
result to be reduced to the precision of the bit-field type,
which is narrower than that of the type's mode. */
reduce_bit_field = (INTEGRAL_TYPE_P (type)
&& GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
target = 0;
/* Use subtarget as the target for operand 0 of a binary operation. */
subtarget = get_subtarget (target);
original_target = target;
switch (code)
{
case NON_LVALUE_EXPR:
case PAREN_EXPR:
CASE_CONVERT:
if (treeop0 == error_mark_node)
return const0_rtx;
if (TREE_CODE (type) == UNION_TYPE)
{
tree valtype = TREE_TYPE (treeop0);
/* If both input and output are BLKmode, this conversion isn't doing
anything except possibly changing memory attribute. */
if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
{
rtx result = expand_expr (treeop0, target, tmode,
modifier);
result = copy_rtx (result);
set_mem_attributes (result, type, 0);
return result;
}
if (target == 0)
{
if (TYPE_MODE (type) != BLKmode)
target = gen_reg_rtx (TYPE_MODE (type));
else
target = assign_temp (type, 0, 1, 1);
}
if (MEM_P (target))
/* Store data into beginning of memory target. */
store_expr (treeop0,
adjust_address (target, TYPE_MODE (valtype), 0),
modifier == EXPAND_STACK_PARM,
false);
else
{
gcc_assert (REG_P (target));
/* Store this field into a union of the proper type. */
store_field (target,
MIN ((int_size_in_bytes (TREE_TYPE
(treeop0))
* BITS_PER_UNIT),
(HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
0, 0, 0, TYPE_MODE (valtype), treeop0,
type, 0, false);
}
/* Return the entire union. */
return target;
}
if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
{
op0 = expand_expr (treeop0, target, VOIDmode,
modifier);
/* If the signedness of the conversion differs and OP0 is
a promoted SUBREG, clear that indication since we now
have to do the proper extension. */
if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
&& GET_CODE (op0) == SUBREG)
SUBREG_PROMOTED_VAR_P (op0) = 0;
return REDUCE_BIT_FIELD (op0);
}
op0 = expand_expr (treeop0, NULL_RTX, mode,
modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
if (GET_MODE (op0) == mode)
;
/* If OP0 is a constant, just convert it into the proper mode. */
else if (CONSTANT_P (op0))
{
tree inner_type = TREE_TYPE (treeop0);
enum machine_mode inner_mode = GET_MODE (op0);
if (inner_mode == VOIDmode)
inner_mode = TYPE_MODE (inner_type);
if (modifier == EXPAND_INITIALIZER)
op0 = simplify_gen_subreg (mode, op0, inner_mode,
subreg_lowpart_offset (mode,
inner_mode));
else
op0= convert_modes (mode, inner_mode, op0,
TYPE_UNSIGNED (inner_type));
}
else if (modifier == EXPAND_INITIALIZER)
op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
else if (target == 0)
op0 = convert_to_mode (mode, op0,
TYPE_UNSIGNED (TREE_TYPE
(treeop0)));
else
{
convert_move (target, op0,
TYPE_UNSIGNED (TREE_TYPE (treeop0)));
op0 = target;
}
return REDUCE_BIT_FIELD (op0);
case ADDR_SPACE_CONVERT_EXPR:
{
tree treeop0_type = TREE_TYPE (treeop0);
addr_space_t as_to;
addr_space_t as_from;
gcc_assert (POINTER_TYPE_P (type));
gcc_assert (POINTER_TYPE_P (treeop0_type));
as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
/* Conversions between pointers to the same address space should
have been implemented via CONVERT_EXPR / NOP_EXPR. */
gcc_assert (as_to != as_from);
/* Ask target code to handle conversion between pointers
to overlapping address spaces. */
if (targetm.addr_space.subset_p (as_to, as_from)
|| targetm.addr_space.subset_p (as_from, as_to))
{
op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
op0 = targetm.addr_space.convert (op0, treeop0_type, type);
gcc_assert (op0);
return op0;
}
/* For disjoint address spaces, converting anything but
a null pointer invokes undefined behaviour. We simply
always return a null pointer here. */
return CONST0_RTX (mode);
}
case POINTER_PLUS_EXPR:
/* Even though the sizetype mode and the pointer's mode can be different
expand is able to handle this correctly and get the correct result out
of the PLUS_EXPR code. */
/* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
if sizetype precision is smaller than pointer precision. */
if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
treeop1 = fold_convert_loc (loc, type,
fold_convert_loc (loc, ssizetype,
treeop1));
case PLUS_EXPR:
/* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
something else, make sure we add the register to the constant and
then to the other thing. This case can occur during strength
reduction and doing it this way will produce better code if the
frame pointer or argument pointer is eliminated.
fold-const.c will ensure that the constant is always in the inner
PLUS_EXPR, so the only case we need to do anything about is if
sp, ap, or fp is our second argument, in which case we must swap
the innermost first argument and our second argument. */
if (TREE_CODE (treeop0) == PLUS_EXPR
&& TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
&& TREE_CODE (treeop1) == VAR_DECL
&& (DECL_RTL (treeop1) == frame_pointer_rtx
|| DECL_RTL (treeop1) == stack_pointer_rtx
|| DECL_RTL (treeop1) == arg_pointer_rtx))
{
tree t = treeop1;
treeop1 = TREE_OPERAND (treeop0, 0);
TREE_OPERAND (treeop0, 0) = t;
}
/* If the result is to be ptr_mode and we are adding an integer to
something, we might be forming a constant. So try to use
plus_constant. If it produces a sum and we can't accept it,
use force_operand. This allows P = &ARR[const] to generate
efficient code on machines where a SYMBOL_REF is not a valid
address.
If this is an EXPAND_SUM call, always return the sum. */
if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
|| (mode == ptr_mode && (unsignedp || ! flag_trapv)))
{
if (modifier == EXPAND_STACK_PARM)
target = 0;
if (TREE_CODE (treeop0) == INTEGER_CST
&& GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
&& TREE_CONSTANT (treeop1))
{
rtx constant_part;
op1 = expand_expr (treeop1, subtarget, VOIDmode,
EXPAND_SUM);
/* Use immed_double_const to ensure that the constant is
truncated according to the mode of OP1, then sign extended
to a HOST_WIDE_INT. Using the constant directly can result
in non-canonical RTL in a 64x32 cross compile. */
constant_part
= immed_double_const (TREE_INT_CST_LOW (treeop0),
(HOST_WIDE_INT) 0,
TYPE_MODE (TREE_TYPE (treeop1)));
op1 = plus_constant (op1, INTVAL (constant_part));
if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
op1 = force_operand (op1, target);
return REDUCE_BIT_FIELD (op1);
}
else if (TREE_CODE (treeop1) == INTEGER_CST
&& GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
&& TREE_CONSTANT (treeop0))
{
rtx constant_part;
op0 = expand_expr (treeop0, subtarget, VOIDmode,
(modifier == EXPAND_INITIALIZER
? EXPAND_INITIALIZER : EXPAND_SUM));
if (! CONSTANT_P (op0))
{
op1 = expand_expr (treeop1, NULL_RTX,
VOIDmode, modifier);
/* Return a PLUS if modifier says it's OK. */
if (modifier == EXPAND_SUM
|| modifier == EXPAND_INITIALIZER)
return simplify_gen_binary (PLUS, mode, op0, op1);
goto binop2;
}
/* Use immed_double_const to ensure that the constant is
truncated according to the mode of OP1, then sign extended
to a HOST_WIDE_INT. Using the constant directly can result
in non-canonical RTL in a 64x32 cross compile. */
constant_part
= immed_double_const (TREE_INT_CST_LOW (treeop1),
(HOST_WIDE_INT) 0,
TYPE_MODE (TREE_TYPE (treeop0)));
op0 = plus_constant (op0, INTVAL (constant_part));
if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
op0 = force_operand (op0, target);
return REDUCE_BIT_FIELD (op0);
}
}
/* Use TER to expand pointer addition of a negated value
as pointer subtraction. */
if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
|| (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
&& POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
&& TREE_CODE (treeop1) == SSA_NAME
&& TYPE_MODE (TREE_TYPE (treeop0))
== TYPE_MODE (TREE_TYPE (treeop1)))
{
gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
if (def)
{
treeop1 = gimple_assign_rhs1 (def);
code = MINUS_EXPR;
goto do_minus;
}
}
/* No sense saving up arithmetic to be done
if it's all in the wrong mode to form part of an address.
And force_operand won't know whether to sign-extend or
zero-extend. */
if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
|| mode != ptr_mode)
{
expand_operands (treeop0, treeop1,
subtarget, &op0, &op1, EXPAND_NORMAL);
if (op0 == const0_rtx)
return op1;
if (op1 == const0_rtx)
return op0;
goto binop2;
}
expand_operands (treeop0, treeop1,
subtarget, &op0, &op1, modifier);
return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
case MINUS_EXPR:
do_minus:
/* For initializers, we are allowed to return a MINUS of two
symbolic constants. Here we handle all cases when both operands
are constant. */
/* Handle difference of two symbolic constants,
for the sake of an initializer. */
if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
&& really_constant_p (treeop0)
&& really_constant_p (treeop1))
{
expand_operands (treeop0, treeop1,
NULL_RTX, &op0, &op1, modifier);
/* If the last operand is a CONST_INT, use plus_constant of
the negated constant. Else make the MINUS. */
if (CONST_INT_P (op1))
return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
else
return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
}
/* No sense saving up arithmetic to be done
if it's all in the wrong mode to form part of an address.
And force_operand won't know whether to sign-extend or
zero-extend. */
if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
|| mode != ptr_mode)
goto binop;
expand_operands (treeop0, treeop1,
subtarget, &op0, &op1, modifier);
/* Convert A - const to A + (-const). */
if (CONST_INT_P (op1))
{
op1 = negate_rtx (mode, op1);
return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
}
goto binop2;
case WIDEN_MULT_PLUS_EXPR:
case WIDEN_MULT_MINUS_EXPR:
expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
op2 = expand_normal (treeop2);
target = expand_widen_pattern_expr (ops, op0, op1, op2,
target, unsignedp);
return target;
case WIDEN_MULT_EXPR:
/* If first operand is constant, swap them.
