/* Target-dependent costs for expmed.cc. Copyright (C) 1987-2024 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef EXPMED_H #define EXPMED_H 1 #include "insn-codes.h" enum alg_code { alg_unknown, alg_zero, alg_m, alg_shift, alg_add_t_m2, alg_sub_t_m2, alg_add_factor, alg_sub_factor, alg_add_t2_m, alg_sub_t2_m, alg_impossible }; /* Indicates the type of fixup needed after a constant multiplication. BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that the result should be negated, and ADD_VARIANT means that the multiplicand should be added to the result. */ enum mult_variant {basic_variant, negate_variant, add_variant}; bool choose_mult_variant (machine_mode, HOST_WIDE_INT, struct algorithm *, enum mult_variant *, int); /* This structure holds the "cost" of a multiply sequence. The "cost" field holds the total rtx_cost of every operator in the synthetic multiplication sequence, hence cost(a op b) is defined as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero. The "latency" field holds the minimum possible latency of the synthetic multiply, on a hypothetical infinitely parallel CPU. This is the critical path, or the maximum height, of the expression tree which is the sum of rtx_costs on the most expensive path from any leaf to the root. Hence latency(a op b) is defined as zero for leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */ struct mult_cost { short cost; /* Total rtx_cost of the multiplication sequence. */ short latency; /* The latency of the multiplication sequence. */ }; /* This macro is used to compare a pointer to a mult_cost against an single integer "rtx_cost" value. This is equivalent to the macro CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */ #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \ || ((X)->cost == (Y) && (X)->latency < (Y))) /* This macro is used to compare two pointers to mult_costs against each other. The macro returns true if X is cheaper than Y. Currently, the cheaper of two mult_costs is the one with the lower "cost". If "cost"s are tied, the lower latency is cheaper. */ #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \ || ((X)->cost == (Y)->cost \ && (X)->latency < (Y)->latency)) /* This structure records a sequence of operations. `ops' is the number of operations recorded. `cost' is their total cost. The operations are stored in `op' and the corresponding logarithms of the integer coefficients in `log'. These are the operations: alg_zero total := 0; alg_m total := multiplicand; alg_shift total := total * coeff alg_add_t_m2 total := total + multiplicand * coeff; alg_sub_t_m2 total := total - multiplicand * coeff; alg_add_factor total := total * coeff + total; alg_sub_factor total := total * coeff - total; alg_add_t2_m total := total * coeff + multiplicand; alg_sub_t2_m total := total * coeff - multiplicand; The first operand must be either alg_zero or alg_m. */ struct algorithm { struct mult_cost cost; short ops; /* The size of the OP and LOG fields are not directly related to the word size, but the worst-case algorithms will be if we have few consecutive ones or zeros, i.e., a multiplicand like 10101010101... In that case we will generate shift-by-2, add, shift-by-2, add,..., in total wordsize operations. */ enum alg_code op[MAX_BITS_PER_WORD]; char log[MAX_BITS_PER_WORD]; }; /* The entry for our multiplication cache/hash table. */ struct alg_hash_entry { /* The number we are multiplying by. */ unsigned HOST_WIDE_INT t; /* The mode in which we are multiplying something by T. */ machine_mode mode; /* The best multiplication algorithm for t. */ enum alg_code alg; /* The cost of multiplication if ALG_CODE is not alg_impossible. Otherwise, the cost within which multiplication by T is impossible. */ struct mult_cost cost; /* Optimized for speed? */ bool speed; }; /* The number of cache/hash entries. */ #if HOST_BITS_PER_WIDE_INT == 64 #define NUM_ALG_HASH_ENTRIES 