/* Dwarf2 Call Frame Information helper routines. Copyright (C) 1992-2017 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "target.h" #include "function.h" #include "rtl.h" #include "tree.h" #include "tree-pass.h" #include "memmodel.h" #include "tm_p.h" #include "emit-rtl.h" #include "stor-layout.h" #include "cfgbuild.h" #include "dwarf2out.h" #include "dwarf2asm.h" #include "common/common-target.h" #include "except.h" /* expand_builtin_dwarf_sp_column */ #include "expr.h" /* init_return_column_size */ #include "output.h" /* asm_out_file */ #include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */ /* ??? Poison these here until it can be done generically. They've been totally replaced in this file; make sure it stays that way. */ #undef DWARF2_UNWIND_INFO #undef DWARF2_FRAME_INFO #if (GCC_VERSION >= 3000) #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO #endif #ifndef INCOMING_RETURN_ADDR_RTX #define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX) #endif /* Maximum size (in bytes) of an artificially generated label. */ #define MAX_ARTIFICIAL_LABEL_BYTES 30 /* A collected description of an entire row of the abstract CFI table. */ struct GTY(()) dw_cfi_row { /* The expression that computes the CFA, expressed in two different ways. The CFA member for the simple cases, and the full CFI expression for the complex cases. The later will be a DW_CFA_cfa_expression. */ dw_cfa_location cfa; dw_cfi_ref cfa_cfi; /* The expressions for any register column that is saved. */ cfi_vec reg_save; }; /* The caller's ORIG_REG is saved in SAVED_IN_REG. */ struct GTY(()) reg_saved_in_data { rtx orig_reg; rtx saved_in_reg; }; /* Since we no longer have a proper CFG, we're going to create a facsimile of one on the fly while processing the frame-related insns. We create dw_trace_info structures for each extended basic block beginning and ending at a "save point". Save points are labels, barriers, certain notes, and of course the beginning and end of the function. As we encounter control transfer insns, we propagate the "current" row state across the edges to the starts of traces. When checking is enabled, we validate that we propagate the same data from all sources. All traces are members of the TRACE_INFO array, in the order in which they appear in the instruction stream. All save points are present in the TRACE_INDEX hash, mapping the insn starting a trace to the dw_trace_info describing the trace. */ struct dw_trace_info { /* The insn that begins the trace. */ rtx_insn *head; /* The row state at the beginning and end of the trace. */ dw_cfi_row *beg_row, *end_row; /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find while scanning insns. However, the args_size value is irrelevant at any point except can_throw_internal_p insns. Therefore the "delay" sizes the values that must actually be emitted for this trace. */ HOST_WIDE_INT beg_true_args_size, end_true_args_size; HOST_WIDE_INT beg_delay_args_size, end_delay_args_size; /* The first EH insn in the trace, where beg_delay_args_size must be set. */ rtx_insn *eh_head; /* The following variables contain data used in interpreting frame related expressions. These are not part of the "real" row state as defined by Dwarf, but it seems like they need to be propagated into a trace in case frame related expressions have been sunk. */ /* ??? This seems fragile. These variables are fragments of a larger expression. If we do not keep the entire expression together, we risk not being able to put it together properly. Consider forcing targets to generate self-contained expressions and dropping all of the magic interpretation code in this file. Or at least refusing to shrink wrap any frame related insn that doesn't contain a complete expression. */ /* The register used for saving registers to the stack, and its offset from the CFA. */ dw_cfa_location cfa_store; /* A temporary register holding an integral value used in adjusting SP or setting up the store_reg. The "offset" field holds the integer value, not an offset. */ dw_cfa_location cfa_temp; /* A set of registers saved in other registers. This is the inverse of the row->reg_save info, if the entry is a DW_CFA_register. This is implemented as a flat array because it normally contains zero or 1 entry, depending on the target. IA-64 is the big spender here, using a maximum of 5 entries. */ vec regs_saved_in_regs; /* An identifier for this trace. Used only for debugging dumps. */ unsigned id; /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */ bool switch_sections; /* True if we've seen different values incoming to beg_true_args_size. */ bool args_size_undefined; }; /* Hashtable helpers. */ struct trace_info_hasher : nofree_ptr_hash { static inline hashval_t hash (const dw_trace_info *); static inline bool equal (const dw_trace_info *, const dw_trace_info *); }; inline hashval_t trace_info_hasher::hash (const dw_trace_info *ti) { return INSN_UID (ti->head); } inline bool trace_info_hasher::equal (const dw_trace_info *a, const dw_trace_info *b) { return a->head == b->head; } /* The variables making up the pseudo-cfg, as described above. */ static vec trace_info; static vec trace_work_list; static hash_table *trace_index; /* A vector of call frame insns for the CIE. */ cfi_vec cie_cfi_vec; /* The state of the first row of the FDE table, which includes the state provided by the CIE. */ static GTY(()) dw_cfi_row *cie_cfi_row; static GTY(()) reg_saved_in_data *cie_return_save; static GTY(()) unsigned long dwarf2out_cfi_label_num; /* The insn after which a new CFI note should be emitted. */ static rtx_insn *add_cfi_insn; /* When non-null, add_cfi will add the CFI to this vector. */ static cfi_vec *add_cfi_vec; /* The current instruction trace. */ static dw_trace_info *cur_trace; /* The current, i.e. most recently generated, row of the CFI table. */ static dw_cfi_row *cur_row; /* A copy of the current CFA, for use during the processing of a single insn. */ static dw_cfa_location *cur_cfa; /* We delay emitting a register save until either (a) we reach the end of the prologue or (b) the register is clobbered. This clusters register saves so that there are fewer pc advances. */ struct queued_reg_save { rtx reg; rtx saved_reg; HOST_WIDE_INT cfa_offset; }; static vec queued_reg_saves; /* True if any CFI directives were emitted at the current insn. */ static bool any_cfis_emitted; /* Short-hand for commonly used register numbers. */ static unsigned dw_stack_pointer_regnum; static unsigned dw_frame_pointer_regnum; /* Hook used by __throw. */ rtx expand_builtin_dwarf_sp_column (void) { unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM); return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1)); } /* MEM is a memory reference for the register size table, each element of which has mode MODE. Initialize column C as a return address column. */ static void init_return_column_size (machine_mode mode, rtx mem, unsigned int c) { HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode); HOST_WIDE_INT size = GET_MODE_SIZE (Pmode); emit_move_insn (adjust_address (mem, mode, offset), gen_int_mode (size, mode)); } /* Datastructure used by expand_builtin_init_dwarf_reg_sizes and init_one_dwarf_reg_size to communicate on what has been done by the latter. */ struct init_one_dwarf_reg_state { /* Whether the dwarf return column was initialized. */ bool wrote_return_column; /* For each hard register REGNO, whether init_one_dwarf_reg_size was given REGNO to process already. */ bool processed_regno [FIRST_PSEUDO_REGISTER]; }; /* Helper for expand_builtin_init_dwarf_reg_sizes. Generate code to initialize the dwarf register size table entry corresponding to register REGNO in REGMODE. TABLE is the table base address, SLOTMODE is the mode to use for the size entry to initialize, and INIT_STATE is the communication datastructure conveying what we're doing to our caller. */ static void init_one_dwarf_reg_size (int regno, machine_mode regmode, rtx table, machine_mode slotmode, init_one_dwarf_reg_state *init_state) { const unsigned int dnum = DWARF_FRAME_REGNUM (regno); const unsigned int rnum = DWARF2_FRAME_REG_OUT (dnum, 1); const unsigned int dcol = DWARF_REG_TO_UNWIND_COLUMN (rnum); const HOST_WIDE_INT slotoffset = dcol * GET_MODE_SIZE (slotmode); const HOST_WIDE_INT regsize = GET_MODE_SIZE (regmode); init_state->processed_regno[regno] = true; if (rnum >= DWARF_FRAME_REGISTERS) return; if (dnum == DWARF_FRAME_RETURN_COLUMN) { if (regmode == VOIDmode) return; init_state->wrote_return_column = true; } if (slotoffset < 0) return; emit_move_insn (adjust_address (table, slotmode, slotoffset), gen_int_mode (regsize, slotmode)); } /* Generate code to initialize the dwarf register size table located at the provided ADDRESS. */ void expand_builtin_init_dwarf_reg_sizes (tree address) { unsigned int i; machine_mode mode = TYPE_MODE (char_type_node); rtx addr = expand_normal (address); rtx mem = gen_rtx_MEM (BLKmode, addr); init_one_dwarf_reg_state init_state; memset ((char *)&init_state, 0, sizeof (init_state)); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { machine_mode save_mode; rtx span; /* No point in processing a register multiple times. This could happen with register spans, e.g. when a reg is first processed as a piece of a span, then as a register on its own later on. */ if (init_state.processed_regno[i]) continue; save_mode = targetm.dwarf_frame_reg_mode (i); span = targetm.dwarf_register_span (gen_rtx_REG (save_mode, i)); if (!span) init_one_dwarf_reg_size (i, save_mode, mem, mode, &init_state); else { for (int si = 0; si < XVECLEN (span, 0); si++) { rtx reg = XVECEXP (span, 0, si); init_one_dwarf_reg_size (REGNO (reg), GET_MODE (reg), mem, mode, &init_state); } } } if (!init_state.wrote_return_column) init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN); #ifdef DWARF_ALT_FRAME_RETURN_COLUMN init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN); #endif targetm.init_dwarf_reg_sizes_extra (address); } static dw_trace_info * get_trace_info (rtx_insn *insn) { dw_trace_info dummy; dummy.head = insn; return trace_index->find_with_hash (&dummy, INSN_UID (insn)); } static bool save_point_p (rtx_insn *insn) { /* Labels, except those that are really jump tables. */ if (LABEL_P (insn)) return inside_basic_block_p (insn); /* We split traces at the prologue/epilogue notes because those are points at which the unwind info is usually stable. This makes it easier to find spots with identical unwind info so that we can use remember/restore_state opcodes. */ if (NOTE_P (insn)) switch (NOTE_KIND (insn)) { case NOTE_INSN_PROLOGUE_END: case NOTE_INSN_EPILOGUE_BEG: return true; } return false; } /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */ static