/** * Does the semantic 1 pass on the AST, which looks at symbol declarations but not initializers * or function bodies. * * Copyright: Copyright (C) 1999-2022 by The D Language Foundation, All Rights Reserved * Authors: $(LINK2 https://www.digitalmars.com, Walter Bright) * License: $(LINK2 https://www.boost.org/LICENSE_1_0.txt, Boost License 1.0) * Source: $(LINK2 https://github.com/dlang/dmd/blob/master/src/dmd/dsymbolsem.d, _dsymbolsem.d) * Documentation: https://dlang.org/phobos/dmd_dsymbolsem.html * Coverage: https://codecov.io/gh/dlang/dmd/src/master/src/dmd/dsymbolsem.d */ module dmd.dsymbolsem; import core.stdc.stdio; import core.stdc.string; import dmd.aggregate; import dmd.aliasthis; import dmd.apply; import dmd.arraytypes; import dmd.astcodegen; import dmd.astenums; import dmd.attrib; import dmd.blockexit; import dmd.clone; import dmd.compiler; import dmd.dcast; import dmd.dclass; import dmd.declaration; import dmd.denum; import dmd.dimport; import dmd.dinterpret; import dmd.dmangle; import dmd.dmodule; import dmd.dscope; import dmd.dstruct; import dmd.dsymbol; import dmd.dtemplate; import dmd.dversion; import dmd.errors; import dmd.escape; import dmd.expression; import dmd.expressionsem; import dmd.func; import dmd.globals; import dmd.id; import dmd.identifier; import dmd.importc; import dmd.init; import dmd.initsem; import dmd.intrange; import dmd.hdrgen; import dmd.mtype; import dmd.mustuse; import dmd.nogc; import dmd.nspace; import dmd.objc; import dmd.opover; import dmd.parse; import dmd.root.array; import dmd.root.filename; import dmd.common.outbuffer; import dmd.root.rmem; import dmd.root.rootobject; import dmd.root.utf; import dmd.semantic2; import dmd.semantic3; import dmd.sideeffect; import dmd.statementsem; import dmd.staticassert; import dmd.tokens; import dmd.utils; import dmd.statement; import dmd.target; import dmd.templateparamsem; import dmd.typesem; import dmd.visitor; enum LOG = false; private uint setMangleOverride(Dsymbol s, const(char)[] sym) { if (s.isFuncDeclaration() || s.isVarDeclaration()) { s.isDeclaration().mangleOverride = sym; return 1; } if (auto ad = s.isAttribDeclaration()) { uint nestedCount = 0; ad.include(null).foreachDsymbol( (s) { nestedCount += setMangleOverride(s, sym); } ); return nestedCount; } return 0; } /** * Apply pragma printf/scanf to FuncDeclarations under `s`, * poking through attribute declarations such as `extern(C)` * but not through aggregates or function bodies. * * Params: * s = symbol to apply * printf = `true` for printf, `false` for scanf */ private void setPragmaPrintf(Dsymbol s, bool printf) { if (auto fd = s.isFuncDeclaration()) { fd.printf = printf; fd.scanf = !printf; } if (auto ad = s.isAttribDeclaration()) { ad.include(null).foreachDsymbol( (s) { setPragmaPrintf(s, printf); } ); } } /************************************* * Does semantic analysis on the public face of declarations. */ extern(C++) void dsymbolSemantic(Dsymbol dsym, Scope* sc) { scope v = new DsymbolSemanticVisitor(sc); dsym.accept(v); } /*************************************************** * Determine the numerical value of the AlignmentDeclaration * Params: * ad = AlignmentDeclaration * sc = context * Returns: * ad with alignment value determined */ AlignDeclaration getAlignment(AlignDeclaration ad, Scope* sc) { if (!ad.salign.isUnknown()) // UNKNOWN is 0 return ad; if (!ad.exps) { ad.salign.setDefault(); return ad; } dinteger_t strictest = 0; // strictest alignment bool errors; foreach (ref exp; (*ad.exps)[]) { sc = sc.startCTFE(); auto e = exp.expressionSemantic(sc); e = resolveProperties(sc, e); sc = sc.endCTFE(); e = e.ctfeInterpret(); exp = e; // could be re-evaluated if exps are assigned to more than one AlignDeclaration by CParser.applySpecifier(), // e.g. `_Alignas(8) int a, b;` if (e.op == EXP.error) errors = true; else { auto n = e.toInteger(); if (sc.flags & SCOPE.Cfile && n == 0) // C11 6.7.5-6 allows 0 for alignment continue; if (n < 1 || n & (n - 1) || ushort.max < n || !e.type.isintegral()) { error(ad.loc, "alignment must be an integer positive power of 2, not 0x%llx", cast(ulong)n); errors = true; } if (n > strictest) // C11 6.7.5-6 strictest = n; } } if (errors || strictest == 0) // C11 6.7.5-6 says alignment of 0 means no effect ad.salign.setDefault(); else ad.salign.set(cast(uint) strictest); return ad; } const(char)* getMessage(DeprecatedDeclaration dd) { if (auto sc = dd._scope) { dd._scope = null; sc = sc.startCTFE(); dd.msg = dd.msg.expressionSemantic(sc); dd.msg = resolveProperties(sc, dd.msg); sc = sc.endCTFE(); dd.msg = dd.msg.ctfeInterpret(); if (auto se = dd.msg.toStringExp()) dd.msgstr = se.toStringz().ptr; else dd.msg.error("compile time constant expected, not `%s`", dd.msg.toChars()); } return dd.msgstr; } // Returns true if a contract can appear without a function body. package bool allowsContractWithoutBody(FuncDeclaration funcdecl) { assert(!funcdecl.fbody); /* Contracts can only appear without a body when they are virtual * interface functions or abstract. */ Dsymbol parent = funcdecl.toParent(); InterfaceDeclaration id = parent.isInterfaceDeclaration(); if (!funcdecl.isAbstract() && (funcdecl.fensures || funcdecl.frequires) && !(id && funcdecl.isVirtual())) { auto cd = parent.isClassDeclaration(); if (!(cd && cd.isAbstract())) return false; } return true; } private extern(C++) final class DsymbolSemanticVisitor : Visitor { alias visit = Visitor.visit; Scope* sc; this(Scope* sc) { this.sc = sc; } // Save the scope and defer semantic analysis on the Dsymbol. private void deferDsymbolSemantic(Dsymbol s, Scope *scx) { s._scope = scx ? scx : sc.copy(); s._scope.setNoFree(); Module.addDeferredSemantic(s); } override void visit(Dsymbol dsym) { dsym.error("%p has no semantic routine", dsym); } override void visit(ScopeDsymbol) { } override void visit(Declaration) { } override void visit(AliasThis dsym) { if (dsym.semanticRun != PASS.initial) return; if (dsym._scope) { sc = dsym._scope; dsym._scope = null; } if (!sc) return; dsym.semanticRun = PASS.semantic; dsym.isDeprecated_ = !!(sc.stc & STC.deprecated_); Dsymbol p = sc.parent.pastMixin(); AggregateDeclaration ad = p.isAggregateDeclaration(); if (!ad) { error(dsym.loc, "alias this can only be a member of aggregate, not %s `%s`", p.kind(), p.toChars()); return; } assert(ad.members); Dsymbol s = ad.search(dsym.loc, dsym.ident); if (!s) { s = sc.search(dsym.loc, dsym.ident, null); if (s) error(dsym.loc, "`%s` is not a member of `%s`", s.toChars(), ad.toChars()); else error(dsym.loc, "undefined identifier `%s`", dsym.ident.toChars()); return; } if (ad.aliasthis && s != ad.aliasthis) { error(dsym.loc, "there can be only one alias this"); return; } /* disable the alias this conversion so the implicit conversion check * doesn't use it. */ ad.aliasthis = null; Dsymbol sx = s; if (sx.isAliasDeclaration()) sx = sx.toAlias(); Declaration d = sx.isDeclaration(); if (d && !d.isTupleDeclaration()) { /* https://issues.dlang.org/show_bug.cgi?id=18429 * * If the identifier in the AliasThis declaration * is defined later and is a voldemort type, we must * perform semantic on the declaration to deduce the type. */ if (!d.type) d.dsymbolSemantic(sc); Type t = d.type; assert(t); if (ad.type.implicitConvTo(t) > MATCH.nomatch) { error(dsym.loc, "alias this is not reachable as `%s` already converts to `%s`", ad.toChars(), t.toChars()); } } dsym.sym = s; // Restore alias this ad.aliasthis = dsym; dsym.semanticRun = PASS.semanticdone; } override void visit(AliasDeclaration dsym) { if (dsym.semanticRun >= PASS.semanticdone) return; assert(dsym.semanticRun <= PASS.semantic); dsym.storage_class |= sc.stc & STC.deprecated_; dsym.visibility = sc.visibility; dsym.userAttribDecl = sc.userAttribDecl; if (!sc.func && dsym.inNonRoot()) return; aliasSemantic(dsym, sc); } override void visit(AliasAssign dsym) { //printf("visit(AliasAssign)\n"); if (dsym.semanticRun >= PASS.semanticdone) return; assert(dsym.semanticRun <= PASS.semantic); if (!sc.func && dsym.inNonRoot()) return; aliasAssignSemantic(dsym, sc); } override void visit(VarDeclaration dsym) { version (none) { printf("VarDeclaration::semantic('%s', parent = '%s') sem = %d\n", dsym.toChars(), sc.parent ? sc.parent.toChars() : null, dsym.semanticRun); printf(" type = %s\n", dsym.type ? dsym.type.toChars() : "null"); printf(" stc = x%llx\n", dsym.storage_class); printf(" storage_class = x%llx\n", dsym.storage_class); printf("linkage = %d\n", dsym.linkage); //if (strcmp(toChars(), "mul") == 0) assert(0); } //if (semanticRun > PASS.initial) // return; //semanticRun = PSSsemantic; if (dsym.semanticRun >= PASS.semanticdone) return; if (sc && sc.inunion && sc.inunion.isAnonDeclaration()) dsym.overlapped = true; dsym.sequenceNumber = global.varSequenceNumber++; if (!dsym.isScope()) dsym.maybeScope = true; Scope* scx = null; if (dsym._scope) { sc = dsym._scope; scx = sc; dsym._scope = null; } if (!sc) return; dsym.semanticRun = PASS.semantic; // 'static foreach' variables should not inherit scope properties // https://issues.dlang.org/show_bug.cgi?id=19482 if ((dsym.storage_class & (STC.foreach_ | STC.local)) == (STC.foreach_ | STC.local)) { dsym._linkage = LINK.d; dsym.visibility = Visibility(Visibility.Kind.public_); dsym.overlapped = false; // unset because it is modified early on this function dsym.userAttribDecl = null; // unset because it is set by Dsymbol.setScope() } else { /* Pick up storage classes from context, but except synchronized, * override, abstract, and final. */ dsym.storage_class |= (sc.stc & ~(STC.synchronized_ | STC.override_ | STC.abstract_ | STC.final_)); dsym.userAttribDecl = sc.userAttribDecl; dsym.cppnamespace = sc.namespace; dsym._linkage = sc.linkage; dsym.visibility = sc.visibility; dsym.alignment = sc.alignment(); } if (dsym.storage_class & STC.extern_ && dsym._init) dsym.error("extern symbols cannot have initializers"); AggregateDeclaration ad = dsym.isThis(); if (ad) dsym.storage_class |= ad.storage_class & STC.TYPECTOR; /* If auto type inference, do the inference */ int inferred = 0; if (!dsym.type) { dsym.inuse++; // Infering the type requires running semantic, // so mark the scope as ctfe if required bool needctfe = (dsym.storage_class & (STC.manifest | STC.static_)) != 0; if (needctfe) { sc.flags |= SCOPE.condition; sc = sc.startCTFE(); } //printf("inferring type for %s with init %s\n", dsym.toChars(), dsym._init.toChars()); dsym._init = dsym._init.inferType(sc); dsym.type = dsym._init.initializerToExpression(null, (sc.flags & SCOPE.Cfile) != 0).type; if (needctfe) sc = sc.endCTFE(); dsym.inuse--; inferred = 1; /* This is a kludge to support the existing syntax for RAII * declarations. */ dsym.storage_class &= ~STC.auto_; dsym.originalType = dsym.type.syntaxCopy(); } else { if (!dsym.originalType) dsym.originalType = dsym.type.syntaxCopy(); /* Prefix function attributes of variable declaration can affect * its type: * pure nothrow void function() fp; * static assert(is(typeof(fp) == void function() pure nothrow)); */ Scope* sc2 = sc.push(); sc2.stc |= (dsym.storage_class & STC.FUNCATTR); dsym.inuse++; dsym.type = dsym.type.typeSemantic(dsym.loc, sc2); dsym.inuse--; sc2.pop(); } //printf(" semantic type = %s\n", dsym.type ? dsym.type.toChars() : "null"); if (dsym.type.ty == Terror) dsym.errors = true; dsym.type.checkDeprecated(dsym.loc, sc); dsym.parent = sc.parent; //printf("this = %p, parent = %p, '%s'\n", dsym, dsym.parent, dsym.parent.toChars()); /* If scope's alignment is the default, use the type's alignment, * otherwise the scope overrrides. */ if (dsym.alignment.isDefault()) dsym.alignment = dsym.type.alignment(); // use type's alignment //printf("sc.stc = %x\n", sc.stc); //printf("storage_class = x%x\n", storage_class); dsym.type.checkComplexTransition(dsym.loc, sc); // Calculate type size + safety checks if (dsym.storage_class & STC.gshared && !dsym.isMember()) { sc.setUnsafe(false, dsym.loc, "__gshared not allowed in safe functions; use shared"); } Dsymbol parent = dsym.toParent(); Type tb = dsym.type.toBasetype(); Type tbn = tb.baseElemOf(); if (tb.ty == Tvoid && !(dsym.storage_class & STC.lazy_)) { if (inferred) { dsym.error("type `%s` is inferred from initializer `%s`, and variables cannot be of type `void`", dsym.type.toChars(), dsym._init.toChars()); } else dsym.error("variables cannot be of type `void`"); dsym.type = Type.terror; tb = dsym.type; } if (tb.ty == Tfunction) { dsym.error("cannot be declared to be a function"); dsym.type = Type.terror; tb = dsym.type; } if (auto ts = tb.isTypeStruct()) { // Require declarations, except when it's just a reference (as done for pointers) // or when the variable is defined externally if (!ts.sym.members && !(dsym.storage_class & (STC.ref_ | STC.extern_))) { dsym.error("no definition of struct `%s`", ts.toChars()); // Explain why the definition is required when it's part of another type if (!dsym.type.isTypeStruct()) { // Prefer Loc of the dependant type const s = dsym.type.toDsymbol(sc); const loc = (s ? s : dsym).loc; loc.errorSupplemental("required by type `%s`", dsym.type.toChars()); } // Flag variable as error to avoid invalid error messages due to unknown size dsym.type = Type.terror; } } if ((dsym.storage_class & STC.auto_) && !inferred) dsym.error("storage class `auto` has no effect if type is not inferred, did you mean `scope`?"); if (auto tt = tb.isTypeTuple()) { /* Instead, declare variables for each of the tuple elements * and add those. */ size_t nelems = Parameter.dim(tt.arguments); Expression ie = (dsym._init && !dsym._init.isVoidInitializer()) ? dsym._init.initializerToExpression(null, (sc.flags & SCOPE.Cfile) != 0) : null; if (ie) ie = ie.expressionSemantic(sc); if (nelems > 0 && ie) { auto iexps = new Expressions(); iexps.push(ie); auto exps = new Expressions(); for (size_t pos = 0; pos < iexps.dim; pos++) { Lexpand1: Expression e = (*iexps)[pos]; Parameter arg = Parameter.getNth(tt.arguments, pos); arg.type = arg.type.typeSemantic(dsym.loc, sc); //printf("[%d] iexps.dim = %d, ", pos, iexps.dim); //printf("e = (%s %s, %s), ", Token.tochars[e.op], e.toChars(), e.type.toChars()); //printf("arg = (%s, %s)\n", arg.toChars(), arg.type.toChars()); if (e != ie) { if (iexps.dim > nelems) goto Lnomatch; if (e.type.implicitConvTo(arg.type)) continue; } if (auto te = e.isTupleExp()) { if (iexps.dim - 1 + te.exps.dim > nelems) goto Lnomatch; iexps.remove(pos); iexps.insert(pos, te.exps); (*iexps)[pos] = Expression.combine(te.e0, (*iexps)[pos]); goto Lexpand1; } else if (isAliasThisTuple(e)) { auto v = copyToTemp(0, "__tup", e); v.dsymbolSemantic(sc); auto ve = new VarExp(dsym.loc, v); ve.type = e.type; exps.setDim(1); (*exps)[0] = ve; expandAliasThisTuples(exps, 0); for (size_t u = 0; u < exps.dim; u++) { Lexpand2: Expression ee = (*exps)[u]; arg = Parameter.getNth(tt.arguments, pos + u); arg.type = arg.type.typeSemantic(dsym.loc, sc); //printf("[%d+%d] exps.dim = %d, ", pos, u, exps.dim); //printf("ee = (%s %s, %s), ", Token.tochars[ee.op], ee.toChars(), ee.type.toChars()); //printf("arg = (%s, %s)\n", arg.toChars(), arg.type.toChars()); size_t iexps_dim = iexps.dim - 1 + exps.dim; if (iexps_dim > nelems) goto Lnomatch; if (ee.type.implicitConvTo(arg.type)) continue; if (expandAliasThisTuples(exps, u) != -1) goto Lexpand2; } if ((*exps)[0] != ve) { Expression e0 = (*exps)[0]; (*exps)[0] = new CommaExp(dsym.loc, new DeclarationExp(dsym.loc, v), e0); (*exps)[0].type = e0.type; iexps.remove(pos); iexps.insert(pos, exps); goto Lexpand1; } } } if (iexps.dim < nelems) goto Lnomatch; ie = new TupleExp(dsym._init.loc, iexps); } Lnomatch: if (ie && ie.op == EXP.tuple) { auto te = ie.isTupleExp(); size_t tedim = te.exps.dim; if (tedim != nelems) { error(dsym.loc, "tuple of %d elements cannot be assigned to tuple of %d elements", cast(int)tedim, cast(int)nelems); for (size_t u = tedim; u < nelems; u++) // fill dummy expression te.exps.push(ErrorExp.get()); } } auto exps = new Objects(nelems); for (size_t i = 0; i < nelems; i++) { Parameter arg = Parameter.getNth(tt.arguments, i); OutBuffer buf; buf.printf("__%s_field_%llu", dsym.ident.toChars(), cast(ulong)i); auto id = Identifier.idPool(buf[]); Initializer ti; if (ie) { Expression einit = ie; if (auto te = ie.isTupleExp()) { einit = (*te.exps)[i]; if (i == 0) einit = Expression.combine(te.e0, einit); } ti = new ExpInitializer(einit.loc, einit); } else ti = dsym._init ? dsym._init.syntaxCopy() : null; StorageClass storage_class = STC.temp | dsym.storage_class; if ((dsym.storage_class & STC.parameter) && (arg.storageClass & STC.parameter)) storage_class |= arg.storageClass; auto v = new VarDeclaration(dsym.loc, arg.type, id, ti, storage_class); //printf("declaring field %s of type %s\n", v.toChars(), v.type.toChars()); v.overlapped = dsym.overlapped; v.dsymbolSemantic(sc); Expression e = new VarExp(dsym.loc, v); (*exps)[i] = e; } auto v2 = new TupleDeclaration(dsym.loc, dsym.ident, exps); v2.parent = dsym.parent; v2.isexp = true; dsym.aliassym = v2; dsym.semanticRun = PASS.semanticdone; return; } /* Storage class can modify the type */ dsym.type = dsym.type.addStorageClass(dsym.storage_class); /* Adjust storage class to reflect type */ if (dsym.type.isConst()) { dsym.storage_class |= STC.const_; if (dsym.type.isShared()) dsym.storage_class |= STC.shared_; } else if (dsym.type.isImmutable()) dsym.storage_class |= STC.immutable_; else if (dsym.type.isShared()) dsym.storage_class |= STC.shared_; else if (dsym.type.isWild()) dsym.storage_class |= STC.wild; if (StorageClass stc = dsym.storage_class & (STC.synchronized_ | STC.override_ | STC.abstract_ | STC.final_)) { if (stc == STC.final_) dsym.error("cannot be `final`, perhaps you meant `const`?"); else { OutBuffer buf; stcToBuffer(&buf, stc); dsym.error("cannot be `%s`", buf.peekChars()); } dsym.storage_class &= ~stc; // strip off } // At this point we can add `scope` to the STC instead of `in`, // because we are never going to use this variable's STC for user messages if (dsym.storage_class & STC.in_ && global.params.previewIn) dsym.storage_class |= STC.scope_; if (dsym.storage_class & STC.scope_) { StorageClass stc = dsym.storage_class & (STC.static_ | STC.extern_ | STC.manifest | STC.gshared); if (stc) { OutBuffer buf; stcToBuffer(&buf, stc); dsym.error("cannot be `scope` and `%s`", buf.peekChars()); } else if (dsym.isMember()) { dsym.error("field cannot be `scope`"); } else if (!dsym.type.hasPointers()) { dsym.storage_class &= ~STC.scope_; // silently ignore; may occur in generic code // https://issues.dlang.org/show_bug.cgi?id=23168 if (dsym.storage_class & STC.returnScope) { dsym.storage_class &= ~(STC.return_ | STC.returnScope); } } } if (dsym.storage_class & (STC.static_ | STC.extern_ | STC.manifest | STC.templateparameter | STC.gshared | STC.ctfe)) { } else { AggregateDeclaration aad = parent.isAggregateDeclaration(); if (aad) { if (global.params.vfield && dsym.storage_class & (STC.const_ | STC.immutable_) && dsym._init && !dsym._init.isVoidInitializer()) { const(char)* s = (dsym.storage_class & STC.immutable_) ? "immutable" : "const"; message(dsym.loc, "`%s.