1031 #else #define NUM_ALG_HASH_ENTRIES 307 #endif #define NUM_MODE_IP_INT (NUM_MODE_INT + NUM_MODE_PARTIAL_INT) #define NUM_MODE_IPV_INT (NUM_MODE_IP_INT + NUM_MODE_VECTOR_INT) struct expmed_op_cheap { bool cheap[2][NUM_MODE_IPV_INT]; }; struct expmed_op_costs { int cost[2][NUM_MODE_IPV_INT]; }; /* Target-dependent globals. */ struct target_expmed { /* Each entry of ALG_HASH caches alg_code for some integer. This is actually a hash table. If we have a collision, that the older entry is kicked out. */ struct alg_hash_entry x_alg_hash[NUM_ALG_HASH_ENTRIES]; /* True if x_alg_hash might already have been used. */ bool x_alg_hash_used_p; /* Nonzero means divides or modulus operations are relatively cheap for powers of two, so don't use branches; emit the operation instead. Usually, this will mean that the MD file will emit non-branch sequences. */ struct expmed_op_cheap x_sdiv_pow2_cheap; struct expmed_op_cheap x_smod_pow2_cheap; /* Cost of various pieces of RTL. */ int x_zero_cost[2]; struct expmed_op_costs x_add_cost; struct expmed_op_costs x_neg_cost; int x_shift_cost[2][NUM_MODE_IPV_INT][MAX_BITS_PER_WORD]; int x_shiftadd_cost[2][NUM_MODE_IPV_INT][MAX_BITS_PER_WORD]; int x_shiftsub0_cost[2][NUM_MODE_IPV_INT][MAX_BITS_PER_WORD]; int x_shiftsub1_cost[2][NUM_MODE_IPV_INT][MAX_BITS_PER_WORD]; struct expmed_op_costs x_mul_cost; struct expmed_op_costs x_sdiv_cost; struct expmed_op_costs x_udiv_cost; int x_mul_widen_cost[2][NUM_MODE_INT]; int x_mul_highpart_cost[2][NUM_MODE_INT]; /* Conversion costs are only defined between two scalar integer modes of different sizes. The first machine mode is the destination mode, and the second is the source mode. */ int x_convert_cost[2][NUM_MODE_IP_INT][NUM_MODE_IP_INT]; }; extern struct target_expmed default_target_expmed; #if SWITCHABLE_TARGET extern struct target_expmed *this_target_expmed; #else #define this_target_expmed (&default_target_expmed) #endif /* Return a pointer to the alg_hash_entry at IDX. */ inline struct alg_hash_entry * alg_hash_entry_ptr (int idx) { return &this_target_expmed->x_alg_hash[idx]; } /* Return true if the x_alg_hash field might have been used. */ inline bool alg_hash_used_p (void) { return this_target_expmed->x_alg_hash_used_p; } /* Set whether the x_alg_hash field might have been used. */ inline void set_alg_hash_used_p (bool usedp) { this_target_expmed->x_alg_hash_used_p = usedp; } /* Compute an index into the cost arrays by mode class. */ inline int expmed_mode_index (machine_mode mode) { switch (GET_MODE_CLASS (mode)) { case MODE_INT: return mode - MIN_MODE_INT; case MODE_PARTIAL_INT: /* If there are no partial integer modes, help the compiler to figure out this will never happen. See PR59934. */ if (MIN_MODE_PARTIAL_INT != VOIDmode) return mode - MIN_MODE_PARTIAL_INT + NUM_MODE_INT; break; case MODE_VECTOR_INT: /* If there are no vector integer modes, help the compiler to figure out this will never happen. See PR59934. */ if (MIN_MODE_VECTOR_INT != VOIDmode) return mode - MIN_MODE_VECTOR_INT + NUM_MODE_IP_INT; break; default: break; } gcc_unreachable (); } /* Return a pointer to a boolean contained in EOC indicating whether a particular operation performed in MODE is cheap when optimizing for SPEED. */ inline bool * expmed_op_cheap_ptr (struct expmed_op_cheap *eoc, bool speed, machine_mode mode) { int idx = expmed_mode_index (mode); return &eoc->cheap[speed][idx]; } /* Return a pointer to a cost contained in COSTS when a particular operation is performed in MODE when optimizing for SPEED. */ inline int * expmed_op_cost_ptr (struct expmed_op_costs *costs, bool speed, machine_mode mode) { int idx = expmed_mode_index (mode); return &costs->cost[speed][idx]; } /* Subroutine of {set_,}sdiv_pow2_cheap. Not to be used otherwise. */ inline bool * sdiv_pow2_cheap_ptr (bool speed, machine_mode mode) { return expmed_op_cheap_ptr (&this_target_expmed->x_sdiv_pow2_cheap, speed, mode); } /* Set