inline HOST_WIDE_INT div_data_align (HOST_WIDE_INT off) { HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT; gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off); return r; } /* Return true if we need a signed version of a given opcode (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */ static inline bool need_data_align_sf_opcode (HOST_WIDE_INT off) { return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0; } /* Return a pointer to a newly allocated Call Frame Instruction. */ static inline dw_cfi_ref new_cfi (void) { dw_cfi_ref cfi = ggc_alloc (); cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0; cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0; return cfi; } /* Return a newly allocated CFI row, with no defined data. */ static dw_cfi_row * new_cfi_row (void) { dw_cfi_row *row = ggc_cleared_alloc (); row->cfa.reg = INVALID_REGNUM; return row; } /* Return a copy of an existing CFI row. */ static dw_cfi_row * copy_cfi_row (dw_cfi_row *src) { dw_cfi_row *dst = ggc_alloc (); *dst = *src; dst->reg_save = vec_safe_copy (src->reg_save); return dst; } /* Generate a new label for the CFI info to refer to. */ static char * dwarf2out_cfi_label (void) { int num = dwarf2out_cfi_label_num++; char label[20]; ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", num); return xstrdup (label); } /* Add CFI either to the current insn stream or to a vector, or both. */ static void add_cfi (dw_cfi_ref cfi) { any_cfis_emitted = true; if (add_cfi_insn != NULL) { add_cfi_insn = emit_note_after (NOTE_INSN_CFI, add_cfi_insn); NOTE_CFI (add_cfi_insn) = cfi; } if (add_cfi_vec != NULL) vec_safe_push (*add_cfi_vec, cfi); } static void add_cfi_args_size (HOST_WIDE_INT size) { dw_cfi_ref cfi = new_cfi (); /* While we can occasionally have args_size < 0 internally, this state should not persist at a point we actually need an opcode. */ gcc_assert (size >= 0); cfi->dw_cfi_opc = DW_CFA_GNU_args_size; cfi->dw_cfi_oprnd1.dw_cfi_offset = size; add_cfi (cfi); } static void add_cfi_restore (unsigned reg) { dw_cfi_ref cfi = new_cfi (); cfi->dw_cfi_opc = (reg & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore); cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg; add_cfi (cfi); } /* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating that the register column is no longer saved. */ static void update_row_reg_save (dw_cfi_row *row, unsigned column, dw_cfi_ref cfi) { if (vec_safe_length (row->reg_save) <= column) vec_safe_grow_cleared (row->reg_save, column + 1); (*row->reg_save)[column] = cfi; } /* This function fills in aa dw_cfa_location structure from a dwarf location descriptor sequence. */ static void get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_node *loc) { struct dw_loc_descr_node *ptr; cfa->offset = 0; cfa->base_offset = 0; cfa->indirect = 0; cfa->reg = -1; for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next) { enum dwarf_location_atom op = ptr->dw_loc_opc; switch (op) { case DW_OP_reg0: case DW_OP_reg1: case DW_OP_reg2: case DW_OP_reg3: case DW_OP_reg4: case DW_OP_reg5: case DW_OP_reg6: case DW_OP_reg7: case DW_OP_reg8: case DW_OP_reg9: case DW_OP_reg10: case DW_OP_reg11: case DW_OP_reg12: case DW_OP_reg13: case DW_OP_reg14: case DW_OP_reg15: case DW_OP_reg16: case DW_OP_reg17: case DW_OP_reg18: case DW_OP_reg19: case DW_OP_reg20: case DW_OP_reg21: case DW_OP_reg22: case DW_OP_reg23: case DW_OP_reg24: case DW_OP_reg25: case DW_OP_reg26: case DW_OP_reg27: case DW_OP_reg28: case DW_OP_reg29: case DW_OP_reg30: case DW_OP_reg31: cfa->reg = op - DW_OP_reg0; break; case DW_OP_regx: cfa->reg = ptr->dw_loc_oprnd1.v.val_int; break; case DW_OP_breg0: case DW_OP_breg1: case DW_OP_breg2: case DW_OP_breg3: case DW_OP_breg4: case DW_OP_breg5: case DW_OP_breg6: case DW_OP_breg7: case DW_OP_breg8: case DW_OP_breg9: case DW_OP_breg10: case DW_OP_breg11: case DW_OP_breg12: case DW_OP_breg13: case DW_OP_breg14: case DW_OP_breg15: case DW_OP_breg16: case DW_OP_breg17: case DW_OP_breg18: case DW_OP_breg19: case DW_OP_breg20: case DW_OP_breg21: case DW_OP_breg22: case DW_OP_breg23: case DW_OP_breg24: case DW_OP_breg25: case DW_OP_breg26: case DW_OP_breg27: case DW_OP_breg28: case DW_OP_breg29: case DW_OP_breg30: case DW_OP_breg31: cfa->reg = op - DW_OP_breg0; cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int; break; case DW_OP_bregx: cfa->reg = ptr->dw_loc_oprnd1.v.val_int; cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int; break; case DW_OP_deref: cfa->indirect = 1; break; case DW_OP_plus_uconst: cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned; break; default: gcc_unreachable (); } } } /* Find the previous value for the CFA, iteratively. CFI is the opcode to interpret, *LOC will be updated as necessary, *REMEMBER is used for one level of remember/restore state processing. */ void lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember) { switch (cfi->dw_cfi_opc) { case DW_CFA_def_cfa_offset: case DW_CFA_def_cfa_offset_sf: loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset; break; case DW_CFA_def_cfa_register: loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num; break; case DW_CFA_def_cfa: case DW_CFA_def_cfa_sf: loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num; loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset; break; case DW_CFA_def_cfa_expression: get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc); break; case DW_CFA_remember_state: gcc_assert (!remember->in_use); *remember = *loc; remember->in_use = 1; break; case DW_CFA_restore_state: gcc_assert (remember->in_use); *loc = *remember; remember->in_use = 0; break; default: break; } } /* Determine if two dw_cfa_location structures define the same data. */ bool cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2) { return (loc1->reg == loc2->reg && loc1->offset == loc2->offset && loc1->indirect == loc2->indirect && (loc1->indirect == 0 || loc1->base_offset == loc2->base_offset)); } /* Determine if two CFI operands are identical. */ static bool cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t, dw_cfi_oprnd *a, dw_cfi_oprnd *b) { switch (t) { case dw_cfi_oprnd_unused: return true; case dw_cfi_oprnd_reg_num: return a->dw_cfi_reg_num == b->dw_cfi_reg_num; case dw_cfi_oprnd_offset: return a->dw_cfi_offset == b->dw_cfi_offset; case dw_cfi_oprnd_addr: return (a->dw_cfi_addr == b->dw_cfi_addr || strcmp (a->dw_cfi_addr, b->dw_cfi_addr) == 0); case dw_cfi_oprnd_loc: return loc_descr_equal_p (a->dw_cfi_loc, b->dw_cfi_loc); } gcc_unreachable (); } /* Determine if two CFI entries are identical. */ static bool cfi_equal_p (dw_cfi_ref a, dw_cfi_ref b) { enum dwarf_call_frame_info opc; /* Make things easier for our callers, including missing operands. */ if (a == b) return true; if (a == NULL || b == NULL) return false; /* Obviously, the opcodes must match. */ opc = a->dw_cfi_opc; if (opc != b->dw_cfi_opc) return false; /* Compare the two operands, re-using the type of the operands as already exposed elsewhere. */ return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc), &a->dw_cfi_oprnd1, &b->dw_cfi_oprnd1) && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc), &a->dw_cfi_oprnd2, &b->dw_cfi_oprnd2)); } /* Determine if two CFI_ROW structures are identical. */ static bool cfi_row_equal_p (dw_cfi_row *a, dw_cfi_row *b) { size_t i, n_a, n_b, n_max; if (a->cfa_cfi) { if (!cfi_equal_p (a->cfa_cfi, b->cfa_cfi)) return false; } else if (!cfa_equal_p (&a->cfa, &b->cfa)) return false; n_a = vec_safe_length (a->reg_save); n_b = vec_safe_length (b->reg_save); n_max = MAX (n_a, n_b); for (i = 0; i < n_max; ++i) { dw_cfi_ref r_a = NULL, r_b = NULL; if (i < n_a) r_a = (*a->reg_save)[i]; if (i < n_b) r_b = (*b->reg_save)[i]; if (!cfi_equal_p (r_a, r_b)) return false; } return true; } /* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining what opcode to emit. Returns the CFI opcode to effect the change, or NULL if NEW_CFA == OLD_CFA. */ static dw_cfi_ref def_cfa_0 (dw_cfa_location *old_cfa, dw_cfa_location *new_cfa) { dw_cfi_ref cfi; /* If nothing changed, no need to issue any call frame instructions. */ if (cfa_equal_p (old_cfa, new_cfa)) return NULL; cfi = new_cfi (); if (new_cfa->reg == old_cfa->reg && !new_cfa->indirect && !old_cfa->indirect) { /* Construct a "DW_CFA_def_cfa_offset " instruction, indicating the CFA register did not change but the offset did. The data factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or in the assembler via the .cfi_def_cfa_offset directive. */ if (new_cfa->offset < 0) cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf; else cfi->dw_cfi_opc = DW_CFA_def_cfa_offset; cfi->dw_cfi_oprnd1.dw_cfi_offset = new_cfa->offset; } else if (new_cfa->offset == old_cfa->offset && old_cfa->reg != INVALID_REGNUM && !new_cfa->indirect && !old_cfa->indirect) { /* Construct a "DW_CFA_def_cfa_register " instruction, indicating the CFA register has changed to but the offset has not changed. */ cfi->dw_cfi_opc = DW_CFA_def_cfa_register; cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg; } else if (new_cfa->indirect == 0) { /* Construct a "DW_CFA_def_cfa " instruction, indicating the CFA register has changed to with the specified offset. The data factoring for DW_CFA_def_cfa_sf happens in output_cfi, or in the assembler via the .cfi_def_cfa directive. */ if (new_cfa->offset < 0) cfi->dw_cfi_opc = DW_CFA_def_cfa_sf; else cfi->dw_cfi_opc = DW_CFA_def_cfa; cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg; cfi->dw_cfi_oprnd2.dw_cfi_offset = new_cfa->offset; } else { /* Construct a DW_CFA_def_cfa_expression instruction to calculate the CFA using a full location expression since no register-offset pair is available. */ struct dw_loc_descr_node *loc_list; cfi->dw_cfi_opc = DW_CFA_def_cfa_expression; loc_list = build_cfa_loc (new_cfa, 0); cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list; } return cfi; } /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */ static void def_cfa_1 (dw_cfa_location *new_cfa) { dw_cfi_ref cfi; if (cur_trace->cfa_store.reg == new_cfa->reg && new_cfa->indirect == 0) cur_trace->cfa_store.offset = new_cfa->offset; cfi = def_cfa_0 (&cur_row->cfa, new_cfa); if (cfi) { cur_row->cfa = *new_cfa; cur_row->cfa_cfi = (cfi->dw_cfi_opc == DW_CFA_def_cfa_expression ? cfi : NULL); add_cfi (cfi); } } /* Add the CFI for saving a register. REG is the CFA column number. If SREG is -1, the register is saved at OFFSET from the CFA; otherwise it is saved in SREG. */ static void reg_save (unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset) { dw_fde_ref fde = cfun ? cfun->fde : NULL; dw_cfi_ref cfi = new_cfi (); cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg; /* When stack is aligned, store REG using DW_CFA_expression with FP. */ if (fde && fde->stack_realign && sreg == INVALID_REGNUM) { cfi->dw_cfi_opc = DW_CFA_expression; cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg; cfi->dw_cfi_oprnd2.dw_cfi_loc = build_cfa_aligned_loc (&cur_row->cfa, offset, fde->stack_realignment); } else if (sreg == INVALID_REGNUM) { if (need_data_align_sf_opcode (offset)) cfi->dw_cfi_opc = DW_CFA_offset_extended_sf; else if (reg & ~0x3f) cfi->dw_cfi_opc = DW_CFA_offset_extended; else cfi->dw_cfi_opc = DW_CFA_offset; cfi->dw_cfi_oprnd2.dw_cfi_offset = offset; } else if (sreg == reg) { /* While we could emit something like DW_CFA_same_value or DW_CFA_restore, we never expect to see something like that in a prologue. This is more likely to be a bug. A backend can always bypass this by using REG_CFA_RESTORE directly. */ gcc_unreachable (); } else { cfi->dw_cfi_opc = DW_CFA_register; cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg; } add_cfi (cfi); update_row_reg_save (cur_row, reg, cfi); } /* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note and adjust data structures to match. */ static void notice_args_size (rtx_insn *insn) { HOST_WIDE_INT args_size, delta; rtx note; note = find_reg_note (insn, REG_ARGS_SIZE, NULL); if (note == NULL) return; args_size = INTVAL (XEXP (note, 0)); delta = args_size - cur_trace->end_true_args_size; if (delta == 0) return; cur_trace->end_true_args_size = args_size; /* If the CFA is computed off the stack pointer, then we must adjust the computation of the CFA as well. */ if (cur_cfa->reg == dw_stack_pointer_regnum) { gcc_assert (!cur_cfa->indirect); /* Convert a change in args_size (always a positive in the direction of stack growth) to a change in stack pointer. */ if (!STACK_GROWS_DOWNWARD) delta = -delta; cur_cfa->offset += delta; } } /* A subroutine of scan_trace. INSN is can_throw_internal. Update the data within the trace related to EH insns and args_size. */ static void notice_eh_throw (rtx_insn *insn) { HOST_WIDE_INT args_size; args_size = cur_trace->end_true_args_size; if (cur_trace->eh_head == NULL) { cur_trace->eh_head = insn; cur_trace->beg_delay_args_size = args_size; cur_trace->end_delay_args_size = args_size; } else if (cur_trace->end_delay_args_size != args_size) { cur_trace->end_delay_args_size = args_size; /* ??? If the CFA is the stack pointer, search backward for the last CFI note and insert there. Given that the stack changed for the args_size change, there *must* be such a note in between here and the last eh insn. */ add_cfi_args_size (args_size); } } /* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */ /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is used in places where rtl is prohibited. */ static inline unsigned dwf_regno (const_rtx reg) { gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER); return DWARF_FRAME_REGNUM (REGNO (reg)); } /* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */ static bool compare_reg_or_pc (rtx x, rtx y) { if (REG_P (x) && REG_P (y)) return REGNO (x) == REGNO (y); return x == y; } /* Record SRC as being saved in DEST. DEST may be null to delete an existing entry. SRC may be a register or PC_RTX. */ static void record_reg_saved_in_reg (rtx dest, rtx src) { reg_saved_in_data *elt; size_t i; FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, elt) if (compare_reg_or_pc (elt->orig_reg, src)) { if (dest == NULL) cur_trace->regs_saved_in_regs.unordered_remove (i); else elt->saved_in_reg = dest; return; } if (dest == NULL) return; reg_saved_in_data e = {src, dest}; cur_trace->regs_saved_in_regs.safe_push (e); } /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */ static void queue_reg_save (rtx reg, rtx sreg, HOST_WIDE_INT offset) { queued_reg_save *q; queued_reg_save e = {reg, sreg, offset}; size_t i; /* Duplicates waste space, but it's also necessary to remove them for correctness, since the queue gets output in reverse order. */ FOR_EACH_VEC_ELT (queued_reg_saves, i, q) if (compare_reg_or_pc (q->reg, reg)) { *q = e; return; } queued_reg_saves.safe_push (e); } /* Output all the entries in QUEUED_REG_SAVES. */ static void dwarf2out_flush_queued_reg_saves (void) { queued_reg_save *q; size_t i; FOR_EACH_VEC_ELT (queued_reg_saves, i, q) { unsigned int reg, sreg; record_reg_saved_in_reg (q->saved_reg, q->reg); if (q->reg == pc_rtx) reg = DWARF_FRAME_RETURN_COLUMN; else reg = dwf_regno (q->reg); if (q->saved_reg) sreg = dwf_regno (q->saved_reg); else sreg = INVALID_REGNUM; reg_save (reg, sreg, q->cfa_offset); } queued_reg_saves.truncate (0); } /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved location for? Or, does it clobber a register which we've previously said that some other register is saved in, and for which we now have a new location for? */ static bool clobbers_queued_reg_save (const_rtx insn) { queued_reg_save *q; size_t iq; FOR_EACH_VEC_ELT (queued_reg_saves, iq, q) { size_t ir; reg_saved_in_data *rir; if (modified_in_p (q->reg, insn)) return true; FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, ir, rir) if (compare_reg_or_pc (q->reg, rir->orig_reg) && modified_in_p (rir->saved_in_reg, insn)) return true; } return false; } /* What register, if any, is currently saved in REG? */ static rtx reg_saved_in (rtx reg) { unsigned int regn = REGNO (reg); queued_reg_save *q; reg_saved_in_data *rir; size_t i; FOR_EACH_VEC_ELT (queued_reg_saves, i, q) if (q->saved_reg && regn == REGNO (q->saved_reg)) return q->reg; FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, rir) if (regn == REGNO (rir->saved_in_reg)) return rir->orig_reg; return NULL_RTX; } /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */ static void dwarf2out_frame_debug_def_cfa (rtx pat) { memset (cur_cfa, 0, sizeof (*cur_cfa)); if (GET_CODE (pat) == PLUS) { cur_cfa->offset = INTVAL (XEXP (pat, 1)); pat = XEXP (pat, 0); } if (MEM_P (pat)) { cur_cfa->indirect = 1; pat = XEXP (pat, 0); if (GET_CODE (pat) == PLUS) { cur_cfa->base_offset = INTVAL (XEXP (pat, 1)); pat = XEXP (pat, 0); } } /* ??? If this fails, we could be calling into the _loc functions to define a full expression. So far no port does that. */ gcc_assert (REG_P (pat)); cur_cfa->reg = dwf_regno (pat); } /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */ static void dwarf2out_frame_debug_adjust_cfa (rtx pat) { rtx src, dest; gcc_assert (GET_CODE (pat) == SET); dest = XEXP (pat, 0); src = XEXP (pat, 1); switch (GET_CODE (src)) { case PLUS: gcc_assert (dwf_regno (XEXP (src, 0)) == cur_cfa->reg); cur_cfa->offset -= INTVAL (XEXP (src, 1)); break; case REG: break; default: gcc_unreachable (); } cur_cfa->reg = dwf_regno (dest); gcc_assert (cur_cfa->indirect == 0); } /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */ static void dwarf2out_frame_debug_cfa_offset (rtx set) { HOST_WIDE_INT offset; rtx src, addr, span; unsigned int sregno; src = XEXP (set, 1); addr = XEXP (set, 0); gcc_assert (MEM_P (addr)); addr = XEXP (addr, 0); /* As documented, only consider extremely simple addresses. */ switch (GET_CODE (addr)) { case REG: gcc_assert (dwf_regno (addr) == cur_cfa->reg); offset = -cur_cfa->offset; break; case PLUS: gcc_assert (dwf_regno (XEXP (addr, 0)) == cur_cfa->reg); offset = INTVAL (XEXP (addr, 1)) - cur_cfa->offset; break; default: gcc_unreachable (); } if (src == pc_rtx) { span = NULL; sregno = DWARF_FRAME_RETURN_COLUMN; } else { span = targetm.dwarf_register_span (src); sregno = dwf_regno (src); } /* ??? We'd like to use queue_reg_save, but we need to come up with a different flushing heuristic for epilogues. */ if (!span) reg_save (sregno, INVALID_REGNUM, offset); else { /* We have a PARALLEL describing where the contents of SRC live. Adjust the offset for each piece of the PARALLEL. */ HOST_WIDE_INT span_offset = offset; gcc_assert (GET_CODE (span) == PARALLEL); const int par_len = XVECLEN (span, 0); for (int par_index = 0; par_index < par_len; par_index++) { rtx elem = XVECEXP (span, 0, par_index); sregno = dwf_regno (src); reg_save (sregno, INVALID_REGNUM, span_offset); span_offset += GET_MODE_SIZE (GET_MODE (elem)); } } } /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */ static void dwarf2out_frame_debug_cfa_register (rtx set) { rtx src, dest; unsigned sregno, dregno; src = XEXP (set, 1); dest = XEXP (set, 0); record_reg_saved_in_reg (dest, src); if (src == pc_rtx) sregno = DWARF_FRAME_RETURN_COLUMN; else sregno = dwf_regno (src); dregno = dwf_regno (dest); /* ??? We'd like to use queue_reg_save, but we need to come up with a different flushing heuristic for epilogues. */ reg_save (sregno, dregno, 0); } /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */ static void dwarf2out_frame_debug_cfa_expression (rtx set) { rtx src, dest, span; dw_cfi_ref cfi = new_cfi (); unsigned regno; dest = SET_DEST (set); src = SET_SRC (set); gcc_assert (REG_P (src)); gcc_assert (MEM_P (dest)); span = targetm.dwarf_register_span (src); gcc_assert (!span); regno = dwf_regno (src); cfi->dw_cfi_opc = DW_CFA_expression; cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno; cfi->dw_cfi_oprnd2.dw_cfi_loc = mem_loc_descriptor (XEXP (dest, 0), get_address_mode (dest), GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED); /* ??? We'd like to use queue_reg_save, were the interface different, and, as above, we could manage flushing for epilogues. */ add_cfi (cfi); update_row_reg_save (cur_row, regno, cfi); } /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_VAL_EXPRESSION note. */ static void dwarf2out_frame_debug_cfa_val_expression (rtx set) { rtx dest = SET_DEST (set); gcc_assert (REG_P (dest)); rtx span = targetm.dwarf_register_span (dest); gcc_assert (!span); rtx src = SET_SRC (set); dw_cfi_ref cfi = new_cfi (); cfi->dw_cfi_opc = DW_CFA_val_expression; cfi->dw_cfi_oprnd1.dw_cfi_reg_num = dwf_regno (dest); cfi->dw_cfi_oprnd2.dw_cfi_loc = mem_loc_descriptor (src, GET_MODE (src), GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED); add_cfi (cfi); update_row_reg_save (cur_row, dwf_regno (dest), cfi); } /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */ static void dwarf2out_frame_debug_cfa_restore (rtx reg) { gcc_assert (REG_P (reg)); rtx span = targetm.dwarf_register_span (reg); if (!span) { unsigned int regno = dwf_regno (reg); add_cfi_restore (regno); update_row_reg_save (cur_row, regno, NULL); } else { /* We have a PARALLEL describing where the contents of REG live. Restore the register for each piece of the PARALLEL. */ gcc_assert (GET_CODE (span) == PARALLEL); const int par_len = XVECLEN (span, 0); for (int par_index = 0; par_index < par_len; par_index++) { reg = XVECEXP (span, 0, par_index); gcc_assert (REG_P (reg)); unsigned int regno = dwf_regno (reg); add_cfi_restore (regno); update_row_reg_save (cur_row, regno, NULL); } } } /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE. ??? Perhaps