/* Medium-level subroutines: convert bit-field store and extract and shifts, multiplies and divides to rtl instructions. Copyright (C) 1987, 88, 89, 92, 93, 1994 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "config.h" #include "rtl.h" #include "tree.h" #include "flags.h" #include "insn-flags.h" #include "insn-codes.h" #include "insn-config.h" #include "expr.h" #include "real.h" #include "recog.h" static void store_fixed_bit_field PROTO((rtx, int, int, int, rtx, int)); static void store_split_bit_field PROTO((rtx, int, int, rtx, int)); static rtx extract_fixed_bit_field PROTO((enum machine_mode, rtx, int, int, int, rtx, int, int)); static rtx mask_rtx PROTO((enum machine_mode, int, int, int)); static rtx lshift_value PROTO((enum machine_mode, rtx, int, int)); static rtx extract_split_bit_field PROTO((rtx, int, int, int, int)); #define CEIL(x,y) (((x) + (y) - 1) / (y)) /* Non-zero means divides or modulus operations are relatively cheap for powers of two, so don't use branches; emit the operation instead. Usually, this will mean that the MD file will emit non-branch sequences. */ static int sdiv_pow2_cheap, smod_pow2_cheap; #ifndef SLOW_UNALIGNED_ACCESS #define SLOW_UNALIGNED_ACCESS STRICT_ALIGNMENT #endif /* For compilers that support multiple targets with different word sizes, MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example is the H8/300(H) compiler. */ #ifndef MAX_BITS_PER_WORD #define MAX_BITS_PER_WORD BITS_PER_WORD #endif /* Cost of various pieces of RTL. */ static int add_cost, negate_cost, zero_cost; static int shift_cost[MAX_BITS_PER_WORD]; static int shiftadd_cost[MAX_BITS_PER_WORD]; static int shiftsub_cost[MAX_BITS_PER_WORD]; void init_expmed () { char *free_point; /* This is "some random pseudo register" for purposes of calling recog to see what insns exist. */ rtx reg = gen_rtx (REG, word_mode, 10000); rtx shift_insn, shiftadd_insn, shiftsub_insn; int dummy; int m; start_sequence (); /* Since we are on the permanent obstack, we must be sure we save this spot AFTER we call start_sequence, since it will reuse the rtl it makes. */ free_point = (char *) oballoc (0); zero_cost = rtx_cost (const0_rtx, 0); add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET); shift_insn = emit_insn (gen_rtx (SET, VOIDmode, reg, gen_rtx (ASHIFT, word_mode, reg, const0_rtx))); shiftadd_insn = emit_insn (gen_rtx (SET, VOIDmode, reg, gen_rtx (PLUS, word_mode, gen_rtx (MULT, word_mode, reg, const0_rtx), reg))); shiftsub_insn = emit_insn (gen_rtx (SET, VOIDmode, reg, gen_rtx (MINUS, word_mode, gen_rtx (MULT, word_mode, reg, const0_rtx), reg))); init_recog (); shift_cost[0] = 0; shiftadd_cost[0] = shiftsub_cost[0] = add_cost; for (m = 1; m < BITS_PER_WORD; m++) { shift_cost[m] = shiftadd_cost[m] = shiftsub_cost[m] = 32000; XEXP (SET_SRC (PATTERN (shift_insn)), 1) = GEN_INT (m); if (recog (PATTERN (shift_insn), shift_insn, &dummy) >= 0) shift_cost[m] = rtx_cost (SET_SRC (PATTERN (shift_insn)), SET); XEXP (XEXP (SET_SRC (PATTERN (shiftadd_insn)), 0), 1) = GEN_INT ((HOST_WIDE_INT) 1 << m); if (recog (PATTERN (shiftadd_insn), shiftadd_insn, &dummy) >= 0) shiftadd_cost[m] = rtx_cost (SET_SRC (PATTERN (shiftadd_insn)), SET); XEXP (XEXP (SET_SRC (PATTERN (shiftsub_insn)), 0), 1) = GEN_INT ((HOST_WIDE_INT) 1 << m); if (recog (PATTERN (shiftsub_insn), shiftsub_insn, &dummy) >= 0) shiftsub_cost[m] = rtx_cost (SET_SRC (PATTERN (shiftsub_insn)), SET); } negate_cost = rtx_cost (gen_rtx (NEG, word_mode, reg), SET); sdiv_pow2_cheap = (rtx_cost (gen_rtx (DIV, word_mode, reg, GEN_INT (32)), SET) <= 2 * add_cost); smod_pow2_cheap = (rtx_cost (gen_rtx (MOD, word_mode, reg, GEN_INT (32)), SET) <= 2 * add_cost); /* Free the objects we just allocated. */ end_sequence (); obfree (free_point); } /* Return an rtx representing minus the value of X. MODE is the intended mode of the result, useful if X is a CONST_INT. */ rtx negate_rtx (mode, x) enum machine_mode mode; rtx x; { if (GET_CODE (x) == CONST_INT) { HOST_WIDE_INT val = - INTVAL (x); if (GET_MODE_BITSIZE (mode) < HOST_BITS_PER_WIDE_INT) { /* Sign extend the value from the bits that are significant. */ if (val & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))) val |= (HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (mode); else val &= ((HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (mode)) - 1; } return GEN_INT (val); } else return expand_unop (GET_MODE (x), neg_optab, x, NULL_RTX, 0); } /* Generate code to store value from rtx VALUE into a bit-field within structure STR_RTX containing BITSIZE bits starting at bit BITNUM. FIELDMODE is the machine-mode of the FIELD_DECL node for this field. ALIGN is the alignment that STR_RTX is known to have, measured in bytes. TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */ /* ??? Note that there are two different ideas here for how to determine the size to count bits within, for a register. One is BITS_PER_WORD, and the other is the size of operand 3 of the insv pattern. (The latter assumes that an n-bit machine will be able to insert bit fields up to n bits wide.) It isn't certain that either of these is right. extract_bit_field has the same quandary. */ rtx store_bit_field (str_rtx, bitsize, bitnum, fieldmode, value, align, total_size) rtx str_rtx; register int bitsize; int bitnum; enum machine_mode fieldmode; rtx value; int align; int total_size; { int unit = (GET_CODE (str_rtx) == MEM) ? BITS_PER_UNIT : BITS_PER_WORD; register int offset = bitnum / unit; register int bitpos = bitnum % unit; register rtx op0 = str_rtx; if (GET_CODE (str_rtx) == MEM && ! MEM_IN_STRUCT_P (str_rtx)) abort (); /* Discount the part of the structure before the desired byte. We need to know how many bytes are safe to reference after it. */ if (total_size >= 0) total_size -= (bitpos / BIGGEST_ALIGNMENT * (BIGGEST_ALIGNMENT / BITS_PER_UNIT)); while (GET_CODE (op0) == SUBREG) { /* The following line once was done only if WORDS_BIG_ENDIAN, but I think that is a mistake. WORDS_BIG_ENDIAN is meaningful at a much higher level; when structures are copied between memory and regs, the higher-numbered regs always get higher addresses. */ offset += SUBREG_WORD (op0); /* We used to adjust BITPOS here, but now we do the whole adjustment right after the loop. */ op0 = SUBREG_REG (op0); } #if BYTES_BIG_ENDIAN /* If OP0 is a register, BITPOS must count within a word. But as we have it, it counts within whatever size OP0 now has. On a bigendian machine, these are not the same, so convert. */ if (GET_CODE (op0) != MEM && unit > GET_MODE_BITSIZE (GET_MODE (op0))) bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0)); #endif value = protect_from_queue (value, 0); if (flag_force_mem) value = force_not_mem (value); /* Note that the adjustment of BITPOS above has no effect on whether BITPOS is 0 in a REG bigger than a word. */ if (GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD && (GET_CODE (op0) != MEM || ! SLOW_UNALIGNED_ACCESS || (offset * BITS_PER_UNIT % bitsize == 0 && align % GET_MODE_SIZE (fieldmode) == 0)) && bitpos == 0 && bitsize == GET_MODE_BITSIZE (fieldmode)) { /* Storing in a full-word or multi-word field in a register can be done with just SUBREG. */ if (GET_MODE (op0) != fieldmode) { if (GET_CODE (op0) == REG) op0 = gen_rtx (SUBREG, fieldmode, op0, offset); else op0 = change_address (op0, fieldmode, plus_constant (XEXP (op0, 0), offset)); } emit_move_insn (op0, value); return value; } /* Storing an lsb-aligned field in a register can be done with a movestrict instruction. */ if (GET_CODE (op0) != MEM #if BYTES_BIG_ENDIAN && bitpos + bitsize == unit #else && bitpos == 0 #endif && bitsize == GET_MODE_BITSIZE (fieldmode) && (GET_MODE (op0) == fieldmode || (movstrict_optab->handlers[(int) fieldmode].insn_code != CODE_FOR_nothing))) { /* Get appropriate low part of the value being stored. */ if (GET_CODE (value) == CONST_INT || GET_CODE (value) == REG) value = gen_lowpart (fieldmode, value); else if (!(GET_CODE (value) == SYMBOL_REF || GET_CODE (value) == LABEL_REF || GET_CODE (value) == CONST)) value = convert_to_mode (fieldmode, value, 0); if (GET_MODE (op0) == fieldmode) emit_move_insn (op0, value); else { int icode = movstrict_optab->handlers[(int) fieldmode].insn_code; if(! (*insn_operand_predicate[icode][1]) (value, fieldmode)) value = copy_to_mode_reg (fieldmode, value); emit_insn (GEN_FCN (icode) (gen_rtx (SUBREG, fieldmode, op0, offset), value)); } return value; } /* Handle fields bigger than a word. */ if (bitsize > BITS_PER_WORD) { /* Here we transfer the words of the field in the order least significant first. This is because the most significant word is the one which may be less than full. */ int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD; int i; /* This is the mode we must force value to, so that there will be enough subwords to extract. Note that fieldmode will often (always?) be VOIDmode, because that is what store_field uses to indicate that this is a bit field, but passing VOIDmode to operand_subword_force will result in an abort. */ fieldmode = mode_for_size (nwords * BITS_PER_WORD, MODE_INT, 0); for (i = 0; i < nwords; i++) { /* If I is 0, use the low-order word in both field and target; if I is 1, use the next to lowest word; and so on. */ int wordnum = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i); int bit_offset = (WORDS_BIG_ENDIAN ? MAX (bitsize - (i + 1) * BITS_PER_WORD, 0) : i * BITS_PER_WORD); store_bit_field (op0, MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD), bitnum + bit_offset, word_mode, operand_subword_force (value, wordnum, (GET_MODE (value) == VOIDmode ? fieldmode : GET_MODE (value))), align, total_size); } return value; } /* From here on we can assume that the field to be stored in is a full-word (whatever type that is), since it is shorter than a word. */ /* OFFSET is the number of words or bytes (UNIT says which) from STR_RTX to the first word or byte containing part of the field. */ if (GET_CODE (op0) == REG) { if (offset != 0 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD) op0 = gen_rtx (SUBREG, TYPE_MODE (type_for_size (BITS_PER_WORD, 0)), op0, offset); offset = 0; } else { op0 = protect_from_queue (op0, 1); } /* If VALUE is a floating-point mode, access it as an integer of the corresponding size. This can occur on a machine with 64 bit registers that uses SFmode for float. This can also occur for unaligned float structure fields. */ if (GET_MODE_CLASS (GET_MODE (value)) == MODE_FLOAT) { if (GET_CODE (value) != REG) value = copy_to_reg (value); value = gen_rtx (SUBREG, word_mode, value, 0); } /* Now OFFSET is nonzero only if OP0 is memory and is therefore always measured in bytes. */ #ifdef HAVE_insv if (HAVE_insv && !