%s` is `%s` field", ad.toPrettyChars(), dsym.toChars(), s); } dsym.storage_class |= STC.field; if (auto ts = tbn.isTypeStruct()) if (ts.sym.noDefaultCtor) { if (!dsym.isThisDeclaration() && !dsym._init) aad.noDefaultCtor = true; } } InterfaceDeclaration id = parent.isInterfaceDeclaration(); if (id) { dsym.error("field not allowed in interface"); } else if (aad && aad.sizeok == Sizeok.done) { dsym.error("cannot be further field because it will change the determined %s size", aad.toChars()); } /* Templates cannot add fields to aggregates */ TemplateInstance ti = parent.isTemplateInstance(); if (ti) { // Take care of nested templates while (1) { TemplateInstance ti2 = ti.tempdecl.parent.isTemplateInstance(); if (!ti2) break; ti = ti2; } // If it's a member template AggregateDeclaration ad2 = ti.tempdecl.isMember(); if (ad2 && dsym.storage_class != STC.undefined_) { dsym.error("cannot use template to add field to aggregate `%s`", ad2.toChars()); } } } if ((dsym.storage_class & (STC.ref_ | STC.parameter | STC.foreach_ | STC.temp | STC.result)) == STC.ref_ && dsym.ident != Id.This) { dsym.error("only parameters or `foreach` declarations can be `ref`"); } if (dsym.type.hasWild()) { if (dsym.storage_class & (STC.static_ | STC.extern_ | STC.gshared | STC.manifest | STC.field) || dsym.isDataseg()) { dsym.error("only parameters or stack based variables can be `inout`"); } FuncDeclaration func = sc.func; if (func) { if (func.fes) func = func.fes.func; bool isWild = false; for (FuncDeclaration fd = func; fd; fd = fd.toParentDecl().isFuncDeclaration()) { if (fd.type.isTypeFunction().iswild) { isWild = true; break; } } if (!isWild) { dsym.error("`inout` variables can only be declared inside `inout` functions"); } } } if (!(dsym.storage_class & (STC.ctfe | STC.extern_ | STC.ref_ | STC.result)) && tbn.ty == Tstruct && tbn.isTypeStruct().sym.noDefaultCtor) { if (!dsym._init) { if (dsym.isField()) { /* For fields, we'll check the constructor later to make sure it is initialized */ dsym.storage_class |= STC.nodefaultctor; } else if (dsym.storage_class & STC.parameter) { } else dsym.error("default construction is disabled for type `%s`", dsym.type.toChars()); } } FuncDeclaration fd = parent.isFuncDeclaration(); if (dsym.type.isscope() && !(dsym.storage_class & STC.nodtor)) { if (dsym.storage_class & (STC.field | STC.out_ | STC.ref_ | STC.static_ | STC.manifest | STC.gshared) || !fd) { dsym.error("globals, statics, fields, manifest constants, ref and out parameters cannot be `scope`"); } // @@@DEPRECATED_2.097@@@ https://dlang.org/deprecate.html#scope%20as%20a%20type%20constraint // Deprecated in 2.087 // Remove this when the feature is removed from the language if (!(dsym.storage_class & STC.scope_)) { if (!(dsym.storage_class & STC.parameter) && dsym.ident != Id.withSym) dsym.error("reference to `scope class` must be `scope`"); } } // Calculate type size + safety checks if (sc && sc.func) { if (dsym._init && dsym._init.isVoidInitializer()) { if (dsym.type.hasPointers()) // also computes type size sc.setUnsafe(false, dsym.loc, "`void` initializers for pointers not allowed in safe functions"); else if (dsym.type.hasInvariant()) sc.setUnsafe(false, dsym.loc, "`void` initializers for structs with invariants are not allowed in safe functions"); else if (dsym.type.hasSystemFields()) sc.setUnsafePreview(global.params.systemVariables, false, dsym.loc, "`void` initializers for `@system` variables not allowed in safe functions"); } else if (!dsym._init && !(dsym.storage_class & (STC.static_ | STC.extern_ | STC.gshared | STC.manifest | STC.field | STC.parameter)) && dsym.type.hasVoidInitPointers()) { sc.setUnsafe(false, dsym.loc, "`void` initializers for pointers not allowed in safe functions"); } } if ((!dsym._init || dsym._init.isVoidInitializer) && !fd) { // If not mutable, initializable by constructor only dsym.setInCtorOnly = true; } if (dsym._init) { } // remember we had an explicit initializer else if (dsym.storage_class & STC.manifest) dsym.error("manifest constants must have initializers"); // Don't allow non-extern, non-__gshared variables to be interfaced with C++ if (dsym._linkage == LINK.cpp && !(dsym.storage_class & (STC.ctfe | STC.extern_ | STC.gshared)) && dsym.isDataseg()) { const char* p = (dsym.storage_class & STC.shared_) ? "shared" : "static"; dsym.error("cannot have `extern(C++)` linkage because it is `%s`", p); errorSupplemental(dsym.loc, "perhaps declare it as `__gshared` instead"); dsym.errors = true; } bool isBlit = false; uinteger_t sz; if (sc.flags & SCOPE.Cfile && !dsym._init) { addDefaultCInitializer(dsym); } if (!dsym._init && !(dsym.storage_class & (STC.static_ | STC.gshared | STC.extern_)) && fd && (!(dsym.storage_class & (STC.field | STC.in_ | STC.foreach_ | STC.parameter | STC.result)) || (dsym.storage_class & STC.out_)) && (sz = dsym.type.size()) != 0) { // Provide a default initializer //printf("Providing default initializer for '%s'\n", dsym.toChars()); if (sz == SIZE_INVALID && dsym.type.ty != Terror) dsym.error("size of type `%s` is invalid", dsym.type.toChars()); Type tv = dsym.type; while (tv.ty == Tsarray) // Don't skip Tenum tv = tv.nextOf(); if (tv.needsNested()) { /* Nested struct requires valid enclosing frame pointer. * In StructLiteralExp::toElem(), it's calculated. */ assert(tbn.ty == Tstruct); checkFrameAccess(dsym.loc, sc, tbn.isTypeStruct().sym); Expression e = tv.defaultInitLiteral(dsym.loc); e = new BlitExp(dsym.loc, new VarExp(dsym.loc, dsym), e); e = e.expressionSemantic(sc); dsym._init = new ExpInitializer(dsym.loc, e); goto Ldtor; } if (tv.ty == Tstruct && tv.isTypeStruct().sym.zeroInit) { /* If a struct is all zeros, as a special case * set its initializer to the integer 0. * In AssignExp::toElem(), we check for this and issue * a memset() to initialize the struct. * Must do same check in interpreter. */ Expression e = IntegerExp.literal!0; e = new BlitExp(dsym.loc, new VarExp(dsym.loc, dsym), e); e.type = dsym.type; // don't type check this, it would fail dsym._init = new ExpInitializer(dsym.loc, e); goto Ldtor; } if (dsym.type.baseElemOf().ty == Tvoid) { dsym.error("`%s` does not have a default initializer", dsym.type.toChars()); } else if (auto e = dsym.type.defaultInit(dsym.loc)) { dsym._init = new ExpInitializer(dsym.loc, e); } // Default initializer is always a blit isBlit = true; } if (dsym._init) { sc = sc.push(); sc.stc &= ~(STC.TYPECTOR | STC.pure_ | STC.nothrow_ | STC.nogc | STC.ref_ | STC.disable); if (sc.flags & SCOPE.Cfile && dsym.type.isTypeSArray() && dsym.type.isTypeSArray().isIncomplete() && dsym._init.isVoidInitializer() && !(dsym.storage_class & STC.field)) { dsym.error("incomplete array type must have initializer"); } ExpInitializer ei = dsym._init.isExpInitializer(); if (ei) // https://issues.dlang.org/show_bug.cgi?id=13424 // Preset the required type to fail in FuncLiteralDeclaration::semantic3 ei.exp = inferType(ei.exp, dsym.type); // If inside function, there is no semantic3() call if (sc.func || sc.intypeof == 1) { // If local variable, use AssignExp to handle all the various // possibilities. if (fd && !(dsym.storage_class & (STC.manifest | STC.static_ | STC.gshared | STC.extern_)) && !dsym._init.isVoidInitializer()) { //printf("fd = '%s', var = '%s'\n", fd.toChars(), dsym.toChars()); if (!ei) { ArrayInitializer ai = dsym._init.isArrayInitializer(); Expression e; if (ai && tb.ty == Taarray) e = ai.toAssocArrayLiteral(); else e = dsym._init.initializerToExpression(null, (sc.flags & SCOPE.Cfile) != 0); if (!e) { // Run semantic, but don't need to interpret dsym._init = dsym._init.initializerSemantic(sc, dsym.type, INITnointerpret); e = dsym._init.initializerToExpression(null, (sc.flags & SCOPE.Cfile) != 0); if (!e) { dsym.error("is not a static and cannot have static initializer"); e = ErrorExp.get(); } } ei = new ExpInitializer(dsym._init.loc, e); dsym._init = ei; } else if (sc.flags & SCOPE.Cfile && dsym.type.isTypeSArray() && dsym.type.isTypeSArray().isIncomplete()) { // C11 6.7.9-22 determine the size of the incomplete array, // or issue an error that the initializer is invalid. dsym._init = dsym._init.initializerSemantic(sc, dsym.type, INITinterpret); } if (ei && dsym.isScope()) { Expression ex = ei.exp.lastComma(); if (ex.op == EXP.blit || ex.op == EXP.construct) ex = (cast(AssignExp)ex).e2; if (auto ne = ex.isNewExp()) { // See if initializer is a NewExp that can be allocated on the stack if (dsym.type.toBasetype().ty == Tclass) { ne.onstack = 1; dsym.onstack = true; } } else if (auto fe = ex.isFuncExp()) { // or a delegate that doesn't escape a reference to the function FuncDeclaration f = fe.fd; if (f.tookAddressOf) f.tookAddressOf--; } else if (auto ale = ex.isArrayLiteralExp()) { // or an array literal assigned to a `scope` variable if (!dsym.type.nextOf().needsDestruction()) ale.onstack = true; } } Expression exp = ei.exp; Expression e1 = new VarExp(dsym.loc, dsym); if (isBlit) exp = new BlitExp(dsym.loc, e1, exp); else exp = new ConstructExp(dsym.loc, e1, exp); dsym.canassign++; exp = exp.expressionSemantic(sc); dsym.canassign--; exp = exp.optimize(WANTvalue); if (exp.op == EXP.error) { dsym._init = new ErrorInitializer(); ei = null; } else ei.exp = exp; } else { // https://issues.dlang.org/show_bug.cgi?id=14166 // Don't run CTFE for the temporary variables inside typeof dsym._init = dsym._init.initializerSemantic(sc, dsym.type, sc.intypeof == 1 ? INITnointerpret : INITinterpret); const init_err = dsym._init.isExpInitializer(); if (init_err && init_err.exp.op == EXP.showCtfeContext) { errorSupplemental(dsym.loc, "compile time context created here"); } } } else if (parent.isAggregateDeclaration()) { dsym._scope = scx ? scx : sc.copy(); dsym._scope.setNoFree(); } else if (dsym.storage_class & (STC.const_ | STC.immutable_ | STC.manifest) || dsym.type.isConst() || dsym.type.isImmutable() || sc.flags & SCOPE.Cfile) { /* Because we may need the results of a const declaration in a * subsequent type, such as an array dimension, before semantic2() * gets ordinarily run, try to run semantic2() now. * If a C array is of unknown size, the initializer can provide the size. Do this * eagerly because C does it eagerly. * Ignore failure. */ if (!inferred) { uint errors = global.errors; dsym.inuse++; // Bug 20549. Don't try this on modules or packages, syntaxCopy // could crash (inf. recursion) on a mod/pkg referencing itself if (ei && (ei.exp.op != EXP.scope_ ? true : !ei.exp.isScopeExp().sds.isPackage())) { if (ei.exp.type) { // If exp is already resolved we are done, our original init exp // could have a type painting that we need to respect // e.g. ['a'] typed as string, or [['z'], ""] as string[] // See https://issues.dlang.org/show_bug.cgi?id=15711 } else { Expression exp = ei.exp.syntaxCopy(); bool needctfe = dsym.isDataseg() || (dsym.storage_class & STC.manifest); if (needctfe) sc = sc.startCTFE(); exp = exp.expressionSemantic(sc); exp = resolveProperties(sc, exp); if (needctfe) sc = sc.endCTFE(); ei.exp = exp; } Type tb2 = dsym.type.toBasetype(); Type ti = ei.exp.type.toBasetype(); /* The problem is the following code: * struct CopyTest { * double x; * this(double a) { x = a * 10.0;} * this(this) { x += 2.0; } * } * const CopyTest z = CopyTest(5.3); // ok * const CopyTest w = z; // not ok, postblit not run * static assert(w.x == 55.0); * because the postblit doesn't get run on the initialization of w. */ if (auto ts = ti.isTypeStruct()) { StructDeclaration sd = ts.sym; /* Look to see if initializer involves a copy constructor * (which implies a postblit) */ // there is a copy constructor // and exp is the same struct if (sd.postblit && tb2.toDsymbol(null) == sd) { // The only allowable initializer is a (non-copy) constructor if (ei.exp.isLvalue()) dsym.error("of type struct `%s` uses `this(this)`, which is not allowed in static initialization", tb2.toChars()); } } } dsym._init = dsym._init.initializerSemantic(sc, dsym.type, INITinterpret); dsym.inuse--; if (global.errors > errors) { dsym._init = new ErrorInitializer(); dsym.type = Type.terror; } } else { dsym._scope = scx ? scx : sc.copy(); dsym._scope.setNoFree(); } } sc = sc.pop(); } Ldtor: /* Build code to execute destruction, if necessary */ dsym.edtor = dsym.callScopeDtor(sc); if (dsym.edtor) { if (sc.func && dsym.storage_class & (STC.static_ | STC.gshared)) dsym.edtor = dsym.edtor.expressionSemantic(sc._module._scope); else dsym.edtor = dsym.edtor.expressionSemantic(sc); version (none) { // currently disabled because of std.stdio.stdin, stdout and stderr if (dsym.isDataseg() && !