Thus the following special case checks need only
check the second operand. */
if (TREE_CODE (treeop0) == INTEGER_CST)
{
tree t1 = treeop0;
treeop0 = treeop1;
treeop1 = t1;
}
/* First, check if we have a multiplication of one signed and one
unsigned operand. */
if (TREE_CODE (treeop1) != INTEGER_CST
&& (TYPE_UNSIGNED (TREE_TYPE (treeop0))
!= TYPE_UNSIGNED (TREE_TYPE (treeop1))))
{
enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
this_optab = usmul_widen_optab;
if (find_widening_optab_handler (this_optab, mode, innermode, 0)
!= CODE_FOR_nothing)
{
if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
EXPAND_NORMAL);
else
expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
EXPAND_NORMAL);
goto binop3;
}
}
/* Check for a multiplication with matching signedness. */
else if ((TREE_CODE (treeop1) == INTEGER_CST
&& int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
|| (TYPE_UNSIGNED (TREE_TYPE (treeop1))
== TYPE_UNSIGNED (TREE_TYPE (treeop0))))
{
tree op0type = TREE_TYPE (treeop0);
enum machine_mode innermode = TYPE_MODE (op0type);
bool zextend_p = TYPE_UNSIGNED (op0type);
optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
if (TREE_CODE (treeop0) != INTEGER_CST)
{
if (find_widening_optab_handler (this_optab, mode, innermode, 0)
!= CODE_FOR_nothing)
{
expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
EXPAND_NORMAL);
temp = expand_widening_mult (mode, op0, op1, target,
unsignedp, this_optab);
return REDUCE_BIT_FIELD (temp);
}
if (find_widening_optab_handler (other_optab, mode, innermode, 0)
!= CODE_FOR_nothing
&& innermode == word_mode)
{
rtx htem, hipart;
op0 = expand_normal (treeop0);
if (TREE_CODE (treeop1) == INTEGER_CST)
op1 = convert_modes (innermode, mode,
expand_normal (treeop1), unsignedp);
else
op1 = expand_normal (treeop1);
temp = expand_binop (mode, other_optab, op0, op1, target,
unsignedp, OPTAB_LIB_WIDEN);
hipart = gen_highpart (innermode, temp);
htem = expand_mult_highpart_adjust (innermode, hipart,
op0, op1, hipart,
zextend_p);
if (htem != hipart)
emit_move_insn (hipart, htem);
return REDUCE_BIT_FIELD (temp);
}
}
}
treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
case FMA_EXPR:
{
optab opt = fma_optab;
gimple def0, def2;
/* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
call. */
if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
{
tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
tree call_expr;
gcc_assert (fn != NULL_TREE);
call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
return expand_builtin (call_expr, target, subtarget, mode, false);
}
def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
op0 = op2 = NULL;
if (def0 && def2
&& optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
{
opt = fnms_optab;
op0 = expand_normal (gimple_assign_rhs1 (def0));
op2 = expand_normal (gimple_assign_rhs1 (def2));
}
else if (def0
&& optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
{
opt = fnma_optab;
op0 = expand_normal (gimple_assign_rhs1 (def0));
}
else if (def2
&& optab_handler (fms_optab, mode) != CODE_FOR_nothing)
{
opt = fms_optab;
op2 = expand_normal (gimple_assign_rhs1 (def2));
}
if (op0 == NULL)
op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
if (op2 == NULL)
op2 = expand_normal (treeop2);
op1 = expand_normal (treeop1);
return expand_ternary_op (TYPE_MODE (type), opt,
op0, op1, op2, target, 0);
}
case MULT_EXPR:
/* If this is a fixed-point operation, then we cannot use the code
below because "expand_mult" doesn't support sat/no-sat fixed-point
multiplications. */
if (ALL_FIXED_POINT_MODE_P (mode))
goto binop;
/* If first operand is constant, swap them.
Thus the following special case checks need only
check the second operand. */
if (TREE_CODE (treeop0) == INTEGER_CST)
{
tree t1 = treeop0;
treeop0 = treeop1;
treeop1 = t1;
}
/* Attempt to return something suitable for generating an
indexed address, for machines that support that. */
if (modifier == EXPAND_SUM && mode == ptr_mode
&& host_integerp (treeop1, 0))
{
tree exp1 = treeop1;
op0 = expand_expr (treeop0, subtarget, VOIDmode,
EXPAND_SUM);
if (!REG_P (op0))
op0 = force_operand (op0, NULL_RTX);
if (!REG_P (op0))
op0 = copy_to_mode_reg (mode, op0);
return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
gen_int_mode (tree_low_cst (exp1, 0),
TYPE_MODE (TREE_TYPE (exp1)))));
}
if (modifier == EXPAND_STACK_PARM)
target = 0;
expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
case TRUNC_DIV_EXPR:
case FLOOR_DIV_EXPR:
case CEIL_DIV_EXPR:
case ROUND_DIV_EXPR:
case EXACT_DIV_EXPR:
/* If this is a fixed-point operation, then we cannot use the code
below because "expand_divmod" doesn't support sat/no-sat fixed-point
divisions. */
if (ALL_FIXED_POINT_MODE_P (mode))
goto binop;
if (modifier == EXPAND_STACK_PARM)
target = 0;
/* Possible optimization: compute the dividend with EXPAND_SUM
then if the divisor is constant can optimize the case
where some terms of the dividend have coeffs divisible by it. */
expand_operands (treeop0, treeop1,
subtarget, &op0, &op1, EXPAND_NORMAL);
return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
case RDIV_EXPR:
goto binop;
case TRUNC_MOD_EXPR:
case FLOOR_MOD_EXPR:
case CEIL_MOD_EXPR:
case ROUND_MOD_EXPR:
if (modifier == EXPAND_STACK_PARM)
target = 0;
expand_operands (treeop0, treeop1,
subtarget, &op0, &op1, EXPAND_NORMAL);
return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
case FIXED_CONVERT_EXPR:
op0 = expand_normal (treeop0);
if (target == 0 || modifier == EXPAND_STACK_PARM)
target = gen_reg_rtx (mode);
if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
&& TYPE_UNSIGNED (TREE_TYPE (treeop0)))
|| (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
else
expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
return target;
case FIX_TRUNC_EXPR:
op0 = expand_normal (treeop0);
if (target == 0 || modifier == EXPAND_STACK_PARM)
target = gen_reg_rtx (mode);
expand_fix (target, op0, unsignedp);
return target;
case FLOAT_EXPR:
op0 = expand_normal (treeop0);
if (target == 0 || modifier == EXPAND_STACK_PARM)
target = gen_reg_rtx (mode);
/* expand_float can't figure out what to do if FROM has VOIDmode.
So give it the correct mode. With -O, cse will optimize this. */
if (GET_MODE (op0) == VOIDmode)
op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
op0);
expand_float (target, op0,
TYPE_UNSIGNED (TREE_TYPE (treeop0)));
return target;
case NEGATE_EXPR:
op0 = expand_expr (treeop0, subtarget,
VOIDmode, EXPAND_NORMAL);
if (modifier == EXPAND_STACK_PARM)
target = 0;
temp = expand_unop (mode,
optab_for_tree_code (NEGATE_EXPR, type,
optab_default),
op0, target, 0);
gcc_assert (temp);
return REDUCE_BIT_FIELD (temp);
case ABS_EXPR:
op0 = expand_expr (treeop0, subtarget,
VOIDmode, EXPAND_NORMAL);
if (modifier == EXPAND_STACK_PARM)
target = 0;
/* ABS_EXPR is not valid for complex arguments. */
gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
/* Unsigned abs is simply the operand. Testing here means we don't
risk generating incorrect code below. */
if (TYPE_UNSIGNED (type))
return op0;
return expand_abs (mode, op0, target, unsignedp,
safe_from_p (target, treeop0, 1));
case MAX_EXPR:
case MIN_EXPR:
target = original_target;
if (target == 0
|| modifier == EXPAND_STACK_PARM
|| (MEM_P (target) && MEM_VOLATILE_P (target))
|| GET_MODE (target) != mode
|| (REG_P (target)
&& REGNO (target) < FIRST_PSEUDO_REGISTER))
target = gen_reg_rtx (mode);
expand_operands (treeop0, treeop1,
target, &op0, &op1, EXPAND_NORMAL);
/* First try to do it with a special MIN or MAX instruction.
If that does not win, use a conditional jump to select the proper
value. */
this_optab = optab_for_tree_code (code, type, optab_default);
temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
OPTAB_WIDEN);
if (temp != 0)
return temp;
/* At this point, a MEM target is no longer useful; we will get better
code without it. */
if (! REG_P (target))
target = gen_reg_rtx (mode);
/* If op1 was placed in target, swap op0 and op1. */
if (target != op0 && target == op1)
{
temp = op0;
op0 = op1;
op1 = temp;
}
/* We generate better code and avoid problems with op1 mentioning
target by forcing op1 into a pseudo if it isn't a constant. */
if (! CONSTANT_P (op1))
op1 = force_reg (mode, op1);
{
enum rtx_code comparison_code;
rtx cmpop1 = op1;
if (code == MAX_EXPR)
comparison_code = unsignedp ? GEU : GE;
else
comparison_code = unsignedp ? LEU : LE;
/* Canonicalize to comparisons against 0. */
if (op1 == const1_rtx)
{
/* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
or (a != 0 ? a : 1) for unsigned.
For MIN we are safe converting (a <= 1 ? a : 1)
into (a <= 0 ? a : 1) */
cmpop1 = const0_rtx;
if (code == MAX_EXPR)
comparison_code = unsignedp ? NE : GT;
}
if (op1 == constm1_rtx && !unsignedp)
{
/* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
cmpop1 = const0_rtx;
if (code == MIN_EXPR)
comparison_code = LT;
}
#ifdef HAVE_conditional_move
/* Use a conditional move if possible. */
if (can_conditionally_move_p (mode))
{
rtx insn;
/* ??? Same problem as in expmed.c: emit_conditional_move
forces a stack adjustment via compare_from_rtx, and we
lose the stack adjustment if the sequence we are about
to create is discarded. */
do_pending_stack_adjust ();
start_sequence ();
/* Try to emit the conditional move. */
insn = emit_conditional_move (target, comparison_code,
op0, cmpop1, mode,
op0, op1, mode,
unsignedp);
/* If we could do the conditional move, emit the sequence,
and return. */
if (insn)
{
rtx seq = get_insns ();
end_sequence ();
emit_insn (seq);
return target;
}
/* Otherwise discard the sequence and fall back to code with
branches. */
end_sequence ();
}
#endif
if (target != op0)
emit_move_insn (target, op0);
temp = gen_label_rtx ();
do_compare_rtx_and_jump (target, cmpop1, comparison_code,
unsignedp, mode, NULL_RTX, NULL_RTX, temp,
-1);
}
emit_move_insn (target, op1);
emit_label (temp);
return target;
case BIT_NOT_EXPR:
op0 = expand_expr (treeop0, subtarget,
VOIDmode, EXPAND_NORMAL);
if (modifier == EXPAND_STACK_PARM)
target = 0;
/* In case we have to reduce the result to bitfield precision
expand this as XOR with a proper constant instead. */
if (reduce_bit_field)
temp = expand_binop (mode, xor_optab, op0,
immed_double_int_const
(double_int_mask (TYPE_PRECISION (type)), mode),
target, 1, OPTAB_LIB_WIDEN);
else
temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
gcc_assert (temp);
return temp;
/* ??? Can optimize bitwise operations with one arg constant.
Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
and (a bitwise1 b) bitwise2 b (etc)
but that is probably not worth while. */
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
goto binop;
case LROTATE_EXPR:
case RROTATE_EXPR:
gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
|| (GET_MODE_PRECISION (TYPE_MODE (type))
== TYPE_PRECISION (type)));
/* fall through */
case LSHIFT_EXPR:
case RSHIFT_EXPR:
/* If this is a fixed-point operation, then we cannot use the code
below because "expand_shift" doesn't support sat/no-sat fixed-point
shifts. */
if (ALL_FIXED_POINT_MODE_P (mode))
goto binop;
if (! safe_from_p (subtarget, treeop1, 1))
subtarget = 0;
if (modifier == EXPAND_STACK_PARM)
target = 0;
op0 = expand_expr (treeop0, subtarget,
VOIDmode, EXPAND_NORMAL);
temp = expand_variable_shift (code, mode, op0, treeop1, target,
unsignedp);
if (code == LSHIFT_EXPR)
temp = REDUCE_BIT_FIELD (temp);
return temp;
/* Could determine the answer when only additive constants differ. Also,
the addition of one can be handled by changing the condition. */
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
case EQ_EXPR:
case NE_EXPR:
case UNORDERED_EXPR:
case ORDERED_EXPR:
case UNLT_EXPR:
case UNLE_EXPR:
case UNGT_EXPR:
case UNGE_EXPR:
case UNEQ_EXPR:
case LTGT_EXPR:
temp = do_store_flag (ops,
modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
tmode != VOIDmode ? tmode : mode);
if (temp)
return temp;
/* Use a compare and a jump for BLKmode comparisons, or for function
type comparisons is HAVE_canonicalize_funcptr_for_compare. */
if ((target == 0
|| modifier == EXPAND_STACK_PARM
|| ! safe_from_p (target, treeop0, 1)
|| ! safe_from_p (target, treeop1, 1)
/* Make sure we don't have a hard reg (such as function's return
value) live across basic blocks, if not optimizing. */
|| (!optimize && REG_P (target)
&& REGNO (target) < FIRST_PSEUDO_REGISTER)))
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
emit_move_insn (target, const0_rtx);
op1 = gen_label_rtx ();
jumpifnot_1 (code, treeop0, treeop1, op1, -1);
if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
emit_move_insn (target, constm1_rtx);
else
emit_move_insn (target, const1_rtx);
emit_label (op1);
return target;
case COMPLEX_EXPR:
/* Get the rtx code of the operands. */
op0 = expand_normal (treeop0);
op1 = expand_normal (treeop1);
if (!target)
target = gen_reg_rtx (TYPE_MODE (type));
/* Move the real (op0) and imaginary (op1) parts to their location. */
write_complex_part (target, op0, false);
write_complex_part (target, op1, true);
return target;
case WIDEN_SUM_EXPR:
{
tree oprnd0 = treeop0;
tree oprnd1 = treeop1;
expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
target, unsignedp);
return target;
}
case REDUC_MAX_EXPR:
case REDUC_MIN_EXPR:
case REDUC_PLUS_EXPR:
{
op0 = expand_normal (treeop0);
this_optab = optab_for_tree_code (code, type, optab_default);
temp = expand_unop (mode, this_optab, op0, target, unsignedp);
gcc_assert (temp);
return temp;
}
case VEC_EXTRACT_EVEN_EXPR:
case VEC_EXTRACT_ODD_EXPR:
case VEC_INTERLEAVE_HIGH_EXPR:
case VEC_INTERLEAVE_LOW_EXPR:
goto binop;
case VEC_LSHIFT_EXPR:
case VEC_RSHIFT_EXPR:
{
target = expand_vec_shift_expr (ops, target);
return target;
}
case VEC_UNPACK_HI_EXPR:
case VEC_UNPACK_LO_EXPR:
{
op0 = expand_normal (treeop0);
temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
target, unsignedp);
gcc_assert (temp);
return temp;
}
case VEC_UNPACK_FLOAT_HI_EXPR:
case VEC_UNPACK_FLOAT_LO_EXPR:
{
op0 = expand_normal (treeop0);
/* The signedness is determined from input operand. */
temp = expand_widen_pattern_expr
(ops, op0, NULL_RTX, NULL_RTX,
target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
gcc_assert (temp);
return temp;
}
case VEC_WIDEN_MULT_HI_EXPR:
case VEC_WIDEN_MULT_LO_EXPR:
{
tree oprnd0 = treeop0;
tree oprnd1 = treeop1;
expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
target, unsignedp);
gcc_assert (target);
return target;
}
case VEC_WIDEN_LSHIFT_HI_EXPR:
case VEC_WIDEN_LSHIFT_LO_EXPR:
{
tree oprnd0 = treeop0;
tree oprnd1 = treeop1;
expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
target, unsignedp);
gcc_assert (target);
return target;
}
case VEC_PACK_TRUNC_EXPR:
case VEC_PACK_SAT_EXPR:
case VEC_PACK_FIX_TRUNC_EXPR:
mode = TYPE_MODE (TREE_TYPE (treeop0));
goto binop;
case VEC_PERM_EXPR:
expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
op2 = expand_normal (treeop2);
temp = expand_vec_perm (mode, op0, op1, op2, target);
gcc_assert (temp);
return temp;
case DOT_PROD_EXPR:
{
tree oprnd0 = treeop0;
tree oprnd1 = treeop1;
tree oprnd2 = treeop2;
rtx op2;
expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
op2 = expand_normal (oprnd2);
target = expand_widen_pattern_expr (ops, op0, op1, op2,
target, unsignedp);
return target;
}
case REALIGN_LOAD_EXPR:
{
tree oprnd0 = treeop0;
tree oprnd1 = treeop1;
tree oprnd2 = treeop2;
rtx op2;
this_optab = optab_for_tree_code (code, type, optab_default);
expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
op2 = expand_normal (oprnd2);
temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
target, unsignedp);
gcc_assert (temp);
return temp;
}
case COND_EXPR:
/* A COND_EXPR with its type being VOID_TYPE represents a
conditional jump and is handled in
expand_gimple_cond_expr. */
gcc_assert (!VOID_TYPE_P (type));
/* Note that COND_EXPRs whose type is a structure or union
are required to be constructed to contain assignments of
a temporary variable, so that we can evaluate them here
for side effect only. If type is void, we must do likewise. */
gcc_assert (!TREE_ADDRESSABLE (type)
&& !ignore
&& TREE_TYPE (treeop1) != void_type_node
&& TREE_TYPE (treeop2) != void_type_node);
/* If we are not to produce a result, we have no target. Otherwise,
if a target was specified use it; it will not be used as an
intermediate target unless it is safe. If no target, use a
temporary. */
if (modifier != EXPAND_STACK_PARM
&& original_target
&& safe_from_p (original_target, treeop0, 1)
&& GET_MODE (original_target) == mode
#ifdef HAVE_conditional_move
&& (! can_conditionally_move_p (mode)
|| REG_P (original_target))
#endif
&& !MEM_P (original_target))
temp = original_target;
else
temp = assign_temp (type, 0, 0, 1);
do_pending_stack_adjust ();
NO_DEFER_POP;
op0 = gen_label_rtx ();
op1 = gen_label_rtx ();
jumpifnot (treeop0, op0, -1);
store_expr (treeop1, temp,
modifier == EXPAND_STACK_PARM,
false);
emit_jump_insn (gen_jump (op1));
emit_barrier ();
emit_label (op0);
store_expr (treeop2, temp,
modifier == EXPAND_STACK_PARM,
false);
emit_label (op1);
OK_DEFER_POP;
return temp;
case VEC_COND_EXPR:
target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
return target;
default:
gcc_unreachable ();
}
/* Here to do an ordinary binary operator. */
binop:
expand_operands (treeop0, treeop1,
subtarget, &op0, &op1, EXPAND_NORMAL);
binop2:
this_optab = optab_for_tree_code (code, type, optab_default);
binop3:
if (modifier == EXPAND_STACK_PARM)
target = 0;
temp = expand_binop (mode, this_optab, op0, op1, target,
unsignedp, OPTAB_LIB_WIDEN);
gcc_assert (temp);
/* Bitwise operations do not need bitfield reduction as we expect their
operands being properly truncated. */
if (code == BIT_XOR_EXPR
|| code == BIT_AND_EXPR
|| code == BIT_IOR_EXPR)
return temp;
return REDUCE_BIT_FIELD (temp);
}
#undef REDUCE_BIT_FIELD
rtx
expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
enum expand_modifier modifier, rtx *alt_rtl)
{
rtx op0, op1, temp, decl_rtl;
tree type;
int unsignedp;
enum machine_mode mode;
enum tree_code code = TREE_CODE (exp);
rtx subtarget, original_target;
int ignore;
tree context;
bool reduce_bit_field;
location_t loc = EXPR_LOCATION (exp);
struct separate_ops ops;
tree treeop0, treeop1, treeop2;
tree ssa_name = NULL_TREE;
gimple g;
type = TREE_TYPE (exp);
mode = TYPE_MODE (type);
unsignedp = TYPE_UNSIGNED (type);
treeop0 = treeop1 = treeop2 = NULL_TREE;
if (!VL_EXP_CLASS_P (exp))
switch (TREE_CODE_LENGTH (code))
{
default:
case 3: treeop2 = TREE_OPERAND (exp, 2);
case 2: treeop1 = TREE_OPERAND (exp, 1);
case 1: treeop0 = TREE_OPERAND (exp, 0);
case 0: break;
}
ops.code = code;
ops.type = type;
ops.op0 = treeop0;
ops.op1 = treeop1;
ops.op2 = treeop2;
ops.location = loc;
ignore = (target == const0_rtx
|| ((CONVERT_EXPR_CODE_P (code)
|| code == COND_EXPR || code == VIEW_CONVERT_EXPR)
&& TREE_CODE (type) == VOID_TYPE));
/* An operation in what may be a bit-field type needs the
result to be reduced to the precision of the bit-field type,
which is narrower than that of the type's mode. */
reduce_bit_field = (!ignore
&& INTEGRAL_TYPE_P (type)
&& GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
/* If we are going to ignore this result, we need only do something
if there is a side-effect somewhere in the expression. If there
is, short-circuit the most common cases here. Note that we must
not call expand_expr with anything but const0_rtx in case this
is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
if (ignore)
{
if (! TREE_SIDE_EFFECTS (exp))
return const0_rtx;
/* Ensure we reference a volatile object even if value is ignored, but
don't do this if all we are doing is taking its address. */
if (TREE_THIS_VOLATILE (exp)
&& TREE_CODE (exp) != FUNCTION_DECL
&& mode != VOIDmode && mode != BLKmode
&& modifier != EXPAND_CONST_ADDRESS)
{
temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
if (MEM_P (temp))
copy_to_reg (temp);
return const0_rtx;
}
if (TREE_CODE_CLASS (code) == tcc_unary
|| code == COMPONENT_REF || code == INDIRECT_REF)
return expand_expr (treeop0, const0_rtx, VOIDmode,
modifier);
else if (TREE_CODE_CLASS (code) == tcc_binary
|| TREE_CODE_CLASS (code) == tcc_comparison
|| code == ARRAY_REF || code == ARRAY_RANGE_REF)
{
expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
return const0_rtx;
}
else if (code == BIT_FIELD_REF)
{
expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
return const0_rtx;
}
target = 0;
}
if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
target = 0;
/* Use subtarget as the target for operand 0 of a binary operation. */
subtarget = get_subtarget (target);
original_target = target;
switch (code)
{
case LABEL_DECL:
{
tree function = decl_function_context (exp);
temp = label_rtx (exp);
temp = gen_rtx_LABEL_REF (Pmode, temp);
if (function != current_function_decl
&& function != 0)
LABEL_REF_NONLOCAL_P (temp) = 1;
temp = gen_rtx_MEM (FUNCTION_MODE, temp);
return temp;
}
case SSA_NAME:
/* ??? ivopts calls expander, without any preparation from
out-of-ssa. So fake instructions as if this was an access to the
base variable. This unnecessarily allocates a pseudo, see how we can
reuse it, if partition base vars have it set already. */
if (!currently_expanding_to_rtl)
return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
NULL);
g = get_gimple_for_ssa_name (exp);
/* For EXPAND_INITIALIZER try harder to get something simpler. */
if (g == NULL
&& modifier == EXPAND_INITIALIZER
&& !SSA_NAME_IS_DEFAULT_DEF (exp)
&& (optimize || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
&& stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
g = SSA_NAME_DEF_STMT (exp);
if (g)
return expand_expr_real (gimple_assign_rhs_to_tree (g), target, tmode,
modifier, NULL);
ssa_name = exp;
decl_rtl = get_rtx_for_ssa_name (ssa_name);
exp = SSA_NAME_VAR (ssa_name);
goto expand_decl_rtl;
case PARM_DECL:
case VAR_DECL:
/* If a static var's type was incomplete when the decl was written,
but the type is complete now, lay out the decl now. */
if (DECL_SIZE (exp) == 0
&& COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
&& (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
layout_decl (exp, 0);
/* ... fall through ... */
case FUNCTION_DECL:
case RESULT_DECL:
decl_rtl = DECL_RTL (exp);
expand_decl_rtl:
gcc_assert (decl_rtl);
decl_rtl = copy_rtx (decl_rtl);
/* Record writes to register variables. */
if (modifier == EXPAND_WRITE
&& REG_P (decl_rtl)
&& HARD_REGISTER_P (decl_rtl))
add_to_hard_reg_set (&crtl->asm_clobbers,
GET_MODE (decl_rtl), REGNO (decl_rtl));
/* Ensure variable marked as used even if it doesn't go through
a parser. If it hasn't be used yet, write out an external
definition. */
if (! TREE_USED (exp))
{
assemble_external (exp);
TREE_USED (exp) = 1;
}
/* Show we haven't gotten RTL for this yet. */
temp = 0;
/* Variables inherited from containing functions should have
been lowered by this point. */
context = decl_function_context (exp);
gcc_assert (!context
|| context == current_function_decl
|| TREE_STATIC (exp)
|| DECL_EXTERNAL (exp)
/* ??? C++ creates functions that are not TREE_STATIC. */
|| TREE_CODE (exp) == FUNCTION_DECL);
/* This is the case of an array whose size is to be determined
from its initializer, while the initializer is still being parsed.
See expand_decl. */
if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
temp = validize_mem (decl_rtl);
/* If DECL_RTL is memory, we are in the normal case and the
address is not valid, get the address into a register. */
else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
{
if (alt_rtl)
*alt_rtl = decl_rtl;
decl_rtl = use_anchored_address (decl_rtl);
if (modifier != EXPAND_CONST_ADDRESS
&& modifier != EXPAND_SUM
&& !memory_address_addr_space_p (DECL_MODE (exp),
XEXP (decl_rtl, 0),
MEM_ADDR_SPACE (decl_rtl)))
temp = replace_equiv_address (decl_rtl,
copy_rtx (XEXP (decl_rtl, 0)));
}
/* If we got something, return it. But first, set the alignment
if the address is a register. */
if (temp != 0)
{
if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
return temp;
}
/* If the mode of DECL_RTL does not match that of the decl,
there are two cases: we are dealing with a BLKmode value
that is returned in a register, or we are dealing with
a promoted value. In the latter case, return a SUBREG
of the wanted mode, but mark it so that we know that it
was already extended. */
if (REG_P (decl_rtl)
&& DECL_MODE (exp) != BLKmode
&& GET_MODE (decl_rtl) != DECL_MODE (exp))
{
enum machine_mode pmode;
/* Get the signedness to be used for this variable. Ensure we get
the same mode we got when the variable was declared. */
if (code == SSA_NAME
&& (g = SSA_NAME_DEF_STMT (ssa_name))
&& gimple_code (g) == GIMPLE_CALL)
{
gcc_assert (!gimple_call_internal_p (g));
pmode = promote_function_mode (type, mode, &unsignedp,
gimple_call_fntype (g),
2);
}
else
pmode = promote_decl_mode (exp, &unsignedp);
gcc_assert (GET_MODE (decl_rtl) == pmode);
temp = gen_lowpart_SUBREG (mode, decl_rtl);
SUBREG_PROMOTED_VAR_P (temp) = 1;
SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
return temp;
}
return decl_rtl;
case INTEGER_CST:
temp = immed_double_const (TREE_INT_CST_LOW (exp),
TREE_INT_CST_HIGH (exp), mode);
return temp;
case VECTOR_CST:
{
tree tmp = NULL_TREE;
if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
|| GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
|| GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
|| GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
|| GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
|| GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
return const_vector_from_tree (exp);
if (GET_MODE_CLASS (mode) == MODE_INT)
{
tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
if (type_for_mode)
tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
}
if (!tmp)
tmp = build_constructor_from_list (type,
TREE_VECTOR_CST_ELTS (exp));
return expand_expr (tmp, ignore ? const0_rtx : target,
tmode, modifier);
}
case CONST_DECL:
return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
case REAL_CST:
/* If optimized, generate immediate CONST_DOUBLE
which will be turned into memory by reload if necessary.
We used to force a register so that loop.c could see it. But
this does not allow gen_* patterns to perform optimizations with
the constants. It also produces two insns in cases like "x = 1.0;".
On most machines, floating-point constants are not permitted in
many insns, so we'd end up copying it to a register in any case.
Now, we do the copying in expand_binop, if appropriate. */
return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
TYPE_MODE (TREE_TYPE (exp)));
case FIXED_CST:
return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
TYPE_MODE (TREE_TYPE (exp)));
case COMPLEX_CST:
/* Handle evaluating a complex constant in a CONCAT target. */
if (original_target && GET_CODE (original_target) == CONCAT)
{
enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
rtx rtarg, itarg;
rtarg = XEXP (original_target, 0);
itarg = XEXP (original_target, 1);
/* Move the real and imaginary parts separately. */
op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
if (op0 != rtarg)
emit_move_insn (rtarg, op0);
if (op1 != itarg)
emit_move_insn (itarg, op1);
return original_target;
}
/* ... fall through ... */
case STRING_CST:
temp = expand_expr_constant (exp, 1, modifier);
/* temp contains a constant address.
On RISC machines where a constant address isn't valid,
make some insns to get that address into a register. */
if (modifier != EXPAND_CONST_ADDRESS
&& modifier != EXPAND_INITIALIZER
&& modifier != EXPAND_SUM
&& ! memory_address_addr_space_p (mode, XEXP (temp, 0),
MEM_ADDR_SPACE (temp)))
return replace_equiv_address (temp,
copy_rtx (XEXP (temp, 0)));
return temp;
case SAVE_EXPR:
{
tree val = treeop0;
rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
if (!SAVE_EXPR_RESOLVED_P (exp))
{
/* We can indeed still hit this case, typically via builtin
expanders calling save_expr immediately before expanding
something. Assume this means that we only have to deal
with non-BLKmode values. */
gcc_assert (GET_MODE (ret) != BLKmode);
val = build_decl (EXPR_LOCATION (exp),
VAR_DECL, NULL, TREE_TYPE (exp));
DECL_ARTIFICIAL (val) = 1;
DECL_IGNORED_P (val) = 1;
treeop0 = val;
TREE_OPERAND (exp, 0) = treeop0;
SAVE_EXPR_RESOLVED_P (exp) = 1;
if (!CONSTANT_P (ret))
ret = copy_to_reg (ret);
SET_DECL_RTL (val, ret);
}
return ret;
}
case CONSTRUCTOR:
/* If we don't need the result, just ensure we evaluate any
subexpressions. */
if (ignore)
{
unsigned HOST_WIDE_INT idx;
tree value;
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
return const0_rtx;
}
return expand_constructor (exp, target, modifier, false);
case TARGET_MEM_REF:
{
addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
struct mem_address addr;
enum insn_code icode;
unsigned int align;
get_address_description (exp, &addr);
op0 = addr_for_mem_ref (&addr, as, true);
op0 = memory_address_addr_space (mode, op0, as);
temp = gen_rtx_MEM (mode, op0);
set_mem_attributes (temp, exp, 0);
set_mem_addr_space (temp, as);
align = get_object_or_type_alignment (exp);
if (mode != BLKmode
&& align < GET_MODE_ALIGNMENT (mode)
/* If the target does not have special handling for unaligned
loads of mode then it can use regular moves for them. */
&& ((icode = optab_handler (movmisalign_optab, mode))
!= CODE_FOR_nothing))
{
struct expand_operand ops[2];
/* We've already validated the memory, and we're creating a
new pseudo destination. The predicates really can't fail,
nor can the generator. */
create_output_operand (&ops[0], NULL_RTX, mode);
create_fixed_operand (&ops[1], temp);
expand_insn (icode, 2, ops);
return ops[0].value;
}
return temp;
}
case MEM_REF:
{
addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))));
enum machine_mode address_mode;
tree base = TREE_OPERAND (exp, 0);
gimple def_stmt;
enum insn_code icode;
unsigned align;
/* Handle expansion of non-aliased memory with non-BLKmode. That
might end up in a register. */
if (TREE_CODE (base) == ADDR_EXPR)
{
HOST_WIDE_INT offset = mem_ref_offset (exp).low;
tree bit_offset;
base = TREE_OPERAND (base, 0);
if (!DECL_P (base))
{
HOST_WIDE_INT off;
base = get_addr_base_and_unit_offset (base, &off);
gcc_assert (base);
offset += off;
}
/* If we are expanding a MEM_REF of a non-BLKmode non-addressable
decl we must use bitfield operations. */
if (DECL_P (base)
&& !TREE_ADDRESSABLE (base)
&& DECL_MODE (base) != BLKmode
&& DECL_RTL_SET_P (base)
&& !MEM_P (DECL_RTL (base)))
{
tree bftype;
if (offset == 0
&& host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1)
&& (GET_MODE_BITSIZE (DECL_MODE (base))
== TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))))
return expand_expr (build1 (VIEW_CONVERT_EXPR,
TREE_TYPE (exp), base),
target, tmode, modifier);
bit_offset = bitsize_int (offset * BITS_PER_UNIT);
bftype = TREE_TYPE (base);
if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
bftype = TREE_TYPE (exp);
return expand_expr (build3 (BIT_FIELD_REF, bftype,
base,
TYPE_SIZE (TREE_TYPE (exp)),
bit_offset),
target, tmode, modifier);
}
}
address_mode = targetm.addr_space.address_mode (as);
base = TREE_OPERAND (exp, 0);
if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
{
tree mask = gimple_assign_rhs2 (def_stmt);
base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
gimple_assign_rhs1 (def_stmt), mask);
TREE_OPERAND (exp, 0) = base;
}
align = get_object_or_type_alignment (exp);
op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
op0 = memory_address_addr_space (address_mode, op0, as);
if (!integer_zerop (TREE_OPERAND (exp, 1)))
{
rtx off
= immed_double_int_const (mem_ref_offset (exp), address_mode);
op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
}
op0 = memory_address_addr_space (mode, op0, as);
temp = gen_rtx_MEM (mode, op0);
set_mem_attributes (temp, exp, 0);
set_mem_addr_space (temp, as);
if (TREE_THIS_VOLATILE (exp))
MEM_VOLATILE_P (temp) = 1;
if (mode != BLKmode
&& align < GET_MODE_ALIGNMENT (mode)
/* If the target does not have special handling for unaligned
loads of mode then it can use regular moves for them. */
&& ((icode = optab_handler (movmisalign_optab, mode))
!= CODE_FOR_nothing))
{
struct expand_operand ops[2];
/* We've already validated the memory, and we're creating a
new pseudo destination. The predicates really can't fail,
nor can the generator. */
create_output_operand (&ops[0], NULL_RTX, mode);
create_fixed_operand (&ops[1], temp);
expand_insn (icode, 2, ops);
return ops[0].value;
}
return temp;
}
case ARRAY_REF:
{
tree array = treeop0;
tree index = treeop1;
/* Fold an expression like: "foo"[2].