(bitsize == 1 && GET_CODE (value) == CONST_INT) /* Ensure insv's size is wide enough for this field. */ && (GET_MODE_BITSIZE (insn_operand_mode[(int) CODE_FOR_insv][3]) >= bitsize)) { int xbitpos = bitpos; rtx value1; rtx xop0 = op0; rtx last = get_last_insn (); rtx pat; enum machine_mode maxmode = insn_operand_mode[(int) CODE_FOR_insv][3]; int save_volatile_ok = volatile_ok; volatile_ok = 1; /* If this machine's insv can only insert into a register, or if we are to force MEMs into a register, copy OP0 into a register and save it back later. */ if (GET_CODE (op0) == MEM && (flag_force_mem || ! ((*insn_operand_predicate[(int) CODE_FOR_insv][0]) (op0, VOIDmode)))) { rtx tempreg; enum machine_mode bestmode; /* Get the mode to use for inserting into this field. If OP0 is BLKmode, get the smallest mode consistent with the alignment. If OP0 is a non-BLKmode object that is no wider than MAXMODE, use its mode. Otherwise, use the smallest mode containing the field. */ if (GET_MODE (op0) == BLKmode || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode)) bestmode = get_best_mode (bitsize, bitnum, align * BITS_PER_UNIT, maxmode, MEM_VOLATILE_P (op0)); else bestmode = GET_MODE (op0); if (bestmode == VOIDmode || (STRICT_ALIGNMENT && GET_MODE_SIZE (bestmode) > align)) goto insv_loses; /* Adjust address to point to the containing unit of that mode. */ unit = GET_MODE_BITSIZE (bestmode); /* Compute offset as multiple of this unit, counting in bytes. */ offset = (bitnum / unit) * GET_MODE_SIZE (bestmode); bitpos = bitnum % unit; op0 = change_address (op0, bestmode, plus_constant (XEXP (op0, 0), offset)); /* Fetch that unit, store the bitfield in it, then store the unit. */ tempreg = copy_to_reg (op0); store_bit_field (tempreg, bitsize, bitpos, fieldmode, value, align, total_size); emit_move_insn (op0, tempreg); return value; } volatile_ok = save_volatile_ok; /* Add OFFSET into OP0's address. */ if (GET_CODE (xop0) == MEM) xop0 = change_address (xop0, byte_mode, plus_constant (XEXP (xop0, 0), offset)); /* If xop0 is a register, we need it in MAXMODE to make it acceptable to the format of insv. */ if (GET_CODE (xop0) == SUBREG) /* We can't just change the mode, because this might clobber op0, and we will need the original value of op0 if insv fails. */ xop0 = gen_rtx (SUBREG, maxmode, SUBREG_REG (xop0), SUBREG_WORD (xop0)); if (GET_CODE (xop0) == REG && GET_MODE (xop0) != maxmode) xop0 = gen_rtx (SUBREG, maxmode, xop0, 0); /* On big-endian machines, we count bits from the most significant. If the bit field insn does not, we must invert. */ #if BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN xbitpos = unit - bitsize - xbitpos; #endif /* We have been counting XBITPOS within UNIT. Count instead within the size of the register. */ #if BITS_BIG_ENDIAN if (GET_CODE (xop0) != MEM) xbitpos += GET_MODE_BITSIZE (maxmode) - unit; #endif unit = GET_MODE_BITSIZE (maxmode); /* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */ value1 = value; if (GET_MODE (value) != maxmode) { if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize) { /* Optimization: Don't bother really extending VALUE if it has all the bits we will actually use. However, if we must narrow it, be sure we do it correctly. */ if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode)) { /* Avoid making subreg of a subreg, or of a mem. */ if (GET_CODE (value1) != REG) value1 = copy_to_reg (value1); value1 = gen_rtx (SUBREG, maxmode, value1, 0); } else value1 = gen_lowpart (maxmode, value1); } else if (!CONSTANT_P (value)) /* Parse phase is supposed to make VALUE's data type match that of the component reference, which is a type at least as wide as the field; so VALUE should have a mode that corresponds to that type. */ abort (); } /* If this machine's insv insists on a register, get VALUE1 into a register. */ if (! ((*insn_operand_predicate[(int) CODE_FOR_insv][3]) (value1, maxmode))) value1 = force_reg (maxmode, value1); pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1); if (pat) emit_insn (pat); else { delete_insns_since (last); store_fixed_bit_field (op0, offset, bitsize, bitpos, value, align); } } else insv_loses: #endif /* Insv is not available; store using shifts and boolean ops. */ store_fixed_bit_field (op0, offset, bitsize, bitpos, value, align); return value; } /* Use shifts and boolean operations to store VALUE into a bit field of width BITSIZE in a memory location specified by OP0 except offset by OFFSET bytes. (OFFSET must be 0 if OP0 is a register.) The field starts at position BITPOS within the byte. (If OP0 is a register, it may be a full word or a narrower mode, but BITPOS still counts within a full word, which is significant on bigendian machines.) STRUCT_ALIGN is the alignment the structure is known to have (in bytes). Note that protect_from_queue has already been done on OP0 and VALUE. */ static void store_fixed_bit_field (op0, offset, bitsize, bitpos, value, struct_align) register rtx op0; register int offset, bitsize, bitpos; register rtx value; int struct_align; { register enum machine_mode mode; int total_bits = BITS_PER_WORD; rtx subtarget, temp; int all_zero = 0; int all_one = 0; /* There is a case not handled here: a structure with a known alignment of just a halfword and a field split across two aligned halfwords within the structure. Or likewise a structure with a known alignment of just a byte and a field split across two bytes. Such cases are not supposed to be able to occur. */ if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG) { if (offset != 0) abort (); /* Special treatment for a bit field split across two registers. */ if (bitsize + bitpos > BITS_PER_WORD) { store_split_bit_field (op0, bitsize, bitpos, value, BITS_PER_WORD); return; } } else { /* Get the proper mode to use for this field. We want a mode that includes the entire field. If such a mode would be larger than a word, we won't be doing the extraction the normal way. */ mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT, struct_align * BITS_PER_UNIT, word_mode, GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0)); if (mode == VOIDmode) { /* The only way this should occur is if the field spans word boundaries. */ store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT, value, struct_align); return; } total_bits = GET_MODE_BITSIZE (mode); /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to be be in the range 0 to total_bits-1, and put any excess bytes in OFFSET. */ if (bitpos >= total_bits) { offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT); bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT) * BITS_PER_UNIT); } /* Get ref to an aligned byte, halfword, or word containing the field. Adjust BITPOS to be position within a word, and OFFSET to be the offset of that word. Then alter OP0 to refer to that word. */ bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT; offset -= (offset % (total_bits / BITS_PER_UNIT)); op0 = change_address (op0, mode, plus_constant (XEXP (op0, 0), offset)); } mode = GET_MODE (op0); /* Now MODE is either some integral mode for a MEM as OP0, or is a full-word for a REG as OP0. TOTAL_BITS corresponds. The bit field is contained entirely within OP0. BITPOS is the starting bit number within OP0. (OP0's mode may actually be narrower than MODE.) */ #if BYTES_BIG_ENDIAN /* BITPOS is the distance between our msb and that of the containing datum. Convert it to the distance from the lsb. */ bitpos = total_bits - bitsize - bitpos; #endif /* Now BITPOS is always the distance between our lsb and that of OP0. */ /* Shift VALUE left by BITPOS bits. If VALUE is not constant, we must first convert its mode to MODE. */ if (GET_CODE (value) == CONST_INT) { register HOST_WIDE_INT v = INTVAL (value); if (bitsize < HOST_BITS_PER_WIDE_INT) v &= ((HOST_WIDE_INT) 1 << bitsize) - 1; if (v == 0) all_zero = 1; else if ((bitsize < HOST_BITS_PER_WIDE_INT && v == ((HOST_WIDE_INT) 1 << bitsize) - 1) || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1)) all_one = 1; value = lshift_value (mode, value, bitpos, bitsize); } else { int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize && bitpos + bitsize != GET_MODE_BITSIZE (mode)); if (GET_MODE (value) != mode) { if ((GET_CODE (value) == REG || GET_CODE (value) == SUBREG) && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value))) value = gen_lowpart (mode, value); else value = convert_to_mode (mode, value, 1); } if (must_and) value = expand_binop (mode, and_optab, value, mask_rtx (mode, 0, bitsize, 0), NULL_RTX, 1, OPTAB_LIB_WIDEN); if (bitpos > 0) value = expand_shift (LSHIFT_EXPR, mode, value, build_int_2 (bitpos, 0), NULL_RTX, 1); } /* Now clear the chosen bits in OP0, except that if VALUE is -1 we need not bother. */ subtarget = (GET_CODE (op0) == REG || ! flag_force_mem) ? op0 : 0; if (! all_one) { temp = expand_binop (mode, and_optab, op0, mask_rtx (mode, bitpos, bitsize, 1), subtarget, 1, OPTAB_LIB_WIDEN); subtarget = temp; } else temp = op0; /* Now logical-or VALUE into OP0, unless it is zero. */ if (! all_zero) temp = expand_binop (mode, ior_optab, temp, value, subtarget, 1, OPTAB_LIB_WIDEN); if (op0 != temp) emit_move_insn (op0, temp); } /* Store a bit field that is split across multiple accessible memory objects. OP0 is the REG, SUBREG or MEM rtx for the first of the objects. BITSIZE is the field width; BITPOS the position of its first bit (within the word). VALUE is the value to store. ALIGN is the known alignment of OP0, measured in bytes. This is also the size of the memory objects to be used. This does not yet handle fields wider than BITS_PER_WORD. */ static void store_split_bit_field (op0, bitsize, bitpos, value, align) rtx op0; int bitsize, bitpos; rtx value; int align; { /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that much at a time. */ int unit = MIN (align * BITS_PER_UNIT, BITS_PER_WORD); int bitsdone = 0; /* If VALUE is a constant other than a CONST_INT, get it into a register in WORD_MODE. If we can do this using gen_lowpart_common, do so. Note that VALUE might be a floating-point constant. */ if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT) { rtx word = gen_lowpart_common (word_mode, value); if (word && (value != word)) value = word; else value = gen_lowpart_common (word_mode, force_reg (GET_MODE (value), value)); } while (bitsdone < bitsize) { int thissize; rtx part, word; int thispos; int offset; offset = (bitpos + bitsdone) / unit; thispos = (bitpos + bitsdone) % unit; /* THISSIZE must not overrun a word boundary. Otherwise, store_fixed_bit_field will call us again, and we will mutually recurse forever. */ thissize = MIN (bitsize - bitsdone, BITS_PER_WORD); thissize = MIN (thissize, unit - thispos); #if BYTES_BIG_ENDIAN /* Fetch successively less significant portions. */ if (GET_CODE (value) == CONST_INT) part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value)) >> (bitsize - bitsdone - thissize)) & (((HOST_WIDE_INT) 1 << thissize) - 1)); else { /* The args are chosen so that the last part includes the lsb. */ int bit_offset = 0; /* If the value isn't in memory, then it must be right aligned if a register, so skip past the padding on the left. If it is in memory, then there is no padding on the left. */ if (GET_CODE (value) != MEM) bit_offset = BITS_PER_WORD - bitsize; part = extract_fixed_bit_field (word_mode, value, 0, thissize, bit_offset + bitsdone, NULL_RTX, 1, align); } #else /* Fetch successively more significant portions. */ if (GET_CODE (value) == CONST_INT) part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value)) >> bitsdone) & (((HOST_WIDE_INT) 1 << thissize) - 1)); else part = extract_fixed_bit_field (word_mode, value, 0, thissize, bitsdone, NULL_RTX, 1, align); #endif /* If OP0 is a register, then handle OFFSET here. When handling multiword bitfields, extract_bit_field may pass down a word_mode SUBREG of a larger REG for a bitfield that actually crosses a word boundary. Thus, for a SUBREG, we must find the current word starting from the base register. */ if (GET_CODE (op0) == SUBREG) { word = operand_subword (SUBREG_REG (op0), SUBREG_WORD (op0) + offset, 1, GET_MODE (SUBREG_REG (op0))); offset = 0; } else if (GET_CODE (op0) == REG) { word = operand_subword (op0, offset, 1, GET_MODE (op0)); offset = 0; } else word = op0; if (word == 0) abort (); /* OFFSET is in UNITs, and UNIT is in bits. store_fixed_bit_field wants offset in bytes. */ store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize, thispos, part, align); bitsdone += thissize; } } /* Generate code to extract a byte-field from STR_RTX containing BITSIZE bits, starting at BITNUM, and put it in TARGET if possible (if TARGET is nonzero). Regardless of TARGET, we return the rtx for where the value is placed. It may be a QUEUED. STR_RTX is the structure containing the byte (a REG or MEM). UNSIGNEDP is nonzero if this is an unsigned bit field. MODE is the natural mode of the field value once extracted. TMODE is the mode the caller would like the value to have; but the value may be returned with type MODE instead. ALIGN is the alignment that STR_RTX is known to have, measured in bytes. TOTAL_SIZE is the size in bytes of the containing structure, or -1 if varying. If a TARGET is specified and we can store in it at no extra cost, we do so, and return TARGET. Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred if they are equally easy. */ rtx extract_bit_field (str_rtx, bitsize, bitnum, unsignedp, target, mode, tmode, align, total_size) rtx str_rtx; register int bitsize; int bitnum; int unsignedp; rtx target; enum machine_mode mode, tmode; int align; int total_size; { int unit = (GET_CODE (str_rtx) == MEM) ? BITS_PER_UNIT : BITS_PER_WORD; register int offset = bitnum / unit; register int bitpos = bitnum % unit; register rtx op0 = str_rtx; rtx spec_target = target; rtx spec_target_subreg = 0; if (GET_CODE (str_rtx) == MEM && ! MEM_IN_STRUCT_P (str_rtx)) abort (); /* Discount the part of the structure before the desired byte. We need to know how many bytes are safe to reference after it. */ if (total_size >= 0) total_size -= (bitpos / BIGGEST_ALIGNMENT * (BIGGEST_ALIGNMENT / BITS_PER_UNIT)); if (tmode == VOIDmode) tmode = mode; while (GET_CODE (op0) == SUBREG) { offset += SUBREG_WORD (op0); op0 = SUBREG_REG (op0); } #if BYTES_BIG_ENDIAN /* If OP0 is a register, BITPOS must count within a word. But as we have it, it counts within whatever size OP0 now has. On a bigendian machine, these are not the same, so convert. */ if (GET_CODE (op0) != MEM && unit > GET_MODE_BITSIZE (GET_MODE (op0))) bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0)); #endif /* Extracting a full-word or multi-word value from a structure in a register or aligned memory. This can be done with just SUBREG. So too extracting a subword value in the least significant part of the register. */ if ((GET_CODE (op0) == REG || (GET_CODE (op0) == MEM && (! SLOW_UNALIGNED_ACCESS || (offset * BITS_PER_UNIT % bitsize == 0 && align * BITS_PER_UNIT % bitsize == 0)))) && ((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode) && bitpos % BITS_PER_WORD == 0) || (mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0) != BLKmode #if BYTES_BIG_ENDIAN && bitpos + bitsize == BITS_PER_WORD #else && bitpos == 0 #endif ))) { enum machine_mode mode1 = mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0); if (mode1 != GET_MODE (op0)) { if (GET_CODE (op0) == REG) op0 = gen_rtx (SUBREG, mode1, op0, offset); else op0 = change_address (op0, mode1, plus_constant (XEXP (op0, 0), offset)); } if (mode1 != mode) return convert_to_mode (tmode, op0, unsignedp); return op0; } /* Handle fields bigger than a word. */ if (bitsize > BITS_PER_WORD) { /* Here we transfer the words of the field in the order least significant first. This is because the most significant word is the one which may be less than full. */ int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD; int i; if (target == 0 || GET_CODE (target) != REG) target = gen_reg_rtx (mode); for (i = 0; i < nwords; i++) { /* If I is 0, use the low-order word in both field and target; if I is 1, use the next to lowest word; and so on. */ int wordnum = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i); int bit_offset = (WORDS_BIG_ENDIAN ? MAX (0, bitsize - (i + 1) * BITS_PER_WORD) : i * BITS_PER_WORD); rtx target_part = operand_subword (target, wordnum, 1, VOIDmode); rtx result_part = extract_bit_field (op0, MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD), bitnum + bit_offset, 1, target_part, mode, word_mode, align, total_size); if (target_part == 0) abort (); if (result_part != target_part) emit_move_insn (target_part, result_part); } if (unsignedp) return target; /* Signed bit field: sign-extend with two arithmetic shifts. */ target = expand_shift (LSHIFT_EXPR, mode, target, build_int_2 (GET_MODE_BITSIZE (mode) - bitsize, 0), NULL_RTX, 0); return expand_shift (RSHIFT_EXPR, mode, target, build_int_2 (GET_MODE_BITSIZE (mode) - bitsize, 0), NULL_RTX, 0); } /* From here on we know the desired field is smaller than a word so we can assume it is an integer. So we can safely extract it as one size of integer, if necessary, and then truncate or extend to the size that is wanted. */ /* OFFSET is the number of words or bytes (UNIT says which) from STR_RTX to the first word or byte containing part of the field. */ if (GET_CODE (op0) == REG) { if (offset != 0 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD) op0 = gen_rtx (SUBREG, TYPE_MODE (type_for_size (BITS_PER_WORD, 0)), op0, offset); offset = 0; } else { op0 = protect_from_queue (str_rtx, 1); } /* Now OFFSET is nonzero only for memory operands. */ if (unsignedp) { #ifdef HAVE_extzv if (HAVE_extzv && (GET_MODE_BITSIZE (insn_operand_mode[(int) CODE_FOR_extzv][0]) >= bitsize)) { int xbitpos = bitpos, xoffset = offset; rtx bitsize_rtx, bitpos_rtx; rtx last = get_last_insn(); rtx xop0 = op0; rtx xtarget = target; rtx xspec_target = spec_target; rtx xspec_target_subreg = spec_target_subreg; rtx pat; enum machine_mode maxmode = insn_operand_mode[(int) CODE_FOR_extzv][0]; if (GET_CODE (xop0) == MEM) { int save_volatile_ok = volatile_ok; volatile_ok = 1; /* Is the memory operand acceptable? */ if (flag_force_mem || ! ((*insn_operand_predicate[(int) CODE_FOR_extzv][1]) (xop0, GET_MODE (xop0)))) { /* No, load into a reg and extract from there. */ enum machine_mode bestmode; /* Get the mode to use for inserting into this field. If OP0 is BLKmode, get the smallest mode consistent with the alignment. If OP0 is a non-BLKmode object that is no wider than MAXMODE, use its mode. Otherwise, use the smallest mode containing the field. */ if (GET_MODE (xop0) == BLKmode || (GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))) bestmode = get_best_mode (bitsize, bitnum, align * BITS_PER_UNIT, maxmode, MEM_VOLATILE_P (xop0)); else bestmode = GET_MODE (xop0); if (bestmode == VOIDmode || (STRICT_ALIGNMENT && GET_MODE_SIZE (bestmode) > align)) goto extzv_loses; /* Compute offset as multiple of this unit, counting in bytes. */ unit = GET_MODE_BITSIZE (bestmode); xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode); xbitpos = bitnum % unit; xop0 = change_address (xop0, bestmode, plus_constant (XEXP (xop0, 0), xoffset)); /* Fetch it to a register in that size. */ xop0 = force_reg (bestmode, xop0); /* XBITPOS counts within UNIT, which is what is expected. */ } else /* Get ref to first byte containing part of the field. */ xop0 = change_address (xop0, byte_mode, plus_constant (XEXP (xop0, 0), xoffset)); volatile_ok = save_volatile_ok; } /* If op0 is a register, we need it in MAXMODE (which is usually SImode). to make it acceptable to the format of extzv. */ if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode) abort (); if (GET_CODE (xop0) == REG && GET_MODE (xop0) != maxmode) xop0 = gen_rtx (SUBREG, maxmode, xop0, 0); /* On big-endian machines, we count bits from the most significant. If the bit field insn does not, we must invert. */ #if BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN xbitpos = unit - bitsize - xbitpos; #endif /* Now convert from counting within UNIT to counting in MAXMODE. */ #if BITS_BIG_ENDIAN if (GET_CODE (xop0) != MEM) xbitpos += GET_MODE_BITSIZE (maxmode) - unit; #endif unit = GET_MODE_BITSIZE (maxmode); if (xtarget == 0 || (flag_force_mem && GET_CODE (xtarget) == MEM)) xtarget = xspec_target = gen_reg_rtx (tmode); if (GET_MODE (xtarget) != maxmode) { if (GET_CODE (xtarget) == REG) { int wider = (GET_MODE_SIZE (maxmode) > GET_MODE_SIZE (GET_MODE (xtarget))); xtarget = gen_lowpart (maxmode, xtarget); if (wider) xspec_target_subreg = xtarget; } else xtarget = gen_reg_rtx (maxmode); } /* If this machine's extzv insists on a register target, make sure we have one. */ if (! ((*insn_operand_predicate[(int) CODE_FOR_extzv][0]) (xtarget, maxmode))) xtarget = gen_reg_rtx (maxmode); bitsize_rtx = GEN_INT (bitsize); bitpos_rtx = GEN_INT (xbitpos); pat = gen_extzv (protect_from_queue (xtarget, 1), xop0, bitsize_rtx, bitpos_rtx); if (pat) { emit_insn (pat); target = xtarget; spec_target = xspec_target; spec_target_subreg = xspec_target_subreg; } else { delete_insns_since (last); target = extract_fixed_bit_field (tmode, op0, offset, bitsize, bitpos, target, 1, align); } } else extzv_loses: #endif target = extract_fixed_bit_field (tmode, op0, offset, bitsize, bitpos, target, 1, align); } else { #ifdef HAVE_extv if (HAVE_extv && (GET_MODE_BITSIZE (insn_operand_mode[(int) CODE_FOR_extv][0]) >= bitsize)) { int xbitpos = bitpos, xoffset = offset; rtx bitsize_rtx, bitpos_rtx; rtx last = get_last_insn(); rtx xop0 = op0, xtarget = target; rtx xspec_target = spec_target; rtx xspec_target_subreg = spec_target_subreg; rtx pat; enum machine_mode maxmode = insn_operand_mode[(int) CODE_FOR_extv][0]; if (GET_CODE (xop0) == MEM) { /* Is the memory operand acceptable? */ if (! ((*insn_operand_predicate[(int) CODE_FOR_extv][1]) (xop0, GET_MODE (xop0)))) { /* No, load into a reg and extract from there. */ enum machine_mode bestmode; /* Get the mode to use for inserting into this field. If OP0 is BLKmode, get the smallest mode consistent with the alignment. If OP0 is a non-BLKmode object that is no wider than MAXMODE, use its mode. Otherwise, use the smallest mode containing the field. */ if (GET_MODE (xop0) == BLKmode || (GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))) bestmode = get_best_mode (bitsize, bitnum, align * BITS_PER_UNIT, maxmode, MEM_VOLATILE_P (xop0)); else bestmode = GET_MODE (xop0); if (bestmode == VOIDmode || (STRICT_ALIGNMENT && GET_MODE_SIZE (bestmode) > align)) goto extv_loses; /* Compute offset as multiple of this unit, counting in bytes. */ unit = GET_MODE_BITSIZE (bestmode); xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode); xbitpos = bitnum % unit; xop0 = change_address (xop0, bestmode, plus_constant (XEXP (xop0, 0), xoffset)); /* Fetch it to a register in that size. */ xop0 = force_reg (bestmode, xop0); /* XBITPOS counts within UNIT, which is what is expected. */ } else /* Get ref to first byte containing part of the field. */ xop0 = change_address (xop0, byte_mode, plus_constant (XEXP (xop0, 0), xoffset)); } /* If op0 is a register, we need it in MAXMODE (which is usually SImode) to make it acceptable to the format of extv. */ if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode) abort (); if (GET_CODE (xop0) == REG && GET_MODE (xop0) != maxmode) xop0 = gen_rtx (SUBREG, maxmode, xop0, 0); /* On big-endian machines, we count bits from the most significant. If the bit field insn does not, we must invert. */ #if BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN xbitpos = unit - bitsize - xbitpos; #endif /* XBITPOS counts within a size of UNIT. Adjust