whether a signed division by a power of 2 is cheap in MODE when optimizing for SPEED. */ inline void set_sdiv_pow2_cheap (bool speed, machine_mode mode, bool cheap_p) { *sdiv_pow2_cheap_ptr (speed, mode) = cheap_p; } /* Return whether a signed division by a power of 2 is cheap in MODE when optimizing for SPEED. */ inline bool sdiv_pow2_cheap (bool speed, machine_mode mode) { return *sdiv_pow2_cheap_ptr (speed, mode); } /* Subroutine of {set_,}smod_pow2_cheap. Not to be used otherwise. */ inline bool * smod_pow2_cheap_ptr (bool speed, machine_mode mode) { return expmed_op_cheap_ptr (&this_target_expmed->x_smod_pow2_cheap, speed, mode); } /* Set whether a signed modulo by a power of 2 is CHEAP in MODE when optimizing for SPEED. */ inline void set_smod_pow2_cheap (bool speed, machine_mode mode, bool cheap) { *smod_pow2_cheap_ptr (speed, mode) = cheap; } /* Return whether a signed modulo by a power of 2 is cheap in MODE when optimizing for SPEED. */ inline bool smod_pow2_cheap (bool speed, machine_mode mode) { return *smod_pow2_cheap_ptr (speed, mode); } /* Subroutine of {set_,}zero_cost. Not to be used otherwise. */ inline int * zero_cost_ptr (bool speed) { return &this_target_expmed->x_zero_cost[speed]; } /* Set the COST of loading zero when optimizing for SPEED. */ inline void set_zero_cost (bool speed, int cost) { *zero_cost_ptr (speed) = cost; } /* Return the COST of loading zero when optimizing for SPEED. */ inline int zero_cost (bool speed) { return *zero_cost_ptr (speed); } /* Subroutine of {set_,}add_cost. Not to be used otherwise. */ inline int * add_cost_ptr (bool speed, machine_mode mode) { return expmed_op_cost_ptr (&this_target_expmed->x_add_cost, speed, mode); } /* Set the COST of computing an add in MODE when optimizing for SPEED. */ inline void set_add_cost (bool speed, machine_mode mode, int cost) { *add_cost_ptr (speed, mode) = cost; } /* Return the cost of computing an add in MODE when optimizing for SPEED. */ inline int add_cost (bool speed, machine_mode mode) { return *add_cost_ptr (speed, mode); } /* Subroutine of {set_,}neg_cost. Not to be used otherwise. */ inline int * neg_cost_ptr (bool speed, machine_mode mode) { return expmed_op_cost_ptr (&this_target_expmed->x_neg_cost, speed, mode); } /* Set the COST of computing a negation in MODE when optimizing for SPEED. */ inline void set_neg_cost (bool speed, machine_mode mode, int cost) { *neg_cost_ptr (speed, mode) = cost; } /* Return the cost of computing a negation in MODE when optimizing for SPEED. */ inline int neg_cost (bool speed, machine_mode mode) { return *neg_cost_ptr (speed, mode); } /* Subroutine of {set_,}shift_cost. Not to be used otherwise. */ inline int * shift_cost_ptr (bool speed, machine_mode mode, int bits) { int midx = expmed_mode_index (mode); return &this_target_expmed->x_shift_cost[speed][midx][bits]; } /* Set the COST of doing a shift in MODE by BITS when optimizing for SPEED. */ inline void set_shift_cost (bool speed, machine_mode mode, int bits, int cost) { *shift_cost_ptr (speed, mode, bits) = cost; } /* Return the cost of doing a shift in MODE by BITS when optimizing for SPEED. */ inline int shift_cost (bool speed, machine_mode mode, int bits) { return *shift_cost_ptr (speed, mode, bits); } /* Subroutine of {set_,}shiftadd_cost. Not to be used otherwise. */ inline int * shiftadd_cost_ptr (bool speed, machine_mode mode, int bits) { int midx = expmed_mode_index (mode); return &this_target_expmed->x_shiftadd_cost[speed][midx][bits]; } /* Set the COST of doing a shift in MODE by BITS followed by an add when optimizing for SPEED. */ inline void set_shiftadd_cost (bool speed, machine_mode mode, int bits, int cost) { *shiftadd_cost_ptr (speed, mode, bits) = cost; } /* Return the cost of doing a shift in MODE by BITS followed by an add when optimizing for SPEED. */ inline int shiftadd_cost (bool speed, machine_mode