we should note in the CIE where windows are saved (instead of assuming 0(cfa)) and what registers are in the window. */ static void dwarf2out_frame_debug_cfa_window_save (void) { dw_cfi_ref cfi = new_cfi (); cfi->dw_cfi_opc = DW_CFA_GNU_window_save; add_cfi (cfi); } /* Record call frame debugging information for an expression EXPR, which either sets SP or FP (adjusting how we calculate the frame address) or saves a register to the stack or another register. LABEL indicates the address of EXPR. This function encodes a state machine mapping rtxes to actions on cfa, cfa_store, and cfa_temp.reg. We describe these rules so users need not read the source code. The High-Level Picture Changes in the register we use to calculate the CFA: Currently we assume that if you copy the CFA register into another register, we should take the other one as the new CFA register; this seems to work pretty well. If it's wrong for some target, it's simple enough not to set RTX_FRAME_RELATED_P on the insn in question. Changes in the register we use for saving registers to the stack: This is usually SP, but not always. Again, we deduce that if you copy SP into another register (and SP is not the CFA register), then the new register is the one we will be using for register saves. This also seems to work. Register saves: There's not much guesswork about this one; if RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a register save, and the register used to calculate the destination had better be the one we think we're using for this purpose. It's also assumed that a copy from a call-saved register to another register is saving that register if RTX_FRAME_RELATED_P is set on that instruction. If the copy is from a call-saved register to the *same* register, that means that the register is now the same value as in the caller. Except: If the register being saved is the CFA register, and the offset is nonzero, we are saving the CFA, so we assume we have to use DW_CFA_def_cfa_expression. If the offset is 0, we assume that the intent is to save the value of SP from the previous frame. In addition, if a register has previously been saved to a different register, Invariants / Summaries of Rules cfa current rule for calculating the CFA. It usually consists of a register and an offset. This is actually stored in *cur_cfa, but abbreviated for the purposes of this documentation. cfa_store register used by prologue code to save things to the stack cfa_store.offset is the offset from the value of cfa_store.reg to the actual CFA cfa_temp register holding an integral value. cfa_temp.offset stores the value, which will be used to adjust the stack pointer. cfa_temp is also used like cfa_store, to track stores to the stack via fp or a temp reg. Rules 1- 4: Setting a register's value to cfa.reg or an expression with cfa.reg as the first operand changes the cfa.reg and its cfa.offset. Rule 1 and 4 also set cfa_temp.reg and cfa_temp.offset. Rules 6- 9: Set a non-cfa.reg register value to a constant or an expression yielding a constant. This sets cfa_temp.reg and cfa_temp.offset. Rule 5: Create a new register cfa_store used to save items to the stack. Rules 10-14: Save a register to the stack. Define offset as the difference of the original location and cfa_store's location (or cfa_temp's location if cfa_temp is used). Rules 16-20: If AND operation happens on sp in prologue, we assume stack is realigned. We will use a group of DW_OP_XXX expressions to represent the location of the stored register instead of CFA+offset. The Rules "{a,b}" indicates a choice of a xor b. ":cfa.reg" indicates that must equal cfa.reg. Rule 1: (set :cfa.reg) effects: cfa.reg = cfa.offset unchanged cfa_temp.reg = cfa_temp.offset = cfa.offset Rule 2: (set sp ({minus,plus,losum} {sp,fp}:cfa.reg {,:cfa_temp.reg})) effects: cfa.reg = sp if fp used cfa.offset += {+/- , cfa_temp.offset} if cfa.reg==sp cfa_store.offset += {+/- , cfa_temp.offset} if cfa_store.reg==sp Rule 3: (set fp ({minus,plus,losum} :cfa.reg )) effects: cfa.reg = fp cfa_offset += +/- Rule 4: (set ({plus,losum} :cfa.reg )) constraints: != fp != sp effects: cfa.reg = cfa_temp.reg = cfa_temp.offset = cfa.offset Rule 5: (set (plus :cfa_temp.reg sp:cfa.reg)) constraints: != fp != sp effects: cfa_store.reg = cfa_store.offset = cfa.offset - cfa_temp.offset Rule 6: (set ) effects: cfa_temp.reg = cfa_temp.offset = Rule 7: (set :cfa_temp.reg (ior :cfa_temp.reg )) effects: cfa_temp.reg = cfa_temp.offset |= Rule 8: (set (high )) effects: none Rule 9: (set (lo_sum )) effects: cfa_temp.reg = cfa_temp.offset = Rule 10: (set (mem ({pre,post}_modify sp:cfa_store (???? ))) ) effects: cfa_store.offset -= cfa.offset = cfa_store.offset if cfa.reg == sp cfa.reg = sp cfa.base_offset = -cfa_store.offset Rule 11: (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) ) effects: cfa_store.offset += -/+ mode_size(mem) cfa.offset = cfa_store.offset if cfa.reg == sp cfa.reg = sp cfa.base_offset = -cfa_store.offset Rule 12: (set (mem ({minus,plus,losum} :{cfa_store,cfa_temp} )) ) effects: cfa.reg = cfa.base_offset = -/+ - {cfa_store,cfa_temp}.offset Rule 13: (set (mem :{cfa_store,cfa_temp}) ) effects: cfa.reg = cfa.base_offset = -{cfa_store,cfa_temp}.offset Rule 14: (set (mem (post_inc :cfa_temp )) ) effects: cfa.reg = cfa.base_offset = -cfa_temp.offset cfa_temp.offset -= mode_size(mem) Rule 15: (set {unspec, unspec_volatile}) effects: target-dependent Rule 16: (set sp (and: sp )) constraints: cfa_store.reg == sp effects: cfun->fde.stack_realign = 1 cfa_store.offset = 0 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp Rule 17: (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int)))) effects: cfa_store.offset += -/+ mode_size(mem) Rule 18: (set (mem ({pre_inc, pre_dec} sp)) fp) constraints: fde->stack_realign == 1 effects: cfa_store.offset = 0 cfa.reg != HARD_FRAME_POINTER_REGNUM Rule 19: (set (mem ({pre_inc, pre_dec} sp)) cfa.reg) constraints: fde->stack_realign == 1 && cfa.offset == 0 && cfa.indirect == 0 && cfa.reg != HARD_FRAME_POINTER_REGNUM effects: Use DW_CFA_def_cfa_expression to define cfa cfa.reg == fde->drap_reg */ static void dwarf2out_frame_debug_expr (rtx expr) { rtx src, dest, span; HOST_WIDE_INT offset; dw_fde_ref fde; /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of the PARALLEL independently. The first element is always processed if it is a SET. This is for backward compatibility. Other elements are processed only if they are SETs and the RTX_FRAME_RELATED_P flag is set in them. */ if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE) { int par_index; int limit = XVECLEN (expr, 0); rtx elem; /* PARALLELs have strict read-modify-write semantics, so we ought to evaluate every rvalue before changing any lvalue. It's cumbersome to do that in general, but there's an easy approximation that is enough for all current users: handle register saves before register assignments. */ if (GET_CODE (expr) == PARALLEL) for (par_index = 0; par_index < limit; par_index++) { elem = XVECEXP (expr, 0, par_index); if (GET_CODE (elem) == SET && MEM_P (SET_DEST (elem)) && (RTX_FRAME_RELATED_P (elem) || par_index == 0)) dwarf2out_frame_debug_expr (elem); } for (par_index = 0; par_index < limit; par_index++) { elem = XVECEXP (expr, 0, par_index); if (GET_CODE (elem) == SET && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE) && (RTX_FRAME_RELATED_P (elem) || par_index == 0)) dwarf2out_frame_debug_expr (elem); } return; } gcc_assert (GET_CODE (expr) == SET); src = SET_SRC (expr); dest = SET_DEST (expr); if (REG_P (src)) { rtx rsi = reg_saved_in (src); if (rsi) src = rsi; } fde = cfun->fde; switch (GET_CODE (dest)) { case REG: switch (GET_CODE (src)) { /* Setting FP from SP. */ case REG: if (cur_cfa->reg == dwf_regno (src)) { /* Rule 1 */ /* Update the CFA rule wrt SP or FP. Make sure src is relative to the current CFA register. We used to require that dest be either SP or FP, but the ARM copies SP to a temporary register, and from there to FP. So we just rely on the backends to only set RTX_FRAME_RELATED_P on appropriate insns. */ cur_cfa->reg = dwf_regno (dest); cur_trace->cfa_temp.reg = cur_cfa->reg; cur_trace->cfa_temp.offset = cur_cfa->offset; } else { /* Saving a register in a register. */ gcc_assert (!fixed_regs [REGNO (dest)] /* For the SPARC and its register window. */ || (dwf_regno (src) == DWARF_FRAME_RETURN_COLUMN)); /* After stack is aligned, we can only save SP in FP if drap register is used. In this case, we have to restore stack pointer with the CFA value and we don't generate this DWARF information. */ if (fde && fde->stack_realign && REGNO (src) == STACK_POINTER_REGNUM) gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM && fde->drap_reg != INVALID_REGNUM && cur_cfa->reg != dwf_regno (src)); else queue_reg_save (src, dest, 0); } break; case PLUS: case MINUS: case LO_SUM: if (dest == stack_pointer_rtx) { /* Rule 2 */ /* Adjusting SP. */ switch (GET_CODE (XEXP (src, 1))) { case CONST_INT: offset = INTVAL (XEXP (src, 1)); break; case REG: gcc_assert (dwf_regno (XEXP (src, 1)) == cur_trace->cfa_temp.reg); offset = cur_trace->cfa_temp.offset; break; default: gcc_unreachable (); } if (XEXP (src, 0) == hard_frame_pointer_rtx) { /* Restoring SP from FP in the epilogue. */ gcc_assert (cur_cfa->reg == dw_frame_pointer_regnum); cur_cfa->reg = dw_stack_pointer_regnum; } else if (GET_CODE (src) == LO_SUM) /* Assume we've set the source reg of the LO_SUM from sp. */ ; else gcc_assert (XEXP (src, 0) == stack_pointer_rtx); if (GET_CODE (src) != MINUS) offset = -offset; if (cur_cfa->reg == dw_stack_pointer_regnum) cur_cfa->offset += offset; if (cur_trace->cfa_store.reg == dw_stack_pointer_regnum) cur_trace->cfa_store.offset += offset; } else if (dest == hard_frame_pointer_rtx) { /* Rule 3 */ /* Either setting the FP from an offset of the SP, or adjusting the FP */ gcc_assert (frame_pointer_needed); gcc_assert (REG_P (XEXP (src, 0)) && dwf_regno (XEXP (src, 0)) == cur_cfa->reg && CONST_INT_P (XEXP (src, 1))); offset = INTVAL (XEXP (src, 1)); if (GET_CODE (src) != MINUS) offset = -offset; cur_cfa->offset += offset; cur_cfa->reg = dw_frame_pointer_regnum; } else { gcc_assert (GET_CODE (src) != MINUS); /* Rule 4 */ if (REG_P (XEXP (src, 0)) && dwf_regno (XEXP (src, 0)) == cur_cfa->reg && CONST_INT_P (XEXP (src, 1))) { /* Setting a temporary CFA register that will be copied into the FP later on. */ offset = - INTVAL (XEXP (src, 1)); cur_cfa->offset += offset; cur_cfa->reg = dwf_regno (dest); /* Or used to save regs to the stack. */ cur_trace->cfa_temp.reg = cur_cfa->reg; cur_trace->cfa_temp.offset = cur_cfa->offset; } /* Rule 5 */ else if (REG_P (XEXP (src, 0)) && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg && XEXP (src, 1) == stack_pointer_rtx) { /* Setting a scratch register that we will use instead of SP for saving registers to the stack. */ gcc_assert (cur_cfa->reg == dw_stack_pointer_regnum); cur_trace->cfa_store.reg = dwf_regno (dest); cur_trace->cfa_store.offset = cur_cfa->offset - cur_trace->cfa_temp.offset; } /* Rule 9 */ else if (GET_CODE (src) == LO_SUM && CONST_INT_P (XEXP (src, 1))) { cur_trace->cfa_temp.reg = dwf_regno (dest); cur_trace->cfa_temp.offset = INTVAL (XEXP (src, 1)); } else gcc_unreachable (); } break; /* Rule 6 */ case CONST_INT: cur_trace->cfa_temp.reg = dwf_regno (dest); cur_trace->cfa_temp.offset = INTVAL (src); break; /* Rule 7 */ case IOR: gcc_assert (REG_P (XEXP (src, 0)) && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg && CONST_INT_P (XEXP (src, 1))); cur_trace->cfa_temp.reg = dwf_regno (dest); cur_trace->cfa_temp.offset |= INTVAL (XEXP (src, 1)); break; /* Skip over HIGH, assuming it will be followed by a LO_SUM, which will fill in all of the bits. */ /* Rule 8 */ case HIGH: break; /* Rule 15 */ case UNSPEC: case UNSPEC_VOLATILE: /* All unspecs should be represented by REG_CFA_* notes. */ gcc_unreachable (); return; /* Rule 16 */ case AND: /* If this AND operation happens on stack pointer in prologue, we assume the stack is realigned and we extract the alignment. */ if (fde && XEXP (src, 0) == stack_pointer_rtx) { /* We interpret reg_save differently with stack_realign set. Thus we must flush whatever we have queued first. */ dwarf2out_flush_queued_reg_saves (); gcc_assert (cur_trace->cfa_store.reg == dwf_regno (XEXP (src, 0))); fde->stack_realign = 1; fde->stack_realignment = INTVAL (XEXP (src, 1)); cur_trace->cfa_store.offset = 0; if (cur_cfa->reg != dw_stack_pointer_regnum && cur_cfa->reg != dw_frame_pointer_regnum) fde->drap_reg = cur_cfa->reg; } return; default: gcc_unreachable (); } break; case MEM: /* Saving a register to the stack. Make sure dest is relative to the CFA register. */ switch (GET_CODE (XEXP (dest, 0))) { /* Rule 10 */ /* With a push. */ case PRE_MODIFY: case POST_MODIFY: /* We can't handle variable size modifications. */ gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) == CONST_INT); offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1)); gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM && cur_trace->cfa_store.reg == dw_stack_pointer_regnum); cur_trace->cfa_store.offset += offset; if (cur_cfa->reg == dw_stack_pointer_regnum) cur_cfa->offset = cur_trace->cfa_store.offset; if (GET_CODE (XEXP (dest, 0)) == POST_MODIFY) offset -= cur_trace->cfa_store.offset; else offset = -cur_trace->cfa_store.offset; break; /* Rule 11 */ case PRE_INC: case PRE_DEC: case POST_DEC: offset = GET_MODE_SIZE (GET_MODE (dest)); if (GET_CODE (XEXP (dest, 0)) == PRE_INC) offset = -offset; gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM) && cur_trace->cfa_store.reg == dw_stack_pointer_regnum); cur_trace->cfa_store.offset += offset; /* Rule 18: If stack is aligned, we will use FP as a reference to represent the address of the stored regiser. */ if (fde && fde->stack_realign && REG_P (src) && REGNO (src) == HARD_FRAME_POINTER_REGNUM) { gcc_assert (cur_cfa->reg != dw_frame_pointer_regnum); cur_trace->cfa_store.offset = 0; } if (cur_cfa->reg == dw_stack_pointer_regnum) cur_cfa->offset = cur_trace->cfa_store.offset; if (GET_CODE (XEXP (dest, 0)) == POST_DEC) offset += -cur_trace->cfa_store.offset; else offset = -cur_trace->cfa_store.offset; break; /* Rule 12 */ /* With an offset. */ case PLUS: case MINUS: case LO_SUM: { unsigned int regno; gcc_assert (CONST_INT_P (XEXP (XEXP (dest, 0), 1)) && REG_P (XEXP (XEXP (dest, 0), 0))); offset = INTVAL (XEXP (XEXP (dest, 0), 1)); if (GET_CODE (XEXP (dest, 0)) == MINUS) offset = -offset; regno = dwf_regno (XEXP (XEXP (dest, 0), 0)); if (cur_cfa->reg == regno) offset -= cur_cfa->offset; else if (cur_trace->cfa_store.reg == regno) offset -= cur_trace->cfa_store.offset; else { gcc_assert (cur_trace->cfa_temp.reg == regno); offset -= cur_trace->cfa_temp.offset; } } break; /* Rule 13 */ /* Without an offset. */ case REG: { unsigned int regno = dwf_regno (XEXP (dest, 0)); if (cur_cfa->reg == regno) offset = -cur_cfa->offset; else if (cur_trace->cfa_store.reg == regno) offset = -cur_trace->cfa_store.offset; else { gcc_assert (cur_trace->cfa_temp.reg == regno); offset = -cur_trace->cfa_temp.offset; } } break; /* Rule 14 */ case POST_INC: gcc_assert (cur_trace->cfa_temp.reg == dwf_regno (XEXP (XEXP (dest, 0), 0))); offset = -cur_trace->cfa_temp.offset; cur_trace->cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest)); break; default: gcc_unreachable (); } /* Rule 17 */ /* If the source operand of this MEM operation is a memory, we only care how much stack grew. */ if (MEM_P (src)) break; if (REG_P (src) && REGNO (src) != STACK_POINTER_REGNUM && REGNO (src) != HARD_FRAME_POINTER_REGNUM && dwf_regno (src) == cur_cfa->reg) { /* We're storing the current CFA reg into the stack. */ if (cur_cfa->offset == 0) { /* Rule 19 */ /* If stack is aligned, putting CFA reg into stack means we can no longer use reg + offset to represent CFA. Here we use DW_CFA_def_cfa_expression instead. The result of this expression equals to the original CFA value. */ if (fde && fde->stack_realign && cur_cfa->indirect == 0 && cur_cfa->reg != dw_frame_pointer_regnum) { gcc_assert (fde->drap_reg == cur_cfa->reg); cur_cfa->indirect = 1; cur_cfa->reg = dw_frame_pointer_regnum; cur_cfa->base_offset = offset; cur_cfa->offset = 0; fde->drap_reg_saved = 1; break; } /* If the source register is exactly the CFA, assume we're saving SP like any other register; this happens on the ARM. */ queue_reg_save (stack_pointer_rtx, NULL_RTX, offset); break; } else { /* Otherwise, we'll need to look in the stack to calculate the CFA. */ rtx x = XEXP (dest, 0); if (!REG_P (x)) x = XEXP (x, 0); gcc_assert (REG_P (x)); cur_cfa->reg = dwf_regno (x); cur_cfa->base_offset = offset; cur_cfa->indirect = 1; break; } } if (REG_P (src)) span = targetm.dwarf_register_span (src); else span = NULL; if (!span) queue_reg_save (src, NULL_RTX, offset); else { /* We have a PARALLEL describing where the contents of SRC live. Queue register saves for each piece of the PARALLEL. */ HOST_WIDE_INT span_offset = offset; gcc_assert (GET_CODE (span) == PARALLEL); const int par_len = XVECLEN (span, 0); for (int par_index = 0; par_index < par_len; par_index++) { rtx elem = XVECEXP (span, 0, par_index); queue_reg_save (elem, NULL_RTX, span_offset); span_offset += GET_MODE_SIZE (GET_MODE (elem)); } } break; default: gcc_unreachable (); } } /* Record call frame debugging information for INSN, which either sets SP or FP (adjusting how we calculate the frame address) or saves a register to the stack. */ static void dwarf2out_frame_debug (rtx_insn *insn) { rtx note, n, pat; bool handled_one = false; for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) switch (REG_NOTE_KIND (note)) { case REG_FRAME_RELATED_EXPR: pat = XEXP (note, 0); goto do_frame_expr; case REG_CFA_DEF_CFA: dwarf2out_frame_debug_def_cfa (XEXP (note, 0)); handled_one = true; break; case REG_CFA_ADJUST_CFA: n = XEXP (note, 0); if (n == NULL) { n = PATTERN (insn); if (GET_CODE (n) == PARALLEL) n = XVECEXP (n, 0, 0); } dwarf2out_frame_debug_adjust_cfa (n); handled_one = true; break; case REG_CFA_OFFSET: n = XEXP (note, 0); if (n == NULL) n = single_set (insn); dwarf2out_frame_debug_cfa_offset (n); handled_one = true; break; case REG_CFA_REGISTER: n = XEXP (note, 0); if (n == NULL) { n = PATTERN (insn); if (GET_CODE (n) == PARALLEL) n = XVECEXP (n, 0, 0); } dwarf2out_frame_debug_cfa_register (n); handled_one = true; break; case REG_CFA_EXPRESSION: case REG_CFA_VAL_EXPRESSION: n = XEXP (note, 0); if (n == NULL) n = single_set (insn); if (REG_NOTE_KIND (note) == REG_CFA_EXPRESSION) dwarf2out_frame_debug_cfa_expression (n); else dwarf2out_frame_debug_cfa_val_expression (n); handled_one = true; break; case REG_CFA_RESTORE: n = XEXP (note, 0); if (n == NULL) { n = PATTERN (insn); if (GET_CODE (n) == PARALLEL) n = XVECEXP (n, 0, 0); n = XEXP (n, 0); } dwarf2out_frame_debug_cfa_restore (n); handled_one = true; break; case REG_CFA_SET_VDRAP: n = XEXP (note, 0); if (REG_P (n)) { dw_fde_ref fde = cfun->fde; if (fde) { gcc_assert (fde->vdrap_reg == INVALID_REGNUM); if (REG_P (n)) fde->vdrap_reg = dwf_regno (n); } } handled_one = true; break; case REG_CFA_WINDOW_SAVE: dwarf2out_frame_debug_cfa_window_save (); handled_one = true; break; case REG_CFA_FLUSH_QUEUE: /* The actual flush happens elsewhere. */ handled_one = true; break; default: break; } if (!handled_one) { pat = PATTERN (insn); do_frame_expr: dwarf2out_frame_debug_expr (pat); /* Check again. A parallel can save and update the same register. We could probably check just once, here, but this is safer than removing the check at the start of the function. */ if (clobbers_queued_reg_save (pat)) dwarf2out_flush_queued_reg_saves (); } } /* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */ static void change_cfi_row (dw_cfi_row *old_row, dw_cfi_row *new_row) { size_t i, n_old, n_new, n_max; dw_cfi_ref cfi; if (new_row->cfa_cfi && !cfi_equal_p (old_row->cfa_cfi, new_row->cfa_cfi)) add_cfi (new_row->cfa_cfi); else { cfi = def_cfa_0 (&old_row->cfa, &new_row->cfa); if (cfi) add_cfi (cfi); } n_old = vec_safe_length (old_row->reg_save); n_new = vec_safe_length (new_row->reg_save); n_max = MAX (n_old, n_new); for (i = 0; i < n_max; ++i) { dw_cfi_ref r_old = NULL, r_new = NULL; if (i < n_old) r_old = (*old_row->reg_save)[i]; if (i < n_new) r_new = (*new_row->reg_save)[i]; if (r_old == r_new) ; else if (r_new == NULL) add_cfi_restore (i); else if (!cfi_equal_p (r_old, r_new)) add_cfi (r_new); } } /* Examine CFI and return true if a cfi label and set_loc is needed beforehand. Even when generating CFI assembler instructions, we still have to add the cfi to the list so that lookup_cfa_1 works later on. When -g2 and above we even need to force emitting of CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa and so don't use convert_cfa_to_fb_loc_list. */ static bool cfi_label_required_p (dw_cfi_ref cfi) { if (!dwarf2out_do_cfi_asm ()) return true; if (dwarf_version == 2 && debug_info_level > DINFO_LEVEL_TERSE && (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)) { switch (cfi->dw_cfi_opc) { case DW_CFA_def_cfa_offset: case DW_CFA_def_cfa_offset_sf: case DW_CFA_def_cfa_register: case DW_CFA_def_cfa: case DW_CFA_def_cfa_sf: case DW_CFA_def_cfa_expression: case DW_CFA_restore_state: return true; default: return false; } } return false; } /* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the function's FDE, adding CFI labels and set_loc/advance_loc opcodes as necessary. */ static void add_cfis_to_fde (void) { dw_fde_ref fde = cfun->fde; rtx_insn *insn, *next; /* We always start with a function_begin label. */ bool first = false; for (insn = get_insns (); insn; insn = next) { next = NEXT_INSN (insn); if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS) { fde->dw_fde_switch_cfi_index = vec_safe_length (fde->dw_fde_cfi); /* Don't attempt to advance_loc4 between labels in different sections. */ first = true; } if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI) { bool required = cfi_label_required_p (NOTE_CFI (insn)); while (next) if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CFI) { required |= cfi_label_required_p (NOTE_CFI (next)); next = NEXT_INSN (next); } else if (active_insn_p (next) || (NOTE_P (next) && (NOTE_KIND (next) == NOTE_INSN_SWITCH_TEXT_SECTIONS))) break; else next = NEXT_INSN (next); if (required) { int num = dwarf2out_cfi_label_num; const char *label = dwarf2out_cfi_label (); dw_cfi_ref xcfi; /* Set the location counter to the new label. */ xcfi = new_cfi (); xcfi->dw_cfi_opc = (first ? DW_CFA_set_loc : DW_CFA_advance_loc4); xcfi->dw_cfi_oprnd1.dw_cfi_addr = label; vec_safe_push (fde->dw_fde_cfi, xcfi); rtx_note *tmp = emit_note_before (NOTE_INSN_CFI_LABEL, insn); NOTE_LABEL_NUMBER (tmp) = num; } do { if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI) vec_safe_push (fde->dw_fde_cfi, NOTE_CFI (insn)); insn = NEXT_INSN (insn); } while (insn != next); first = false; } } } static void dump_cfi_row (FILE *f, dw_cfi_row *row); /* If LABEL is the start of a trace, then initialize the state of that trace from CUR_TRACE and CUR_ROW. */ static void maybe_record_trace_start (rtx_insn *start, rtx_insn *origin) { dw_trace_info *ti; HOST_WIDE_INT args_size; ti = get_trace_info (start); gcc_assert (ti != NULL); if (dump_file) { fprintf (dump_file, " saw edge from trace %u to %u (via %s %d)\n", cur_trace->id, ti->id, (origin ? rtx_name[(int) GET_CODE (origin)] : "fallthru"), (origin ? INSN_UID (origin) : 0)); } args_size = cur_trace->end_true_args_size; if (ti->beg_row == NULL) { /* This is the first time we've encountered this trace. Propagate state across the edge and push the trace onto the work list. */ ti->beg_row = copy_cfi_row (cur_row); ti->beg_true_args_size = args_size; ti->cfa_store = cur_trace->cfa_store; ti->cfa_temp = cur_trace->cfa_temp; ti->regs_saved_in_regs = cur_trace->regs_saved_in_regs.copy (); trace_work_list.safe_push (ti); if (dump_file) fprintf (dump_file, "\tpush trace %u to worklist\n", ti->id); } else { /* We ought to have the same state incoming to a given trace no matter how we arrive at the trace. Anything else means we've got some kind of optimization error. */ #if CHECKING_P if (!cfi_row_equal_p (cur_row, ti->beg_row)) { if (dump_file) { fprintf (dump_file, "Inconsistent CFI state!\n"); fprintf (dump_file, "SHOULD have:\n"); dump_cfi_row (dump_file, ti->beg_row); fprintf (dump_file, "DO have:\n"); dump_cfi_row (dump_file, cur_row); } gcc_unreachable (); } #endif /* The args_size is allowed to conflict if it isn't actually used. */ if (ti->beg_true_args_size != args_size) ti->args_size_undefined = true; } } /* Similarly, but handle the args_size and CFA reset across EH and non-local goto edges. */ static void maybe_record_trace_start_abnormal (rtx_insn *start, rtx_insn *origin) { HOST_WIDE_INT save_args_size, delta; dw_cfa_location save_cfa; save_args_size = cur_trace->end_true_args_size; if (save_args_size == 0) { maybe_record_trace_start (start, origin); return; } delta = -save_args_size; cur_trace->end_true_args_size = 0; save_cfa = cur_row->cfa; if (cur_row->cfa.reg == dw_stack_pointer_regnum) { /* Convert a change in args_size (always a positive in the direction of stack growth) to a change in stack pointer. */ if (!STACK_GROWS_DOWNWARD) delta = -delta; cur_row->cfa.offset += delta; } maybe_record_trace_start (start, origin); cur_trace->end_true_args_size = save_args_size; cur_row->cfa = save_cfa; } /* Propagate CUR_TRACE state to the destinations implied by INSN. */ /* ??? Sadly, this is in large part a duplicate of make_edges. */ static void create_trace_edges (rtx_insn *insn) { rtx tmp; int i, n; if (JUMP_P (insn)) { rtx_jump_table_data *table; if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX)) return; if (tablejump_p (insn, NULL, &table)) { rtvec vec = table->get_labels (); n = GET_NUM_ELEM (vec); for (i = 0; i < n; ++i) { rtx_insn *lab = as_a (XEXP (RTVEC_ELT (vec, i), 0)); maybe_record_trace_start (lab, insn); } } else if (computed_jump_p (insn)) { rtx_insn *temp; unsigned int i; FOR_EACH_VEC_SAFE_ELT (forced_labels, i, temp) maybe_record_trace_start (temp, insn); } else if (returnjump_p (insn)) ; else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL) { n = ASM_OPERANDS_LABEL_LENGTH (tmp); for (i = 0; i < n; ++i) { rtx_insn *lab = as_a (XEXP (ASM_OPERANDS_LABEL (tmp, i), 0)); maybe_record_trace_start (lab, insn); } } else { rtx_insn *lab = JUMP_LABEL_AS_INSN (insn); gcc_assert (lab != NULL); maybe_record_trace_start (lab, insn); } } else if (CALL_P (insn)) { /* Sibling calls don't have edges inside this function. */ if (SIBLING_CALL_P (insn)) return; /* Process non-local goto edges. */ if (can_nonlocal_goto (insn)) for (rtx_insn_list *lab = nonlocal_goto_handler_labels; lab; lab = lab->next ()) maybe_record_trace_start_abnormal (lab->insn (), insn); } else if (rtx_sequence *seq = dyn_cast (PATTERN (insn))) { int i, n = seq->len (); for (i = 0; i < n; ++i) create_trace_edges (seq->insn (i)); return; } /* Process EH edges. */ if (CALL_P (insn) || cfun->can_throw_non_call_exceptions) { eh_landing_pad lp = get_eh_landing_pad_from_rtx (insn); if (lp) maybe_record_trace_start_abnormal (lp->landing_pad, insn); } } /* A subroutine of scan_trace. Do what needs to be done "after" INSN. */ static void scan_insn_after (rtx_insn *insn) { if (RTX_FRAME_RELATED_P (insn)) dwarf2out_frame_debug (insn); notice_args_size (insn); } /* Scan the trace beginning at INSN and create the CFI notes for the instructions therein. */ static void scan_trace (dw_trace_info *trace) { rtx_insn *prev, *insn = trace->head; dw_cfa_location this_cfa; if (dump_file) fprintf (dump_file, "Processing trace %u : start at %s %d\n", trace->id, rtx_name[(int) GET_CODE (insn)], INSN_UID (insn)); trace->end_row = copy_cfi_row (trace->beg_row); trace->end_true_args_size = trace->beg_true_args_size; cur_trace = trace; cur_row = trace->end_row; this_cfa = cur_row->cfa; cur_cfa = &this_cfa; for (prev = insn, insn = NEXT_INSN (insn); insn; prev = insn, insn = NEXT_INSN (insn)) { rtx_insn *control; /* Do everything that happens "before" the insn. */ add_cfi_insn = prev; /* Notice the end of a trace. */ if (BARRIER_P (insn)) { /* Don't bother saving the unneeded queued registers at all. */ queued_reg_saves.truncate (0); break; } if (save_point_p (insn)) { /* Propagate across fallthru edges. */ dwarf2out_flush_queued_reg_saves (); maybe_record_trace_start (insn, NULL); break; } if (DEBUG_INSN_P (insn) || !inside_basic_block_p (insn)) continue; /* Handle all changes to the row state. Sequences require special handling for the positioning of the notes. */ if (rtx_sequence *pat = dyn_cast (PATTERN (insn))) { rtx_insn *elt; int i, n = pat->len (); control = pat->insn (0); if (can_throw_internal (control)) notice_eh_throw (control); dwarf2out_flush_queued_reg_saves (); if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control)) { /* ??? Hopefully multiple delay slots are not annulled. */ gcc_assert (n == 2); gcc_assert (!RTX_FRAME_RELATED_P (control)); gcc_assert (!find_reg_note (control, REG_ARGS_SIZE, NULL)); elt = pat->insn (1); if (INSN_FROM_TARGET_P (elt)) { HOST_WIDE_INT restore_args_size; cfi_vec save_row_reg_save; /* If ELT is an instruction from target of an annulled branch, the effects are for the target only and so the args_size and CFA along the current path shouldn't change. */ add_cfi_insn = NULL; restore_args_size = cur_trace->end_true_args_size; cur_cfa = &cur_row->cfa; save_row_reg_save = vec_safe_copy (cur_row->reg_save); scan_insn_after (elt); /* ??? Should we instead save the entire row state? */ gcc_assert (!queued_reg_saves.length ()); create_trace_edges (control); cur_trace->end_true_args_size = restore_args_size; cur_row->cfa = this_cfa; cur_row->reg_save = save_row_reg_save; cur_cfa = &this_cfa; } else { /* If ELT is a annulled branch-taken instruction (i.e. executed only when branch is not taken), the args_size and CFA should not change through the jump. */ create_trace_edges (control); /* Update and continue with the trace. */ add_cfi_insn = insn; scan_insn_after (elt); def_cfa_1 (&this_cfa); } continue; } /* The insns in the delay slot should all be considered to happen "before" a call insn. Consider a call with a stack pointer adjustment in the delay slot. The backtrace from the callee should include the sp adjustment. Unfortunately, that leaves us with an unavoidable unwinding error exactly at the call insn itself. For jump insns we'd prefer to avoid this error by placing the notes after the sequence. */ if (JUMP_P (control)) add_cfi_insn = insn; for (i = 1; i < n; ++i) { elt = pat->insn (i); scan_insn_after (elt); } /* Make sure any register saves are visible at the jump target. */ dwarf2out_flush_queued_reg_saves (); any_cfis_emitted = false; /* However, if there is some adjustment on the call itself, e.g. a call_pop, that action should be considered to happen after the call returns. */ add_cfi_insn = insn; scan_insn_after (control); } else { /* Flush data before calls and jumps, and of course if necessary. */ if (can_throw_internal (insn)) { notice_eh_throw (insn); dwarf2out_flush_queued_reg_saves (); } else if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn) || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL)) dwarf2out_flush_queued_reg_saves (); any_cfis_emitted = false; add_cfi_insn = insn; scan_insn_after (insn); control = insn; } /* Between frame-related-p and args_size we might have otherwise emitted two cfa adjustments. Do it now. */ def_cfa_1 (&this_cfa); /* Minimize the number of advances by emitting the entire queue once anything is emitted. */ if (any_cfis_emitted || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL)) dwarf2out_flush_queued_reg_saves (); /* Note that a test for control_flow_insn_p does exactly the same tests as are done to actually create the edges. So always call the routine and let it not create edges for non-control-flow insns. */ create_trace_edges (control); } add_cfi_insn = NULL; cur_row = NULL; cur_trace = NULL; cur_cfa = NULL; } /* Scan the function and create the initial set of CFI notes. */ static void create_cfi_notes (void) { dw_trace_info *ti; gcc_checking_assert (!queued_reg_saves.exists ()); gcc_checking_assert (!trace_work_list.exists ()); /* Always begin at the entry trace. */ ti = &trace_info[0]; scan_trace (ti); while (!trace_work_list.is_empty ()) { ti = trace_work_list.pop (); scan_trace (ti); } queued_reg_saves.release (); trace_work_list.release (); } /* Return the insn before the first NOTE_INSN_CFI after START. */ static rtx_insn * before_next_cfi_note (rtx_insn *start) { rtx_insn *prev = start; while (start) { if (NOTE_P (start) && NOTE_KIND (start) == NOTE_INSN_CFI) return prev; prev = start; start = NEXT_INSN (start); } gcc_unreachable (); } /* Insert CFI notes between traces to properly change state between them. */ static void connect_traces (void) { unsigned i, n = trace_info.length (); dw_trace_info *prev_ti, *ti; /* ??? Ideally, we should have both queued and processed every trace. However the current representation of constant pools on various targets is indistinguishable from unreachable code. Assume for the moment that we can simply skip over such traces. */ /* ??? Consider creating a DATA_INSN rtx code to indicate that these are not "real" instructions, and should not be considered. This could be generically useful for tablejump data as well. */ /* Remove all unprocessed traces from the list. */ for (i = n - 1; i > 0; --i) { ti = &trace_info[i]; if (ti->beg_row == NULL) { trace_info.ordered_remove (i); n -= 1; } else gcc_assert (ti->end_row != NULL); } /* Work from the end back to the beginning. This lets us easily insert remember/restore_state notes in the correct order wrt other notes. */ prev_ti = &trace_info[n - 1]; for (i = n - 1; i > 0; --i) { dw_cfi_row *old_row; ti = prev_ti; prev_ti = &trace_info[i - 1]; add_cfi_insn = ti->head; /* In dwarf2out_switch_text_section, we'll begin a new FDE for the portion of the function in the alternate text section. The row state at the very beginning of that new FDE will be exactly the row state from the CIE. */ if (ti->switch_sections) old_row = cie_cfi_row; else { old_row = prev_ti->end_row; /* If there's no change from the previous end state, fine. */ if (cfi_row_equal_p (old_row, ti->beg_row)) ; /* Otherwise check for the common case of sharing state with the beginning of an epilogue, but not the end. Insert remember/restore opcodes in that case. */ else if (cfi_row_equal_p (prev_ti->beg_row, ti->beg_row)) { dw_cfi_ref cfi; /* Note that if we blindly insert the remember at the start of the trace, we can wind up increasing the size of the unwind info due to extra advance opcodes. Instead, put the remember immediately before the next state change. We know there must be one, because the state at the beginning and head of the trace differ. */ add_cfi_insn = before_next_cfi_note (prev_ti->head); cfi = new_cfi (); cfi->dw_cfi_opc = DW_CFA_remember_state; add_cfi (cfi); add_cfi_insn = ti->head; cfi = new_cfi (); cfi->dw_cfi_opc = DW_CFA_restore_state; add_cfi (cfi); old_row = prev_ti->beg_row; } /* Otherwise, we'll simply change state from the previous end. */ } change_cfi_row (old_row, ti->beg_row); if (dump_file && add_cfi_insn != ti->head) { rtx_insn *note; fprintf (dump_file, "Fixup between trace %u and %u:\n", prev_ti->id, ti->id); note = ti->head; do { note = NEXT_INSN (note); gcc_assert (NOTE_P (note) && NOTE_KIND (note) == NOTE_INSN_CFI); output_cfi_directive (dump_file, NOTE_CFI (note)); } while (note != add_cfi_insn); } } /* Connect args_size between traces that have can_throw_internal insns. */ if (cfun->eh->lp_array) { HOST_WIDE_INT prev_args_size = 0; for (i = 0; i < n; ++i) { ti = &trace_info[i]; if (ti->switch_sections) prev_args_size = 0; if (ti->eh_head == NULL) continue; gcc_assert (!ti->args_size_undefined); if (ti->beg_delay_args_size != prev_args_size) { /* ??? Search back to previous CFI note. */ add_cfi_insn = PREV_INSN (ti->eh_head); add_cfi_args_size (ti->beg_delay_args_size); } prev_args_size = ti->end_delay_args_size; } } } /* Set up the pseudo-cfg of instruction traces, as described at the block comment at the top of the file. */ static void create_pseudo_cfg (void) { bool saw_barrier, switch_sections; dw_trace_info ti; rtx_insn *insn; unsigned i; /* The first trace begins at the start of the function, and begins with the CIE row state. */ trace_info.create (16); memset (&ti, 0, sizeof (ti)); ti.head = get_insns (); ti.beg_row = cie_cfi_row; ti.cfa_store = cie_cfi_row->cfa; ti.cfa_temp.reg = INVALID_REGNUM; trace_info.quick_push (ti); if (cie_return_save) ti.regs_saved_in_regs.safe_push (*cie_return_save); /* Walk all the insns, collecting start of trace locations. */ saw_barrier = false; switch_sections = false; for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { if (BARRIER_P (insn)) saw_barrier = true; else if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS) { /* We should have just seen a barrier. */ gcc_assert (saw_barrier); switch_sections = true; } /* Watch out for save_point notes between basic blocks. In particular, a note after a barrier. Do not record these, delaying trace creation until the label. */ else if (save_point_p (insn) && (LABEL_P (insn) || !saw_barrier)) { memset (&ti, 0, sizeof (ti)); ti.head = insn; ti.switch_sections = switch_sections; ti.id = trace_info.length (); trace_info.safe_push (ti); saw_barrier = false; switch_sections = false; } } /* Create the trace index after we've finished building trace_info, avoiding stale pointer problems due to reallocation. */ trace_index = new hash_table (trace_info.length ()); dw_trace_info *tp; FOR_EACH_VEC_ELT (trace_info, i, tp) { dw_trace_info **slot; if (dump_file) fprintf (dump_file, "Creating trace %u : start at %s %d%s\n", tp->id, rtx_name[(int) GET_CODE (tp->head)], INSN_UID (tp->head), tp->switch_sections ? " (section switch)" : ""); slot = trace_index->find_slot_with_hash (tp, INSN_UID (tp->head), INSERT); gcc_assert (*slot == NULL); *slot = tp; } } /* Record the initial position of the return address. RTL is INCOMING_RETURN_ADDR_RTX. */ static void initial_return_save (rtx rtl) { unsigned int reg = INVALID_REGNUM; HOST_WIDE_INT offset = 0; switch (GET_CODE (rtl)) { case REG: /* RA is in a register. */ reg = dwf_regno (rtl); break; case MEM: /* RA is on the stack. */ rtl = XEXP (rtl, 0); switch (GET_CODE (rtl)) { case REG: gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM); offset = 0; break; case PLUS: gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM); offset = INTVAL (XEXP (rtl, 1)); break; case MINUS: gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM); offset = -INTVAL (XEXP (rtl, 1)); break; default: gcc_unreachable (); } break; case PLUS: /* The return address is at some offset from any value we can actually load. For instance, on the SPARC it is in %i7+8. Just ignore the offset for now; it doesn't matter for unwinding frames. */ gcc_assert (CONST_INT_P (XEXP (rtl, 1))); initial_return_save (XEXP (rtl, 0)); return; default: gcc_unreachable (); } if (reg != DWARF_FRAME_RETURN_COLUMN) { if (reg != INVALID_REGNUM) record_reg_saved_in_reg (rtl, pc_rtx); reg_save (DWARF_FRAME_RETURN_COLUMN, reg, offset - cur_row->cfa.offset); } } static void create_cie_data (void) { dw_cfa_location loc; dw_trace_info cie_trace; dw_stack_pointer_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM); memset (&cie_trace, 0, sizeof (cie_trace)); cur_trace = &cie_trace; add_cfi_vec = &cie_cfi_vec; cie_cfi_row = cur_row = new_cfi_row (); /* On entry, the Canonical Frame Address is at SP. */ memset (&loc, 0, sizeof (loc)); loc.reg = dw_stack_pointer_regnum; loc.offset = INCOMING_FRAME_SP_OFFSET; def_cfa_1 (&loc); if (targetm.debug_unwind_info () == UI_DWARF2 || targetm_common.except_unwind_info (&global_options) == UI_DWARF2) { initial_return_save (INCOMING_RETURN_ADDR_RTX); /* For a few targets, we have the return address incoming into a register, but choose a different return column. This will result in a DW_CFA_register for the return, and an entry in regs_saved_in_regs to match. If the target later stores that return address register to the stack, we want to be able to emit the DW_CFA_offset against the return column, not the intermediate save register. Save the contents of regs_saved_in_regs so that we can re-initialize it at the start of each function. */ switch (cie_trace.regs_saved_in_regs.length ()) { case 0: break; case 1: cie_return_save = ggc_alloc (); *cie_return_save = cie_trace.regs_saved_in_regs[0]; cie_trace.regs_saved_in_regs.release (); break; default: gcc_unreachable (); } } add_cfi_vec = NULL; cur_row = NULL; cur_trace = NULL; } /* Annotate the function with NOTE_INSN_CFI notes to record the CFI state at each location within the function. These notes will be emitted during pass_final. */ static unsigned int execute_dwarf2_frame (void) { /* Different HARD_FRAME_POINTER_REGNUM might coexist in the same file. */ dw_frame_pointer_regnum = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM); /* The first time we're called, compute the incoming frame state. */ if (cie_cfi_vec == NULL) create_cie_data (); dwarf2out_alloc_current_fde (); create_pseudo_cfg (); /* Do the work. */ create_cfi_notes (); connect_traces (); add_cfis_to_fde (); /* Free all the data we allocated. */ { size_t i; dw_trace_info *ti; FOR_EACH_VEC_ELT (trace_info, i, ti) ti->regs_saved_in_regs.release (); } trace_info.release (); delete trace_index; trace_index = NULL; return 0; } /* Convert a DWARF call frame info. operation to its string name */ static const char * dwarf_cfi_name (unsigned int cfi_opc) { const char *name = get_DW_CFA_name (cfi_opc); if (name != NULL) return name; return "DW_CFA_"; } /* This routine will generate the correct assembly data for a location description based on a cfi entry with a complex address. */ static void output_cfa_loc (dw_cfi_ref cfi, int for_eh) { dw_loc_descr_ref loc; unsigned long size; if (cfi->dw_cfi_opc == DW_CFA_expression || cfi->dw_cfi_opc == DW_CFA_val_expression) { unsigned r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh); dw2_asm_output_data (1, r, NULL); loc = cfi->dw_cfi_oprnd2.dw_cfi_loc; } else loc = cfi->dw_cfi_oprnd1.dw_cfi_loc; /* Output the size of the block. */ size = size_of_locs (loc); dw2_asm_output_data_uleb128 (size, NULL); /* Now output the operations themselves. */ output_loc_sequence (loc, for_eh); } /* Similar, but used for .cfi_escape. */ static void output_cfa_loc_raw (dw_cfi_ref cfi) { dw_loc_descr_ref loc; unsigned long size; if (cfi->dw_cfi_opc == DW_CFA_expression || cfi->dw_cfi_opc == DW_CFA_val_expression) { unsigned r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1); fprintf (asm_out_file, "%#x,", r); loc = cfi->dw_cfi_oprnd2.dw_cfi_loc; } else loc = cfi->dw_cfi_oprnd1.dw_cfi_loc; /* Output the size of the block. */ size = size_of_locs (loc); dw2_asm_output_data_uleb128_raw (size); fputc (',', asm_out_file); /* Now