(dsym.storage_class & STC.extern_)) dsym.error("static storage variables cannot have destructors"); } } dsym.semanticRun = PASS.semanticdone; if (dsym.type.toBasetype().ty == Terror) dsym.errors = true; if(sc.scopesym && !sc.scopesym.isAggregateDeclaration()) { for (ScopeDsymbol sym = sc.scopesym; sym && dsym.endlinnum == 0; sym = sym.parent ? sym.parent.isScopeDsymbol() : null) dsym.endlinnum = sym.endlinnum; } } override void visit(TypeInfoDeclaration dsym) { assert(dsym._linkage == LINK.c); } override void visit(BitFieldDeclaration dsym) { //printf("BitField::semantic('%s')\n", dsym.toChars()); if (dsym.semanticRun >= PASS.semanticdone) return; visit(cast(VarDeclaration)dsym); if (dsym.errors) return; if (!dsym.parent.isStructDeclaration() && !dsym.parent.isClassDeclaration()) { dsym.error("bit-field must be member of struct, union, or class"); } sc = sc.startCTFE(); auto width = dsym.width.expressionSemantic(sc); sc = sc.endCTFE(); width = width.ctfeInterpret(); if (!dsym.type.isintegral()) { // C11 6.7.2.1-5 width.error("bit-field type `%s` is not an integer type", dsym.type.toChars()); dsym.errors = true; } if (!width.isIntegerExp()) { width.error("bit-field width `%s` is not an integer constant", dsym.width.toChars()); dsym.errors = true; } const uwidth = width.toInteger(); // uwidth is unsigned if (uwidth == 0 && !dsym.isAnonymous()) { width.error("bit-field `%s` has zero width", dsym.toChars()); dsym.errors = true; } const sz = dsym.type.size(); if (sz == SIZE_INVALID) dsym.errors = true; const max_width = sz * 8; if (uwidth > max_width) { width.error("width `%lld` of bit-field `%s` does not fit in type `%s`", cast(long)uwidth, dsym.toChars(), dsym.type.toChars()); dsym.errors = true; } dsym.fieldWidth = cast(uint)uwidth; } override void visit(Import imp) { static if (LOG) { printf("Import::semantic('%s') %s\n", toPrettyChars(), id.toChars()); scope(exit) printf("-Import::semantic('%s'), pkg = %p\n", toChars(), pkg); } if (imp.semanticRun > PASS.initial) return; if (imp._scope) { sc = imp._scope; imp._scope = null; } if (!sc) return; imp.parent = sc.parent; imp.semanticRun = PASS.semantic; // Load if not already done so bool loadErrored = false; if (!imp.mod) { loadErrored = imp.load(sc); if (imp.mod) { imp.mod.importAll(null); imp.mod.checkImportDeprecation(imp.loc, sc); } } if (imp.mod) { // Modules need a list of each imported module // if inside a template instantiation, the instantianting // module gets the import. // https://issues.dlang.org/show_bug.cgi?id=17181 Module importer = sc._module; if (sc.minst && sc.tinst) { importer = sc.minst; if (!sc.tinst.importedModules.contains(imp.mod)) sc.tinst.importedModules.push(imp.mod); } //printf("%s imports %s\n", importer.toChars(), imp.mod.toChars()); if (!importer.aimports.contains(imp.mod)) importer.aimports.push(imp.mod); if (sc.explicitVisibility) imp.visibility = sc.visibility; if (!imp.aliasId && !imp.names.dim) // neither a selective nor a renamed import { ScopeDsymbol scopesym = sc.getScopesym(); if (!imp.isstatic) { scopesym.importScope(imp.mod, imp.visibility); } imp.addPackageAccess(scopesym); } if (!loadErrored) { imp.mod.dsymbolSemantic(null); } if (imp.mod.needmoduleinfo) { //printf("module4 %s because of %s\n", importer.toChars(), imp.mod.toChars()); importer.needmoduleinfo = 1; } sc = sc.push(imp.mod); sc.visibility = imp.visibility; for (size_t i = 0; i < imp.aliasdecls.dim; i++) { AliasDeclaration ad = imp.aliasdecls[i]; //printf("\tImport %s alias %s = %s, scope = %p\n", toPrettyChars(), aliases[i].toChars(), names[i].toChars(), ad._scope); Dsymbol sym = imp.mod.search(imp.loc, imp.names[i], IgnorePrivateImports); if (sym) { import dmd.access : symbolIsVisible; if (!symbolIsVisible(sc, sym)) imp.mod.error(imp.loc, "member `%s` is not visible from module `%s`", imp.names[i].toChars(), sc._module.toChars()); ad.dsymbolSemantic(sc); // If the import declaration is in non-root module, // analysis of the aliased symbol is deferred. // Therefore, don't see the ad.aliassym or ad.type here. } else { Dsymbol s = imp.mod.search_correct(imp.names[i]); if (s) imp.mod.error(imp.loc, "import `%s` not found, did you mean %s `%s`?", imp.names[i].toChars(), s.kind(), s.toPrettyChars()); else imp.mod.error(imp.loc, "import `%s` not found", imp.names[i].toChars()); ad.type = Type.terror; } } sc = sc.pop(); } imp.semanticRun = PASS.semanticdone; // object self-imports itself, so skip that // https://issues.dlang.org/show_bug.cgi?id=7547 // don't list pseudo modules __entrypoint.d, __main.d // https://issues.dlang.org/show_bug.cgi?id=11117 // https://issues.dlang.org/show_bug.cgi?id=11164 if (global.params.moduleDeps.buffer is null || (imp.id == Id.object && sc._module.ident == Id.object) || strcmp(sc._module.ident.toChars(), "__main") == 0) return; /* The grammar of the file is: * ImportDeclaration * ::= BasicImportDeclaration [ " : " ImportBindList ] [ " -> " * ModuleAliasIdentifier ] "\n" * * BasicImportDeclaration * ::= ModuleFullyQualifiedName " (" FilePath ") : " Protection|"string" * " [ " static" ] : " ModuleFullyQualifiedName " (" FilePath ")" * * FilePath * - any string with '(', ')' and '\' escaped with the '\' character */ OutBuffer* ob = global.params.moduleDeps.buffer; Module imod = sc._module; if (!global.params.moduleDeps.name) ob.writestring("depsImport "); ob.writestring(imod.toPrettyChars()); ob.writestring(" ("); escapePath(ob, imod.srcfile.toChars()); ob.writestring(") : "); // use visibility instead of sc.visibility because it couldn't be // resolved yet, see the comment above visibilityToBuffer(ob, imp.visibility); ob.writeByte(' '); if (imp.isstatic) { stcToBuffer(ob, STC.static_); ob.writeByte(' '); } ob.writestring(": "); foreach (pid; imp.packages) { ob.printf("%s.", pid.toChars()); } ob.writestring(imp.id.toString()); ob.writestring(" ("); if (imp.mod) escapePath(ob, imp.mod.srcfile.toChars()); else ob.writestring("???"); ob.writeByte(')'); foreach (i, name; imp.names) { if (i == 0) ob.writeByte(':'); else ob.writeByte(','); Identifier _alias = imp.aliases[i]; if (!_alias) { ob.printf("%s", name.toChars()); _alias = name; } else ob.printf("%s=%s", _alias.toChars(), name.toChars()); } if (imp.aliasId) ob.printf(" -> %s", imp.aliasId.toChars()); ob.writenl(); } void attribSemantic(AttribDeclaration ad) { if (ad.semanticRun != PASS.initial) return; ad.semanticRun = PASS.semantic; Dsymbols* d = ad.include(sc); //printf("\tAttribDeclaration::semantic '%s', d = %p\n",toChars(), d); if (d) { Scope* sc2 = ad.newScope(sc); bool errors; for (size_t i = 0; i < d.dim; i++) { Dsymbol s = (*d)[i]; s.dsymbolSemantic(sc2); errors |= s.errors; } ad.errors |= errors; if (sc2 != sc) sc2.pop(); } ad.semanticRun = PASS.semanticdone; } override void visit(AttribDeclaration atd) { attribSemantic(atd); } override void visit(AnonDeclaration scd) { //printf("\tAnonDeclaration::semantic isunion:%d ptr:%p\n", scd.isunion, scd); assert(sc.parent); auto p = sc.parent.pastMixin(); auto ad = p.isAggregateDeclaration(); if (!ad) { error(scd.loc, "%s can only be a part of an aggregate, not %s `%s`", scd.kind(), p.kind(), p.toChars()); scd.errors = true; return; } if (!scd.decl) return; sc = sc.push(); sc.stc &= ~(STC.auto_ | STC.scope_ | STC.static_ | STC.gshared); sc.inunion = scd.isunion ? scd : null; sc.flags = 0; for (size_t i = 0; i < scd.decl.dim; i++) { Dsymbol s = (*scd.decl)[i]; if (auto var = s.isVarDeclaration) { if (scd.isunion) var.overlapped = true; } s.dsymbolSemantic(sc); } sc = sc.pop(); } override void visit(PragmaDeclaration pd) { StringExp verifyMangleString(ref Expression e) { auto se = semanticString(sc, e, "mangled name"); if (!se) return null; e = se; if (!se.len) { pd.error("zero-length string not allowed for mangled name"); return null; } if (se.sz != 1) { pd.error("mangled name characters can only be of type `char`"); return null; } version (all) { /* Note: D language specification should not have any assumption about backend * implementation. Ideally pragma(mangle) can accept a string of any content. * * Therefore, this validation is compiler implementation specific. */ auto slice = se.peekString(); for (size_t i = 0; i < se.len;) { dchar c = slice[i]; if (c < 0x80) { if (c.isValidMangling) { ++i; continue; } else { pd.error("char 0x%02x not allowed in mangled name", c); break; } } if (const msg = utf_decodeChar(slice, i, c)) { pd.error("%.*s", cast(int)msg.length, msg.ptr); break; } if (!isUniAlpha(c)) { pd.error("char `0x%04x` not allowed in mangled name", c); break; } } } return se; } void declarations() { if (!pd.decl) return; Scope* sc2 = pd.newScope(sc); scope(exit) if (sc2 != sc) sc2.pop(); foreach (s; (*pd.decl)[]) { if (pd.ident == Id.printf || pd.ident == Id.scanf) { s.setPragmaPrintf(pd.ident == Id.printf); continue; } s.dsymbolSemantic(sc2); if (pd.ident != Id.mangle) continue; assert(pd.args); if (auto ad = s.isAggregateDeclaration()) { Expression e = (*pd.args)[0]; sc2 = sc2.startCTFE(); e = e.expressionSemantic(sc); e = resolveProperties(sc2, e); sc2 = sc2.endCTFE(); AggregateDeclaration agg; if (auto tc = e.type.isTypeClass()) agg = tc.sym; else if (auto ts = e.type.isTypeStruct()) agg = ts.sym; ad.pMangleOverride = new MangleOverride; void setString(ref Expression e) { if (auto se = verifyMangleString(e)) { const name = (cast(const(char)[])se.peekData()).xarraydup; ad.pMangleOverride.id = Identifier.idPool(name); e = se; } else e.error("must be a string"); } if (agg) { ad.pMangleOverride.agg = agg; if (pd.args.dim == 2) { setString((*pd.args)[1]); } else ad.pMangleOverride.id = agg.ident; } else setString((*pd.args)[0]); } else if (auto td = s.isTemplateDeclaration()) { pd.error("cannot apply to a template declaration"); errorSupplemental(pd.loc, "use `template Class(Args...){ pragma(mangle, \"other_name\") class Class {} }`"); } else if (auto se = verifyMangleString((*pd.args)[0])) { const name = (cast(const(char)[])se.peekData()).xarraydup; uint cnt = setMangleOverride(s, name); if (cnt > 1) pd.error("can only apply to a single declaration"); } } } void noDeclarations() { if (pd.decl) { pd.error("is missing a terminating `;`"); declarations(); // do them anyway, to avoid segfaults. } } // Should be merged with PragmaStatement //printf("\tPragmaDeclaration::semantic '%s'\n", pd.toChars()); if (target.supportsLinkerDirective()) { if (pd.ident == Id.linkerDirective) { if (!pd.args || pd.args.dim != 1) pd.error("one string argument expected for pragma(linkerDirective)"); else { auto se = semanticString(sc, (*pd.args)[0], "linker directive"); if (!se) return noDeclarations(); (*pd.args)[0] = se; if (global.params.verbose) message("linkopt %.*s", cast(int)se.len, se.peekString().ptr); } return noDeclarations(); } } if (pd.ident == Id.msg) { if (!pd.args) return noDeclarations(); if (!pragmaMsgSemantic(pd.loc, sc, pd.args)) return; return noDeclarations(); } else if (pd.ident == Id.lib) { if (!pd.args || pd.args.dim != 1) pd.error("string expected for library name"); else { auto se = semanticString(sc, (*pd.args)[0], "library name"); if (!se) return noDeclarations(); (*pd.args)[0] = se; auto name = se.peekString().xarraydup; if (global.params.verbose) message("library %s", name.ptr); if (global.params.moduleDeps.buffer && !global.params.moduleDeps.name) { OutBuffer* ob = global.params.moduleDeps.buffer; Module imod = sc._module; ob.writestring("depsLib "); ob.writestring(imod.toPrettyChars()); ob.writestring(" ("); escapePath(ob, imod.srcfile.toChars()); ob.writestring(") : "); ob.writestring(name); ob.writenl(); } mem.xfree(name.ptr); } return noDeclarations(); } else if (pd.ident == Id.startaddress) { pragmaStartAddressSemantic(pd.loc, sc, pd.args); return noDeclarations(); } else if (pd.ident == Id.Pinline) { // this pragma now gets evaluated on demand in function semantic return declarations(); } else if (pd.ident == Id.mangle) { if (!pd.args) pd.args = new Expressions(); if (pd.args.dim == 0 || pd.args.dim > 2) { pd.error(pd.args.dim == 0 ? "string expected for mangled name" : "expected 1 or 2 arguments"); pd.args.setDim(1); (*pd.args)[0] = ErrorExp.get(); // error recovery } return declarations(); } else if (pd.ident == Id.crt_constructor || pd.ident == Id.crt_destructor) { if (pd.args && pd.args.dim != 0) pd.error("takes no argument"); else { immutable isCtor = pd.ident == Id.crt_constructor; static uint recurse(Dsymbol s, bool isCtor) { if (auto ad = s.isAttribDeclaration()) { uint nestedCount; auto decls = ad.include(null); if (decls) { for (size_t i = 0; i < decls.dim; ++i) nestedCount += recurse((*decls)[i], isCtor); } return nestedCount; } else if (auto f = s.isFuncDeclaration()) { if (isCtor) f.isCrtCtor = true; else f.isCrtDtor = true; return 1; } else return 0; assert(0); } if (recurse(pd, isCtor) > 1) pd.error("can only apply to a single declaration"); } return declarations(); } else if (pd.ident == Id.printf || pd.ident == Id.scanf) { if (pd.args && pd.args.dim != 0) pd.error("takes no argument"); return declarations(); } else if (!global.params.ignoreUnsupportedPragmas) { error(pd.loc, "unrecognized `pragma(%s)`", pd.ident.toChars()); return declarations(); } if (!global.params.verbose) return declarations(); /* Print unrecognized pragmas */ OutBuffer buf; buf.writestring(pd.ident.toString()); if (pd.args) { const errors_save = global.startGagging(); for (size_t i = 0; i < pd.args.dim; i++) { Expression e = (*pd.args)[i]; sc = sc.startCTFE(); e = e.expressionSemantic(sc); e = resolveProperties(sc, e); sc = sc.endCTFE(); e = e.ctfeInterpret(); if (i == 0) buf.writestring(" ("); else buf.writeByte(','); buf.writestring(e.toChars()); } if (pd.args.dim) buf.writeByte(')'); global.endGagging(errors_save); } message("pragma %s", buf.peekChars()); return declarations(); } override void visit(StaticIfDeclaration sid) { attribSemantic(sid); } override void visit(StaticForeachDeclaration sfd) { attribSemantic(sfd); } private Dsymbols* compileIt(CompileDeclaration cd) { //printf("CompileDeclaration::compileIt(loc = %d) %s\n", cd.loc.linnum, cd.exp.toChars()); OutBuffer buf; if (expressionsToString(buf, sc, cd.exps)) return null; const errors = global.errors; const len = buf.length; buf.writeByte(0); const str = buf.extractSlice()[0 .. len]; scope p = new Parser!ASTCodegen(cd.loc, sc._module, str, false); p.nextToken(); auto d = p.parseDeclDefs(0); if (global.errors != errors) return null; if (p.token.value != TOK.endOfFile) { cd.error("incomplete mixin declaration `%s`", str.ptr); return null; } return d; } /*********************************************************** * https://dlang.org/spec/module.html#mixin-declaration */ override void visit(CompileDeclaration cd) { //printf("CompileDeclaration::semantic()\n"); if (!cd.compiled) { cd.decl = compileIt(cd); cd.AttribDeclaration.addMember(sc, cd.scopesym); cd.compiled = true; if (cd._scope && cd.decl) { for (size_t i = 0; i < cd.decl.dim; i++) { Dsymbol s = (*cd.decl)[i]; s.setScope(cd._scope); } } } attribSemantic(cd); } override void visit(CPPNamespaceDeclaration ns) { Identifier identFromSE (StringExp se) { const sident = se.toStringz(); if (!sident.length || !Identifier.isValidIdentifier(sident)) { ns.exp.error("expected valid identifier for C++ namespace but got `%.*s`", cast(int)sident.length, sident.ptr); return null; } else return Identifier.idPool(sident); } if (ns.ident !is null) return attribSemantic(ns); ns.cppnamespace = sc.namespace; sc = sc.startCTFE(); ns.exp = ns.exp.expressionSemantic(sc); ns.exp = resolveProperties(sc, ns.exp); sc = sc.endCTFE(); ns.exp = ns.exp.ctfeInterpret(); // Can be either a tuple of strings or a string itself if (auto te = ns.exp.isTupleExp()) { expandTuples(te.exps); CPPNamespaceDeclaration current = ns.cppnamespace; for (size_t d = 0; d < te.exps.dim; ++d) { auto exp = (*te.exps)[d]; auto prev = d ? current : ns.cppnamespace; current = (d + 1) != te.exps.dim ? new CPPNamespaceDeclaration(ns.loc, exp, null) : ns; current.exp = exp; current.cppnamespace = prev; if (auto se = exp.toStringExp()) { current.ident = identFromSE(se); if (current.ident is null) return; // An error happened in `identFromSE` } else ns.exp.error("`%s`: index %llu is not a string constant, it is a `%s`", ns.exp.toChars(), cast(ulong) d, ns.exp.type.toChars()); } } else if (auto se = ns.exp.toStringExp()) ns.ident = identFromSE(se); // Empty Tuple else if (ns.exp.isTypeExp() && ns.exp.isTypeExp().type.toBasetype().isTypeTuple()) { } else ns.exp.error("compile time string constant (or tuple) expected, not `%s`", ns.exp.toChars()); attribSemantic(ns); } override void visit(UserAttributeDeclaration uad) { //printf("UserAttributeDeclaration::semantic() %p\n", this); if (uad.decl && !uad._scope) uad.Dsymbol.setScope(sc); // for function local symbols arrayExpressionSemantic(uad.atts.peekSlice(), sc, true); return attribSemantic(uad); } override void visit(StaticAssert sa) { if (sa.semanticRun < PASS.semanticdone) sa.semanticRun = PASS.semanticdone; } override void visit(DebugSymbol ds) { //printf("DebugSymbol::semantic() %s\n", toChars()); if (ds.semanticRun < PASS.semanticdone) ds.semanticRun = PASS.semanticdone; } override void visit(VersionSymbol vs) { if (vs.semanticRun < PASS.semanticdone) vs.semanticRun = PASS.semanticdone; } override void visit(Package pkg) { if (pkg.semanticRun < PASS.semanticdone) pkg.semanticRun = PASS.semanticdone; } override void visit(Module m) { if (m.semanticRun != PASS.initial) return; //printf("+Module::semantic(this = %p, '%s'): parent = %p\n", this, toChars(), parent); m.semanticRun = PASS.semantic; // Note that modules get their own scope, from scratch. // This is so regardless of where in the syntax a module // gets imported, it is unaffected by context. Scope* sc = m._scope; // see if already got one from importAll() if (!sc) { sc = Scope.createGlobal(m); // create root scope } //printf("Module = %p, linkage = %d\n", sc.scopesym, sc.linkage); // Pass 1 semantic routines: do public side of the definition m.members.foreachDsymbol( (s) { //printf("\tModule('%s'): '%s'.dsymbolSemantic()\n", toChars(), s.toChars()); s.dsymbolSemantic(sc); m.runDeferredSemantic(); }); if (m.userAttribDecl) { m.userAttribDecl.dsymbolSemantic(sc); } if (!m._scope) { sc = sc.pop(); sc.pop(); // 2 pops because Scope.createGlobal() created 2 } m.semanticRun = PASS.semanticdone; //printf("-Module::semantic(this = %p, '%s'): parent = %p\n", this, toChars(), parent); } override void visit(EnumDeclaration ed) { //printf("EnumDeclaration::semantic(sd = %p, '%s') %s\n", sc.scopesym, sc.scopesym.toChars(), ed.toChars()); //printf("EnumDeclaration::semantic() %p %s\n", ed, ed.toChars()); if (ed.semanticRun >= PASS.semanticdone) return; // semantic() already completed if (ed.semanticRun == PASS.semantic) { assert(ed.memtype); error(ed.loc, "circular reference to enum base type `%s`", ed.memtype.toChars()); ed.errors = true; ed.semanticRun = PASS.semanticdone; return; } Scope* scx = null; if (ed._scope) { sc = ed._scope; scx = ed._scope; // save so we don't make redundant copies ed._scope = null; } if (!sc) return; ed.parent = sc.parent; ed.type = ed.type.typeSemantic(ed.loc, sc); ed.visibility = sc.visibility; if (sc.stc & STC.deprecated_) ed.isdeprecated = true; ed.userAttribDecl = sc.userAttribDecl; ed.cppnamespace = sc.namespace; ed.semanticRun = PASS.semantic; UserAttributeDeclaration.checkGNUABITag(ed, sc.linkage); checkMustUseReserved(ed); if (!ed.members && !ed.memtype) // enum ident; { ed.semanticRun = PASS.semanticdone; return; } if (!ed.symtab) ed.symtab = new DsymbolTable(); /* The separate, and distinct, cases are: * 1. enum { ... } * 2. enum : memtype { ... } * 3. enum ident { ... } * 4. enum ident : memtype { ... } * 5. enum ident : memtype; * 6. enum ident; */ if (ed.memtype) { ed.memtype = ed.memtype.typeSemantic(ed.loc, sc); /* Check to see if memtype is forward referenced */ if (auto te = ed.memtype.isTypeEnum()) { auto sym = te.toDsymbol(sc).isEnumDeclaration(); // Special enums like __c_[u]long[long] are fine to forward reference // see https://issues.dlang.org/show_bug.cgi?id=20599 if (!sym.isSpecial() && (!sym.memtype || !sym.members || !sym.symtab || sym._scope)) { // memtype is forward referenced, so try again later deferDsymbolSemantic(ed, scx); //printf("\tdeferring %s\n", toChars()); ed.semanticRun = PASS.initial; return; } else // Ensure that semantic is run to detect. e.g. invalid forward references sym.dsymbolSemantic(sc); } if (ed.memtype.ty == Tvoid) { ed.error("base type must not be `void`"); ed.memtype = Type.terror; } if (ed.memtype.ty == Terror) { ed.errors = true; // poison all the members ed.members.foreachDsymbol( (s) { s.errors = true; } ); ed.semanticRun = PASS.semanticdone; return; } } if (!ed.members) // enum ident : memtype; { ed.semanticRun = PASS.semanticdone; return; } if (ed.members.dim == 0) { ed.error("enum `%s` must have at least one member", ed.toChars()); ed.errors = true; ed.semanticRun = PASS.semanticdone; return; } if (!