mode, int bits) { return *shiftadd_cost_ptr (speed, mode, bits); } /* Subroutine of {set_,}shiftsub0_cost. Not to be used otherwise. */ inline int * shiftsub0_cost_ptr (bool speed, machine_mode mode, int bits) { int midx = expmed_mode_index (mode); return &this_target_expmed->x_shiftsub0_cost[speed][midx][bits]; } /* Set the COST of doing a shift in MODE by BITS and then subtracting a value when optimizing for SPEED. */ inline void set_shiftsub0_cost (bool speed, machine_mode mode, int bits, int cost) { *shiftsub0_cost_ptr (speed, mode, bits) = cost; } /* Return the cost of doing a shift in MODE by BITS and then subtracting a value when optimizing for SPEED. */ inline int shiftsub0_cost (bool speed, machine_mode mode, int bits) { return *shiftsub0_cost_ptr (speed, mode, bits); } /* Subroutine of {set_,}shiftsub1_cost. Not to be used otherwise. */ inline int * shiftsub1_cost_ptr (bool speed, machine_mode mode, int bits) { int midx = expmed_mode_index (mode); return &this_target_expmed->x_shiftsub1_cost[speed][midx][bits]; } /* Set the COST of subtracting a shift in MODE by BITS from a value when optimizing for SPEED. */ inline void set_shiftsub1_cost (bool speed, machine_mode mode, int bits, int cost) { *shiftsub1_cost_ptr (speed, mode, bits) = cost; } /* Return the cost of subtracting a shift in MODE by BITS from a value when optimizing for SPEED. */ inline int shiftsub1_cost (bool speed, machine_mode mode, int bits) { return *shiftsub1_cost_ptr (speed, mode, bits); } /* Subroutine of {set_,}mul_cost. Not to be used otherwise. */ inline int * mul_cost_ptr (bool speed, machine_mode mode) { return expmed_op_cost_ptr (&this_target_expmed->x_mul_cost, speed, mode); } /* Set the COST of doing a multiplication in MODE when optimizing for SPEED. */ inline void set_mul_cost (bool speed, machine_mode mode, int cost) { *mul_cost_ptr (speed, mode) = cost; } /* Return the cost of doing a multiplication in MODE when optimizing for SPEED. */ inline int mul_cost (bool speed, machine_mode mode) { return *mul_cost_ptr (speed, mode); } /* Subroutine of {set_,}sdiv_cost. Not to be used otherwise. */ inline int * sdiv_cost_ptr (bool speed, machine_mode mode) { return expmed_op_cost_ptr (&this_target_expmed->x_sdiv_cost, speed, mode); } /* Set the COST of doing a signed division in MODE when optimizing for SPEED. */ inline void set_sdiv_cost (bool speed, machine_mode mode, int cost) { *sdiv_cost_ptr (speed, mode) = cost; } /* Return the cost of doing a signed division in MODE when optimizing for SPEED. */ inline int sdiv_cost (bool speed, machine_mode mode) { return *sdiv_cost_ptr (speed, mode); } /* Subroutine of {set_,}udiv_cost. Not to be used otherwise. */ inline int * udiv_cost_ptr (bool speed, machine_mode mode) { return expmed_op_cost_ptr (&this_target_expmed->x_udiv_cost, speed, mode); } /* Set the COST of doing an unsigned division in MODE when optimizing for SPEED. */ inline void set_udiv_cost (bool speed, machine_mode mode, int cost) { *udiv_cost_ptr (speed, mode) = cost; } /* Return the cost of doing an unsigned division in MODE when optimizing for SPEED. */ inline int udiv_cost (bool speed, machine_mode mode) { return *udiv_cost_ptr (speed, mode); } /* Subroutine of {set_,}mul_widen_cost. Not to be used otherwise. */ inline int * mul_widen_cost_ptr (bool speed, machine_mode mode) { gcc_assert (GET_MODE_CLASS (mode) == MODE_INT); return &this_target_expmed->x_mul_widen_cost[speed][mode - MIN_MODE_INT]; } /* Set the COST for computing a widening multiplication in MODE when optimizing for SPEED. */ inline void set_mul_widen_cost (bool speed, machine_mode mode, int cost) { *mul_widen_cost_ptr (speed, mode) = cost; } /* Return the cost for computing a widening multiplication in MODE when optimizing for SPEED. */ inline int mul_widen_cost (bool speed, machine_mode mode) { return *mul_widen_cost_ptr (speed, mode); } /* Subroutine of {set_,}mul_highpart_cost. Not