This is not done in fold so it won't happen inside &.
Don't fold if this is for wide characters since it's too
difficult to do correctly and this is a very rare case. */
if (modifier != EXPAND_CONST_ADDRESS
&& modifier != EXPAND_INITIALIZER
&& modifier != EXPAND_MEMORY)
{
tree t = fold_read_from_constant_string (exp);
if (t)
return expand_expr (t, target, tmode, modifier);
}
/* If this is a constant index into a constant array,
just get the value from the array. Handle both the cases when
we have an explicit constructor and when our operand is a variable
that was declared const. */
if (modifier != EXPAND_CONST_ADDRESS
&& modifier != EXPAND_INITIALIZER
&& modifier != EXPAND_MEMORY
&& TREE_CODE (array) == CONSTRUCTOR
&& ! TREE_SIDE_EFFECTS (array)
&& TREE_CODE (index) == INTEGER_CST)
{
unsigned HOST_WIDE_INT ix;
tree field, value;
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
field, value)
if (tree_int_cst_equal (field, index))
{
if (!TREE_SIDE_EFFECTS (value))
return expand_expr (fold (value), target, tmode, modifier);
break;
}
}
else if (optimize >= 1
&& modifier != EXPAND_CONST_ADDRESS
&& modifier != EXPAND_INITIALIZER
&& modifier != EXPAND_MEMORY
&& TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
&& TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
&& TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
&& const_value_known_p (array))
{
if (TREE_CODE (index) == INTEGER_CST)
{
tree init = DECL_INITIAL (array);
if (TREE_CODE (init) == CONSTRUCTOR)
{
unsigned HOST_WIDE_INT ix;
tree field, value;
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
field, value)
if (tree_int_cst_equal (field, index))
{
if (TREE_SIDE_EFFECTS (value))
break;
if (TREE_CODE (value) == CONSTRUCTOR)
{
/* If VALUE is a CONSTRUCTOR, this
optimization is only useful if
this doesn't store the CONSTRUCTOR
into memory. If it does, it is more
efficient to just load the data from
the array directly. */
rtx ret = expand_constructor (value, target,
modifier, true);
if (ret == NULL_RTX)
break;
}
return expand_expr (fold (value), target, tmode,
modifier);
}
}
else if(TREE_CODE (init) == STRING_CST)
{
tree index1 = index;
tree low_bound = array_ref_low_bound (exp);
index1 = fold_convert_loc (loc, sizetype,
treeop1);
/* Optimize the special-case of a zero lower bound.
We convert the low_bound to sizetype to avoid some problems
with constant folding. (E.g. suppose the lower bound is 1,
and its mode is QI. Without the conversion,l (ARRAY
+(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
+INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
if (! integer_zerop (low_bound))
index1 = size_diffop_loc (loc, index1,
fold_convert_loc (loc, sizetype,
low_bound));
if (0 > compare_tree_int (index1,
TREE_STRING_LENGTH (init)))
{
tree type = TREE_TYPE (TREE_TYPE (init));
enum machine_mode mode = TYPE_MODE (type);
if (GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_SIZE (mode) == 1)
return gen_int_mode (TREE_STRING_POINTER (init)
[TREE_INT_CST_LOW (index1)],
mode);
}
}
}
}
}
goto normal_inner_ref;
case COMPONENT_REF:
/* If the operand is a CONSTRUCTOR, we can just extract the
appropriate field if it is present. */
if (TREE_CODE (treeop0) == CONSTRUCTOR)
{
unsigned HOST_WIDE_INT idx;
tree field, value;
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
idx, field, value)
if (field == treeop1
/* We can normally use the value of the field in the
CONSTRUCTOR. However, if this is a bitfield in
an integral mode that we can fit in a HOST_WIDE_INT,
we must mask only the number of bits in the bitfield,
since this is done implicitly by the constructor. If
the bitfield does not meet either of those conditions,
we can't do this optimization. */
&& (! DECL_BIT_FIELD (field)
|| ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
&& (GET_MODE_PRECISION (DECL_MODE (field))
<= HOST_BITS_PER_WIDE_INT))))
{
if (DECL_BIT_FIELD (field)
&& modifier == EXPAND_STACK_PARM)
target = 0;
op0 = expand_expr (value, target, tmode, modifier);
if (DECL_BIT_FIELD (field))
{
HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
if (TYPE_UNSIGNED (TREE_TYPE (field)))
{
op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
op0 = expand_and (imode, op0, op1, target);
}
else
{
int count = GET_MODE_PRECISION (imode) - bitsize;
op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
target, 0);
op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
target, 0);
}
}
return op0;
}
}
goto normal_inner_ref;
case BIT_FIELD_REF:
case ARRAY_RANGE_REF:
normal_inner_ref:
{
enum machine_mode mode1, mode2;
HOST_WIDE_INT bitsize, bitpos;
tree offset;
int volatilep = 0, must_force_mem;
bool packedp = false;
tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
&mode1, &unsignedp, &volatilep, true);
rtx orig_op0, memloc;
/* If we got back the original object, something is wrong. Perhaps
we are evaluating an expression too early. In any event, don't
infinitely recurse. */
gcc_assert (tem != exp);
if (TYPE_PACKED (TREE_TYPE (TREE_OPERAND (exp, 0)))
|| (TREE_CODE (TREE_OPERAND (exp, 1)) == FIELD_DECL
&& DECL_PACKED (TREE_OPERAND (exp, 1))))
packedp = true;
/* If TEM's type is a union of variable size, pass TARGET to the inner
computation, since it will need a temporary and TARGET is known
to have to do. This occurs in unchecked conversion in Ada. */
orig_op0 = op0
= expand_expr (tem,
(TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
&& (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
!= INTEGER_CST)
&& modifier != EXPAND_STACK_PARM
? target : NULL_RTX),
VOIDmode,
(modifier == EXPAND_INITIALIZER
|| modifier == EXPAND_CONST_ADDRESS
|| modifier == EXPAND_STACK_PARM)
? modifier : EXPAND_NORMAL);
/* If the bitfield is volatile, we want to access it in the
field's mode, not the computed mode.
If a MEM has VOIDmode (external with incomplete type),
use BLKmode for it instead. */
if (MEM_P (op0))
{
if (volatilep && flag_strict_volatile_bitfields > 0)
op0 = adjust_address (op0, mode1, 0);
else if (GET_MODE (op0) == VOIDmode)
op0 = adjust_address (op0, BLKmode, 0);
}
mode2
= CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
/* If we have either an offset, a BLKmode result, or a reference
outside the underlying object, we must force it to memory.