(sc.flags & SCOPE.Cfile)) // C enum remains incomplete until members are done ed.semanticRun = PASS.semanticdone; // @@@DEPRECATED_2.110@@@ https://dlang.org/deprecate.html#scope%20as%20a%20type%20constraint // Deprecated in 2.100 // Make an error in 2.110 if (sc.stc & STC.scope_) deprecation(ed.loc, "`scope` as a type constraint is deprecated. Use `scope` at the usage site."); Scope* sce; if (ed.isAnonymous()) sce = sc; else { sce = sc.push(ed); sce.parent = ed; } sce = sce.startCTFE(); sce.setNoFree(); // needed for getMaxMinValue() /* Each enum member gets the sce scope */ ed.members.foreachDsymbol( (s) { EnumMember em = s.isEnumMember(); if (em) em._scope = sce; }); /* addMember() is not called when the EnumDeclaration appears as a function statement, * so we have to do what addMember() does and install the enum members in the right symbol * table */ addEnumMembers(ed, sc, sc.getScopesym()); if (sc.flags & SCOPE.Cfile) { /* C11 6.7.2.2 */ assert(ed.memtype); int nextValue = 0; // C11 6.7.2.2-3 first member value defaults to 0 // C11 6.7.2.2-2 value must be representable as an int. // The sizemask represents all values that int will fit into, // from 0..uint.max. We want to cover int.min..uint.max. const mask = Type.tint32.sizemask(); IntRange ir = IntRange(SignExtendedNumber(~(mask >> 1), true), SignExtendedNumber(mask)); void emSemantic(EnumMember em, ref int nextValue) { static void errorReturn(EnumMember em) { em.errors = true; em.semanticRun = PASS.semanticdone; } em.semanticRun = PASS.semantic; em.type = Type.tint32; em._linkage = LINK.c; em.storage_class |= STC.manifest; if (em.value) { Expression e = em.value; assert(e.dyncast() == DYNCAST.expression); e = e.expressionSemantic(sc); e = resolveProperties(sc, e); e = e.integralPromotions(sc); e = e.ctfeInterpret(); if (e.op == EXP.error) return errorReturn(em); auto ie = e.isIntegerExp(); if (!ie) { // C11 6.7.2.2-2 em.error("enum member must be an integral constant expression, not `%s` of type `%s`", e.toChars(), e.type.toChars()); return errorReturn(em); } if (!ir.contains(getIntRange(ie))) { // C11 6.7.2.2-2 em.error("enum member value `%s` does not fit in an `int`", e.toChars()); return errorReturn(em); } nextValue = cast(int)ie.toInteger(); em.value = new IntegerExp(em.loc, nextValue, Type.tint32); } else { // C11 6.7.2.2-3 add 1 to value of previous enumeration constant bool first = (em == (*em.ed.members)[0]); if (!first) { import core.checkedint : adds; bool overflow; nextValue = adds(nextValue, 1, overflow); if (overflow) { em.error("initialization with `%d+1` causes overflow for type `int`", nextValue - 1); return errorReturn(em); } } em.value = new IntegerExp(em.loc, nextValue, Type.tint32); } em.semanticRun = PASS.semanticdone; } ed.members.foreachDsymbol( (s) { if (EnumMember em = s.isEnumMember()) emSemantic(em, nextValue); }); ed.semanticRun = PASS.semanticdone; return; } ed.members.foreachDsymbol( (s) { if (EnumMember em = s.isEnumMember()) em.dsymbolSemantic(em._scope); }); //printf("defaultval = %lld\n", defaultval); //if (defaultval) printf("defaultval: %s %s\n", defaultval.toChars(), defaultval.type.toChars()); //printf("members = %s\n", members.toChars()); } override void visit(EnumMember em) { //printf("EnumMember::semantic() %s\n", em.toChars()); void errorReturn() { em.errors = true; em.semanticRun = PASS.semanticdone; } if (em.errors || em.semanticRun >= PASS.semanticdone) return; if (em.semanticRun == PASS.semantic) { em.error("circular reference to `enum` member"); return errorReturn(); } assert(em.ed); em.ed.dsymbolSemantic(sc); if (em.ed.errors) return errorReturn(); if (em.errors || em.semanticRun >= PASS.semanticdone) return; if (em._scope) sc = em._scope; if (!sc) return; em.semanticRun = PASS.semantic; em.visibility = em.ed.isAnonymous() ? em.ed.visibility : Visibility(Visibility.Kind.public_); em._linkage = LINK.d; em.storage_class |= STC.manifest; // https://issues.dlang.org/show_bug.cgi?id=9701 if (em.ed.isAnonymous()) { if (em.userAttribDecl) em.userAttribDecl.userAttribDecl = em.ed.userAttribDecl; else em.userAttribDecl = em.ed.userAttribDecl; } // Eval UDA in this same scope. Issues 19344, 20835, 21122 if (em.userAttribDecl) { // Set scope but avoid extra sc.uda attachment inside setScope() auto inneruda = em.userAttribDecl.userAttribDecl; em.userAttribDecl.setScope(sc); em.userAttribDecl.userAttribDecl = inneruda; } // The first enum member is special bool first = (em == (*em.ed.members)[0]); if (em.origType) { em.origType = em.origType.typeSemantic(em.loc, sc); em.type = em.origType; assert(em.value); // "type id;" is not a valid enum member declaration } if (em.value) { Expression e = em.value; assert(e.dyncast() == DYNCAST.expression); e = e.expressionSemantic(sc); e = resolveProperties(sc, e); e = e.ctfeInterpret(); if (e.op == EXP.error) return errorReturn(); if (first && !em.ed.memtype && !em.ed.isAnonymous()) { em.ed.memtype = e.type; if (em.ed.memtype.ty == Terror) { em.ed.errors = true; return errorReturn(); } if (em.ed.memtype.ty != Terror) { /* https://issues.dlang.org/show_bug.cgi?id=11746 * All of named enum members should have same type * with the first member. If the following members were referenced * during the first member semantic, their types should be unified. */ em.ed.members.foreachDsymbol( (s) { EnumMember enm = s.isEnumMember(); if (!enm || enm == em || enm.semanticRun < PASS.semanticdone || enm.origType) return; //printf("[%d] em = %s, em.semanticRun = %d\n", i, toChars(), em.semanticRun); Expression ev = enm.value; ev = ev.implicitCastTo(sc, em.ed.memtype); ev = ev.ctfeInterpret(); ev = ev.castTo(sc, em.ed.type); if (ev.op == EXP.error) em.ed.errors = true; enm.value = ev; }); if (em.ed.errors) { em.ed.memtype = Type.terror; return errorReturn(); } } } if (em.ed.memtype && !em.origType) { e = e.implicitCastTo(sc, em.ed.memtype); e = e.ctfeInterpret(); // save origValue for better json output em.origValue = e; if (!em.ed.isAnonymous()) { e = e.castTo(sc, em.ed.type.addMod(e.type.mod)); // https://issues.dlang.org/show_bug.cgi?id=12385 e = e.ctfeInterpret(); } } else if (em.origType) { e = e.implicitCastTo(sc, em.origType); e = e.ctfeInterpret(); assert(em.ed.isAnonymous()); // save origValue for better json output em.origValue = e; } em.value = e; } else if (first) { Type t; if (em.ed.memtype) t = em.ed.memtype; else { t = Type.tint32; if (!em.ed.isAnonymous()) em.ed.memtype = t; } Expression e = new IntegerExp(em.loc, 0, t); e = e.ctfeInterpret(); // save origValue for better json output em.origValue = e; if (!em.ed.isAnonymous()) { e = e.castTo(sc, em.ed.type); e = e.ctfeInterpret(); } em.value = e; } else { /* Find the previous enum member, * and set this to be the previous value + 1 */ EnumMember emprev = null; em.ed.members.foreachDsymbol( (s) { if (auto enm = s.isEnumMember()) { if (enm == em) return 1; // found emprev = enm; } return 0; // continue }); assert(emprev); if (emprev.semanticRun < PASS.semanticdone) // if forward reference emprev.dsymbolSemantic(emprev._scope); // resolve it if (emprev.errors) return errorReturn(); Expression eprev = emprev.value; // .toHeadMutable() due to https://issues.dlang.org/show_bug.cgi?id=18645 Type tprev = eprev.type.toHeadMutable().equals(em.ed.type.toHeadMutable()) ? em.ed.memtype : eprev.type; /* https://issues.dlang.org/show_bug.cgi?id=20777 Previously this used getProperty, which doesn't consider anything user defined, this construct does do that and thus fixes the bug. */ Expression emax = DotIdExp.create(em.ed.loc, new TypeExp(em.ed.loc, tprev), Id.max); emax = emax.expressionSemantic(sc); emax = emax.ctfeInterpret(); // Set value to (eprev + 1). // But first check that (eprev != emax) assert(eprev); Expression e = new EqualExp(EXP.equal, em.loc, eprev, emax); e = e.expressionSemantic(sc); e = e.ctfeInterpret(); if (e.toInteger()) { em.error("initialization with `%s.%s+1` causes overflow for type `%s`", emprev.ed.toChars(), emprev.toChars(), em.ed.memtype.toChars()); return errorReturn(); } // Now set e to (eprev + 1) e = new AddExp(em.loc, eprev, IntegerExp.literal!1); e = e.expressionSemantic(sc); e = e.castTo(sc, eprev.type); e = e.ctfeInterpret(); // save origValue (without cast) for better json output if (e.op != EXP.error) // avoid duplicate diagnostics { assert(emprev.origValue); em.origValue = new AddExp(em.loc, emprev.origValue, IntegerExp.literal!1); em.origValue = em.origValue.expressionSemantic(sc); em.origValue = em.origValue.ctfeInterpret(); } if (e.op == EXP.error) return errorReturn(); if (e.type.isfloating()) { // Check that e != eprev (not always true for floats) Expression etest = new EqualExp(EXP.equal, em.loc, e, eprev); etest = etest.expressionSemantic(sc); etest = etest.ctfeInterpret(); if (etest.toInteger()) { em.error("has inexact value due to loss of precision"); return errorReturn(); } } em.value = e; } if (!em.origType) em.type = em.value.type; assert(em.origValue); em.semanticRun = PASS.semanticdone; } override void visit(TemplateDeclaration tempdecl) { static if (LOG) { printf("TemplateDeclaration.dsymbolSemantic(this = %p, id = '%s')\n", this, tempdecl.ident.toChars()); printf("sc.stc = %llx\n", sc.stc); printf("sc.module = %s\n", sc._module.toChars()); } if (tempdecl.semanticRun != PASS.initial) return; // semantic() already run if (tempdecl._scope) { sc = tempdecl._scope; tempdecl._scope = null; } if (!sc) return; // Remember templates defined in module object that we need to know about if (sc._module && sc._module.ident == Id.object) { if (tempdecl.ident == Id.RTInfo) Type.rtinfo = tempdecl; } /* Remember Scope for later instantiations, but make * a copy since attributes can change. */ if (!tempdecl._scope) { tempdecl._scope = sc.copy(); tempdecl._scope.setNoFree(); } tempdecl.semanticRun = PASS.semantic; tempdecl.parent = sc.parent; tempdecl.visibility = sc.visibility; tempdecl.userAttribDecl = sc.userAttribDecl; tempdecl.cppnamespace = sc.namespace; tempdecl.isstatic = tempdecl.toParent().isModule() || (tempdecl._scope.stc & STC.static_); tempdecl.deprecated_ = !!(sc.stc & STC.deprecated_); UserAttributeDeclaration.checkGNUABITag(tempdecl, sc.linkage); if (!tempdecl.isstatic) { if (auto ad = tempdecl.parent.pastMixin().isAggregateDeclaration()) ad.makeNested(); } // Set up scope for parameters auto paramsym = new ScopeDsymbol(); paramsym.parent = tempdecl.parent; Scope* paramscope = sc.push(paramsym); paramscope.stc = 0; if (global.params.ddoc.doOutput) { tempdecl.origParameters = new TemplateParameters(tempdecl.parameters.dim); for (size_t i = 0; i < tempdecl.parameters.dim; i++) { TemplateParameter tp = (*tempdecl.parameters)[i]; (*tempdecl.origParameters)[i] = tp.syntaxCopy(); } } for (size_t i = 0; i < tempdecl.parameters.dim; i++) { TemplateParameter tp = (*tempdecl.parameters)[i]; if (!tp.declareParameter(paramscope)) { error(tp.loc, "parameter `%s` multiply defined", tp.ident.toChars()); tempdecl.errors = true; } if (!tp.tpsemantic(paramscope, tempdecl.parameters)) { tempdecl.errors = true; } if (i + 1 != tempdecl.parameters.dim && tp.isTemplateTupleParameter()) { tempdecl.error("template tuple parameter must be last one"); tempdecl.errors = true; } } /* Calculate TemplateParameter.dependent */ TemplateParameters tparams = TemplateParameters(1); for (size_t i = 0; i < tempdecl.parameters.dim; i++) { TemplateParameter tp = (*tempdecl.parameters)[i]; tparams[0] = tp; for (size_t j = 0; j < tempdecl.parameters.dim; j++) { // Skip cases like: X(T : T) if (i == j) continue; if (TemplateTypeParameter ttp = (*tempdecl.parameters)[j].isTemplateTypeParameter()) { if (reliesOnTident(ttp.specType, &tparams)) tp.dependent = true; } else if (TemplateAliasParameter tap = (*tempdecl.parameters)[j].isTemplateAliasParameter()) { if (reliesOnTident(tap.specType, &tparams) || reliesOnTident(isType(tap.specAlias), &tparams)) { tp.dependent = true; } } } } paramscope.pop(); // Compute again tempdecl.onemember = null; if (tempdecl.members) { Dsymbol s; if (Dsymbol.oneMembers(tempdecl.members, &s, tempdecl.ident) && s) { tempdecl.onemember = s; s.parent = tempdecl; } } /* BUG: should check: * 1. template functions must not introduce virtual functions, as they * cannot be accomodated in the vtbl[] * 2. templates cannot introduce non-static data members (i.e. fields) * as they would change the instance size of the aggregate. */ tempdecl.semanticRun = PASS.semanticdone; } override void visit(TemplateInstance ti) { templateInstanceSemantic(ti, sc, null); } override void visit(TemplateMixin tm) { static if (LOG) { printf("+TemplateMixin.dsymbolSemantic('%s', this=%p)\n", tm.toChars(), tm); fflush(stdout); } if (tm.semanticRun != PASS.initial) { // When a class/struct contains mixin members, and is done over // because of forward references, never reach here so semanticRun // has been reset to PASS.initial. static if (LOG) { printf("\tsemantic done\n"); } return; } tm.semanticRun = PASS.semantic; static if (LOG) { printf("\tdo semantic\n"); } Scope* scx = null; if (tm._scope) { sc = tm._scope; scx = tm._scope; // save so we don't make redundant copies tm._scope = null; } /* Run semantic on each argument, place results in tiargs[], * then find best match template with tiargs */ if (!tm.findTempDecl(sc) || !tm.semanticTiargs(sc) || !tm.findBestMatch(sc, null)) { if (tm.semanticRun == PASS.initial) // forward reference had occurred { //printf("forward reference - deferring\n"); return deferDsymbolSemantic(tm, scx); } tm.inst = tm; tm.errors = true; return; // error recovery } auto tempdecl = tm.tempdecl.isTemplateDeclaration(); assert(tempdecl); if (!tm.ident) { /* Assign scope local unique identifier, as same as lambdas. */ const(char)[] s = "__mixin"; if (FuncDeclaration func = sc.parent.isFuncDeclaration()) { tm.symtab = func.localsymtab; if (tm.symtab) { // Inside template constraint, symtab is not set yet. goto L1; } } else { tm.symtab = sc.parent.isScopeDsymbol().symtab; L1: assert(tm.symtab); tm.ident = Identifier.generateId(s, tm.symtab.length + 1); tm.symtab.insert(tm); } } tm.inst = tm; tm.parent = sc.parent; /* Detect recursive mixin instantiations. */ for (Dsymbol s = tm.parent; s; s = s.parent) { //printf("\ts = '%s'\n", s.toChars()); TemplateMixin tmix = s.isTemplateMixin(); if (!tmix || tempdecl != tmix.tempdecl) continue; /* Different argument list lengths happen with variadic args */ if (tm.tiargs.dim != tmix.tiargs.dim) continue; for (size_t i = 0; i < tm.tiargs.dim; i++) { RootObject o = (*tm.tiargs)[i]; Type ta = isType(o); Expression ea = isExpression(o); Dsymbol sa = isDsymbol(o); RootObject tmo = (*tmix.tiargs)[i]; if (ta) { Type tmta = isType(tmo); if (!tmta) goto Lcontinue; if (!ta.equals(tmta)) goto Lcontinue; } else if (ea) { Expression tme = isExpression(tmo); if (!tme || !ea.equals(tme)) goto Lcontinue; } else if (sa) { Dsymbol tmsa = isDsymbol(tmo); if (sa != tmsa) goto Lcontinue; } else assert(0); } tm.error("recursive mixin instantiation"); return; Lcontinue: continue; } // Copy the syntax trees from the TemplateDeclaration tm.members = Dsymbol.arraySyntaxCopy(tempdecl.members); if (!tm.members) return; tm.symtab = new