to count within a size of MAXMODE. */ #if BITS_BIG_ENDIAN if (GET_CODE (xop0) != MEM) xbitpos += (GET_MODE_BITSIZE (maxmode) - unit); #endif unit = GET_MODE_BITSIZE (maxmode); if (xtarget == 0 || (flag_force_mem && GET_CODE (xtarget) == MEM)) xtarget = xspec_target = gen_reg_rtx (tmode); if (GET_MODE (xtarget) != maxmode) { if (GET_CODE (xtarget) == REG) { int wider = (GET_MODE_SIZE (maxmode) > GET_MODE_SIZE (GET_MODE (xtarget))); xtarget = gen_lowpart (maxmode, xtarget); if (wider) xspec_target_subreg = xtarget; } else xtarget = gen_reg_rtx (maxmode); } /* If this machine's extv insists on a register target, make sure we have one. */ if (! ((*insn_operand_predicate[(int) CODE_FOR_extv][0]) (xtarget, maxmode))) xtarget = gen_reg_rtx (maxmode); bitsize_rtx = GEN_INT (bitsize); bitpos_rtx = GEN_INT (xbitpos); pat = gen_extv (protect_from_queue (xtarget, 1), xop0, bitsize_rtx, bitpos_rtx); if (pat) { emit_insn (pat); target = xtarget; spec_target = xspec_target; spec_target_subreg = xspec_target_subreg; } else { delete_insns_since (last); target = extract_fixed_bit_field (tmode, op0, offset, bitsize, bitpos, target, 0, align); } } else extv_loses: #endif target = extract_fixed_bit_field (tmode, op0, offset, bitsize, bitpos, target, 0, align); } if (target == spec_target) return target; if (target == spec_target_subreg) return spec_target; if (GET_MODE (target) != tmode && GET_MODE (target) != mode) { /* If the target mode is floating-point, first convert to the integer mode of that size and then access it as a floating-point value via a SUBREG. */ if (GET_MODE_CLASS (tmode) == MODE_FLOAT) { target = convert_to_mode (mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0), target, unsignedp); if (GET_CODE (target) != REG) target = copy_to_reg (target); return gen_rtx (SUBREG, tmode, target, 0); } else return convert_to_mode (tmode, target, unsignedp); } return target; } /* Extract a bit field using shifts and boolean operations Returns an rtx to represent the value. OP0 addresses a register (word) or memory (byte). BITPOS says which bit within the word or byte the bit field starts in. OFFSET says how many bytes farther the bit field starts; it is 0 if OP0 is a register. BITSIZE says how many bits long the bit field is. (If OP0 is a register, it may be narrower than a full word, but BITPOS still counts within a full word, which is significant on bigendian machines.) UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value). If TARGET is nonzero, attempts to store the value there and return TARGET, but this is not guaranteed. If TARGET is not used, create a pseudo-reg of mode TMODE for the value. ALIGN is the alignment that STR_RTX is known to have, measured in bytes. */ static rtx extract_fixed_bit_field (tmode, op0, offset, bitsize, bitpos, target, unsignedp, align) enum machine_mode tmode; register rtx op0, target; register int offset, bitsize, bitpos; int unsignedp; int align; { int total_bits = BITS_PER_WORD; enum machine_mode mode; if (GET_CODE (op0) == SUBREG || GET_CODE (op0) == REG) { /* Special treatment for a bit field split across two registers. */ if (bitsize + bitpos > BITS_PER_WORD) return extract_split_bit_field (op0, bitsize, bitpos, unsignedp, align); } else { /* Get the proper mode to use for this field. We want a mode that includes the entire field. If such a mode would be larger than a word, we won't be doing the extraction the normal way. */ mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT, align * BITS_PER_UNIT, word_mode, GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0)); if (mode == VOIDmode) /* The only way this should occur is if the field spans word boundaries. */ return extract_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT, unsignedp, align); total_bits = GET_MODE_BITSIZE (mode); /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to be be in the range 0 to total_bits-1, and put any excess bytes in OFFSET. */ if (bitpos >= total_bits) { offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT); bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT) * BITS_PER_UNIT); } /* Get ref to an aligned byte, halfword, or word containing the field. Adjust BITPOS to be position within a word, and OFFSET to be the offset of that word. Then alter OP0 to refer to that word. */ bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT; offset -= (offset % (total_bits / BITS_PER_UNIT)); op0 = change_address (op0, mode, plus_constant (XEXP (op0, 0), offset)); } mode = GET_MODE (op0); #if BYTES_BIG_ENDIAN /* BITPOS is the distance between our msb and that of OP0. Convert it to the distance from the lsb. */ bitpos = total_bits - bitsize - bitpos; #endif /* Now BITPOS is always the distance between the field's lsb and that of OP0. We have reduced the big-endian case to the little-endian case. */ if (unsignedp) { if (bitpos) { /* If the field does not already start at the lsb, shift it so it does. */ tree amount = build_int_2 (bitpos, 0); /* Maybe propagate the target for the shift. */ /* But not if we will return it--could confuse integrate.c. */ rtx subtarget = (target != 0 && GET_CODE (target) == REG && !REG_FUNCTION_VALUE_P (target) ? target : 0); if (tmode != mode) subtarget = 0; op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1); } /* Convert the value to the desired mode. */ if (mode != tmode) op0 = convert_to_mode (tmode, op0, 1); /* Unless the msb of the field used to be the msb when we shifted, mask out the upper bits. */ if (GET_MODE_BITSIZE (mode) != bitpos + bitsize #if 0 #ifdef SLOW_ZERO_EXTEND /* Always generate an `and' if we just zero-extended op0 and SLOW_ZERO_EXTEND, since it will combine fruitfully with the zero-extend. */ || tmode != mode #endif #endif ) return expand_binop (GET_MODE (op0), and_optab, op0, mask_rtx (GET_MODE (op0), 0, bitsize, 0), target, 1, OPTAB_LIB_WIDEN); return op0; } /* To extract a signed bit-field, first shift its msb to the msb of the word, then arithmetic-shift its lsb to the lsb of the word. */ op0 = force_reg (mode, op0); if (mode != tmode) target = 0; /* Find the narrowest integer mode that contains the field. */ for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode)) if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos) { op0 = convert_to_mode (mode, op0, 0); break; } if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos)) { tree amount = build_int_2 (GET_MODE_BITSIZE (mode) - (bitsize + bitpos), 0); /* Maybe propagate the target for the shift. */ /* But not if we will return the result--could confuse integrate.c. */ rtx subtarget = (target != 0 && GET_CODE (target) == REG && ! REG_FUNCTION_VALUE_P (target) ? target : 0); op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1); } return expand_shift (RSHIFT_EXPR, mode, op0, build_int_2 (GET_MODE_BITSIZE (mode) - bitsize, 0), target, 0); } /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value of mode MODE with BITSIZE ones followed by BITPOS zeros, or the complement of that if COMPLEMENT. The mask is truncated if necessary to the width of mode MODE. */ static rtx mask_rtx (mode, bitpos, bitsize, complement) enum machine_mode mode; int bitpos, bitsize, complement; { HOST_WIDE_INT masklow, maskhigh; if (bitpos < HOST_BITS_PER_WIDE_INT) masklow = (HOST_WIDE_INT) -1 << bitpos; else masklow = 0; if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT) masklow &= ((unsigned HOST_WIDE_INT) -1 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize)); if (bitpos <= HOST_BITS_PER_WIDE_INT) maskhigh = -1; else maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT); if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT) maskhigh &= ((unsigned HOST_WIDE_INT) -1 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize)); else maskhigh = 0; if (complement) { maskhigh = ~maskhigh; masklow = ~masklow; } return immed_double_const (masklow, maskhigh, mode); } /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */ static rtx lshift_value (mode, value, bitpos, bitsize) enum machine_mode mode; rtx value; int bitpos, bitsize; { unsigned HOST_WIDE_INT v = INTVAL (value); HOST_WIDE_INT low, high; if (bitsize < HOST_BITS_PER_WIDE_INT) v &= ~((HOST_WIDE_INT) -1 << bitsize); if (bitpos < HOST_BITS_PER_WIDE_INT) { low = v << bitpos; high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0); } else { low = 0; high = v << (bitpos - HOST_BITS_PER_WIDE_INT); } return immed_double_const (low, high, mode); } /* Extract a bit field that is split across two words and return an RTX for the result. OP0 is the REG, SUBREG or MEM rtx for the first of the two words. BITSIZE is the field width; BITPOS, position of its first bit, in the word. UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. ALIGN is the known alignment of OP0, measured in bytes. This is also the size of the memory objects to be used. */ static rtx extract_split_bit_field (op0, bitsize, bitpos, unsignedp, align) rtx op0; int bitsize, bitpos, unsignedp, align; { /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that much at a time. */ int unit = MIN (align * BITS_PER_UNIT, BITS_PER_WORD); int bitsdone = 0; rtx result; int first = 1; while (bitsdone < bitsize) { int thissize; rtx part, word; int thispos; int offset; offset = (bitpos + bitsdone) / unit; thispos = (bitpos + bitsdone) % unit; /* THISSIZE must not overrun a word boundary. Otherwise, extract_fixed_bit_field will call us again, and we will mutually recurse forever. */ thissize = MIN (bitsize - bitsdone, BITS_PER_WORD); thissize = MIN (thissize, unit - thispos); /* If OP0 is a register, then handle OFFSET here. When handling multiword bitfields, extract_bit_field may pass down a word_mode SUBREG of a larger REG for a bitfield that actually crosses a word boundary. Thus, for a SUBREG, we must find the current word starting from the base register. */ if (GET_CODE (op0) == SUBREG) { word = operand_subword_force (SUBREG_REG (op0), SUBREG_WORD (op0) + offset, GET_MODE (SUBREG_REG (op0))); offset = 0; } else if (GET_CODE (op0) == REG) { word = operand_subword_force (op0, offset, GET_MODE (op0)); offset = 0; } else word = op0; if (word == 0) abort (); /* Extract the parts in bit-counting order, whose meaning is determined by BYTES_PER_UNIT. OFFSET is in UNITs, and UNIT is in bits. extract_fixed_bit_field wants offset in bytes. */ part = extract_fixed_bit_field (word_mode, word, offset * unit / BITS_PER_UNIT, thissize, thispos, 0, 1, align); bitsdone += thissize; /* Shift this part into place for the result. */ #if BYTES_BIG_ENDIAN if (bitsize != bitsdone) part = expand_shift (LSHIFT_EXPR, word_mode, part, build_int_2 (bitsize - bitsdone, 0), 0, 1); #else if (bitsdone != thissize) part = expand_shift (LSHIFT_EXPR, word_mode, part, build_int_2 (bitsdone - thissize, 0), 0, 1); #endif if (first) result = part; else /* Combine the parts with bitwise or. This works because we extracted each part as an unsigned bit field. */ result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1, OPTAB_LIB_WIDEN); first = 0; } /* Unsigned bit field: we are done. */ if (unsignedp) return result; /* Signed bit field: sign-extend with two arithmetic shifts. */ result = expand_shift (LSHIFT_EXPR, word_mode, result, build_int_2 (BITS_PER_WORD - bitsize, 0), NULL_RTX, 0); return expand_shift (RSHIFT_EXPR, word_mode, result, build_int_2 (BITS_PER_WORD - bitsize, 0), NULL_RTX, 0); } /* Add INC into TARGET. */ void expand_inc (target, inc) rtx target, inc; { rtx value = expand_binop (GET_MODE (target), add_optab, target, inc, target, 0, OPTAB_LIB_WIDEN); if (value != target) emit_move_insn (target, value); } /* Subtract DEC from TARGET. */ void expand_dec (target, dec) rtx target, dec; { rtx value = expand_binop (GET_MODE (target), sub_optab, target, dec, target, 0, OPTAB_LIB_WIDEN); if (value != target) emit_move_insn (target, value); } /* Output a shift instruction for expression code CODE, with SHIFTED being the rtx for the value to shift, and AMOUNT the tree for the amount to shift by. Store the result in the rtx TARGET, if that is convenient. If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic. Return the rtx for where the value is. */ rtx expand_shift (code, mode, shifted, amount, target, unsignedp) enum tree_code code; register enum machine_mode mode; rtx shifted; tree amount; register rtx target; int unsignedp; { register rtx op1, temp = 0; register int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR); register int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR); int try; /* Previously detected shift-counts computed by NEGATE_EXPR and shifted in the other direction; but that does not work on all machines. */ op1 = expand_expr (amount, NULL_RTX, VOIDmode, 0); #if SHIFT_COUNT_TRUNCATED if (SHIFT_COUNT_TRUNCATED && GET_CODE (op1) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (op1) >= GET_MODE_BITSIZE (mode)) op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1) % GET_MODE_BITSIZE (mode)); #endif if (op1 == const0_rtx) return shifted; for (try = 0; temp == 0 && try < 3; try++) { enum optab_methods methods; if (try == 0) methods = OPTAB_DIRECT; else if (try == 1) methods = OPTAB_WIDEN; else methods = OPTAB_LIB_WIDEN; if (rotate) { /* Widening does not work for rotation. */ if (methods == OPTAB_WIDEN) continue; else if (methods == OPTAB_LIB_WIDEN) { /* If we are rotating by a constant that is valid and we have been unable to open-code this by a rotation, do it as the IOR of two shifts. I.e., to rotate A by N bits, compute (A << N) | ((unsigned) A >> (C - N)) where C is the bitsize of A. It is theoretically possible that the target machine might not be able to perform either shift and hence we would be making two libcalls rather than just the one for the shift (similarly if IOR could not be done). We will allow this extremely unlikely lossage to avoid complicating the code below. */ if (GET_CODE (op1) == CONST_INT && INTVAL (op1) > 0 && INTVAL (op1) < GET_MODE_BITSIZE (mode)) { rtx subtarget = target == shifted ? 0 : target; rtx temp1; tree other_amount = build_int_2 (GET_MODE_BITSIZE (mode) - INTVAL (op1), 0); shifted = force_reg (mode, shifted); temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR, mode, shifted, amount, subtarget, 1); temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR, mode, shifted, other_amount, 0, 1); return expand_binop (mode, ior_optab, temp, temp1, target, unsignedp, methods); } else methods = OPTAB_LIB; } temp = expand_binop (mode, left ? rotl_optab : rotr_optab, shifted, op1, target, unsignedp, methods); /* If we don't have the rotate, but we are rotating by a constant that is in range, try a rotate in the opposite direction. */ if (temp == 0 && GET_CODE (op1) == CONST_INT && INTVAL (op1) > 0 && INTVAL (op1) < GET_MODE_BITSIZE (mode)) temp = expand_binop (mode, left ? rotr_optab : rotl_optab, shifted, GEN_INT (GET_MODE_BITSIZE (mode) - INTVAL (op1)), target, unsignedp, methods); } else if (unsignedp) temp = expand_binop (mode, left ? ashl_optab : lshr_optab, shifted, op1, target, unsignedp, methods); /* Do arithmetic shifts. Also, if we are going to widen the operand, we can just as well use an arithmetic right-shift instead of a logical one. */ if (temp == 0 && ! rotate && (! unsignedp || (! left && methods == OPTAB_WIDEN))) { enum optab_methods methods1 = methods; /* If trying to widen a log shift to an arithmetic shift, don't accept an arithmetic shift of the same size. */ if (unsignedp) methods1 = OPTAB_MUST_WIDEN; /* Arithmetic shift */ temp = expand_binop (mode, left ? ashl_optab : ashr_optab, shifted, op1, target, unsignedp, methods1); } #ifdef HAVE_extzv /* We can do a logical (unsigned) right shift with a bit-field extract insn. But first check if one of the above methods worked. */ if (temp != 0) return temp; if (unsignedp && code == RSHIFT_EXPR && ! BITS_BIG_ENDIAN && HAVE_extzv) { enum machine_mode output_mode = insn_operand_mode[(int) CODE_FOR_extzv][0]; if ((methods == OPTAB_DIRECT && mode == output_mode) || (methods == OPTAB_WIDEN && GET_MODE_SIZE (mode) < GET_MODE_SIZE (output_mode))) { rtx shifted1 = convert_modes (output_mode, mode, protect_from_queue (shifted, 0), 1); enum machine_mode length_mode = insn_operand_mode[(int) CODE_FOR_extzv][2]; enum machine_mode pos_mode = insn_operand_mode[(int) CODE_FOR_extzv][3]; rtx target1 = 0; rtx last = get_last_insn (); rtx width; rtx xop1 = op1; rtx pat; if (target != 0) target1 = protect_from_queue (target, 1); /* We define extract insns as having OUTPUT_MODE in a register and the mode of operand 1 in memory. Since we want OUTPUT_MODE, we will always force the operand into a register. At some point we might want to support MEM directly. */ shifted1 = force_reg (output_mode, shifted1); /* If we don't have or cannot use a suggested target, make a place for the result, in the proper mode. */ if (methods == OPTAB_WIDEN || target1 == 0 || ! ((*insn_operand_predicate[(int) CODE_FOR_extzv][0]) (target1, output_mode))) target1 = gen_reg_rtx (output_mode); xop1 = protect_from_queue (xop1, 0); xop1 = convert_modes (pos_mode, TYPE_MODE (TREE_TYPE (amount)), xop1, TREE_UNSIGNED (TREE_TYPE (amount))); /* If this machine's extzv insists on a register for operand 3 (position), arrange for that. */ if (! ((*insn_operand_predicate[(int) CODE_FOR_extzv][3]) (xop1, pos_mode))) xop1 = force_reg (pos_mode, xop1); /* WIDTH gets the width of the bit field to extract: wordsize minus # bits to shift by. */ if (GET_CODE (xop1) == CONST_INT) width = GEN_INT (GET_MODE_BITSIZE (mode) - INTVAL (op1)); else { /* Now get the width in the proper mode. */ op1 = protect_from_queue (op1, 0); width = convert_to_mode (length_mode, op1, TREE_UNSIGNED (TREE_TYPE (amount))); width = expand_binop (length_mode, sub_optab, GEN_INT (GET_MODE_BITSIZE (mode)), width, NULL_RTX, 0, OPTAB_LIB_WIDEN); } /* If this machine's extzv insists on a register for operand 2 (length), arrange for that. */ if (! ((*insn_operand_predicate[(int) CODE_FOR_extzv][2]) (width, length_mode))) width = force_reg (length_mode, width); /* Now extract with WIDTH, omitting OP1 least sig bits. */ pat = gen_extzv (target1, shifted1, width, xop1); if (pat) { emit_insn (pat); temp = convert_to_mode (mode, target1, 1); } else delete_insns_since (last); } /* Can also do logical shift with signed bit-field extract followed by inserting the bit-field at a different position. That strategy is not yet implemented. */ } #endif /* HAVE_extzv */ } if (temp == 0) abort (); return temp; } enum alg_code { alg_zero, alg_m, alg_shift, alg_add_t_m2, alg_sub_t_m2, alg_add_factor, alg_sub_factor, alg_add_t2_m, alg_sub_t2_m, alg_add, alg_subtract, alg_factor, alg_shiftop }; /* This structure records a sequence of operations. `ops' is the number of operations recorded. `cost' is their total cost. The operations are stored in `op' and the corresponding logarithms of the integer coefficients in `log'. These are the operations: alg_zero total := 0; alg_m total := multiplicand; alg_shift total := total * coeff alg_add_t_m2 total := total + multiplicand * coeff; alg_sub_t_m2 total := total - multiplicand * coeff; alg_add_factor total := total * coeff + total; alg_sub_factor total := total * coeff - total; alg_add_t2_m total := total * coeff + multiplicand; alg_sub_t2_m total := total * coeff - multiplicand; The first operand must be either alg_zero or alg_m. */ struct algorithm { short cost; short ops; /* The size of the OP and LOG fields are not directly related to the word size, but the worst-case algorithms will be if we have few consecutive ones or zeros, i.e., a multiplicand like 10101010101... In that case we will generate shift-by-2, add, shift-by-2, add,..., in total wordsize operations. */ enum alg_code op[MAX_BITS_PER_WORD]; char log[MAX_BITS_PER_WORD]; }; /* Compute and return the best algorithm for multiplying by T. The algorithm must cost less than cost_limit If retval.cost >= COST_LIMIT, no algorithm was found and all other field of the returned struct are undefined. */ static void synth_mult (alg_out, t, cost_limit) struct algorithm *alg_out; unsigned HOST_WIDE_INT t; int cost_limit; { int m; struct algorithm *alg_in, *best_alg; unsigned int cost; unsigned HOST_WIDE_INT q; /* Indicate that no algorithm is yet found. If no algorithm is found, this value will be returned and indicate failure. */ alg_out->cost = cost_limit; if (cost_limit <= 0) return; /* t == 1 can be done in zero cost. */ if (t == 1) { alg_out->ops = 1; alg_out->cost = 0; alg_out->op[0] = alg_m; return; } /* t == 0 sometimes has a cost. If it does and it exceeds our limit, fail now. */ if (t == 0) { if (zero_cost >= cost_limit) return; else { alg_out->ops = 1; alg_out->cost = zero_cost; alg_out->op[0] = alg_zero; return; } } /* We'll be needing a couple extra algorithm structures now. */ alg_in = (struct algorithm *)alloca (sizeof (struct algorithm)); best_alg = (struct algorithm *)alloca (sizeof (struct algorithm)); /* If we have a group of zero bits at the low-order part of T, try multiplying by the remaining bits and then doing a shift. */ if ((t & 1) == 0) { m = floor_log2 (t & -t); /* m = number of low zero bits */ q = t >> m; cost = shift_cost[m]; synth_mult (alg_in, q, cost_limit - cost); cost += alg_in->cost; if (cost < cost_limit) { struct algorithm *x; x = alg_in, alg_in = best_alg, best_alg = x; best_alg->log[best_alg->ops] = m; best_alg->op[best_alg->ops] = alg_shift; cost_limit = cost; } } /* If we have an odd number, add or subtract one. */ if ((t & 1) != 0) { unsigned HOST_WIDE_INT w; for (w = 1; (w & t) != 0; w <<= 1) ; if (w > 2 /* Reject the case where t is 3. Thus we prefer addition in that case. */ && t != 3) { /* T ends with ...111. Multiply by (T + 1) and subtract 1. */ cost = add_cost; synth_mult (alg_in, t + 1, cost_limit - cost); cost += alg_in->cost; if (cost < cost_limit) { struct algorithm *x; x = alg_in, alg_in = best_alg, best_alg = x; best_alg->log[best_alg->ops] = 0; best_alg->op[best_alg->ops] = alg_sub_t_m2; cost_limit = cost; } } else { /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */ cost = add_cost; synth_mult (alg_in, t - 1, cost_limit - cost); cost += alg_in->cost; if (cost < cost_limit) { struct algorithm *x; x = alg_in, alg_in = best_alg, best_alg = x; best_alg->log[best_alg->ops] = 0; best_alg->op[best_alg->ops] = alg_add_t_m2; cost_limit = cost; } } } /* Look for factors of t of the form t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)). If we find such a factor, we can multiply by t using an algorithm that multiplies by q, shift the result by m and add/subtract it to itself. We search for large factors first and loop down, even if large factors are less probable than small; if we find a large factor we will find a good sequence quickly, and therefore be able to prune (by decreasing COST_LIMIT) the search. */ for (m = floor_log2 (t - 1); m >= 2; m--) { unsigned HOST_WIDE_INT d; d = ((unsigned HOST_WIDE_INT) 1 << m) + 1; if (t % d == 0 && t > d) { cost = MIN (shiftadd_cost[m], add_cost + shift_cost[m]); synth_mult (alg_in, t / d, cost_limit - cost); cost += alg_in->cost; if (cost < cost_limit) { struct algorithm *x; x = alg_in, alg_in = best_alg, best_alg = x; best_alg->log[best_alg->ops] = m; best_alg->op[best_alg->ops] = alg_add_factor; cost_limit = cost; } /* Other factors will have been taken care of in the recursion. */ break; } d = ((unsigned HOST_WIDE_INT) 1 << m) - 1; if (t % d == 0 && t > d) { cost = MIN (shiftsub_cost[m], add_cost + shift_cost[m]); synth_mult (alg_in, t / d, cost_limit - cost); cost += alg_in->cost; if (cost < cost_limit) { struct algorithm *x; x = alg_in, alg_in = best_alg, best_alg = x; best_alg->log[best_alg->ops] = m; best_alg->op[best_alg->ops] = alg_sub_factor; cost_limit = cost; } break; } } /* Try shift-and-add (load effective address) instructions, i.e. do a*3, a*5, a*9. */ if ((t & 1) != 0) { q = t - 1; q = q & -q; m = exact_log2 (q); if (m >= 0) { cost = shiftadd_cost[m]; synth_mult (alg_in, (t - 1) >> m, cost_limit - cost); cost += alg_in->cost; if (cost < cost_limit) { struct algorithm *x; x = alg_in, alg_in = best_alg, best_alg = x; best_alg->log[best_alg->ops] = m; best_alg->op[best_alg->ops] = alg_add_t2_m; cost_limit = cost; } } q = t + 1; q = q & -q; m = exact_log2 (q); if (m >= 0) { cost = shiftsub_cost[m]; synth_mult (alg_in, (t + 1) >> m, cost_limit - cost); cost += alg_in->cost; if (cost < cost_limit) { struct algorithm *x; x = alg_in, alg_in = best_alg, best_alg = x; best_alg->log[best_alg->ops] = m; best_alg->op[best_alg->ops] = alg_sub_t2_m; cost_limit = cost; } } } /* If cost_limit has not decreased since we stored it in alg_out->cost, we have not found any algorithm. */ if (cost_limit == alg_out->cost) return; /* If we are getting a too long sequence for `struct algorithm' to record, make this search fail. */ if (best_alg->ops == MAX_BITS_PER_WORD) return; /* Copy the algorithm from temporary space to the space at alg_out. We avoid using structure assignment because the majority of best_alg is normally undefined, and this is a critical function. */ alg_out->ops = best_alg->ops + 1; alg_out->cost = cost_limit; bcopy (best_alg->op, alg_out->op, alg_out->ops * sizeof *alg_out->op); bcopy (best_alg->log, alg_out->log, alg_out->ops * sizeof *alg_out->log); } /* Perform a multiplication and return an rtx for the result. MODE is mode of value; OP0 and OP1 are what to multiply (rtx's); TARGET is a suggestion for where to store the result (an rtx). We check specially for a constant integer as OP1. If you want this check for OP0 as well, then before calling you should swap the two operands if OP0 would be constant. */ rtx expand_mult (mode, op0, op1, target, unsignedp) enum machine_mode mode; register rtx op0, op1, target; int unsignedp; { rtx const_op1 = op1; /* If we are multiplying in DImode, it may still be a win to try to work with shifts and adds. */ if (GET_CODE (op1) == CONST_DOUBLE && GET_MODE_CLASS (GET_MODE (op1)) == MODE_INT && HOST_BITS_PER_INT <= BITS_PER_WORD) { if ((CONST_DOUBLE_HIGH (op1) == 0 && CONST_DOUBLE_LOW (op1) >= 0) || (CONST_DOUBLE_HIGH (op1) == -1 && CONST_DOUBLE_LOW (op1) < 0)) const_op1 = GEN_INT (CONST_DOUBLE_LOW (op1)); } /* We used to test optimize here, on the grounds that it's better to produce a smaller program when -O is not used. But this causes such a terrible slowdown sometimes that it seems better to use synth_mult always. */ if (GET_CODE (const_op1) == CONST_INT) { struct algorithm alg; struct algorithm neg_alg; int negate = 0; HOST_WIDE_INT val = INTVAL (op1); HOST_WIDE_INT val_so_far; rtx insn; int mult_cost; /* Try to do the computation two ways: multiply by the negative of OP1 and then negate, or do the multiplication directly. The latter is usually faster for positive numbers and the former for negative numbers, but the opposite can be faster if the original value has a factor of 2**m +/- 1, while the negated value does not or vice versa. */ mult_cost = rtx_cost (gen_rtx (MULT, mode, op0, op1), SET); mult_cost = MIN (12 * add_cost, mult_cost); synth_mult (&alg, val, mult_cost); synth_mult (&neg_alg, - val, (alg.cost < mult_cost ? alg.cost : mult_cost) - negate_cost); if (neg_alg.cost + negate_cost < alg.cost) alg = neg_alg, negate = 1; if (alg.cost < mult_cost) { /* We found something cheaper than a multiply insn. */ int opno; rtx accum, tem; op0 = protect_from_queue (op0, 0); /* Avoid referencing memory over and over. For speed, but also for correctness when mem is volatile. */ if (GET_CODE (op0) == MEM) op0 = force_reg (mode, op0); /* ACCUM starts out either as OP0 or as a zero, depending on the first operation. */ if (alg.op[0] == alg_zero) { accum = copy_to_mode_reg (mode, const0_rtx); val_so_far = 0; } else if (alg.op[0] == alg_m) { accum = copy_to_mode_reg (mode, op0); val_so_far = 1; } else abort (); for (opno = 1; opno < alg.ops; opno++) { int log = alg.log[opno]; int preserve = preserve_subexpressions_p (); rtx shift_subtarget = preserve ? 0 : accum; rtx add_target = opno == alg.ops - 1 && target != 0 ? target : 0; rtx accum_target = preserve ? 0 : accum; switch (alg.op[opno]) { case alg_shift: accum = expand_shift (LSHIFT_EXPR, mode, accum, build_int_2 (log, 0), NULL_RTX, 0); val_so_far <<= log; break; case alg_add_t_m2: tem = expand_shift (LSHIFT_EXPR, mode, op0, build_int_2 (log, 0), NULL_RTX, 0); accum = force_operand (gen_rtx (PLUS, mode, accum, tem), add_target ? add_target : accum_target); val_so_far += (HOST_WIDE_INT) 1 << log; break; case alg_sub_t_m2: tem = expand_shift (LSHIFT_EXPR, mode, op0, build_int_2 (log, 0), NULL_RTX, 0); accum = force_operand (gen_rtx (MINUS, mode, accum, tem), add_target ? add_target : accum_target); val_so_far -= (HOST_WIDE_INT) 1 << log; break; case alg_add_t2_m: accum = expand_shift (LSHIFT_EXPR, mode, accum, build_int_2 (log, 0), shift_subtarget, 0); accum = force_operand (gen_rtx (PLUS, mode, accum, op0), add_target ? add_target : accum_target); val_so_far = (val_so_far << log) + 1; break; case alg_sub_t2_m: accum = expand_shift (LSHIFT_EXPR, mode, accum, build_int_2 (log, 0), shift_subtarget, 0); accum = force_operand (gen_rtx (MINUS, mode, accum, op0), add_target ? add_target : accum_target); val_so_far = (val_so_far << log) - 1; break; case alg_add_factor: tem = expand_shift (LSHIFT_EXPR, mode, accum, build_int_2 (log, 0), NULL_RTX, 0); accum = force_operand (gen_rtx (PLUS, mode, accum, tem), add_target ? add_target : accum_target); val_so_far += val_so_far << log; break; case alg_sub_factor: tem = expand_shift (LSHIFT_EXPR, mode, accum, build_int_2 (log, 0), NULL_RTX, 0); accum = force_operand (gen_rtx (MINUS, mode, tem, accum), (add_target ? add_target : preserve ? 0 : tem)); val_so_far = (val_so_far << log) - val_so_far; break; default: abort ();; } /* Write a REG_EQUAL note on the last insn so that we can cse multiplication sequences. */ insn = get_last_insn (); REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, gen_rtx (MULT, mode, op0, GEN_INT (val_so_far)), REG_NOTES (insn)); } if (negate) { val_so_far = - val_so_far; accum = expand_unop (mode, neg_optab, accum, target, 0); } if (val != val_so_far) abort (); return accum; } } /* This used to use umul_optab if unsigned, but for non-widening multiply there is no difference between signed and unsigned. */ op0 = expand_binop (mode, smul_optab, op0, op1, target, unsignedp, OPTAB_LIB_WIDEN); if (op0 == 0) abort (); return op0; } /* Emit the code to divide OP0 by OP1, putting the result in TARGET if that is convenient, and returning where the result is. You may request either the quotient or the remainder as the result; specify REM_FLAG nonzero to get the remainder. CODE is the expression code for which kind of division this is; it controls how rounding is done. MODE is the machine mode to use. UNSIGNEDP nonzero means do unsigned division. */ /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI and then correct it by or'ing in missing high bits if result of ANDI is nonzero. For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result. This could optimize to a bfexts instruction. But C doesn't use these operations, so their optimizations are left for later. */ rtx expand_divmod (rem_flag, code, mode, op0, op1, target, unsignedp) int rem_flag; enum tree_code code; enum machine_mode mode; register rtx op0, op1, target; int unsignedp; { register rtx result = 0; enum machine_mode compute_mode; int log = -1; int size; int can_clobber_op0; int mod_insn_no_good = 0; rtx adjusted_op0 = op0; optab optab1, optab2; /* We shouldn't be called with op1 == const1_rtx, but some of the code below will malfunction if we are, so check here and handle the special case if so. */ if (op1 == const1_rtx) return rem_flag ? const0_rtx : op0; if (target /* Don't use the function value register as a target since we have to read it as well as write it, and function-inlining gets confused by this. */ && ((REG_P (target) && REG_FUNCTION_VALUE_P (target)) /* Don't clobber an operand while doing a multi-step calculation. */ || (rem_flag && (reg_mentioned_p (target, op0) || (GET_CODE (op0) == MEM && GET_CODE (target) == MEM))) || reg_mentioned_p (target, op1) || (GET_CODE (op1) == MEM && GET_CODE (target) == MEM))) target = 0; /* See if we are dividing by 2**log, and hence will do it by shifting, which is really floor-division, or if we will really do a divide, and we assume that is trunc-division. We must correct the dividend by adding or subtracting something based on the divisor, in order to do the kind of rounding specified by CODE. The correction depends on what kind of rounding is actually available, and that depends on whether we will shift or divide. In many of these cases it is possible to perform the operation by a clever series of logical operations (shifts and/or exclusive-ors). Although avoiding the jump has the advantage that it extends the basic block and allows further optimization, the branch-free code is normally at least one instruction longer in the (most common) case where the dividend is non-negative. Performance measurements of the two alternatives show that the branch-free code is slightly faster on the IBM ROMP but slower on CISC processors (significantly slower on the VAX). Accordingly, the jump code has been retained when BRANCH_COST is small. On machines where the jump code is slower, the cost of a DIV or MOD operation can be set small (less than twice that of an addition); in that case, we pretend that we don't have a power of two and perform a normal division or modulus operation. */ if (GET_CODE (op1) == CONST_INT && ! ((code == TRUNC_MOD_EXPR || code == TRUNC_DIV_EXPR) && ! unsignedp && (rem_flag ? smod_pow2_cheap : sdiv_pow2_cheap))) log = exact_log2 (INTVAL (op1)); /* Get the mode in which to perform this computation. Normally it will be MODE, but sometimes we can't do the desired operation in MODE. If so, pick a wider mode in which we can do the operation. Convert to that mode at the start to avoid repeated conversions. First see what operations we need. These depend on the expression we are evaluating. (We assume that divxx3 insns exist under the same conditions that modxx3 insns and that these insns don't normally fail. If these assumptions are not correct, we may generate less efficient code in some cases.) Then see if we find a mode in which we can open-code that operation (either a division, modulus, or shift). Finally, check for the smallest mode for which we can do the operation with a