to be used otherwise. */ inline int * mul_highpart_cost_ptr (bool speed, machine_mode mode) { gcc_assert (GET_MODE_CLASS (mode) == MODE_INT); int m = mode - MIN_MODE_INT; gcc_assert (m < NUM_MODE_INT); return &this_target_expmed->x_mul_highpart_cost[speed][m]; } /* Set the COST for computing the high part of a multiplication in MODE when optimizing for SPEED. */ inline void set_mul_highpart_cost (bool speed, machine_mode mode, int cost) { *mul_highpart_cost_ptr (speed, mode) = cost; } /* Return the cost for computing the high part of a multiplication in MODE when optimizing for SPEED. */ inline int mul_highpart_cost (bool speed, machine_mode mode) { return *mul_highpart_cost_ptr (speed, mode); } /* Subroutine of {set_,}convert_cost. Not to be used otherwise. */ inline int * convert_cost_ptr (machine_mode to_mode, machine_mode from_mode, bool speed) { int to_idx = expmed_mode_index (to_mode); int from_idx = expmed_mode_index (from_mode); gcc_assert (IN_RANGE (to_idx, 0, NUM_MODE_IP_INT - 1)); gcc_assert (IN_RANGE (from_idx, 0, NUM_MODE_IP_INT - 1)); return &this_target_expmed->x_convert_cost[speed][to_idx][from_idx]; } /* Set the COST for converting from FROM_MODE to TO_MODE when optimizing for SPEED. */ inline void set_convert_cost (machine_mode to_mode, machine_mode from_mode, bool speed, int cost) { *convert_cost_ptr (to_mode, from_mode, speed) = cost; } /* Return the cost for converting from FROM_MODE to TO_MODE when optimizing for SPEED. */ inline int convert_cost (machine_mode to_mode, machine_mode from_mode, bool speed) { return *convert_cost_ptr (to_mode, from_mode, speed); } extern int mult_by_coeff_cost (HOST_WIDE_INT, machine_mode, bool); extern rtx emit_cstore (rtx target, enum insn_code icode, enum rtx_code code, machine_mode mode, machine_mode compare_mode, int unsignedp, rtx x, rtx y, int normalizep, machine_mode target_mode); /* Arguments MODE, RTX: return an rtx for the negation of that value. May emit insns. */ extern rtx negate_rtx (machine_mode, rtx); /* Arguments MODE, RTX: return an rtx for the flipping of that value. May emit insns. */ extern rtx flip_storage_order (machine_mode, rtx); /* Expand a logical AND operation. */ extern rtx expand_and (machine_mode, rtx, rtx, rtx); /* Emit a store-flag operation. */ extern rtx emit_store_flag (rtx, enum rtx_code, rtx, rtx, machine_mode, int, int); /* Like emit_store_flag, but always succeeds. */ extern rtx emit_store_flag_force (rtx, enum rtx_code, rtx, rtx, machine_mode, int, int); extern void canonicalize_comparison (machine_mode, enum rtx_code *, rtx *); /* Choose a minimal N + 1 bit approximation to 2**K / D that can be used to replace division by D, put the least significant N bits of the result in *MULTIPLIER_PTR, the value K - N in *POST_SHIFT_PTR, and return the most significant bit. */ extern unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int, int, unsigned HOST_WIDE_INT *, int *); #ifdef TREE_CODE extern rtx expand_variable_shift (enum tree_code, machine_mode, rtx, tree, rtx, int); extern rtx expand_shift (enum tree_code, machine_mode, rtx, poly_int64, rtx, int); extern rtx maybe_expand_shift (enum tree_code, machine_mode, rtx, int, rtx, int); #ifdef GCC_OPTABS_H extern rtx expand_divmod (int, enum tree_code, machine_mode, rtx, rtx, rtx, int, enum optab_methods = OPTAB_LIB_WIDEN); #endif #endif extern void store_bit_field (rtx, poly_uint64, poly_uint64, poly_uint64, poly_uint64, machine_mode, rtx, bool, bool); extern rtx extract_bit_field (rtx, poly_uint64, poly_uint64, int, rtx, machine_mode, machine_mode, bool, rtx *); extern rtx extract_low_bits (machine_mode, machine_mode, rtx); extern rtx expand_mult (machine_mode, rtx, rtx, rtx, int, bool = false); extern rtx expand_mult_highpart_adjust (scalar_int_mode, rtx, rtx, rtx, rtx, int); extern rtx expmed_mult_highpart_optab (scalar_int_mode, rtx, rtx, rtx, int, int); #endif // EXPMED_H