DsymbolTable(); sc.getScopesym().importScope(tm, Visibility(Visibility.Kind.public_)); static if (LOG) { printf("\tcreate scope for template parameters '%s'\n", tm.toChars()); } Scope* scy = sc.push(tm); scy.parent = tm; /* https://issues.dlang.org/show_bug.cgi?id=930 * * If the template that is to be mixed in is in the scope of a template * instance, we have to also declare the type aliases in the new mixin scope. */ auto parentInstance = tempdecl.parent ? tempdecl.parent.isTemplateInstance() : null; if (parentInstance) parentInstance.declareParameters(scy); tm.argsym = new ScopeDsymbol(); tm.argsym.parent = scy.parent; Scope* argscope = scy.push(tm.argsym); uint errorsave = global.errors; // Declare each template parameter as an alias for the argument type tm.declareParameters(argscope); // Add members to enclosing scope, as well as this scope tm.members.foreachDsymbol(s => s.addMember(argscope, tm)); // Do semantic() analysis on template instance members static if (LOG) { printf("\tdo semantic() on template instance members '%s'\n", tm.toChars()); } Scope* sc2 = argscope.push(tm); //size_t deferred_dim = Module.deferred.dim; __gshared int nest; //printf("%d\n", nest); if (++nest > global.recursionLimit) { global.gag = 0; // ensure error message gets printed tm.error("recursive expansion"); fatal(); } tm.members.foreachDsymbol( s => s.setScope(sc2) ); tm.members.foreachDsymbol( s => s.importAll(sc2) ); tm.members.foreachDsymbol( s => s.dsymbolSemantic(sc2) ); nest--; /* In DeclDefs scope, TemplateMixin does not have to handle deferred symbols. * Because the members would already call Module.addDeferredSemantic() for themselves. * See Struct, Class, Interface, and EnumDeclaration.dsymbolSemantic(). */ //if (!sc.func && Module.deferred.dim > deferred_dim) {} AggregateDeclaration ad = tm.isMember(); if (sc.func && !ad) { tm.semantic2(sc2); tm.semantic3(sc2); } // Give additional context info if error occurred during instantiation if (global.errors != errorsave) { tm.error("error instantiating"); tm.errors = true; } sc2.pop(); argscope.pop(); scy.pop(); static if (LOG) { printf("-TemplateMixin.dsymbolSemantic('%s', this=%p)\n", tm.toChars(), tm); } } override void visit(Nspace ns) { if (ns.semanticRun != PASS.initial) return; static if (LOG) { printf("+Nspace::semantic('%s')\n", ns.toChars()); scope(exit) printf("-Nspace::semantic('%s')\n", ns.toChars()); } if (ns._scope) { sc = ns._scope; ns._scope = null; } if (!sc) return; bool repopulateMembers = false; if (ns.identExp) { // resolve the namespace identifier sc = sc.startCTFE(); Expression resolved = ns.identExp.expressionSemantic(sc); resolved = resolveProperties(sc, resolved); sc = sc.endCTFE(); resolved = resolved.ctfeInterpret(); StringExp name = resolved.toStringExp(); TupleExp tup = name ? null : resolved.isTupleExp(); if (!tup && !name) { error(ns.loc, "expected string expression for namespace name, got `%s`", ns.identExp.toChars()); return; } ns.identExp = resolved; // we don't need to keep the old AST around if (name) { const(char)[] ident = name.toStringz(); if (ident.length == 0 || !Identifier.isValidIdentifier(ident)) { error(ns.loc, "expected valid identifier for C++ namespace but got `%.*s`", cast(int)ident.length, ident.ptr); return; } ns.ident = Identifier.idPool(ident); } else { // create namespace stack from the tuple Nspace parentns = ns; foreach (i, exp; *tup.exps) { name = exp.toStringExp(); if (!name) { error(ns.loc, "expected string expression for namespace name, got `%s`", exp.toChars()); return; } const(char)[] ident = name.toStringz(); if (ident.length == 0 || !Identifier.isValidIdentifier(ident)) { error(ns.loc, "expected valid identifier for C++ namespace but got `%.*s`", cast(int)ident.length, ident.ptr); return; } if (i == 0) { ns.ident = Identifier.idPool(ident); } else { // insert the new namespace Nspace childns = new Nspace(ns.loc, Identifier.idPool(ident), null, parentns.members); parentns.members = new Dsymbols; parentns.members.push(childns); parentns = childns; repopulateMembers = true; } } } } ns.semanticRun = PASS.semantic; ns.parent = sc.parent; // Link does not matter here, if the UDA is present it will error UserAttributeDeclaration.checkGNUABITag(ns, LINK.cpp); if (!ns.members) { ns.semanticRun = PASS.semanticdone; return; } assert(sc); sc = sc.push(ns); sc.linkage = LINK.cpp; // note that namespaces imply C++ linkage sc.parent = ns; foreach (s; *ns.members) { if (repopulateMembers) { s.addMember(sc, sc.scopesym); s.setScope(sc); } s.importAll(sc); } foreach (s; *ns.members) { static if (LOG) { printf("\tmember '%s', kind = '%s'\n", s.toChars(), s.kind()); } s.dsymbolSemantic(sc); } sc.pop(); ns.semanticRun = PASS.semanticdone; } void funcDeclarationSemantic(FuncDeclaration funcdecl) { version (none) { printf("FuncDeclaration::semantic(sc = %p, this = %p, '%s', linkage = %d)\n", sc, funcdecl, funcdecl.toPrettyChars(), sc.linkage); if (funcdecl.isFuncLiteralDeclaration()) printf("\tFuncLiteralDeclaration()\n"); printf("sc.parent = %s, parent = %s\n", sc.parent.toChars(), funcdecl.parent ? funcdecl.parent.toChars() : ""); printf("type: %p, %s\n", funcdecl.type, funcdecl.type.toChars()); } if (funcdecl.semanticRun != PASS.initial && funcdecl.isFuncLiteralDeclaration()) { /* Member functions that have return types that are * forward references can have semantic() run more than * once on them. * See test\interface2.d, test20 */ return; } if (funcdecl.semanticRun >= PASS.semanticdone) return; assert(funcdecl.semanticRun <= PASS.semantic); funcdecl.semanticRun = PASS.semantic; if (funcdecl._scope) { sc = funcdecl._scope; funcdecl._scope = null; } if (!sc || funcdecl.errors) return; funcdecl.cppnamespace = sc.namespace; funcdecl.parent = sc.parent; Dsymbol parent = funcdecl.toParent(); funcdecl.foverrides.setDim(0); // reset in case semantic() is being retried for this function funcdecl.storage_class |= sc.stc & ~STC.ref_; AggregateDeclaration ad = funcdecl.isThis(); // Don't nest structs b/c of generated methods which should not access the outer scopes. // https://issues.dlang.org/show_bug.cgi?id=16627 if (ad && !funcdecl.isGenerated()) { funcdecl.storage_class |= ad.storage_class & (STC.TYPECTOR | STC.synchronized_); ad.makeNested(); } if (sc.func) funcdecl.storage_class |= sc.func.storage_class & STC.disable; // Remove prefix storage classes silently. if ((funcdecl.storage_class & STC.TYPECTOR) && !(ad || funcdecl.isNested())) funcdecl.storage_class &= ~STC.TYPECTOR; //printf("function storage_class = x%llx, sc.stc = x%llx, %x\n", storage_class, sc.stc, Declaration.isFinal()); if (sc.flags & SCOPE.compile) funcdecl.isCompileTimeOnly = true; // don't emit code for this function funcdecl._linkage = sc.linkage; if (auto fld = funcdecl.isFuncLiteralDeclaration()) { if (fld.treq) { Type treq = fld.treq; assert(treq.nextOf().ty == Tfunction); if (treq.ty == Tdelegate) fld.tok = TOK.delegate_; else if (treq.isPtrToFunction()) fld.tok = TOK.function_; else assert(0); funcdecl._linkage = treq.nextOf().toTypeFunction().linkage; } } // evaluate pragma(inline) if (auto pragmadecl = sc.inlining) funcdecl.inlining = evalPragmaInline(pragmadecl.loc, sc, pragmadecl.args); funcdecl.visibility = sc.visibility; funcdecl.userAttribDecl = sc.userAttribDecl; UserAttributeDeclaration.checkGNUABITag(funcdecl, funcdecl._linkage); checkMustUseReserved(funcdecl); if (!funcdecl.originalType) funcdecl.originalType = funcdecl.type.syntaxCopy(); static TypeFunction getFunctionType(FuncDeclaration fd) { if (auto tf = fd.type.isTypeFunction()) return tf; if (!fd.type.isTypeError()) { fd.error("`%s` must be a function instead of `%s`", fd.toChars(), fd.type.toChars()); fd.type = Type.terror; } fd.errors = true; return null; } if (sc.flags & SCOPE.Cfile) { /* C11 allows a function to be declared with a typedef, D does not. */ if (auto ti = funcdecl.type.isTypeIdentifier()) { auto tj = ti.typeSemantic(funcdecl.loc, sc); if (auto tjf = tj.isTypeFunction()) { /* Copy the type instead of just pointing to it, * as we don't merge function types */ auto tjf2 = new TypeFunction(tjf.parameterList, tjf.next, tjf.linkage); funcdecl.type = tjf2; funcdecl.originalType = tjf2; } } } if (!getFunctionType(funcdecl)) return; if (!funcdecl.type.deco) { sc = sc.push(); sc.stc |= funcdecl.storage_class & (STC.disable | STC.deprecated_); // forward to function type TypeFunction tf = funcdecl.type.toTypeFunction(); if (sc.func) { /* If the nesting parent is pure without inference, * then this function defaults to pure too. * * auto foo() pure { * auto bar() {} // become a weak purity function * class C { // nested class * auto baz() {} // become a weak purity function * } * * static auto boo() {} // typed as impure * // Even though, boo cannot call any impure functions. * // See also Expression::checkPurity(). * } */ if (tf.purity == PURE.impure && (funcdecl.isNested() || funcdecl.isThis())) { FuncDeclaration fd = null; for (Dsymbol p = funcdecl.toParent2(); p; p = p.toParent2()) { if (AggregateDeclaration adx = p.isAggregateDeclaration()) { if (adx.isNested()) continue; break; } if ((fd = p.isFuncDeclaration()) !is null) break; } /* If the parent's purity is inferred, then this function's purity needs * to be inferred first. */ if (fd && fd.isPureBypassingInference() >= PURE.weak && !funcdecl.isInstantiated()) { tf.purity = PURE.fwdref; // default to pure } } } if (tf.isref) sc.stc |= STC.ref_; if (tf.isScopeQual) sc.stc |= STC.scope_; if (tf.isnothrow) sc.stc |= STC.nothrow_; if (tf.isnogc) sc.stc |= STC.nogc; if (tf.isproperty) sc.stc |= STC.property; if (tf.purity == PURE.fwdref) sc.stc |= STC.pure_; if (tf.trust != TRUST.default_) { sc.stc &= ~STC.safeGroup; if (tf.trust == TRUST.safe) sc.stc |= STC.safe; else if (tf.trust == TRUST.system) sc.stc |= STC.system; else if (tf.trust == TRUST.trusted) sc.stc |= STC.trusted; } if (funcdecl.isCtorDeclaration()) { tf.isctor = true; Type tret = ad.handleType(); assert(tret); tret = tret.addStorageClass(funcdecl.storage_class | sc.stc); tret = tret.addMod(funcdecl.type.mod); tf.next = tret; if (ad.isStructDeclaration()) sc.stc |= STC.ref_; } // 'return' on a non-static class member function implies 'scope' as well if (ad && ad.isClassDeclaration() && (tf.isreturn || sc.stc & STC.return_) && !(sc.stc & STC.static_)) sc.stc |= STC.scope_; // If 'this' has no pointers, remove 'scope' as it has no meaning // Note: this is already covered by semantic of `VarDeclaration` and `TypeFunction`, // but existing code relies on `hasPointers()` being called here to resolve forward references: // https://github.com/dlang/dmd/pull/14232#issuecomment-1162906573 if (sc.stc & STC.scope_ && ad && ad.isStructDeclaration() && !ad.type.hasPointers()) { sc.stc &= ~STC.scope_; tf.isScopeQual = false; if (tf.isreturnscope) { sc.stc &= ~(STC.return_ | STC.returnScope); tf.isreturn = false; tf.isreturnscope = false; } } sc.linkage = funcdecl._linkage; if (!tf.isNaked() && !(funcdecl.isThis() || funcdecl.isNested())) { OutBuffer buf; MODtoBuffer(&buf, tf.mod); funcdecl.error("without `this` cannot be `%s`", buf.peekChars()); tf.mod = 0; // remove qualifiers } /* Apply const, immutable, wild and shared storage class * to the function type. Do this before type semantic. */ auto stc = funcdecl.storage_class; if (funcdecl.type.isImmutable()) stc |= STC.immutable_; if (funcdecl.type.isConst()) stc |= STC.const_; if (funcdecl.type.isShared() || funcdecl.storage_class & STC.synchronized_) stc |= STC.shared_; if (funcdecl.type.isWild()) stc |= STC.wild; funcdecl.type = funcdecl.type.addSTC(stc); funcdecl.type = funcdecl.type.typeSemantic(funcdecl.loc, sc); sc = sc.pop(); } auto f = getFunctionType(funcdecl); if (!f) return; // funcdecl's type is not a function { // Merge back function attributes into 'originalType'. // It's used for mangling, ddoc, and json output. TypeFunction tfo = funcdecl.originalType.toTypeFunction(); tfo.mod = f.mod; tfo.isScopeQual = f.isScopeQual; tfo.isreturninferred = f.isreturninferred; tfo.isscopeinferred = f.isscopeinferred; tfo.isref = f.isref; tfo.isnothrow = f.isnothrow; tfo.isnogc = f.isnogc; tfo.isproperty = f.isproperty; tfo.purity = f.purity; tfo.trust = f.trust; funcdecl.storage_class &= ~(STC.TYPECTOR | STC.FUNCATTR); } // check pragma(crt_constructor) signature if (funcdecl.isCrtCtor || funcdecl.isCrtDtor) { const idStr = funcdecl.isCrtCtor ? "crt_constructor" : "crt_destructor"; if (f.nextOf().ty != Tvoid) funcdecl.error("must return `void` for `pragma(%s)`", idStr.ptr); if (funcdecl._linkage != LINK.c && f.parameterList.length != 0) funcdecl.error("must be `extern(C)` for `pragma(%s)` when taking parameters", idStr.ptr); } if (funcdecl.overnext && funcdecl.isCsymbol()) { /* C does not allow function overloading, but it does allow * redeclarations of the same function. If .overnext points * to a redeclaration, ok. Error if it is an overload. */ auto fnext = funcdecl.overnext.isFuncDeclaration(); funcDeclarationSemantic(fnext); auto fn = fnext.type.isTypeFunction(); if (!fn || !cFuncEquivalence(f, fn)) { funcdecl.error("redeclaration with different type"); //printf("t1: %s\n", f.toChars()); //printf("t2: %s\n", fn.toChars()); } funcdecl.overnext = null; // don't overload the redeclarations } if ((funcdecl.storage_class & STC.auto_) && !f.isref && !funcdecl.inferRetType) funcdecl.error("storage class `auto` has no effect if return type is not inferred"); if (f.isreturn && !funcdecl.needThis() && !funcdecl.isNested()) { /* Non-static nested functions have a hidden 'this' pointer to which * the 'return' applies */ if (sc.scopesym && sc.scopesym.isAggregateDeclaration()) funcdecl.error("`static` member has no `this` to which `return` can apply"); else error(funcdecl.loc, "top-level function `%s` has no `this` to which `return` can apply", funcdecl.toChars()); } if (funcdecl.isAbstract() && !funcdecl.isVirtual()) { const(char)* sfunc; if (funcdecl.isStatic()) sfunc = "static"; else if (funcdecl.visibility.kind == Visibility.Kind.private_ || funcdecl.visibility.kind == Visibility.Kind.package_) sfunc = visibilityToChars(funcdecl.visibility.kind); else sfunc = "final"; funcdecl.error("`%s` functions cannot be `abstract`", sfunc); } if (funcdecl.isOverride() && !funcdecl.isVirtual() && !funcdecl.isFuncLiteralDeclaration()) { Visibility.Kind kind = funcdecl.visible().kind; if ((kind == Visibility.Kind.private_ || kind == Visibility.Kind.package_) && funcdecl.isMember()) funcdecl.error("`%s` method is not virtual and cannot override", visibilityToChars(kind)); else funcdecl.error("cannot override a non-virtual function"); } if (funcdecl.isAbstract() && funcdecl.isFinalFunc()) funcdecl.error("cannot be both `final` and `abstract`"); version (none) { if (funcdecl.isAbstract() && funcdecl.fbody) funcdecl.error("`abstract` functions cannot have bodies"); } version (none) { if (funcdecl.isStaticConstructor() || funcdecl.isStaticDestructor()) { if (!funcdecl.isStatic() || funcdecl.type.nextOf().ty != Tvoid) funcdecl.error("static constructors / destructors must be `static void`"); if (f.arguments && f.arguments.dim) funcdecl.error("static constructors / destructors must have empty parameter list"); // BUG: check for invalid storage classes } } if (funcdecl.printf || funcdecl.scanf) { /* printf/scanf-like functions must be of the form: * extern (C/C++) T printf([parameters...], const(char)* format, ...); * or: * extern (C/C++) T vprintf([parameters...], const(char)* format, va_list); */ static bool isPointerToChar(Parameter p) { if (auto tptr = p.type.isTypePointer()) { return tptr.next.ty == Tchar; } return false; } bool isVa_list(Parameter p) { return p.type.equals(target.va_listType(funcdecl.loc, sc)); } const nparams = f.parameterList.length; if ((f.linkage == LINK.c || f.linkage == LINK.cpp) && (f.parameterList.varargs == VarArg.variadic && nparams >= 1 && isPointerToChar(f.parameterList[nparams - 1]) || f.parameterList.varargs == VarArg.none && nparams >= 2 && isPointerToChar(f.parameterList[nparams - 2]) && isVa_list(f.parameterList[nparams - 1]) ) ) { // the signature is valid for printf/scanf, no error } else { const p = (funcdecl.printf ? Id.printf : Id.scanf).toChars(); if (f.parameterList.varargs == VarArg.variadic) { funcdecl.error("`pragma(%s)` functions must be `extern(C) %s %s([parameters...], const(char)*, ...)