Such a case can occur in Ada if we have unchecked conversion
of an expression from a scalar type to an aggregate type or
for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
passed a partially uninitialized object or a view-conversion
to a larger size. */
must_force_mem = (offset
|| mode1 == BLKmode
|| bitpos + bitsize > GET_MODE_BITSIZE (mode2));
/* Handle CONCAT first. */
if (GET_CODE (op0) == CONCAT && !must_force_mem)
{
if (bitpos == 0
&& bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
return op0;
if (bitpos == 0
&& bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
&& bitsize)
{
op0 = XEXP (op0, 0);
mode2 = GET_MODE (op0);
}
else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
&& bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
&& bitpos
&& bitsize)
{
op0 = XEXP (op0, 1);
bitpos = 0;
mode2 = GET_MODE (op0);
}
else
/* Otherwise force into memory. */
must_force_mem = 1;
}
/* If this is a constant, put it in a register if it is a legitimate
constant and we don't need a memory reference. */
if (CONSTANT_P (op0)
&& mode2 != BLKmode
&& targetm.legitimate_constant_p (mode2, op0)
&& !must_force_mem)
op0 = force_reg (mode2, op0);
/* Otherwise, if this is a constant, try to force it to the constant
pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
is a legitimate constant. */
else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
op0 = validize_mem (memloc);
/* Otherwise, if this is a constant or the object is not in memory
and need be, put it there. */
else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
{
tree nt = build_qualified_type (TREE_TYPE (tem),
(TYPE_QUALS (TREE_TYPE (tem))
| TYPE_QUAL_CONST));
memloc = assign_temp (nt, 1, 1, 1);
emit_move_insn (memloc, op0);
op0 = memloc;
}
if (offset)
{
enum machine_mode address_mode;
rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
EXPAND_SUM);
gcc_assert (MEM_P (op0));
address_mode
= targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
if (GET_MODE (offset_rtx) != address_mode)
offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
if (GET_MODE (op0) == BLKmode
/* A constant address in OP0 can have VOIDmode, we must
not try to call force_reg in that case. */
&& GET_MODE (XEXP (op0, 0)) != VOIDmode
&& bitsize != 0
&& (bitpos % bitsize) == 0
&& (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
&& MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
{
op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
bitpos = 0;
}
op0 = offset_address (op0, offset_rtx,
highest_pow2_factor (offset));
}
/* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
record its alignment as BIGGEST_ALIGNMENT. */
if (MEM_P (op0) && bitpos == 0 && offset != 0
&& is_aligning_offset (offset, tem))
set_mem_align (op0, BIGGEST_ALIGNMENT);
/* Don't forget about volatility even if this is a bitfield. */
if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
{
if (op0 == orig_op0)
op0 = copy_rtx (op0);
MEM_VOLATILE_P (op0) = 1;
}
/* In cases where an aligned union has an unaligned object
as a field, we might be extracting a BLKmode value from
an integer-mode (e.g., SImode) object. Handle this case
by doing the extract into an object as wide as the field
(which we know to be the width of a basic mode), then
storing into memory, and changing the mode to BLKmode. */
if (mode1 == VOIDmode
|| REG_P (op0) || GET_CODE (op0) == SUBREG
|| (mode1 != BLKmode && ! direct_load[(int) mode1]
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
&& modifier != EXPAND_CONST_ADDRESS
&& modifier != EXPAND_INITIALIZER)
/* If the field is volatile, we always want an aligned
access. Do this in following two situations:
1. the access is not already naturally
aligned, otherwise "normal" (non-bitfield) volatile fields
become non-addressable.
2. the bitsize is narrower than the access size. Need
to extract bitfields from the access. */
|| (volatilep && flag_strict_volatile_bitfields > 0
&& (bitpos % GET_MODE_ALIGNMENT (mode) != 0
|| (mode1 != BLKmode
&& bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT)))
/* If the field isn't aligned enough to fetch as a memref,
fetch it as a bit field. */
|| (mode1 != BLKmode
&& (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
|| (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
|| (MEM_P (op0)
&& (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
|| (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
&& ((modifier == EXPAND_CONST_ADDRESS
|| modifier == EXPAND_INITIALIZER)
? STRICT_ALIGNMENT
: SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
|| (bitpos % BITS_PER_UNIT != 0)))
/* If the type and the field are a constant size and the
size of the type isn't the same size as the bitfield,
we must use bitfield operations. */
|| (bitsize >= 0
&& TYPE_SIZE (TREE_TYPE (exp))
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
&& 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
bitsize)))
{
enum machine_mode ext_mode = mode;
if (ext_mode == BLKmode
&& ! (target != 0 && MEM_P (op0)
&& MEM_P (target)
&& bitpos % BITS_PER_UNIT == 0))
ext_mode = mode_for_size (bitsize, MODE_INT, 1);
if (ext_mode == BLKmode)
{
if (target == 0)
target = assign_temp (type, 0, 1, 1);
if (bitsize == 0)
return target;
/* In this case, BITPOS must start at a byte boundary and
TARGET, if specified, must be a MEM. */
gcc_assert (MEM_P (op0)
&& (!target || MEM_P (target))
&& !(bitpos % BITS_PER_UNIT));
emit_block_move (target,
adjust_address (op0, VOIDmode,
bitpos / BITS_PER_UNIT),
GEN_INT ((bitsize + BITS_PER_UNIT - 1)
/ BITS_PER_UNIT),
(modifier == EXPAND_STACK_PARM
? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
return target;
}
op0 = validize_mem (op0);
if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp, packedp,
(modifier == EXPAND_STACK_PARM
? NULL_RTX : target),
ext_mode, ext_mode);
/* If the result is a record type and BITSIZE is narrower than
the mode of OP0, an integral mode, and this is a big endian
machine, we must put the field into the high-order bits. */
if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
&& bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
GET_MODE_BITSIZE (GET_MODE (op0))
- bitsize, op0, 1);
/* If the result type is BLKmode, store the data into a temporary
of the appropriate type, but with the mode corresponding to the
mode for the data we have (op0's mode). It's tempting to make
this a constant type, since we know it's only being stored once,
but that can cause problems if we are taking the address of this
COMPONENT_REF because the MEM of any reference via that address
will have flags corresponding to the type, which will not
necessarily be constant. */
if (mode == BLKmode)
{
HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
rtx new_rtx;
/* If the reference doesn't use the alias set of its type,
we cannot create the temporary using that type. */
if (component_uses_parent_alias_set (exp))
{
new_rtx = assign_stack_local (ext_mode, size, 0);
set_mem_alias_set (new_rtx, get_alias_set (exp));
}
else
new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
emit_move_insn (new_rtx, op0);
op0 = copy_rtx (new_rtx);
PUT_MODE (op0, BLKmode);
set_mem_attributes (op0, exp, 1);
}
return op0;
}
/* If the result is BLKmode, use that to access the object
now as well. */
if (mode == BLKmode)
mode1 = BLKmode;
/* Get a reference to just this component. */
if (modifier == EXPAND_CONST_ADDRESS
|| modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
else
op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
if (op0 == orig_op0)
op0 = copy_rtx (op0);
set_mem_attributes (op0, exp, 0);
if (REG_P (XEXP (op0, 0)))
mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
MEM_VOLATILE_P (op0) |= volatilep;
if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
|| modifier == EXPAND_CONST_ADDRESS
|| modifier == EXPAND_INITIALIZER)
return op0;
else if (target == 0)
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
convert_move (target, op0, unsignedp);
return target;
}
case OBJ_TYPE_REF:
return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
case CALL_EXPR:
/* All valid uses of __builtin_va_arg_pack () are removed during
inlining. */
if (CALL_EXPR_VA_ARG_PACK (exp))
error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
{
tree fndecl = get_callee_fndecl (exp), attr;
if (fndecl
&& (attr = lookup_attribute ("error",
DECL_ATTRIBUTES (fndecl))) != NULL)
error ("%Kcall to %qs declared with attribute error: %s",
exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
if (fndecl
&& (attr = lookup_attribute ("warning",
DECL_ATTRIBUTES (fndecl))) != NULL)
warning_at (tree_nonartificial_location (exp),
0, "%Kcall to %qs declared with attribute warning: %s",
exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
/* Check for a built-in function. */
if (fndecl && DECL_BUILT_IN (fndecl))
{
gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
return expand_builtin (exp, target, subtarget, tmode, ignore);
}
}
return expand_call (exp, target, ignore);
case VIEW_CONVERT_EXPR:
op0 = NULL_RTX;
/* If we are converting to BLKmode, try to avoid an intermediate
temporary by fetching an inner memory reference. */
if (mode == BLKmode
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
&& TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
&& handled_component_p (treeop0))
{
enum machine_mode mode1;
HOST_WIDE_INT bitsize, bitpos;
tree offset;
int unsignedp;
int volatilep = 0;
tree tem
= get_inner_reference (treeop0, &bitsize, &bitpos,
&offset, &mode1, &unsignedp, &volatilep,
true);
rtx orig_op0;
/* ??? We should work harder and deal with non-zero offsets. */
if (!offset
&& (bitpos % BITS_PER_UNIT) == 0
&& bitsize >= 0
&& compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
{
/* See the normal_inner_ref case for the rationale. */
orig_op0
= expand_expr (tem,
(TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
&& (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
!= INTEGER_CST)
&& modifier != EXPAND_STACK_PARM
? target : NULL_RTX),
VOIDmode,
(modifier == EXPAND_INITIALIZER
|| modifier == EXPAND_CONST_ADDRESS
|| modifier == EXPAND_STACK_PARM)
? modifier : EXPAND_NORMAL);
if (MEM_P (orig_op0))
{
op0 = orig_op0;
/* Get a reference to just this component. */
if (modifier == EXPAND_CONST_ADDRESS
|| modifier == EXPAND_SUM
|| modifier == EXPAND_INITIALIZER)
op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
else
op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
if (op0 == orig_op0)
op0 = copy_rtx (op0);
set_mem_attributes (op0, treeop0, 0);
if (REG_P (XEXP (op0, 0)))
mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
MEM_VOLATILE_P (op0) |= volatilep;
}
}
}
if (!op0)
op0 = expand_expr (treeop0,
NULL_RTX, VOIDmode, modifier);
/* If the input and output modes are both the same, we are done. */
if (mode == GET_MODE (op0))
;
/* If neither mode is BLKmode, and both modes are the same size
then we can use gen_lowpart. */
else if (mode != BLKmode && GET_MODE (op0) != BLKmode
&& (GET_MODE_PRECISION (mode)
== GET_MODE_PRECISION (GET_MODE (op0)))
&& !COMPLEX_MODE_P (GET_MODE (op0)))
{
if (GET_CODE (op0) == SUBREG)
op0 = force_reg (GET_MODE (op0), op0);
temp = gen_lowpart_common (mode, op0);
if (temp)
op0 = temp;
else
{
if (!REG_P (op0) && !MEM_P (op0))
op0 = force_reg (GET_MODE (op0), op0);
op0 = gen_lowpart (mode, op0);
}
}
/* If both types are integral, convert from one mode to the other. */
else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
op0 = convert_modes (mode, GET_MODE (op0), op0,
TYPE_UNSIGNED (TREE_TYPE (treeop0)));
/* As a last resort, spill op0 to memory, and reload it in a
different mode. */
else if (!MEM_P (op0))
{
/* If the operand is not a MEM, force it into memory. Since we
are going to be changing the mode of the MEM, don't call
force_const_mem for constants because we don't allow pool
constants to change mode. */
tree inner_type = TREE_TYPE (treeop0);
gcc_assert (!TREE_ADDRESSABLE (exp));
if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
target
= assign_stack_temp_for_type
(TYPE_MODE (inner_type),
GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
emit_move_insn (target, op0);
op0 = target;
}
/* At this point, OP0 is in the correct mode. If the output type is
such that the operand is known to be aligned, indicate that it is.