output the operations themselves. */ output_loc_sequence_raw (loc); } /* Output a Call Frame Information opcode and its operand(s). */ void output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh) { unsigned long r; HOST_WIDE_INT off; if (cfi->dw_cfi_opc == DW_CFA_advance_loc) dw2_asm_output_data (1, (cfi->dw_cfi_opc | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)), "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX, ((unsigned HOST_WIDE_INT) cfi->dw_cfi_oprnd1.dw_cfi_offset)); else if (cfi->dw_cfi_opc == DW_CFA_offset) { r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh); dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)), "DW_CFA_offset, column %#lx", r); off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset); dw2_asm_output_data_uleb128 (off, NULL); } else if (cfi->dw_cfi_opc == DW_CFA_restore) { r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh); dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)), "DW_CFA_restore, column %#lx", r); } else { dw2_asm_output_data (1, cfi->dw_cfi_opc, "%s", dwarf_cfi_name (cfi->dw_cfi_opc)); switch (cfi->dw_cfi_opc) { case DW_CFA_set_loc: if (for_eh) dw2_asm_output_encoded_addr_rtx ( ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0), gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr), false, NULL); else dw2_asm_output_addr (DWARF2_ADDR_SIZE, cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL); fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr; break; case DW_CFA_advance_loc1: dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr, fde->dw_fde_current_label, NULL); fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr; break; case DW_CFA_advance_loc2: dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr, fde->dw_fde_current_label, NULL); fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr; break; case DW_CFA_advance_loc4: dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr, fde->dw_fde_current_label, NULL); fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr; break; case DW_CFA_MIPS_advance_loc8: dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr, fde->dw_fde_current_label, NULL); fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr; break; case DW_CFA_offset_extended: r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh); dw2_asm_output_data_uleb128 (r, NULL); off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset); dw2_asm_output_data_uleb128 (off, NULL); break; case DW_CFA_def_cfa: r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh); dw2_asm_output_data_uleb128 (r, NULL); dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL); break; case DW_CFA_offset_extended_sf: r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh); dw2_asm_output_data_uleb128 (r, NULL); off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset); dw2_asm_output_data_sleb128 (off, NULL); break; case DW_CFA_def_cfa_sf: r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh); dw2_asm_output_data_uleb128 (r, NULL); off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset); dw2_asm_output_data_sleb128 (off, NULL); break; case DW_CFA_restore_extended: case DW_CFA_undefined: case DW_CFA_same_value: case DW_CFA_def_cfa_register: r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh); dw2_asm_output_data_uleb128 (r, NULL); break; case DW_CFA_register: r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh); dw2_asm_output_data_uleb128 (r, NULL); r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh); dw2_asm_output_data_uleb128 (r, NULL); break; case DW_CFA_def_cfa_offset: case DW_CFA_GNU_args_size: dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL); break; case DW_CFA_def_cfa_offset_sf: off = div_data_align (cfi->dw_cfi_oprnd1.dw_cfi_offset); dw2_asm_output_data_sleb128 (off, NULL); break; case DW_CFA_GNU_window_save: break; case DW_CFA_def_cfa_expression: case DW_CFA_expression: case DW_CFA_val_expression: output_cfa_loc (cfi, for_eh); break; case DW_CFA_GNU_negative_offset_extended: /* Obsoleted by DW_CFA_offset_extended_sf. */ gcc_unreachable (); default: break; } } } /* Similar, but do it via assembler directives instead. */ void output_cfi_directive (FILE *f, dw_cfi_ref cfi) { unsigned long r, r2; switch (cfi->dw_cfi_opc) { case DW_CFA_advance_loc: case DW_CFA_advance_loc1: case DW_CFA_advance_loc2: case DW_CFA_advance_loc4: case DW_CFA_MIPS_advance_loc8: case DW_CFA_set_loc: /* Should only be created in a code path not followed when emitting via directives. The assembler is going to take care of this for us. But this routines is also used for debugging dumps, so print something. */ gcc_assert (f != asm_out_file); fprintf (f, "\t.cfi_advance_loc\n"); break; case DW_CFA_offset: case DW_CFA_offset_extended: case DW_CFA_offset_extended_sf: r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1); fprintf (f, "\t.cfi_offset %lu, " HOST_WIDE_INT_PRINT_DEC"\n", r, cfi->dw_cfi_oprnd2.dw_cfi_offset); break; case DW_CFA_restore: case DW_CFA_restore_extended: r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1); fprintf (f, "\t.cfi_restore %lu\n", r); break; case DW_CFA_undefined: r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1); fprintf (f, "\t.cfi_undefined %lu\n", r); break; case DW_CFA_same_value: r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1); fprintf (f, "\t.cfi_same_value %lu\n", r); break; case DW_CFA_def_cfa: case DW_CFA_def_cfa_sf: r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1); fprintf (f, "\t.cfi_def_cfa %lu, " HOST_WIDE_INT_PRINT_DEC"\n", r, cfi->dw_cfi_oprnd2.dw_cfi_offset); break; case DW_CFA_def_cfa_register: r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1); fprintf (f, "\t.cfi_def_cfa_register %lu\n", r); break; case DW_CFA_register: r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1); r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1); fprintf (f, "\t.cfi_register %lu, %lu\n", r, r2); break; case DW_CFA_def_cfa_offset: case DW_CFA_def_cfa_offset_sf: fprintf (f, "\t.cfi_def_cfa_offset " HOST_WIDE_INT_PRINT_DEC"\n", cfi->dw_cfi_oprnd1.dw_cfi_offset); break; case DW_CFA_remember_state: fprintf (f, "\t.cfi_remember_state\n"); break; case DW_CFA_restore_state: fprintf (f, "\t.cfi_restore_state\n"); break; case DW_CFA_GNU_args_size: if (f == asm_out_file) { fprintf (f, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size); dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset); if (flag_debug_asm) fprintf (f, "\t%s args_size " HOST_WIDE_INT_PRINT_DEC, ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset); fputc ('\n', f); } else { fprintf (f, "\t.cfi_GNU_args_size " HOST_WIDE_INT_PRINT_DEC "\n", cfi->dw_cfi_oprnd1.dw_cfi_offset); } break; case DW_CFA_GNU_window_save: fprintf (f, "\t.cfi_window_save\n"); break; case DW_CFA_def_cfa_expression: case DW_CFA_expression: case DW_CFA_val_expression: if (f != asm_out_file) { fprintf (f, "\t.cfi_%scfa_%sexpression ...\n", cfi->dw_cfi_opc == DW_CFA_def_cfa_expression ? "def_" : "", cfi->dw_cfi_opc == DW_CFA_val_expression ? "val_" : ""); break; } fprintf (f, "\t.cfi_escape %#x,", cfi->dw_cfi_opc); output_cfa_loc_raw (cfi); fputc ('\n', f); break; default: gcc_unreachable (); } } void dwarf2out_emit_cfi (dw_cfi_ref cfi) { if (dwarf2out_do_cfi_asm ()) output_cfi_directive (asm_out_file, cfi); } static void dump_cfi_row (FILE *f, dw_cfi_row *row) { dw_cfi_ref cfi; unsigned i; cfi = row->cfa_cfi; if (!cfi) { dw_cfa_location dummy; memset (&dummy, 0, sizeof (dummy)); dummy.reg = INVALID_REGNUM; cfi = def_cfa_0 (&dummy, &row->cfa); } output_cfi_directive (f, cfi); FOR_EACH_VEC_SAFE_ELT (row->reg_save, i, cfi) if (cfi) output_cfi_directive (f, cfi); } void debug_cfi_row (dw_cfi_row *row); void debug_cfi_row (dw_cfi_row *row) { dump_cfi_row (stderr, row); } /* Save the result of dwarf2out_do_frame across PCH. This variable is tri-state, with 0 unset, >0 true, <0 false. */ static GTY(()) signed char saved_do_cfi_asm = 0; /* Decide whether we want to emit frame unwind information for the current translation unit. */ bool dwarf2out_do_frame (void) { /* We want to emit correct CFA location expressions or lists, so we have to return true if we're going to output debug info, even if we're not going to output frame or unwind info. */ if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG) return true; if (saved_do_cfi_asm > 0) return true; if (targetm.debug_unwind_info () == UI_DWARF2) return true; if ((flag_unwind_tables || flag_exceptions) && targetm_common.except_unwind_info (&global_options) == UI_DWARF2) return true; return false; } /* Decide whether to emit frame unwind via assembler directives. */ bool dwarf2out_do_cfi_asm (void) { int enc; if (saved_do_cfi_asm != 0) return saved_do_cfi_asm > 0; /* Assume failure for a moment. */ saved_do_cfi_asm = -1; if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ()) return false; if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE) return false; /* Make sure the personality encoding is one the assembler can support. In particular, aligned addresses can't be handled. */ enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1); if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel) return false; enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0); if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel) return false; /* If we can't get the assembler to emit only .debug_frame, and we don't need dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */ if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE && !flag_unwind_tables && !flag_exceptions && targetm_common.except_unwind_info (&global_options) != UI_DWARF2) return false; /* Success! */ saved_do_cfi_asm = 1; return true; } namespace { const pass_data pass_data_dwarf2_frame = { RTL_PASS, /* type */ "dwarf2", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_FINAL, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_dwarf2_frame : public rtl_opt_pass { public: pass_dwarf2_frame (gcc::context *ctxt) : rtl_opt_pass (pass_data_dwarf2_frame, ctxt) {} /* opt_pass methods: */ virtual bool gate (function *); virtual unsigned int execute (function *) { return execute_dwarf2_frame (); } }; // class pass_dwarf2_frame bool pass_dwarf2_frame::gate (function *) { /* Targets which still implement the prologue in assembler text cannot use the generic dwarf2 unwinding. */ if (!targetm.have_prologue ()) return false; /* ??? What to do for UI_TARGET unwinding? They might be able to benefit from the optimized shrink-wrapping annotations that we will compute. For now, only produce the CFI notes for dwarf2. */ return dwarf2out_do_frame (); } } // anon namespace rtl_opt_pass * make_pass_dwarf2_frame (gcc::context *ctxt) { return new pass_dwarf2_frame (ctxt); } #include "gt-dwarf2cfi.h"