`" ~ " not `%s`", p, f.next.toChars(), funcdecl.toChars(), funcdecl.type.toChars()); } else { funcdecl.error("`pragma(%s)` functions must be `extern(C) %s %s([parameters...], const(char)*, va_list)`", p, f.next.toChars(), funcdecl.toChars()); } } } if (auto id = parent.isInterfaceDeclaration()) { funcdecl.storage_class |= STC.abstract_; if (funcdecl.isCtorDeclaration() || funcdecl.isPostBlitDeclaration() || funcdecl.isDtorDeclaration() || funcdecl.isInvariantDeclaration() || funcdecl.isNewDeclaration() || funcdecl.isDelete()) funcdecl.error("constructors, destructors, postblits, invariants, new and delete functions are not allowed in interface `%s`", id.toChars()); if (funcdecl.fbody && funcdecl.isVirtual()) funcdecl.error("function body only allowed in `final` functions in interface `%s`", id.toChars()); } if (UnionDeclaration ud = parent.isUnionDeclaration()) { if (funcdecl.isPostBlitDeclaration() || funcdecl.isDtorDeclaration() || funcdecl.isInvariantDeclaration()) funcdecl.error("destructors, postblits and invariants are not allowed in union `%s`", ud.toChars()); } if (StructDeclaration sd = parent.isStructDeclaration()) { if (funcdecl.isCtorDeclaration()) { goto Ldone; } } if (ClassDeclaration cd = parent.isClassDeclaration()) { parent = cd = objc.getParent(funcdecl, cd); if (funcdecl.isCtorDeclaration()) { goto Ldone; } if (funcdecl.storage_class & STC.abstract_) cd.isabstract = ThreeState.yes; // if static function, do not put in vtbl[] if (!funcdecl.isVirtual()) { //printf("\tnot virtual\n"); goto Ldone; } // Suppress further errors if the return type is an error if (funcdecl.type.nextOf() == Type.terror) goto Ldone; bool may_override = false; for (size_t i = 0; i < cd.baseclasses.dim; i++) { BaseClass* b = (*cd.baseclasses)[i]; ClassDeclaration cbd = b.type.toBasetype().isClassHandle(); if (!cbd) continue; for (size_t j = 0; j < cbd.vtbl.dim; j++) { FuncDeclaration f2 = cbd.vtbl[j].isFuncDeclaration(); if (!f2 || f2.ident != funcdecl.ident) continue; if (cbd.parent && cbd.parent.isTemplateInstance()) { if (!f2.functionSemantic()) goto Ldone; } may_override = true; } } if (may_override && funcdecl.type.nextOf() is null) { /* If same name function exists in base class but 'this' is auto return, * cannot find index of base class's vtbl[] to override. */ funcdecl.error("return type inference is not supported if may override base class function"); } /* Find index of existing function in base class's vtbl[] to override * (the index will be the same as in cd's current vtbl[]) */ int vi = cd.baseClass ? funcdecl.findVtblIndex(&cd.baseClass.vtbl, cast(int)cd.baseClass.vtbl.dim) : -1; bool doesoverride = false; switch (vi) { case -1: Lintro: /* Didn't find one, so * This is an 'introducing' function which gets a new * slot in the vtbl[]. */ // Verify this doesn't override previous final function if (cd.baseClass) { Dsymbol s = cd.baseClass.search(funcdecl.loc, funcdecl.ident); if (s) { if (auto f2 = s.isFuncDeclaration()) { f2 = f2.overloadExactMatch(funcdecl.type); if (f2 && f2.isFinalFunc() && f2.visible().kind != Visibility.Kind.private_) funcdecl.error("cannot override `final` function `%s`", f2.toPrettyChars()); } } } /* These quirky conditions mimic what happens when virtual inheritance is implemented by producing a virtual base table with offsets to each of the virtual bases. */ if (target.cpp.splitVBasetable && cd.classKind == ClassKind.cpp && cd.baseClass && cd.baseClass.vtbl.dim) { /* if overriding an interface function, then this is not * introducing and don't put it in the class vtbl[] */ funcdecl.interfaceVirtual = funcdecl.overrideInterface(); if (funcdecl.interfaceVirtual) { //printf("\tinterface function %s\n", toChars()); cd.vtblFinal.push(funcdecl); goto Linterfaces; } } if (funcdecl.isFinalFunc()) { // Don't check here, as it may override an interface function //if (isOverride()) // error("is marked as override, but does not override any function"); cd.vtblFinal.push(funcdecl); } else { //printf("\tintroducing function %s\n", funcdecl.toChars()); funcdecl.isIntroducing = true; if (cd.classKind == ClassKind.cpp && target.cpp.reverseOverloads) { /* Overloaded functions with same name are grouped and in reverse order. * Search for first function of overload group, and insert * funcdecl into vtbl[] immediately before it. */ funcdecl.vtblIndex = cast(int)cd.vtbl.dim; bool found; foreach (const i, s; cd.vtbl) { if (found) // the rest get shifted forward ++s.isFuncDeclaration().vtblIndex; else if (s.ident == funcdecl.ident && s.parent == parent) { // found first function of overload group funcdecl.vtblIndex = cast(int)i; found = true; ++s.isFuncDeclaration().vtblIndex; } } cd.vtbl.insert(funcdecl.vtblIndex, funcdecl); debug foreach (const i, s; cd.vtbl) { // a C++ dtor gets its vtblIndex later (and might even be added twice to the vtbl), // e.g. when compiling druntime with a debug compiler, namely with core.stdcpp.exception. if (auto fd = s.isFuncDeclaration()) assert(fd.vtblIndex == i || (cd.classKind == ClassKind.cpp && fd.isDtorDeclaration) || funcdecl.parent.isInterfaceDeclaration); // interface functions can be in multiple vtbls } } else { // Append to end of vtbl[] vi = cast(int)cd.vtbl.dim; cd.vtbl.push(funcdecl); funcdecl.vtblIndex = vi; } } break; case -2: // can't determine because of forward references funcdecl.errors = true; return; default: { if (vi >= cd.vtbl.length) { /* the derived class cd doesn't have its vtbl[] allocated yet. * https://issues.dlang.org/show_bug.cgi?id=21008 */ funcdecl.error("circular reference to class `%s`", cd.toChars()); funcdecl.errors = true; return; } FuncDeclaration fdv = cd.baseClass.vtbl[vi].isFuncDeclaration(); FuncDeclaration fdc = cd.vtbl[vi].isFuncDeclaration(); // This function is covariant with fdv if (fdc == funcdecl) { doesoverride = true; break; } auto vtf = getFunctionType(fdv); if (vtf.trust > TRUST.system && f.trust == TRUST.system) funcdecl.error("cannot override `@safe` method `%s` with a `@system` attribute", fdv.toPrettyChars); if (fdc.toParent() == parent) { //printf("vi = %d,\tthis = %p %s %s @ [%s]\n\tfdc = %p %s %s @ [%s]\n\tfdv = %p %s %s @ [%s]\n", // vi, this, this.toChars(), this.type.toChars(), this.loc.toChars(), // fdc, fdc .toChars(), fdc .type.toChars(), fdc .loc.toChars(), // fdv, fdv .toChars(), fdv .type.toChars(), fdv .loc.toChars()); // fdc overrides fdv exactly, then this introduces new function. if (fdc.type.mod == fdv.type.mod && funcdecl.type.mod != fdv.type.mod) goto Lintro; } if (fdv.isDeprecated && !funcdecl.isDeprecated) deprecation(funcdecl.loc, "`%s` is overriding the deprecated method `%s`", funcdecl.toPrettyChars, fdv.toPrettyChars); // This function overrides fdv if (fdv.isFinalFunc()) funcdecl.error("cannot override `final` function `%s`", fdv.toPrettyChars()); if (!funcdecl.isOverride()) { if (fdv.isFuture()) { deprecation(funcdecl.loc, "`@__future` base class method `%s` is being overridden by `%s`; rename the latter", fdv.toPrettyChars(), funcdecl.toPrettyChars()); // Treat 'this' as an introducing function, giving it a separate hierarchy in the vtbl[] goto Lintro; } else { // https://issues.dlang.org/show_bug.cgi?id=17349 error(funcdecl.loc, "cannot implicitly override base class method `%s` with `%s`; add `override` attribute", fdv.toPrettyChars(), funcdecl.toPrettyChars()); } } doesoverride = true; if (fdc.toParent() == parent) { // If both are mixins, or both are not, then error. // If either is not, the one that is not overrides the other. bool thismixin = funcdecl.parent.isClassDeclaration() !is null; bool fdcmixin = fdc.parent.isClassDeclaration() !is null; if (thismixin == fdcmixin) { funcdecl.error("multiple overrides of same function"); } /* * https://issues.dlang.org/show_bug.cgi?id=711 * * If an overriding method is introduced through a mixin, * we need to update the vtbl so that both methods are * present. */ else if (thismixin) { /* if the mixin introduced the overriding method, then reintroduce it * in the vtbl. The initial entry for the mixined method * will be updated at the end of the enclosing `if` block * to point to the current (non-mixined) function. */ auto vitmp = cast(int)cd.vtbl.dim; cd.vtbl.push(fdc); fdc.vtblIndex = vitmp; } else if (fdcmixin) { /* if the current overriding function is coming from a * mixined block, then push the current function in the * vtbl, but keep the previous (non-mixined) function as * the overriding one. */ auto vitmp = cast(int)cd.vtbl.dim; cd.vtbl.push(funcdecl); funcdecl.vtblIndex = vitmp; break; } else // fdc overrides fdv { // this doesn't override any function break; } } cd.vtbl[vi] = funcdecl; funcdecl.vtblIndex = vi; /* Remember which functions this overrides */ funcdecl.foverrides.push(fdv); /* This works by whenever this function is called, * it actually returns tintro, which gets dynamically * cast to type. But we know that tintro is a base * of type, so we could optimize it by not doing a * dynamic cast, but just subtracting the isBaseOf() * offset if the value is != null. */ if (fdv.tintro) funcdecl.tintro = fdv.tintro; else if (!funcdecl.type.equals(fdv.type)) { auto tnext = funcdecl.type.nextOf(); if (auto handle = tnext.isClassHandle()) { if (handle.semanticRun < PASS.semanticdone && !handle.isBaseInfoComplete()) handle.dsymbolSemantic(null); } /* Only need to have a tintro if the vptr * offsets differ */ int offset; if (fdv.type.nextOf().isBaseOf(tnext, &offset)) { funcdecl.tintro = fdv.type; } } break; } } /* Go through all the interface bases. * If this function is covariant with any members of those interface * functions, set the tintro. */ Linterfaces: bool foundVtblMatch = false; for (ClassDeclaration bcd = cd; !foundVtblMatch && bcd; bcd = bcd.baseClass) { foreach (b; bcd.interfaces) { vi = funcdecl.findVtblIndex(&b.sym.vtbl, cast(int)b.sym.vtbl.dim); switch (vi) { case -1: break; case -2: // can't determine because of forward references funcdecl.errors = true; return; default: { auto fdv = cast(FuncDeclaration)b.sym.vtbl[vi]; Type ti = null; foundVtblMatch = true; /* Remember which functions this overrides */ funcdecl.foverrides.push(fdv); /* Should we really require 'override' when implementing * an interface function? */ //if (!isOverride()) // warning(loc, "overrides base class function %s, but is not marked with 'override'", fdv.toPrettyChars()); if (fdv.tintro) ti = fdv.tintro; else if (!funcdecl.type.equals(fdv.type)) { /* Only need to have a tintro if the vptr * offsets differ */ int offset; if (fdv.type.nextOf().isBaseOf(funcdecl.type.nextOf(), &offset)) { ti = fdv.type; } } if (ti) { if (funcdecl.tintro) { if (!funcdecl.tintro.nextOf().equals(ti.nextOf()) && !funcdecl.tintro.nextOf().isBaseOf(ti.nextOf(), null) && !ti.nextOf().isBaseOf(funcdecl.tintro.nextOf(), null)) { funcdecl.error("incompatible covariant types `%s` and `%s`", funcdecl.tintro.toChars(), ti.toChars()); } } else { funcdecl.tintro = ti; } } } } } } if (foundVtblMatch) { goto L2; } if (!doesoverride && funcdecl.isOverride() && (funcdecl.type.nextOf() || !may_override)) { BaseClass* bc = null; Dsymbol s = null; for (size_t i = 0; i < cd.baseclasses.dim; i++) { bc = (*cd.baseclasses)[i]; s = bc.sym.search_correct(funcdecl.ident); if (s) break; } if (s) { HdrGenState hgs; OutBuffer buf; auto fd = s.isFuncDeclaration(); functionToBufferFull(cast(TypeFunction)(funcdecl.type), &buf, new Identifier(funcdecl.toPrettyChars()), &hgs, null); const(char)* funcdeclToChars = buf.peekChars(); if (fd) { OutBuffer buf1; if (fd.ident == funcdecl.ident) hgs.fullQual = true; functionToBufferFull(cast(TypeFunction)(fd.type), &buf1, new Identifier(fd.toPrettyChars()), &hgs, null); error(funcdecl.loc, "function `%s` does not override any function, did you mean to override `%s`?", funcdeclToChars, buf1.peekChars()); } else { error(funcdecl.loc, "function `%s` does not override any function, did you mean to override %s `%s`?", funcdeclToChars, s.kind, s.toPrettyChars()); errorSupplemental(funcdecl.loc, "Functions are the only declarations that may be overriden"); } } else funcdecl.error("does not override any function"); } L2: objc.setSelector(funcdecl, sc); objc.checkLinkage(funcdecl); objc.addToClassMethodList(funcdecl, cd); objc.setAsOptional(funcdecl, sc); /* Go through all the interface bases. * Disallow overriding any final functions in the interface(s). */ foreach (b; cd.interfaces) { if (b.sym) { if (auto s = search_function(b.sym, funcdecl.ident)) { if (auto f2 = s.isFuncDeclaration()) { f2 = f2.overloadExactMatch(funcdecl.type); if (f2 && f2.isFinalFunc() && f2.visible().kind != Visibility.Kind.private_) funcdecl.error("cannot override `final` function `%s.%s`", b.sym.toChars(), f2.toPrettyChars()); } } } } if (funcdecl.isOverride) { if (funcdecl.storage_class & STC.disable) deprecation(funcdecl.loc, "`%s` cannot be annotated with `@disable` because it is overriding a function in the base class", funcdecl.toPrettyChars); if (funcdecl.isDeprecated && !(funcdecl.foverrides.length && funcdecl.foverrides[0].isDeprecated)) deprecation(funcdecl.loc, "`%s` cannot be marked as `deprecated` because it is overriding a function in the base class", funcdecl.toPrettyChars); } } else if (funcdecl.isOverride() && !parent.isTemplateInstance()) funcdecl.error("`override` only applies to class member functions"); if (auto ti = parent.isTemplateInstance) { objc.setSelector(funcdecl, sc); objc.setAsOptional(funcdecl, sc); } objc.validateSelector(funcdecl); objc.validateOptional(funcdecl); // Reflect this.type to f because it could be changed by findVtblIndex f = funcdecl.type.toTypeFunction(); Ldone: if (!funcdecl.fbody && !funcdecl.allowsContractWithoutBody()) funcdecl.error("`in` and `out` contracts can only appear without a body when they are virtual interface functions or abstract"); /* Do not allow template instances to add virtual functions * to a class. */ if (funcdecl.isVirtual()) { if (auto ti = parent.isTemplateInstance()) { // Take care of nested templates while (1) { TemplateInstance ti2 = ti.tempdecl.parent.isTemplateInstance(); if (!ti2) break; ti = ti2; } // If it's a member template ClassDeclaration cd = ti.tempdecl.isClassMember(); if (cd) { funcdecl.error("cannot use template to add virtual function to class `%s`", cd.toChars()); } } } funcdecl.checkMain(); // Check main() parameters and return type /* Purity and safety can be inferred for some functions by examining * the function body. */ if (funcdecl.canInferAttributes(sc)) funcdecl.initInferAttributes(); funcdecl.semanticRun = PASS.semanticdone; /* Save scope for possible later use (if we need the * function internals) */ funcdecl._scope = sc.copy(); funcdecl._scope.setNoFree(); __gshared bool printedMain = false; // semantic might run more than once if (global.params.verbose && !printedMain) { const(char)* type = funcdecl.isMain() ? "main" : funcdecl.isWinMain() ? "winmain" : funcdecl.isDllMain() ? "dllmain" : cast(const(char)*)null; Module mod = sc._module; if (type && mod) { printedMain = true; auto name = mod.srcfile.toChars(); auto path = FileName.searchPath(global.path, name, true); message("entry %-10s\t%s", type, path ? path : name); } } if (funcdecl.fbody && sc._module.isRoot() && (funcdecl.isMain() || funcdecl.isWinMain() || funcdecl.isDllMain() || funcdecl.isCMain())) global.hasMainFunction = true; if (funcdecl.fbody && funcdecl.isMain() && sc._module.isRoot()) { // check if `_d_cmain` is defined bool cmainTemplateExists() { auto rootSymbol = sc.search(funcdecl.loc, Id.empty, null); if (auto moduleSymbol = rootSymbol.search(funcdecl.loc, Id.object)) if (moduleSymbol.search(funcdecl.loc, Id.CMain)) return true; return false; } // Only mixin `_d_cmain` if it is defined if (cmainTemplateExists()) { // add `mixin _d_cmain!();` to the declaring module auto tqual = new TypeIdentifier(funcdecl.loc, Id.CMain); auto tm = new TemplateMixin(funcdecl.loc, null, tqual, null); sc._module.members.push(tm); } } assert(funcdecl.type.ty != Terror || funcdecl.errors); // semantic for parameters' UDAs foreach (i, param; f.parameterList) { if (param && param.userAttribDecl) param.userAttribDecl.dsymbolSemantic(sc); } } /// Do the semantic analysis on the external interface to the function. override void visit(FuncDeclaration funcdecl) { funcDeclarationSemantic(funcdecl); } override void visit(CtorDeclaration ctd) { //printf("CtorDeclaration::semantic() %s\n", toChars()); if (ctd.semanticRun >= PASS.semanticdone) return; if (ctd._scope) { sc = ctd._scope; ctd._scope = null; } ctd.parent = sc.parent; Dsymbol p = ctd.toParentDecl(); AggregateDeclaration ad = p.isAggregateDeclaration(); if (!ad) { error(ctd.loc, "constructor can only be a member of aggregate, not %s `%s`", p.kind(), p.toChars()); ctd.type = Type.terror; ctd.errors = true; return; } sc = sc.push(); if (sc.stc & STC.static_) { if (sc.stc & STC.shared_) error(ctd.loc, "`shared static` has no effect on a constructor inside a `shared static` block. Use `shared static this()`"); else error(ctd.loc, "`static` has no effect on a constructor inside a `static` block. Use `static this()`"); } sc.stc &= ~STC.static_; // not a static constructor funcDeclarationSemantic(ctd); sc.pop(); if (ctd.errors) return; TypeFunction tf = ctd.type.toTypeFunction(); immutable dim = tf.parameterList.length; auto sd = ad.isStructDeclaration(); /* See if it's the default constructor * But, template constructor should not become a default constructor. */ if (ad && (!ctd.parent.isTemplateInstance() || ctd.parent.isTemplateMixin())) { if (!sd) { if (dim == 0 && tf.parameterList.varargs == VarArg.none) ad.defaultCtor = ctd; return; } if (dim == 0 && tf.parameterList.varargs == VarArg.none) // empty default ctor w/o any varargs { if (ctd.fbody || !