Otherwise, we need only be concerned about alignment for non-BLKmode
results. */
if (MEM_P (op0))
{
op0 = copy_rtx (op0);
if (TYPE_ALIGN_OK (type))
set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
else if (STRICT_ALIGNMENT
&& mode != BLKmode
&& MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
{
tree inner_type = TREE_TYPE (treeop0);
HOST_WIDE_INT temp_size
= MAX (int_size_in_bytes (inner_type),
(HOST_WIDE_INT) GET_MODE_SIZE (mode));
rtx new_rtx
= assign_stack_temp_for_type (mode, temp_size, 0, type);
rtx new_with_op0_mode
= adjust_address (new_rtx, GET_MODE (op0), 0);
gcc_assert (!TREE_ADDRESSABLE (exp));
if (GET_MODE (op0) == BLKmode)
emit_block_move (new_with_op0_mode, op0,
GEN_INT (GET_MODE_SIZE (mode)),
(modifier == EXPAND_STACK_PARM
? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
else
emit_move_insn (new_with_op0_mode, op0);
op0 = new_rtx;
}
op0 = adjust_address (op0, mode, 0);
}
return op0;
case MODIFY_EXPR:
{
tree lhs = treeop0;
tree rhs = treeop1;
gcc_assert (ignore);
/* Check for |= or &= of a bitfield of size one into another bitfield
of size 1. In this case, (unless we need the result of the
assignment) we can do this more efficiently with a
test followed by an assignment, if necessary.
??? At this point, we can't get a BIT_FIELD_REF here. But if
things change so we do, this code should be enhanced to
support it. */
if (TREE_CODE (lhs) == COMPONENT_REF
&& (TREE_CODE (rhs) == BIT_IOR_EXPR
|| TREE_CODE (rhs) == BIT_AND_EXPR)
&& TREE_OPERAND (rhs, 0) == lhs
&& TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
&& integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
&& integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
{
rtx label = gen_label_rtx ();
int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
do_jump (TREE_OPERAND (rhs, 1),
value ? label : 0,
value ? 0 : label, -1);
expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
MOVE_NONTEMPORAL (exp));
do_pending_stack_adjust ();
emit_label (label);
return const0_rtx;
}
expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
return const0_rtx;
}
case ADDR_EXPR:
return expand_expr_addr_expr (exp, target, tmode, modifier);
case REALPART_EXPR:
op0 = expand_normal (treeop0);
return read_complex_part (op0, false);
case IMAGPART_EXPR:
op0 = expand_normal (treeop0);
return read_complex_part (op0, true);
case RETURN_EXPR:
case LABEL_EXPR:
case GOTO_EXPR:
case SWITCH_EXPR:
case ASM_EXPR:
/* Expanded in cfgexpand.c. */
gcc_unreachable ();
case TRY_CATCH_EXPR:
case CATCH_EXPR:
case EH_FILTER_EXPR:
case TRY_FINALLY_EXPR:
/* Lowered by tree-eh.c. */
gcc_unreachable ();
case WITH_CLEANUP_EXPR:
case CLEANUP_POINT_EXPR:
case TARGET_EXPR:
case CASE_LABEL_EXPR:
case VA_ARG_EXPR:
case BIND_EXPR:
case INIT_EXPR:
case CONJ_EXPR:
case COMPOUND_EXPR:
case PREINCREMENT_EXPR:
case PREDECREMENT_EXPR:
case POSTINCREMENT_EXPR:
case POSTDECREMENT_EXPR:
case LOOP_EXPR:
case EXIT_EXPR:
/* Lowered by gimplify.c. */
gcc_unreachable ();
case FDESC_EXPR:
/* Function descriptors are not valid except for as
initialization constants, and should not be expanded. */
gcc_unreachable ();
case WITH_SIZE_EXPR:
/* WITH_SIZE_EXPR expands to its first argument. The caller should
have pulled out the size to use in whatever context it needed. */
return expand_expr_real (treeop0, original_target, tmode,
modifier, alt_rtl);
case COMPOUND_LITERAL_EXPR:
{
/* Initialize the anonymous variable declared in the compound
literal, then return the variable. */
tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
/* Create RTL for this variable. */
if (!DECL_RTL_SET_P (decl))
{
if (DECL_HARD_REGISTER (decl))
/* The user specified an assembler name for this variable.
Set that up now. */
rest_of_decl_compilation (decl, 0, 0);
else
expand_decl (decl);
}
return expand_expr_real (decl, original_target, tmode,
modifier, alt_rtl);
}
default:
return expand_expr_real_2 (&ops, target, tmode, modifier);
}
}
/* Subroutine of above: reduce EXP to the precision of TYPE (in the
signedness of TYPE), possibly returning the result in TARGET. */
static rtx
reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
{
HOST_WIDE_INT prec = TYPE_PRECISION (type);
if (target && GET_MODE (target) != GET_MODE (exp))
target = 0;
/* For constant values, reduce using build_int_cst_type. */
if (CONST_INT_P (exp))
{
HOST_WIDE_INT value = INTVAL (exp);
tree t = build_int_cst_type (type, value);
return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
}
else if (TYPE_UNSIGNED (type))
{
rtx mask = immed_double_int_const (double_int_mask (prec),
GET_MODE (exp));
return expand_and (GET_MODE (exp), exp, mask, target);
}
else
{
int count = GET_MODE_PRECISION (GET_MODE (exp)) - prec;
exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp),
exp, count, target, 0);
return expand_shift (RSHIFT_EXPR, GET_MODE (exp),
exp, count, target, 0);
}
}
/* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
when applied to the address of EXP produces an address known to be
aligned more than BIGGEST_ALIGNMENT. */
static int
is_aligning_offset (const_tree offset, const_tree exp)
{
/* Strip off any conversions. */
while (CONVERT_EXPR_P (offset))
offset = TREE_OPERAND (offset, 0);
/* We must now have a BIT_AND_EXPR with a constant that is one less than
power of 2 and which is larger than BIGGEST_ALIGNMENT. */
if (TREE_CODE (offset) != BIT_AND_EXPR
|| !host_integerp (TREE_OPERAND (offset, 1), 1)
|| compare_tree_int (TREE_OPERAND (offset, 1),
BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
|| !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
return 0;
/* Look at the first operand of BIT_AND_EXPR and strip any conversion.
It must be NEGATE_EXPR. Then strip any more conversions. */
offset = TREE_OPERAND (offset, 0);
while (CONVERT_EXPR_P (offset))
offset = TREE_OPERAND (offset, 0);
if (TREE_CODE (offset) != NEGATE_EXPR)
return 0;
offset = TREE_OPERAND (offset, 0);
while (CONVERT_EXPR_P (offset))
offset = TREE_OPERAND (offset, 0);
/* This must now be the address of EXP. */
return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
}
/* Return the tree node if an ARG corresponds to a string constant or zero
if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
in bytes within the string that ARG is accessing. The type of the
offset will be `sizetype'. */
tree
string_constant (tree arg, tree *ptr_offset)
{
tree array, offset, lower_bound;
STRIP_NOPS (arg);
if (TREE_CODE (arg) == ADDR_EXPR)
{
if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
{
*ptr_offset = size_zero_node;
return TREE_OPERAND (arg, 0);
}
else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
{
array = TREE_OPERAND (arg, 0);
offset = size_zero_node;
}
else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
{
array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
if (TREE_CODE (array) != STRING_CST
&& TREE_CODE (array) != VAR_DECL)
return 0;
/* Check if the array has a nonzero lower bound. */
lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
if (!integer_zerop (lower_bound))
{
/* If the offset and base aren't both constants, return 0. */
if (TREE_CODE (lower_bound) != INTEGER_CST)
return 0;
if (TREE_CODE (offset) != INTEGER_CST)
return 0;
/* Adjust offset by the lower bound. */
offset = size_diffop (fold_convert (sizetype, offset),
fold_convert (sizetype, lower_bound));
}
}
else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
{
array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
if (TREE_CODE (array) != ADDR_EXPR)
return 0;
array = TREE_OPERAND (array, 0);
if (TREE_CODE (array) != STRING_CST
&& TREE_CODE (array) != VAR_DECL)
return 0;
}
else
return 0;
}
else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
{
tree arg0 = TREE_OPERAND (arg, 0);
tree arg1 = TREE_OPERAND (arg, 1);
STRIP_NOPS (arg0);
STRIP_NOPS (arg1);
if (TREE_CODE (arg0) == ADDR_EXPR
&& (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
|| TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
{
array = TREE_OPERAND (arg0, 0);
offset = arg1;
}
else if (TREE_CODE (arg1) == ADDR_EXPR
&& (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
|| TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
{
array = TREE_OPERAND (arg1, 0);
offset = arg0;
}
else
return 0;
}
else
return 0;
if (TREE_CODE (array) == STRING_CST)
{
*ptr_offset = fold_convert (sizetype, offset);
return array;
}
else if (TREE_CODE (array) == VAR_DECL
|| TREE_CODE (array) == CONST_DECL)
{
int length;
/* Variables initialized to string literals can be handled too. */
if (!const_value_known_p (array)
|| !DECL_INITIAL (array)
|| TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
return 0;
/* Avoid const char foo[4] = "abcde"; */
if (DECL_SIZE_UNIT (array) == NULL_TREE
|| TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
|| (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
|| compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
return 0;
/* If variable is bigger than the string literal, OFFSET must be constant
and inside of the bounds of the string literal. */
offset = fold_convert (sizetype, offset);
if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
&& (! host_integerp (offset, 1)
|| compare_tree_int (offset, length) >= 0))
return 0;
*ptr_offset = offset;
return DECL_INITIAL (array);
}
return 0;
}
/* Generate code to calculate OPS, and exploded expression
using a store-flag instruction and return an rtx for the result.
OPS reflects a comparison.
If TARGET is nonzero, store the result there if convenient.
Return zero if there is no suitable set-flag instruction
available on this machine.