library call. */ optab1 = (log >= 0 ? (unsignedp ? lshr_optab : ashr_optab) : (unsignedp ? udiv_optab : sdiv_optab)); optab2 = (log >= 0 ? optab1 : (unsignedp ? udivmod_optab : sdivmod_optab)); for (compute_mode = mode; compute_mode != VOIDmode; compute_mode = GET_MODE_WIDER_MODE (compute_mode)) if (optab1->handlers[(int) compute_mode].insn_code != CODE_FOR_nothing || optab2->handlers[(int) compute_mode].insn_code != CODE_FOR_nothing) break; if (compute_mode == VOIDmode) for (compute_mode = mode; compute_mode != VOIDmode; compute_mode = GET_MODE_WIDER_MODE (compute_mode)) if (optab1->handlers[(int) compute_mode].libfunc || optab2->handlers[(int) compute_mode].libfunc) break; /* If we still couldn't find a mode, use MODE, but we'll probably abort in expand_binop. */ if (compute_mode == VOIDmode) compute_mode = mode; size = GET_MODE_BITSIZE (compute_mode); /* If OP0 is a register that is used as the target, we can modify it in place; otherwise, we have to ensure we copy OP0 before modifying it. */ can_clobber_op0 = (GET_CODE (op0) == REG && op0 == target); /* Now convert to the best mode to use. Show we made a copy of OP0 and hence we can clobber it (we cannot use a SUBREG to widen something. */ if (compute_mode != mode) { adjusted_op0 = op0 = convert_modes (compute_mode, mode, op0, unsignedp); can_clobber_op0 = 1; op1 = convert_modes (compute_mode, mode, op1, unsignedp); } /* If we are computing the remainder and one of the operands is a volatile MEM, copy it into a register. */ if (rem_flag && GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0)) adjusted_op0 = op0 = force_reg (compute_mode, op0), can_clobber_op0 = 1; if (rem_flag && GET_CODE (op1) == MEM && MEM_VOLATILE_P (op1)) op1 = force_reg (compute_mode, op1); /* If we are computing the remainder, op0 will be needed later to calculate X - Y * (X / Y), therefore cannot be clobbered. */ if (rem_flag) can_clobber_op0 = 0; /* See if we will need to modify ADJUSTED_OP0. Note that this code must agree with that in the switch below. */ if (((code == TRUNC_MOD_EXPR || code == TRUNC_DIV_EXPR) && log >= 0 && ! unsignedp) || ((code == FLOOR_MOD_EXPR || code == FLOOR_DIV_EXPR) && log < 0 && ! unsignedp) || code == CEIL_MOD_EXPR || code == CEIL_DIV_EXPR || code == ROUND_MOD_EXPR || code == ROUND_DIV_EXPR) { /* If we want the remainder, we may need to use OP0, so make sure it and ADJUSTED_OP0 are in different registers. We force OP0 to a register in case it has any queued subexpressions, because emit_cmp_insn will call emit_queue. If we don't want the remainder, we aren't going to use OP0 anymore. However, if we cannot clobber OP0 (and hence ADJUSTED_OP0), we must make a copy of it, hopefully to TARGET. This code is somewhat tricky. Note that if REM_FLAG is nonzero, CAN_CLOBBER_OP0 will be zero and we know that OP0 cannot equal TARGET. */ if (rem_flag) op0 = force_reg (compute_mode, op0); if (! can_clobber_op0) { if (target && GET_MODE (target) == compute_mode) adjusted_op0 = target; else adjusted_op0 = 0; adjusted_op0 = copy_to_suggested_reg (op0, adjusted_op0, compute_mode); } } /* Adjust ADJUSTED_OP0 as described above. Unless CAN_CLOBBER_OP0 is now non-zero, OP0 will retain it's original value. */ switch (code) { case TRUNC_MOD_EXPR: case TRUNC_DIV_EXPR: if (log >= 0 && ! unsignedp) { /* Here we need to add OP1-1 if OP0 is negative, 0 otherwise. This can be computed without jumps by arithmetically shifting OP0 right LOG-1 places and then shifting right logically SIZE-LOG bits. The resulting value is unconditionally added to OP0. If OP0 cannot be modified in place, copy it, possibly to TARGET. Note that we will have previously only allowed it to be modified in place if it is a register, so that after this `if', ADJUSTED_OP0 is known to be a register. */ if (log == 1 || BRANCH_COST >= 3) { rtx temp; temp = expand_shift (RSHIFT_EXPR, compute_mode, adjusted_op0, build_int_2 (log - 1, 0), NULL_RTX, 0); /* We cannot allow TEMP to be ADJUSTED_OP0 here. */ temp = expand_shift (RSHIFT_EXPR, compute_mode, temp, build_int_2 (size - log, 0), temp != adjusted_op0 ? temp : NULL_RTX, 1); adjusted_op0 = expand_binop (compute_mode, add_optab, adjusted_op0, temp, adjusted_op0, 0, OPTAB_LIB_WIDEN); } else { rtx label = gen_label_rtx (); emit_cmp_insn (adjusted_op0, const0_rtx, GE, NULL_RTX, compute_mode, 0, 0); emit_jump_insn (gen_bge (label)); expand_inc (adjusted_op0, plus_constant (op1, -1)); emit_label (label); } mod_insn_no_good = 1; } break; case FLOOR_DIV_EXPR: case FLOOR_MOD_EXPR: if (log < 0 && ! unsignedp) { rtx label = gen_label_rtx (); emit_cmp_insn (adjusted_op0, const0_rtx, GE, NULL_RTX, compute_mode, 0, 0); emit_jump_insn (gen_bge (label)); expand_dec (adjusted_op0, op1); expand_inc (adjusted_op0, const1_rtx); emit_label (label); mod_insn_no_good = 1; } break; case CEIL_DIV_EXPR: case CEIL_MOD_EXPR: if (log < 0) { rtx label = 0; if (! unsignedp) { label = gen_label_rtx (); emit_cmp_insn (adjusted_op0, const0_rtx, LE, NULL_RTX, compute_mode, 0, 0); emit_jump_insn (gen_ble (label)); } expand_inc (adjusted_op0, op1); expand_dec (adjusted_op0, const1_rtx); if (! unsignedp) emit_label (label); } else adjusted_op0 = expand_binop (compute_mode, add_optab, adjusted_op0, plus_constant (op1, -1), adjusted_op0, 0, OPTAB_LIB_WIDEN); mod_insn_no_good = 1; break; case ROUND_DIV_EXPR: case ROUND_MOD_EXPR: if (log < 0) { op1 = expand_shift (RSHIFT_EXPR, compute_mode, op1, integer_one_node, NULL_RTX, 0); if (! unsignedp) { if (BRANCH_COST >= 2) { /* Negate OP1 if OP0 < 0. Do this by computing a temporary that has all bits equal to the sign bit and exclusive or-ing it with OP1. */ rtx temp = expand_shift (RSHIFT_EXPR, compute_mode, adjusted_op0, build_int_2 (size - 1, 0), NULL_RTX, 0); op1 = expand_binop (compute_mode, xor_optab, op1, temp, op1, unsignedp, OPTAB_LIB_WIDEN); } else { rtx label = gen_label_rtx (); emit_cmp_insn (adjusted_op0, const0_rtx, GE, NULL_RTX, compute_mode, 0, 0); emit_jump_insn (gen_bge (label)); expand_unop (compute_mode, neg_optab, op1, op1, 0); emit_label (label); } } expand_inc (adjusted_op0, op1); } else expand_inc (adjusted_op0, GEN_INT (((HOST_WIDE_INT) 1 << log) / 2)); mod_insn_no_good = 1; break; } if (rem_flag && !mod_insn_no_good) { /* Try to produce the remainder directly */ if (log >= 0) result = expand_binop (compute_mode, and_optab, adjusted_op0, GEN_INT (((HOST_WIDE_INT) 1 << log) - 1), target, 1, OPTAB_LIB_WIDEN); else { /* See if we can do remainder without a library call. */ result = sign_expand_binop (mode, umod_optab, smod_optab, adjusted_op0, op1, target, unsignedp, OPTAB_WIDEN); if (result == 0) { /* No luck there. Can we do remainder and divide at once without a library call? */ result = gen_reg_rtx (compute_mode); if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab, adjusted_op0, op1, NULL_RTX, result, unsignedp)) result = 0; } } } if (result) return gen_lowpart (mode, result); /* Produce the quotient. */ if (log >= 0) result = expand_shift (RSHIFT_EXPR, compute_mode, adjusted_op0, build_int_2 (log, 0), target, unsignedp); else if (rem_flag && !mod_insn_no_good) /* If producing quotient in order to subtract for remainder, and a remainder subroutine would be ok, don't use a divide subroutine. */ result = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab, adjusted_op0, op1, NULL_RTX, unsignedp, OPTAB_WIDEN); else { /* Try a quotient insn, but not a library call. */ result = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab, adjusted_op0, op1, rem_flag ? NULL_RTX : target, unsignedp, OPTAB_WIDEN); if (result == 0) { /* No luck there. Try a quotient-and-remainder insn, keeping the quotient alone. */ result = gen_reg_rtx (compute_mode); if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab, adjusted_op0, op1, result, NULL_RTX, unsignedp)) result = 0; } /* If still no luck, use a library call. */ if (result == 0) result = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab, adjusted_op0, op1, rem_flag ? NULL_RTX : target, unsignedp, OPTAB_LIB_WIDEN); } /* If we really want the remainder, get it by subtraction. */ if (rem_flag) { if (result == 0) /* No divide instruction either. Use library for remainder. */ result = sign_expand_binop (compute_mode, umod_optab, smod_optab, op0, op1, target, unsignedp, OPTAB_LIB_WIDEN); else { /* We divided. Now finish doing X - Y * (X / Y). */ result = expand_mult (compute_mode, result, op1, target, unsignedp); if (! result) abort (); result = expand_binop (compute_mode, sub_optab, op0, result, target, unsignedp, OPTAB_LIB_WIDEN); } } if (result == 0) abort (); return gen_lowpart (mode, result); } /* Return a tree node with data type TYPE, describing the value of X. Usually this is an RTL_EXPR, if there is no obvious better choice. X may be an expression, however we only support those expressions generated by loop.c. */ tree make_tree (type, x) tree type; rtx x; { tree t; switch (GET_CODE (x)) { case CONST_INT: t = build_int_2 (INTVAL (x), TREE_UNSIGNED (type) || INTVAL (x) >= 0 ? 0 : -1); TREE_TYPE (t) = type; return t; case CONST_DOUBLE: if (GET_MODE (x) == VOIDmode) { t = build_int_2 (CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x)); TREE_TYPE (t) = type; } else { REAL_VALUE_TYPE d; REAL_VALUE_FROM_CONST_DOUBLE (d, x); t = build_real (type, d); } return t; case PLUS: return fold (build (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)), make_tree (type, XEXP (x, 1)))); case MINUS: return fold (build (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)), make_tree (type, XEXP (x, 1)))); case NEG: return fold (build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)))); case MULT: return fold (build (MULT_EXPR, type, make_tree (type, XEXP (x, 0)), make_tree (type, XEXP (x, 1)))); case ASHIFT: return fold (build (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)), make_tree (type, XEXP (x, 1)))); case LSHIFTRT: return fold (convert (type, build (RSHIFT_EXPR, unsigned_type (type), make_tree (unsigned_type (type), XEXP (x, 0)), make_tree (type, XEXP (x, 1))))); case ASHIFTRT: return fold (convert (type, build (RSHIFT_EXPR, signed_type (type), make_tree (signed_type (type), XEXP (x, 0)), make_tree (type, XEXP (x, 1))))); case DIV: if (TREE_CODE (type) != REAL_TYPE) t = signed_type (type); else t = type; return fold (convert (type, build (TRUNC_DIV_EXPR, t, make_tree (t, XEXP (x, 0)), make_tree (t, XEXP (x, 1))))); case UDIV: t = unsigned_type (type); return fold (convert (type, build (TRUNC_DIV_EXPR, t, make_tree (t, XEXP (x, 0)), make_tree (t, XEXP (x, 1))))); default: t = make_node (RTL_EXPR); TREE_TYPE (t) = type; RTL_EXPR_RTL (t) = x; /* There are no insns to be output when this rtl_expr is used. */ RTL_EXPR_SEQUENCE (t) = 0; return t; } } /* Return an rtx representing the value of X * MULT + ADD. TARGET is a suggestion for where to store the result (an rtx). MODE is the machine mode for the computation. X and MULT must have mode MODE. ADD may have a different mode. So can X (defaults to same as MODE). UNSIGNEDP is non-zero to do unsigned multiplication. This may emit insns. */ rtx expand_mult_add (x, target, mult, add, mode, unsignedp) rtx x, target, mult, add; enum machine_mode mode; int unsignedp; { tree type = type_for_mode (mode, unsignedp); tree add_type = (GET_MODE (add) == VOIDmode ? type : type_for_mode (GET_MODE (add), unsignedp)); tree result = fold (build (PLUS_EXPR, type, fold (build (MULT_EXPR, type, make_tree (type, x), make_tree (type, mult))), make_tree (add_type, add))); return