(ctd.storage_class & STC.disable)) { ctd.error("default constructor for structs only allowed " ~ "with `@disable`, no body, and no parameters"); ctd.storage_class |= STC.disable; ctd.fbody = null; } sd.noDefaultCtor = true; } else if (dim == 0 && tf.parameterList.varargs != VarArg.none) // allow varargs only ctor { } else if (dim && tf.parameterList[0].defaultArg) { // if the first parameter has a default argument, then the rest does as well if (ctd.storage_class & STC.disable) { ctd.error("is marked `@disable`, so it cannot have default "~ "arguments for all parameters."); errorSupplemental(ctd.loc, "Use `@disable this();` if you want to disable default initialization."); } else ctd.error("all parameters have default arguments, "~ "but structs cannot have default constructors."); } else if ((dim == 1 || (dim > 1 && tf.parameterList[1].defaultArg))) { //printf("tf: %s\n", tf.toChars()); auto param = tf.parameterList[0]; if (param.storageClass & STC.ref_ && param.type.mutableOf().unSharedOf() == sd.type.mutableOf().unSharedOf()) { //printf("copy constructor\n"); ctd.isCpCtor = true; } } } // https://issues.dlang.org/show_bug.cgi?id=22593 else if (auto ti = ctd.parent.isTemplateInstance()) { if (!sd || !sd.hasCopyCtor || !(dim == 1 || (dim > 1 && tf.parameterList[1].defaultArg))) return; auto param = tf.parameterList[0]; // if the template instance introduces an rvalue constructor // between the members of a struct declaration, we should check if a // copy constructor exists and issue an error in that case. if (!(param.storageClass & STC.ref_) && param.type.mutableOf().unSharedOf() == sd.type.mutableOf().unSharedOf()) { .error(ctd.loc, "cannot define both an rvalue constructor and a copy constructor for `struct %s`", sd.toChars); .errorSupplemental(ti.loc, "Template instance `%s` creates a rvalue constructor for `struct %s`", ti.toChars(), sd.toChars()); } } } override void visit(PostBlitDeclaration pbd) { //printf("PostBlitDeclaration::semantic() %s\n", toChars()); //printf("ident: %s, %s, %p, %p\n", ident.toChars(), Id.dtor.toChars(), ident, Id.dtor); //printf("stc = x%llx\n", sc.stc); if (pbd.semanticRun >= PASS.semanticdone) return; if (pbd._scope) { sc = pbd._scope; pbd._scope = null; } pbd.parent = sc.parent; Dsymbol p = pbd.toParent2(); StructDeclaration ad = p.isStructDeclaration(); if (!ad) { error(pbd.loc, "postblit can only be a member of struct, not %s `%s`", p.kind(), p.toChars()); pbd.type = Type.terror; pbd.errors = true; return; } if (pbd.ident == Id.postblit && pbd.semanticRun < PASS.semantic) ad.postblits.push(pbd); if (!pbd.type) pbd.type = new TypeFunction(ParameterList(), Type.tvoid, LINK.d, pbd.storage_class); sc = sc.push(); sc.stc &= ~STC.static_; // not static sc.linkage = LINK.d; funcDeclarationSemantic(pbd); sc.pop(); } override void visit(DtorDeclaration dd) { //printf("DtorDeclaration::semantic() %s\n", toChars()); //printf("ident: %s, %s, %p, %p\n", ident.toChars(), Id.dtor.toChars(), ident, Id.dtor); if (dd.semanticRun >= PASS.semanticdone) return; if (dd._scope) { sc = dd._scope; dd._scope = null; } dd.parent = sc.parent; Dsymbol p = dd.toParent2(); AggregateDeclaration ad = p.isAggregateDeclaration(); if (!ad) { error(dd.loc, "destructor can only be a member of aggregate, not %s `%s`", p.kind(), p.toChars()); dd.type = Type.terror; dd.errors = true; return; } if (ad.isClassDeclaration() && ad.classKind == ClassKind.d) { // Class destructors are implicitly `scope` dd.storage_class |= STC.scope_; } if (dd.ident == Id.dtor && dd.semanticRun < PASS.semantic) ad.userDtors.push(dd); if (!dd.type) { dd.type = new TypeFunction(ParameterList(), Type.tvoid, LINK.d, dd.storage_class); if (ad.classKind == ClassKind.cpp && dd.ident == Id.dtor) { if (auto cldec = ad.isClassDeclaration()) { assert (cldec.cppDtorVtblIndex == -1); // double-call check already by dd.type if (cldec.baseClass && cldec.baseClass.cppDtorVtblIndex != -1) { // override the base virtual cldec.cppDtorVtblIndex = cldec.baseClass.cppDtorVtblIndex; } else if (!dd.isFinal()) { // reserve the dtor slot for the destructor (which we'll create later) cldec.cppDtorVtblIndex = cast(int)cldec.vtbl.dim; cldec.vtbl.push(dd); if (target.cpp.twoDtorInVtable) cldec.vtbl.push(dd); // deleting destructor uses a second slot } } } } sc = sc.push(); sc.stc &= ~STC.static_; // not a static destructor if (sc.linkage != LINK.cpp) sc.linkage = LINK.d; funcDeclarationSemantic(dd); sc.pop(); } override void visit(StaticCtorDeclaration scd) { //printf("StaticCtorDeclaration::semantic()\n"); if (scd.semanticRun >= PASS.semanticdone) return; if (scd._scope) { sc = scd._scope; scd._scope = null; } scd.parent = sc.parent; Dsymbol p = scd.parent.pastMixin(); if (!p.isScopeDsymbol()) { const(char)* s = (scd.isSharedStaticCtorDeclaration() ? "shared " : ""); error(scd.loc, "`%sstatic` constructor can only be member of module/aggregate/template, not %s `%s`", s, p.kind(), p.toChars()); scd.type = Type.terror; scd.errors = true; return; } if (!scd.type) scd.type = new TypeFunction(ParameterList(), Type.tvoid, LINK.d, scd.storage_class); /* If the static ctor appears within a template instantiation, * it could get called multiple times by the module constructors * for different modules. Thus, protect it with a gate. */ if (scd.isInstantiated() && scd.semanticRun < PASS.semantic) { /* Add this prefix to the constructor: * ``` * static int gate; * if (++gate != 1) return; * ``` * or, for shared constructor: * ``` * shared int gate; * if (core.atomic.atomicOp!"+="(gate, 1) != 1) return; * ``` */ const bool isShared = !!scd.isSharedStaticCtorDeclaration(); auto v = new VarDeclaration(Loc.initial, Type.tint32, Id.gate, null); v.storage_class = STC.temp | STC.static_ | (isShared ? STC.shared_ : 0); auto sa = new Statements(); Statement s = new ExpStatement(Loc.initial, v); sa.push(s); Expression e; if (isShared) { e = doAtomicOp("+=", v.ident, IntegerExp.literal!(1)); if (e is null) { scd.error("shared static constructor within a template require `core.atomic : atomicOp` to be present"); return; } } else { e = new AddAssignExp( Loc.initial, new IdentifierExp(Loc.initial, v.ident), IntegerExp.literal!1); } e = new EqualExp(EXP.notEqual, Loc.initial, e, IntegerExp.literal!1); s = new IfStatement(Loc.initial, null, e, new ReturnStatement(Loc.initial, null), null, Loc.initial); sa.push(s); if (scd.fbody) sa.push(scd.fbody); scd.fbody = new CompoundStatement(Loc.initial, sa); } const LINK save = sc.linkage; if (save != LINK.d) { const(char)* s = (scd.isSharedStaticCtorDeclaration() ? "shared " : ""); deprecation(scd.loc, "`%sstatic` constructor can only be of D linkage", s); // Just correct it sc.linkage = LINK.d; } funcDeclarationSemantic(scd); sc.linkage = save; // We're going to need ModuleInfo Module m = scd.getModule(); if (!m) m = sc._module; if (m) { m.needmoduleinfo = 1; //printf("module1 %s needs moduleinfo\n", m.toChars()); } } override void visit(StaticDtorDeclaration sdd) { if (sdd.semanticRun >= PASS.semanticdone) return; if (sdd._scope) { sc = sdd._scope; sdd._scope = null; } sdd.parent = sc.parent; Dsymbol p = sdd.parent.pastMixin(); if (!p.isScopeDsymbol()) { const(char)* s = (sdd.isSharedStaticDtorDeclaration() ? "shared " : ""); error(sdd.loc, "`%sstatic` destructor can only be member of module/aggregate/template, not %s `%s`", s, p.kind(), p.toChars()); sdd.type = Type.terror; sdd.errors = true; return; } if (!sdd.type) sdd.type = new TypeFunction(ParameterList(), Type.tvoid, LINK.d, sdd.storage_class); /* If the static ctor appears within a template instantiation, * it could get called multiple times by the module constructors * for different modules. Thus, protect it with a gate. */ if (sdd.isInstantiated() && sdd.semanticRun < PASS.semantic) { /* Add this prefix to the constructor: * ``` * static int gate; * if (--gate != 0) return; * ``` * or, for shared constructor: * ``` * shared int gate; * if (core.atomic.atomicOp!"-="(gate, 1) != 0) return; * ``` */ const bool isShared = !!sdd.isSharedStaticDtorDeclaration(); auto v = new VarDeclaration(Loc.initial, Type.tint32, Id.gate, null); v.storage_class = STC.temp | STC.static_ | (isShared ? STC.shared_ : 0); auto sa = new Statements(); Statement s = new ExpStatement(Loc.initial, v); sa.push(s); Expression e; if (isShared) { e = doAtomicOp("-=", v.ident, IntegerExp.literal!(1)); if (e is null) { sdd.error("shared static destructo within a template require `core.atomic : atomicOp` to be present"); return; } } else { e = new AddAssignExp( Loc.initial, new IdentifierExp(Loc.initial, v.ident), IntegerExp.literal!(-1)); } e = new EqualExp(EXP.notEqual, Loc.initial, e, IntegerExp.literal!0); s = new IfStatement(Loc.initial, null, e, new ReturnStatement(Loc.initial, null), null, Loc.initial); sa.push(s); if (sdd.fbody) sa.push(sdd.fbody); sdd.fbody = new CompoundStatement(Loc.initial, sa); sdd.vgate = v; } const LINK save = sc.linkage; if (save != LINK.d) { const(char)* s = (sdd.isSharedStaticDtorDeclaration() ? "shared " : ""); deprecation(sdd.loc, "`%sstatic` destructor can only be of D linkage", s); // Just correct it sc.linkage = LINK.d; } funcDeclarationSemantic(sdd); sc.linkage = save; // We're going to need ModuleInfo Module m = sdd.getModule(); if (!m) m = sc._module; if (m) { m.needmoduleinfo = 1; //printf("module2 %s needs moduleinfo\n", m.toChars()); } } override void visit(InvariantDeclaration invd) { if (invd.semanticRun >= PASS.semanticdone) return; if (invd._scope) { sc = invd._scope; invd._scope = null; } invd.parent = sc.parent; Dsymbol p = invd.parent.pastMixin(); AggregateDeclaration ad = p.isAggregateDeclaration(); if (!ad) { error(invd.loc, "`invariant` can only be a member of aggregate, not %s `%s`", p.kind(), p.toChars()); invd.type = Type.terror; invd.errors = true; return; } if (invd.ident != Id.classInvariant && invd.semanticRun < PASS.semantic && !ad.isUnionDeclaration() // users are on their own with union fields ) { invd.fixupInvariantIdent(ad.invs.length); ad.invs.push(invd); } if (!invd.type) invd.type = new TypeFunction(ParameterList(), Type.tvoid, LINK.d, invd.storage_class); sc = sc.push(); sc.stc &= ~STC.static_; // not a static invariant sc.stc |= STC.const_; // invariant() is always const sc.flags = (sc.flags & ~SCOPE.contract) | SCOPE.invariant_; sc.linkage = LINK.d; funcDeclarationSemantic(invd); sc.pop(); } override void visit(UnitTestDeclaration utd) { if (utd.semanticRun >= PASS.semanticdone) return; if (utd._scope) { sc = utd._scope; utd._scope = null; } utd.visibility = sc.visibility; utd.parent = sc.parent; Dsymbol p = utd.parent.pastMixin(); if (!p.isScopeDsymbol()) { error(utd.loc, "`unittest` can only be a member of module/aggregate/template, not %s `%s`", p.kind(), p.toChars()); utd.type = Type.terror; utd.errors = true; return; } if (global.params.useUnitTests) { if (!utd.type) utd.type = new TypeFunction(ParameterList(), Type.tvoid, LINK.d, utd.storage_class); Scope* sc2 = sc.push(); sc2.linkage = LINK.d; funcDeclarationSemantic(utd); sc2.pop(); } version (none) { // We're going to need ModuleInfo even if the unit tests are not // compiled in, because other modules may import this module and refer // to this ModuleInfo. // (This doesn't make sense to me?) Module m = utd.getModule(); if (!m) m = sc._module; if (m) { //printf("module3 %s needs moduleinfo\n", m.toChars()); m.needmoduleinfo = 1; } } } override void visit(NewDeclaration nd) { //printf("NewDeclaration::semantic()\n"); if (nd.semanticRun >= PASS.semanticdone) return; if (!nd.type) nd.type = new TypeFunction(ParameterList(), Type.tvoid.pointerTo(), LINK.d, nd.storage_class); funcDeclarationSemantic(nd); } override void visit(StructDeclaration sd) { //printf("StructDeclaration::semantic(this=%p, '%s', sizeok = %d)\n", sd, sd.toPrettyChars(), sd.sizeok); //static int count; if (++count == 20) assert(0); if (sd.semanticRun >= PASS.semanticdone) return; int errors = global.errors; //printf("+StructDeclaration::semantic(this=%p, '%s', sizeok = %d)\n", sd, sd.toPrettyChars(), sd.sizeok); Scope* scx = null; if (sd._scope) { sc = sd._scope; scx = sd._scope; // save so we don't make redundant copies sd._scope = null; } if (!sd.parent) { assert(sc.parent && sc.func); sd.parent = sc.parent; } assert(sd.parent && !sd.isAnonymous()); if (sd.errors) sd.type = Type.terror; if (sd.semanticRun == PASS.initial) sd.type = sd.type.addSTC(sc.stc | sd.storage_class); sd.type = sd.type.typeSemantic(sd.loc, sc); auto ts = sd.type.isTypeStruct(); if (ts) { if (ts.sym != sd) { auto ti = ts.sym.isInstantiated(); if (ti && isError(ti)) ts.sym = sd; } } // Ungag errors when not speculative Ungag ungag = sd.ungagSpeculative(); if (sd.semanticRun == PASS.initial) { sd.visibility = sc.visibility; sd.alignment = sc.alignment(); sd.storage_class |= sc.stc; if (sd.storage_class & STC.abstract_) sd.error("structs, unions cannot be `abstract`"); sd.userAttribDecl = sc.userAttribDecl; if (sc.linkage == LINK.cpp) sd.classKind = ClassKind.cpp; else if (sc.linkage == LINK.c) sd.classKind = ClassKind.c; sd.cppnamespace = sc.namespace; sd.cppmangle = sc.cppmangle; } else if (sd.symtab && !scx) return; sd.semanticRun = PASS.semantic; UserAttributeDeclaration.checkGNUABITag(sd, sc.linkage); if (!sd.members) // if opaque declaration { sd.semanticRun = PASS.semanticdone; return; } if (!sd.symtab) { sd.symtab = new DsymbolTable(); sd.members.foreachDsymbol( s => s.addMember(sc, sd) ); } auto sc2 = sd.newScope(sc); /* Set scope so if there are forward references, we still might be able to * resolve individual members like enums. */ sd.members.foreachDsymbol( s => s.setScope(sc2) ); sd.members.foreachDsymbol( s => s.importAll(sc2) ); sd.members.foreachDsymbol( (s) { s.dsymbolSemantic(sc2); sd.errors |= s.errors; } ); if (sd.errors) sd.type = Type.terror; if (!sd.determineFields()) { if (sd.type.ty != Terror) { sd.error(sd.loc, "circular or forward reference"); sd.errors = true; sd.type = Type.terror; } sc2.pop(); sd.semanticRun = PASS.semanticdone; return; } /* Following special member functions creation needs semantic analysis * completion of sub-structs in each field types. For example, buildDtor * needs to check existence of elaborate dtor in type of each fields. * See the case in compilable/test14838.d */ foreach (v; sd.fields) { Type tb = v.type.baseElemOf(); if (tb.ty != Tstruct) continue; auto sdec = (cast(TypeStruct)tb).sym; if (sdec.semanticRun >= PASS.semanticdone) continue; sc2.pop(); //printf("\tdeferring %s\n", toChars()); return deferDsymbolSemantic(sd, scx); } /* Look for special member functions. */ sd.disableNew = sd.search(Loc.initial, Id.classNew) !is null; // Look for the constructor sd.ctor = sd.searchCtor(); buildDtors(sd, sc2); sd.hasCopyCtor = buildCopyCtor(sd, sc2); sd.postblit = buildPostBlit(sd, sc2); buildOpAssign(sd, sc2); buildOpEquals(sd, sc2); if (!