Once expand_expr has been called on the arguments of the comparison,
we are committed to doing the store flag, since it is not safe to
re-evaluate the expression. We emit the store-flag insn by calling
emit_store_flag, but only expand the arguments if we have a reason
to believe that emit_store_flag will be successful. If we think that
it will, but it isn't, we have to simulate the store-flag with a
set/jump/set sequence. */
static rtx
do_store_flag (sepops ops, rtx target, enum machine_mode mode)
{
enum rtx_code code;
tree arg0, arg1, type;
tree tem;
enum machine_mode operand_mode;
int unsignedp;
rtx op0, op1;
rtx subtarget = target;
location_t loc = ops->location;
arg0 = ops->op0;
arg1 = ops->op1;
/* Don't crash if the comparison was erroneous. */
if (arg0 == error_mark_node || arg1 == error_mark_node)
return const0_rtx;
type = TREE_TYPE (arg0);
operand_mode = TYPE_MODE (type);
unsignedp = TYPE_UNSIGNED (type);
/* We won't bother with BLKmode store-flag operations because it would mean
passing a lot of information to emit_store_flag. */
if (operand_mode == BLKmode)
return 0;
/* We won't bother with store-flag operations involving function pointers
when function pointers must be canonicalized before comparisons. */
#ifdef HAVE_canonicalize_funcptr_for_compare
if (HAVE_canonicalize_funcptr_for_compare
&& ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
&& (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
== FUNCTION_TYPE))
|| (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
&& (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
== FUNCTION_TYPE))))
return 0;
#endif
STRIP_NOPS (arg0);
STRIP_NOPS (arg1);
/* For vector typed comparisons emit code to generate the desired
all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
expander for this. */
if (TREE_CODE (ops->type) == VECTOR_TYPE)
{
tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
tree if_true = constant_boolean_node (true, ops->type);
tree if_false = constant_boolean_node (false, ops->type);
return expand_vec_cond_expr (ops->type, ifexp, if_true, if_false, target);
}
/* For vector typed comparisons emit code to generate the desired
all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
expander for this. */
if (TREE_CODE (ops->type) == VECTOR_TYPE)
{
tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
tree if_true = constant_boolean_node (true, ops->type);
tree if_false = constant_boolean_node (false, ops->type);
return expand_vec_cond_expr (ops->type, ifexp, if_true, if_false, target);
}
/* Get the rtx comparison code to use. We know that EXP is a comparison
operation of some type. Some comparisons against 1 and -1 can be
converted to comparisons with zero. Do so here so that the tests
below will be aware that we have a comparison with zero. These
tests will not catch constants in the first operand, but constants
are rarely passed as the first operand. */
switch (ops->code)
{
case EQ_EXPR:
code = EQ;
break;
case NE_EXPR:
code = NE;
break;
case LT_EXPR:
if (integer_onep (arg1))
arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
else
code = unsignedp ? LTU : LT;
break;
case LE_EXPR:
if (! unsignedp && integer_all_onesp (arg1))
arg1 = integer_zero_node, code = LT;
else
code = unsignedp ? LEU : LE;
break;
case GT_EXPR:
if (! unsignedp && integer_all_onesp (arg1))
arg1 = integer_zero_node, code = GE;
else
code = unsignedp ? GTU : GT;
break;
case GE_EXPR:
if (integer_onep (arg1))
arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
else
code = unsignedp ? GEU : GE;
break;
case UNORDERED_EXPR:
code = UNORDERED;
break;
case ORDERED_EXPR:
code = ORDERED;
break;
case UNLT_EXPR:
code = UNLT;
break;
case UNLE_EXPR:
code = UNLE;
break;
case UNGT_EXPR:
code = UNGT;
break;
case UNGE_EXPR:
code = UNGE;
break;
case UNEQ_EXPR:
code = UNEQ;
break;
case LTGT_EXPR:
code = LTGT;
break;
default:
gcc_unreachable ();
}
/* Put a constant second. */
if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
|| TREE_CODE (arg0) == FIXED_CST)
{
tem = arg0; arg0 = arg1; arg1 = tem;
code = swap_condition (code);
}
/* If this is an equality or inequality test of a single bit, we can
do this by shifting the bit being tested to the low-order bit and
masking the result with the constant 1. If the condition was EQ,
we xor it with 1. This does not require an scc insn and is faster
than an scc insn even if we have it.
The code to make this transformation was moved into fold_single_bit_test,
so we just call into the folder and expand its result. */
if ((code == NE || code == EQ)
&& TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
&& integer_pow2p (TREE_OPERAND (arg0, 1))
&& (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
{
tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
return expand_expr (fold_single_bit_test (loc,
code == NE ? NE_EXPR : EQ_EXPR,
arg0, arg1, type),
target, VOIDmode, EXPAND_NORMAL);
}
if (! get_subtarget (target)
|| GET_MODE (subtarget) != operand_mode)
subtarget = 0;
expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
if (target == 0)
target = gen_reg_rtx (mode);
/* Try a cstore if possible. */
return emit_store_flag_force (target, code, op0, op1,
operand_mode, unsignedp,
(TYPE_PRECISION (ops->type) == 1
&& !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
}
/* Stubs in case we haven't got a casesi insn. */
#ifndef HAVE_casesi
# define HAVE_casesi 0
# define gen_casesi(a, b, c, d, e) (0)
# define CODE_FOR_casesi CODE_FOR_nothing
#endif
/* Attempt to generate a casesi instruction. Returns 1 if successful,
0 otherwise (i.e. if there is no casesi instruction). */
int
try_casesi (tree index_type, tree index_expr, tree minval, tree range,
rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
rtx fallback_label ATTRIBUTE_UNUSED)
{
struct expand_operand ops[5];
enum machine_mode index_mode = SImode;
int index_bits = GET_MODE_BITSIZE (index_mode);
rtx op1, op2, index;
if (! HAVE_casesi)
return 0;
/* Convert the index to SImode. */
if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
{
enum machine_mode omode = TYPE_MODE (index_type);
rtx rangertx = expand_normal (range);
/* We must handle the endpoints in the original mode. */
index_expr = build2 (MINUS_EXPR, index_type,
index_expr, minval);
minval = integer_zero_node;
index = expand_normal (index_expr);
if (default_label)
emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
omode, 1, default_label);
/* Now we can safely truncate. */
index = convert_to_mode (index_mode, index, 0);
}
else
{
if (TYPE_MODE (index_type) != index_mode)
{
index_type = lang_hooks.types.type_for_size (index_bits, 0);
index_expr = fold_convert (index_type, index_expr);
}
index = expand_normal (index_expr);
}
do_pending_stack_adjust ();
op1 = expand_normal (minval);
op2 = expand_normal (range);
create_input_operand (&ops[0], index, index_mode);
create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
create_fixed_operand (&ops[3], table_label);
create_fixed_operand (&ops[4], (default_label
? default_label
: fallback_label));
expand_jump_insn (CODE_FOR_casesi, 5, ops);
return 1;
}
/* Attempt to generate a tablejump instruction; same concept. */
#ifndef HAVE_tablejump
#define HAVE_tablejump 0
#define gen_tablejump(x, y) (0)
#endif
/* Subroutine of the next function.
INDEX is the value being switched on, with the lowest value
in the table already subtracted.
MODE is its expected mode (needed if INDEX is constant).
RANGE is the length of the jump table.
TABLE_LABEL is a CODE_LABEL rtx for the table itself.
DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
index value is out of range. */
static void
do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
rtx default_label)
{
rtx temp, vector;
if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
cfun->cfg->max_jumptable_ents = INTVAL (range);
/* Do an unsigned comparison (in the proper mode) between the index
expression and the value which represents the length of the range.
Since we just finished subtracting the lower bound of the range
from the index expression, this comparison allows us to simultaneously
check that the original index expression value is both greater than
or equal to the minimum value of the range and less than or equal to
the maximum value of the range. */
if (default_label)
emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
default_label);
/* If index is in range, it must fit in Pmode.
Convert to Pmode so we can index with it. */
if (mode != Pmode)
index = convert_to_mode (Pmode, index, 1);
/* Don't let a MEM slip through, because then INDEX that comes
out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
and break_out_memory_refs will go to work on it and mess it up. */
#ifdef PIC_CASE_VECTOR_ADDRESS
if (flag_pic && !REG_P (index))
index = copy_to_mode_reg (Pmode, index);
#endif
/* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
GET_MODE_SIZE, because this indicates how large insns are. The other
uses should all be Pmode, because they are addresses. This code
could fail if addresses and insns are not the same size. */
index = gen_rtx_PLUS (Pmode,
gen_rtx_MULT (Pmode, index,
GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
gen_rtx_LABEL_REF (Pmode, table_label));
#ifdef PIC_CASE_VECTOR_ADDRESS
if (flag_pic)
index = PIC_CASE_VECTOR_ADDRESS (index);
else
#endif
index = memory_address (CASE_VECTOR_MODE, index);
temp = gen_reg_rtx (CASE_VECTOR_MODE);
vector = gen_const_mem (CASE_VECTOR_MODE, index);
convert_move (temp, vector, 0);
emit_jump_insn (gen_tablejump (temp, table_label));
/* If we are generating PIC code or if the table is PC-relative, the
table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
emit_barrier ();
}
int
try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
rtx table_label, rtx default_label)
{
rtx index;
if (! HAVE_tablejump)
return 0;
index_expr = fold_build2 (MINUS_EXPR, index_type,
fold_convert (index_type, index_expr),
fold_convert (index_type, minval));
index = expand_normal (index_expr);
do_pending_stack_adjust ();
do_tablejump (index, TYPE_MODE (index_type),
convert_modes (TYPE_MODE (index_type),
TYPE_MODE (TREE_TYPE (range)),
expand_normal (range),
TYPE_UNSIGNED (TREE_TYPE (range))),
table_label, default_label);
return 1;
}
/* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
static rtx
const_vector_from_tree (tree exp)
{
rtvec v;
int units, i;
tree link, elt;
enum machine_mode inner, mode;
mode = TYPE_MODE (TREE_TYPE (exp));
if (initializer_zerop (exp))
return CONST0_RTX (mode);
units = GET_MODE_NUNITS (mode);
inner = GET_MODE_INNER (mode);
v = rtvec_alloc (units);
link = TREE_VECTOR_CST_ELTS (exp);
for (i = 0; link; link = TREE_CHAIN (link), ++i)
{
elt = TREE_VALUE (link);
if (TREE_CODE (elt) == REAL_CST)
RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
inner);
else if (TREE_CODE (elt) == FIXED_CST)
RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
inner);
else
RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
inner);
}
/* Initialize remaining elements to 0. */
for (; i < units; ++i)
RTVEC_ELT (v, i) = CONST0_RTX (inner);
return gen_rtx_CONST_VECTOR (mode, v);
}
/* Build a decl for a personality function given a language prefix. */
tree
build_personality_function (const char *lang)
{
const char *unwind_and_version;
tree decl, type;
char *name;
switch (targetm_common.except_unwind_info (&global_options))
{
case UI_NONE:
return NULL;
case UI_SJLJ:
unwind_and_version = "_sj0";
break;
case UI_DWARF2:
case UI_TARGET:
unwind_and_version = "_v0";
break;
default:
gcc_unreachable ();
}
name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
type = build_function_type_list (integer_type_node, integer_type_node,
long_long_unsigned_type_node,
ptr_type_node, ptr_type_node, NULL_TREE);
decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
get_identifier (name), type);
DECL_ARTIFICIAL (decl) = 1;
DECL_EXTERNAL (decl) = 1;
TREE_PUBLIC (decl) = 1;
/* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
are the flags assigned by targetm.encode_section_info. */
SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
return decl;
}
/* Extracts the personality function of DECL and returns the corresponding
libfunc. */
rtx
get_personality_function (tree decl)
{
tree personality = DECL_FUNCTION_PERSONALITY (decl);
enum eh_personality_kind pk;
pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
if (pk == eh_personality_none)
return NULL;
if (!personality
&& pk == eh_personality_any)
personality = lang_hooks.eh_personality ();
if (pk == eh_personality_lang)
gcc_assert (personality != NULL_TREE);
return XEXP (DECL_RTL (personality), 0);
}
#include "gt-expr.h"