expand_expr (result, target, VOIDmode, 0); } /* Compute the logical-and of OP0 and OP1, storing it in TARGET and returning TARGET. If TARGET is 0, a pseudo-register or constant is returned. */ rtx expand_and (op0, op1, target) rtx op0, op1, target; { enum machine_mode mode = VOIDmode; rtx tem; if (GET_MODE (op0) != VOIDmode) mode = GET_MODE (op0); else if (GET_MODE (op1) != VOIDmode) mode = GET_MODE (op1); if (mode != VOIDmode) tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN); else if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT) tem = GEN_INT (INTVAL (op0) & INTVAL (op1)); else abort (); if (target == 0) target = tem; else if (tem != target) emit_move_insn (target, tem); return target; } /* Emit a store-flags instruction for comparison CODE on OP0 and OP1 and storing in TARGET. Normally return TARGET. Return 0 if that cannot be done. MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If it is VOIDmode, they cannot both be CONST_INT. UNSIGNEDP is for the case where we have to widen the operands to perform the operation. It says to use zero-extension. NORMALIZEP is 1 if we should convert the result to be either zero or one one. Normalize is -1 if we should convert the result to be either zero or -1. If NORMALIZEP is zero, the result will be left "raw" out of the scc insn. */ rtx emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep) rtx target; enum rtx_code code; rtx op0, op1; enum machine_mode mode; int unsignedp; int normalizep; { rtx subtarget; enum insn_code icode; enum machine_mode compare_mode; enum machine_mode target_mode = GET_MODE (target); rtx tem; rtx last = 0; rtx pattern, comparison; if (mode == VOIDmode) mode = GET_MODE (op0); /* If one operand is constant, make it the second one. Only do this if the other operand is not constant as well. */ if ((CONSTANT_P (op0) && ! CONSTANT_P (op1)) || (GET_CODE (op0) == CONST_INT && GET_CODE (op1) != CONST_INT)) { tem = op0; op0 = op1; op1 = tem; code = swap_condition (code); } /* For some comparisons with 1 and -1, we can convert this to comparisons with zero. This will often produce more opportunities for store-flag insns. */ switch (code) { case LT: if (op1 == const1_rtx) op1 = const0_rtx, code = LE; break; case LE: if (op1 == constm1_rtx) op1 = const0_rtx, code = LT; break; case GE: if (op1 == const1_rtx) op1 = const0_rtx, code = GT; break; case GT: if (op1 == constm1_rtx) op1 = const0_rtx, code = GE; break; case GEU: if (op1 == const1_rtx) op1 = const0_rtx, code = NE; break; case LTU: if (op1 == const1_rtx) op1 = const0_rtx, code = EQ; break; } /* From now on, we won't change CODE, so set ICODE now. */ icode = setcc_gen_code[(int) code]; /* If this is A < 0 or A >= 0, we can do this by taking the ones complement of A (for GE) and shifting the sign bit to the low bit. */ if (op1 == const0_rtx && (code == LT || code == GE) && GET_MODE_CLASS (mode) == MODE_INT && (normalizep || STORE_FLAG_VALUE == 1 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT && (STORE_FLAG_VALUE == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))))) { subtarget = target; /* If the result is to be wider than OP0, it is best to convert it first. If it is to be narrower, it is *incorrect* to convert it first. */ if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode)) { op0 = protect_from_queue (op0, 0); op0 = convert_modes (target_mode, mode, op0, 0); mode = target_mode; } if (target_mode != mode) subtarget = 0; if (code == GE) op0 = expand_unop (mode, one_cmpl_optab, op0, subtarget, 0); if (normalizep || STORE_FLAG_VALUE == 1) /* If we are supposed to produce a 0/1 value, we want to do a logical shift from the sign bit to the low-order bit; for a -1/0 value, we do an arithmetic shift. */ op0 = expand_shift (RSHIFT_EXPR, mode, op0, size_int (GET_MODE_BITSIZE (mode) - 1), subtarget, normalizep != -1); if (mode != target_mode) op0 = convert_modes (target_mode, mode, op0, 0); return op0; } if (icode != CODE_FOR_nothing) { /* We think we may be able to do this with a scc insn. Emit the comparison and then the scc insn. compare_from_rtx may call emit_queue, which would be deleted below if the scc insn fails. So call it ourselves before setting LAST. */ emit_queue (); last = get_last_insn (); comparison = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX, 0); if (GET_CODE (comparison) == CONST_INT) return (comparison == const0_rtx ? const0_rtx : normalizep == 1 ? const1_rtx : normalizep == -1 ? constm1_rtx : const_true_rtx); /* If the code of COMPARISON doesn't match CODE, something is wrong; we can no longer be sure that we have the operation. We could handle this case, but it should not happen. */ if (GET_CODE (comparison) != code) abort (); /* Get a reference to the target in the proper mode for this insn. */ compare_mode = insn_operand_mode[(int) icode][0]; subtarget = target; if (preserve_subexpressions_p () || ! (*insn_operand_predicate[(int) icode][0]) (subtarget, compare_mode)) subtarget = gen_reg_rtx (compare_mode); pattern = GEN_FCN (icode) (subtarget); if (pattern) { emit_insn (pattern); /* If we are converting to a wider mode, first convert to TARGET_MODE, then normalize. This produces better combining opportunities on machines that have a SIGN_EXTRACT when we are testing a single bit. This mostly benefits the 68k. If STORE_FLAG_VALUE does not have the sign bit set when interpreted in COMPARE_MODE, we can do this conversion as unsigned, which is usually more efficient. */ if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode)) { convert_move (target, subtarget, (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT) && 0 == (STORE_FLAG_VALUE & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (compare_mode) -1)))); op0 = target; compare_mode = target_mode; } else op0 = subtarget; /* If we want to keep subexpressions around, don't reuse our last target. */ if (preserve_subexpressions_p ()) subtarget = 0; /* Now normalize to the proper value in COMPARE_MODE. Sometimes we don't have to do anything. */ if (normalizep == 0 || normalizep == STORE_FLAG_VALUE) ; else if (normalizep == - STORE_FLAG_VALUE) op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0); /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes it hard to use a value of just the sign bit due to ANSI integer constant typing rules. */ else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT && (STORE_FLAG_VALUE & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (compare_mode) - 1)))) op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0, size_int (GET_MODE_BITSIZE (compare_mode) - 1), subtarget, normalizep == 1); else if (STORE_FLAG_VALUE & 1) { op0 = expand_and (op0, const1_rtx, subtarget); if (normalizep == -1) op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0); } else abort (); /* If we were converting to a smaller mode, do the conversion now. */ if (target_mode != compare_mode) { convert_move (target, op0, 0); return target; } else return op0; } } if (last) delete_insns_since (last); subtarget = target_mode == mode ? target : 0; /* If we reached here, we can't do this with a scc insn. However, there are some comparisons that can be done directly. For example, if this is an equality comparison of integers, we can try to exclusive-or (or subtract) the two operands and use a recursive call to try the comparison with zero. Don't do any of these cases if branches are very cheap. */ if (BRANCH_COST > 0 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE) && op1 != const0_rtx) { tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1, OPTAB_WIDEN); if (tem == 0) tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1, OPTAB_WIDEN); if (tem != 0) tem = emit_store_flag (target, code, tem, const0_rtx, mode, unsignedp, normalizep); if (tem == 0) delete_insns_since (last); return tem; } /* Some other cases we can do are EQ, NE, LE, and GT comparisons with the constant zero. Reject all other comparisons at this point. Only do LE and GT if branches are expensive since they are expensive on 2-operand machines. */ if (BRANCH_COST == 0 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx || (code != EQ && code != NE && (BRANCH_COST <= 1 || (code != LE && code != GT)))) return 0; /* See what we need to return. We can only return a 1, -1, or the sign bit. */ if (normalizep == 0) { if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1) normalizep = STORE_FLAG_VALUE; else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT && (STORE_FLAG_VALUE == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))) ; else return 0; } /* Try to put the result of the comparison in the sign bit. Assume we can't do the necessary operation below. */ tem = 0; /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has the sign bit set. */ if (code == LE) { /* This is destructive, so SUBTARGET can't be OP0. */ if (rtx_equal_p (subtarget, op0)) subtarget = 0; tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0, OPTAB_WIDEN); if (tem) tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0, OPTAB_WIDEN); } /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the number of bits in the mode of OP0, minus one. */ if (code == GT) { if (rtx_equal_p (subtarget, op0)) subtarget = 0; tem = expand_shift (RSHIFT_EXPR, mode, op0, size_int (GET_MODE_BITSIZE (mode) - 1), subtarget, 0); tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0, OPTAB_WIDEN); } if (code == EQ || code == NE) { /* For EQ or NE, one way to do the comparison is to apply an operation that converts the operand into a positive number if it is non-zero or zero if it was originally zero. Then, for EQ, we subtract 1 and for NE we negate. This puts the result in the sign bit. Then we normalize with a shift, if needed. Two operations that can do the above actions are ABS and FFS, so try them. If that doesn't work, and MODE is smaller than a full word, we can use zero-extension to the wider mode (an unsigned conversion) as the operation. */ if (abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) tem = expand_unop (mode, abs_optab, op0, subtarget, 1); else if (ffs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) tem = expand_unop (mode, ffs_optab, op0, subtarget, 1); else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD) { op0 = protect_from_queue (op0, 0); tem = convert_modes (word_mode, mode, op0, 1); mode = word_mode; } if (tem != 0) { if (code == EQ) tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget, 0, OPTAB_WIDEN); else tem = expand_unop (mode, neg_optab, tem, subtarget, 0); } /* If we couldn't do it that way, for NE we can "or" the two's complement of the value with itself. For EQ, we take the one's complement of that "or", which is an extra insn, so we only handle EQ if branches are expensive. */ if (tem == 0 && (code == NE || BRANCH_COST > 1)) { if (rtx_equal_p (subtarget, op0)) subtarget = 0; tem = expand_unop (mode, neg_optab, op0, subtarget, 0); tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0, OPTAB_WIDEN); if (tem && code == EQ) tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0); } } if (tem && normalizep) tem = expand_shift (RSHIFT_EXPR, mode, tem, size_int (GET_MODE_BITSIZE (mode) - 1), tem, normalizep == 1); if (tem && GET_MODE (tem) != target_mode) { convert_move (target, tem, 0); tem = target; } if (tem == 0) delete_insns_since (last); return tem; } emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label)); emit_move_insn (target, const1_rtx); emit_label (label); return target; }