(sc2.flags & SCOPE.Cfile) && global.params.useTypeInfo && Type.dtypeinfo) // these functions are used for TypeInfo { sd.xeq = buildXopEquals(sd, sc2); sd.xcmp = buildXopCmp(sd, sc2); sd.xhash = buildXtoHash(sd, sc2); } sd.inv = buildInv(sd, sc2); sd.semanticRun = PASS.semanticdone; //printf("-StructDeclaration::semantic(this=%p, '%s')\n", sd, sd.toChars()); sc2.pop(); if (sd.ctor) { Dsymbol scall = sd.search(Loc.initial, Id.call); if (scall) { uint xerrors = global.startGagging(); sc = sc.push(); sc.tinst = null; sc.minst = null; auto fcall = resolveFuncCall(sd.loc, sc, scall, null, null, null, FuncResolveFlag.quiet); sc = sc.pop(); global.endGagging(xerrors); if (fcall && fcall.isStatic()) { sd.error(fcall.loc, "`static opCall` is hidden by constructors and can never be called"); errorSupplemental(fcall.loc, "Please use a factory method instead, or replace all constructors with `static opCall`."); } } } if (ts && ts.sym != sd) { StructDeclaration sym = ts.sym; if (sd.isCsymbol() && sym.isCsymbol()) { /* This is two structs imported from different C files. * Just ignore sd, the second one. The first one will always * be found when going through the type. */ } else { version (none) { printf("this = %p %s\n", sd, sd.toChars()); printf("type = %d sym = %p, %s\n", sd.type.ty, sym, sym.toPrettyChars()); } // https://issues.dlang.org/show_bug.cgi?id=19024 sd.error("already exists at %s. Perhaps in another function with the same name?", sym.loc.toChars()); } } if (global.errors != errors) { // The type is no good. sd.type = Type.terror; sd.errors = true; if (sd.deferred) sd.deferred.errors = true; } if (sd.deferred && !global.gag) { sd.deferred.semantic2(sc); sd.deferred.semantic3(sc); } // @@@DEPRECATED_2.110@@@ https://dlang.org/deprecate.html#scope%20as%20a%20type%20constraint // Deprecated in 2.100 // Make an error in 2.110 if (sd.storage_class & STC.scope_) deprecation(sd.loc, "`scope` as a type constraint is deprecated. Use `scope` at the usage site."); } void interfaceSemantic(ClassDeclaration cd) { cd.vtblInterfaces = new BaseClasses(); cd.vtblInterfaces.reserve(cd.interfaces.length); foreach (b; cd.interfaces) { cd.vtblInterfaces.push(b); b.copyBaseInterfaces(cd.vtblInterfaces); } } override void visit(ClassDeclaration cldec) { //printf("ClassDeclaration.dsymbolSemantic(%s), type = %p, sizeok = %d, this = %p\n", cldec.toChars(), cldec.type, cldec.sizeok, this); //printf("\tparent = %p, '%s'\n", sc.parent, sc.parent ? sc.parent.toChars() : ""); //printf("sc.stc = %x\n", sc.stc); //{ static int n; if (++n == 20) *(char*)0=0; } if (cldec.semanticRun >= PASS.semanticdone) return; int errors = global.errors; //printf("+ClassDeclaration.dsymbolSemantic(%s), type = %p, sizeok = %d, this = %p\n", toChars(), type, sizeok, this); Scope* scx = null; if (cldec._scope) { sc = cldec._scope; scx = cldec._scope; // save so we don't make redundant copies cldec._scope = null; } if (!cldec.parent) { assert(sc.parent); cldec.parent = sc.parent; } if (cldec.errors) cldec.type = Type.terror; if (cldec.semanticRun == PASS.initial) cldec.type = cldec.type.addSTC(sc.stc | cldec.storage_class); cldec.type = cldec.type.typeSemantic(cldec.loc, sc); if (auto tc = cldec.type.isTypeClass()) if (tc.sym != cldec) { auto ti = tc.sym.isInstantiated(); if (ti && isError(ti)) tc.sym = cldec; } // Ungag errors when not speculative Ungag ungag = cldec.ungagSpeculative(); if (cldec.semanticRun == PASS.initial) { cldec.visibility = sc.visibility; cldec.storage_class |= sc.stc; if (cldec.storage_class & STC.auto_) cldec.error("storage class `auto` is invalid when declaring a class, did you mean to use `scope`?"); if (cldec.storage_class & STC.scope_) cldec.stack = true; if (cldec.storage_class & STC.abstract_) cldec.isabstract = ThreeState.yes; cldec.userAttribDecl = sc.userAttribDecl; if (sc.linkage == LINK.cpp) cldec.classKind = ClassKind.cpp; cldec.cppnamespace = sc.namespace; cldec.cppmangle = sc.cppmangle; if (sc.linkage == LINK.objc) objc.setObjc(cldec); } else if (cldec.symtab && !scx) { return; } cldec.semanticRun = PASS.semantic; UserAttributeDeclaration.checkGNUABITag(cldec, sc.linkage); checkMustUseReserved(cldec); if (cldec.baseok < Baseok.done) { /* https://issues.dlang.org/show_bug.cgi?id=12078 * https://issues.dlang.org/show_bug.cgi?id=12143 * https://issues.dlang.org/show_bug.cgi?id=15733 * While resolving base classes and interfaces, a base may refer * the member of this derived class. In that time, if all bases of * this class can be determined, we can go forward the semantc process * beyond the Lancestorsdone. To do the recursive semantic analysis, * temporarily set and unset `_scope` around exp(). */ T resolveBase(T)(lazy T exp) { if (!scx) { scx = sc.copy(); scx.setNoFree(); } static if (!is(T == void)) { cldec._scope = scx; auto r = exp(); cldec._scope = null; return r; } else { cldec._scope = scx; exp(); cldec._scope = null; } } cldec.baseok = Baseok.start; // Expand any tuples in baseclasses[] for (size_t i = 0; i < cldec.baseclasses.dim;) { auto b = (*cldec.baseclasses)[i]; b.type = resolveBase(b.type.typeSemantic(cldec.loc, sc)); Type tb = b.type.toBasetype(); if (auto tup = tb.isTypeTuple()) { cldec.baseclasses.remove(i); size_t dim = Parameter.dim(tup.arguments); for (size_t j = 0; j < dim; j++) { Parameter arg = Parameter.getNth(tup.arguments, j); b = new BaseClass(arg.type); cldec.baseclasses.insert(i + j, b); } } else i++; } if (cldec.baseok >= Baseok.done) { //printf("%s already semantic analyzed, semanticRun = %d\n", toChars(), semanticRun); if (cldec.semanticRun >= PASS.semanticdone) return; goto Lancestorsdone; } // See if there's a base class as first in baseclasses[] if (cldec.baseclasses.dim) { BaseClass* b = (*cldec.baseclasses)[0]; Type tb = b.type.toBasetype(); TypeClass tc = tb.isTypeClass(); if (!tc) { if (b.type != Type.terror) cldec.error("base type must be `class` or `interface`, not `%s`", b.type.toChars()); cldec.baseclasses.remove(0); goto L7; } if (tc.sym.isDeprecated()) { if (!cldec.isDeprecated()) { // Deriving from deprecated class makes this one deprecated too cldec.setDeprecated(); tc.checkDeprecated(cldec.loc, sc); } } if (tc.sym.isInterfaceDeclaration()) goto L7; for (ClassDeclaration cdb = tc.sym; cdb; cdb = cdb.baseClass) { if (cdb == cldec) { cldec.error("circular inheritance"); cldec.baseclasses.remove(0); goto L7; } } /* https://issues.dlang.org/show_bug.cgi?id=11034 * Class inheritance hierarchy * and instance size of each classes are orthogonal information. * Therefore, even if tc.sym.sizeof == Sizeok.none, * we need to set baseClass field for class covariance check. */ cldec.baseClass = tc.sym; b.sym = cldec.baseClass; if (tc.sym.baseok < Baseok.done) resolveBase(tc.sym.dsymbolSemantic(null)); // Try to resolve forward reference if (tc.sym.baseok < Baseok.done) { //printf("\ttry later, forward reference of base class %s\n", tc.sym.toChars()); if (tc.sym._scope) Module.addDeferredSemantic(tc.sym); cldec.baseok = Baseok.none; } L7: } // Treat the remaining entries in baseclasses as interfaces // Check for errors, handle forward references int multiClassError = cldec.baseClass is null ? 0 : 1; BCLoop: for (size_t i = (cldec.baseClass ? 1 : 0); i < cldec.baseclasses.dim;) { BaseClass* b = (*cldec.baseclasses)[i]; Type tb = b.type.toBasetype(); TypeClass tc = tb.isTypeClass(); if (!tc || !tc.sym.isInterfaceDeclaration()) { // It's a class if (tc) { if (multiClassError == 0) { error(cldec.loc,"`%s`: base class must be specified first, " ~ "before any interfaces.", cldec.toPrettyChars()); multiClassError += 1; } else if (multiClassError >= 1) { if(multiClassError == 1) error(cldec.loc,"`%s`: multiple class inheritance is not supported." ~ " Use multiple interface inheritance and/or composition.", cldec.toPrettyChars()); multiClassError += 1; if (tc.sym.fields.dim) errorSupplemental(cldec.loc,"`%s` has fields, consider making it a member of `%s`", b.type.toChars(), cldec.type.toChars()); else errorSupplemental(cldec.loc,"`%s` has no fields, consider making it an `interface`", b.type.toChars()); } } // It's something else: e.g. `int` in `class Foo : Bar, int { ... }` else if (b.type != Type.terror) { error(cldec.loc,"`%s`: base type must be `interface`, not `%s`", cldec.toPrettyChars(), b.type.toChars()); } cldec.baseclasses.remove(i); continue; } // Check for duplicate interfaces for (size_t j = (cldec.baseClass ? 1 : 0); j < i; j++) { BaseClass* b2 = (*cldec.baseclasses)[j]; if (b2.sym == tc.sym) { cldec.error("inherits from duplicate interface `%s`", b2.sym.toChars()); cldec.baseclasses.remove(i); continue BCLoop; } } if (tc.sym.isDeprecated()) { if (!cldec.isDeprecated()) { // Deriving from deprecated class makes this one deprecated too cldec.setDeprecated(); tc.checkDeprecated(cldec.loc, sc); } } b.sym = tc.sym; if (tc.sym.baseok < Baseok.done) resolveBase(tc.sym.dsymbolSemantic(null)); // Try to resolve forward reference if (tc.sym.baseok < Baseok.done) { //printf("\ttry later, forward reference of base %s\n", tc.sym.toChars()); if (tc.sym._scope) Module.addDeferredSemantic(tc.sym); cldec.baseok = Baseok.none; } i++; } if (cldec.baseok == Baseok.none) { // Forward referencee of one or more bases, try again later //printf("\tL%d semantic('%s') failed due to forward references\n", __LINE__, toChars()); return deferDsymbolSemantic(cldec, scx); } cldec.baseok = Baseok.done; if (cldec.classKind == ClassKind.objc || (cldec.baseClass && cldec.baseClass.classKind == ClassKind.objc)) cldec.classKind = ClassKind.objc; // Objective-C classes do not inherit from Object // If no base class, and this is not an Object, use Object as base class if (!cldec.baseClass && cldec.ident != Id.Object && cldec.object && cldec.classKind == ClassKind.d) { void badObjectDotD() { cldec.error("missing or corrupt object.d"); fatal(); } if (!cldec.object || cldec.object.errors) badObjectDotD(); Type t = cldec.object.type; t = t.typeSemantic(cldec.loc, sc).toBasetype(); if (t.ty == Terror) badObjectDotD(); TypeClass tc = t.isTypeClass(); assert(tc); auto b = new BaseClass(tc); cldec.baseclasses.shift(b); cldec.baseClass = tc.sym; assert(!cldec.baseClass.isInterfaceDeclaration()); b.sym = cldec.baseClass; } if (cldec.baseClass) { if (cldec.baseClass.storage_class & STC.final_) cldec.error("cannot inherit from class `%s` because it is `final`", cldec.baseClass.toChars()); // Inherit properties from base class if (cldec.baseClass.isCOMclass()) cldec.com = true; if (cldec.baseClass.isCPPclass()) cldec.classKind = ClassKind.cpp; if (cldec.classKind != cldec.baseClass.classKind) cldec.error("with %s linkage cannot inherit from class `%s` with %s linkage", cldec.classKind.toChars(), cldec.baseClass.toChars(), cldec.baseClass.classKind.toChars()); if (cldec.baseClass.stack) cldec.stack = true; cldec.enclosing = cldec.baseClass.enclosing; cldec.storage_class |= cldec.baseClass.storage_class & STC.TYPECTOR; } cldec.interfaces = cldec.baseclasses.tdata()[(cldec.baseClass ? 1 : 0) .. cldec.baseclasses.dim]; foreach (b; cldec.interfaces) { // If this is an interface, and it derives from a COM interface, // then this is a COM interface too. if (b.sym.isCOMinterface()) cldec.com = true; if (cldec.classKind == ClassKind.cpp && !b.sym.isCPPinterface()) { error(cldec.loc, "C++ class `%s` cannot implement D interface `%s`", cldec.toPrettyChars(), b.sym.toPrettyChars()); } } interfaceSemantic(cldec); } Lancestorsdone: //printf("\tClassDeclaration.dsymbolSemantic(%s) baseok = %d\n", toChars(), baseok); if (!cldec.members) // if opaque declaration { cldec.semanticRun = PASS.semanticdone; return; } if (!cldec.symtab) { cldec.symtab = new DsymbolTable(); /* https://issues.dlang.org/show_bug.cgi?id=12152 * The semantic analysis of base classes should be finished * before the members semantic analysis of this class, in order to determine * vtbl in this class. However if a base class refers the member of this class, * it can be resolved as a normal forward reference. * Call addMember() and setScope() to make this class members visible from the base classes. */ cldec.members.foreachDsymbol( s => s.addMember(sc, cldec) ); auto sc2 = cldec.newScope(sc); /* Set scope so if there are forward references, we still might be able to * resolve individual members like enums. */ cldec.members.foreachDsymbol( s => s.setScope(sc2) ); sc2.pop(); } for (size_t i = 0; i < cldec.baseclasses.dim; i++) { BaseClass* b = (*cldec.baseclasses)[i]; Type tb = b.type.toBasetype(); TypeClass tc = tb.isTypeClass(); if (tc.sym.semanticRun < PASS.semanticdone) { // Forward referencee of one or more bases, try again later if (tc.sym._scope) Module.addDeferredSemantic(tc.sym); //printf("\tL%d semantic('%s') failed due to forward references\n", __LINE__, toChars()); return deferDsymbolSemantic(cldec, scx); } } if (cldec.baseok == Baseok.done) { cldec.baseok = Baseok.semanticdone; objc.setMetaclass(cldec, sc); // initialize vtbl if (cldec.baseClass) { if (cldec.classKind == ClassKind.cpp && cldec.baseClass.vtbl.dim == 0) { cldec.error("C++ base class `%s` needs at least one virtual function", cldec.baseClass.toChars()); } // Copy vtbl[] from base class cldec.vtbl.setDim(cldec.baseClass.vtbl.dim); memcpy(cldec.vtbl.tdata(), cldec.baseClass.vtbl.tdata(), (void*).sizeof * cldec.vtbl.dim); cldec.vthis = cldec.baseClass.vthis; cldec.vthis2 = cldec.baseClass.vthis2; } else { // No base class, so this is the root of the class hierarchy cldec.vtbl.setDim(0); if (cldec.vtblOffset()) cldec.vtbl.push(cldec); // leave room for classinfo as first member } /* If this is a nested class, add the hidden 'this' * member which is a pointer to the enclosing scope. */ if (cldec.vthis) // if inheriting from nested class { // Use the base class's 'this' member if (cldec.storage_class & STC.static_) cldec.error("static class cannot inherit from nested class `%s`", cldec.baseClass.toChars()); if (cldec.toParentLocal() != cldec.baseClass.toParentLocal() && (!cldec.toParentLocal() || !cldec.baseClass.toParentLocal().getType() || !cldec.baseClass.toParentLocal().getType().isBaseOf(cldec.toParentLocal().getType(), null))) { if (cldec.toParentLocal()) { cldec.error("is nested within `%s`, but super class `%s` is nested within `%s`", cldec.toParentLocal().toChars(), cldec.baseClass.toChars(), cldec.baseClass.toParentLocal().toChars()); } else { cldec.error("is not nested, but super class `%s` is nested within `%s`", cldec.baseClass.toChars(), cldec.baseClass.toParentLocal().toChars()); } cldec.enclosing = null; } if (cldec.vthis2) { if (cldec.toParent2() != cldec.baseClass.toParent2() && (!cldec.toParent2() || !cldec.baseClass.toParent2().getType() || !cldec.baseClass.toParent2().getType().isBaseOf(cldec.toParent2().getType(), null))) { if (cldec.toParent2() && cldec.toParent2() != cldec.toParentLocal()) { cldec.error("needs the frame pointer of `%s`, but super class `%s` needs the frame pointer of `%s`", cldec.toParent2().toChars(), cldec.baseClass.toChars(), cldec.baseClass.toParent2().toChars()); } else { cldec.error("doesn't need a frame pointer, but super class `%s` needs the frame pointer of `%s`", cldec.baseClass.toChars(), cldec.baseClass.toParent2().toChars()); } } } else cldec.makeNested2(); } else cldec.makeNested(); } auto sc2 = cldec.newScope(sc); cldec.members.foreachDsymbol( s => s.importAll(sc2) ); // Note that members.dim can grow due to tuple expansion during semantic() cldec.members.foreachDsymbol( s => s.dsymbolSemantic(sc2) ); if (!cldec.determineFields()) { assert(cldec.type == Type.terror); sc2.pop(); return; } /* Following special member functions creation needs semantic analysis * completion of sub-structs in each field types. */ foreach (v; cldec.fields) { Type tb = v.type.baseElemOf(); if (tb.ty != Tstruct) continue; auto sd = (cast(TypeStruct)tb).sym; if (sd.semanticRun >= PASS.semanticdone) continue; sc2.pop(); //printf("\tdeferring %s\n", toChars()); return deferDsymbolSemantic(cldec, scx); } /* Look for special member functions. * They must be in this class, not in a base class. */ // Can be in base class cldec.disableNew = cldec.search(Loc.initial, Id.classNew) !is null; // Look for the constructor cldec.ctor = cldec.searchCtor(); if (!cldec.ctor && cldec.noDefaultCtor) { // A class object is always created by constructor, so this check is legitimate. foreach (v; cldec.fields) { if (v.storage_class & STC.nodefaultctor) error(v.loc, "field `%s` must be initialized in constructor", v.toChars()); } } // If this class has no constructor, but base class has a default // ctor, create a constructor: // this() { } if (!cldec.ctor && cldec.baseClass && cldec.baseClass.ctor) { auto fd = resolveFuncCall(cldec.loc, sc2, cldec.baseClass.ctor, null, cldec.type, null, FuncResolveFlag.quiet); if (!fd) // try shared base ctor instead fd = resolveFuncCall(cldec.loc, sc2, cldec.baseClass.ctor, null, cldec.type.sharedOf, null, FuncResolveFlag.quiet); if (fd && !fd.errors) { //printf("Creating default this(){} for class %s\n", toChars()); auto btf = fd.type.toTypeFunction(); auto tf = new TypeFunction(ParameterList(), null, LINK.d, fd.storage_class); tf.mod = btf.mod; // Don't copy @safe, ... from the base class constructor and let it be inferred instead // This is required if other lowerings add code to the generated constructor which // is less strict (e.g. `preview=dtorfields` might introduce a call to a less qualified dtor) auto ctor = new CtorDeclaration(cldec.loc, Loc.initial, 0, tf); ctor.storage_class |= STC.inference; ctor.isGenerated = true; ctor.fbody = new CompoundStatement(Loc.initial, new Statements()); cldec.members.push(ctor); ctor.addMember(sc, cldec); ctor.dsymbolSemantic(sc2); cldec.ctor = ctor; cldec.defaultCtor = ctor; } else { cldec.error("cannot implicitly generate a default constructor when base class `%s` is missing a default constructor", cldec.baseClass.toPrettyChars()); } } buildDtors(cldec, sc2); if (cldec.classKind == ClassKind.cpp && cldec.cppDtorVtblIndex != -1) { // now we've built the aggregate destructor, we'll make it virtual and assign it to the reserved vtable slot cldec.dtor.vtblIndex = cldec.cppDtorVtblIndex; cldec.vtbl[cldec.cppDtorVtblIndex] = cldec.dtor; if (target.cpp.twoDtorInVtable) { // TODO: create a C++ compatible deleting destructor (call out to `operator delete`) // for the moment, we'll call the non-deleting destructor and leak cldec.vtbl[cldec.cppDtorVtblIndex + 1] = cldec.dtor; } } if (auto f = hasIdentityOpAssign(cldec, sc2)) { if (!(f.storage_class & STC.disable)) cldec.error(f.loc, "identity assignment operator overload is illegal"); } cldec.inv = buildInv(cldec, sc2); cldec.semanticRun = PASS.semanticdone; //printf("-ClassDeclaration.dsymbolSemantic(%s), type = %p\n", toChars(), type); sc2.pop(); /* isAbstract() is undecidable in some cases because of circular dependencies. * Now that semantic is finished, get a definitive result, and error if it is not the same. */ if (cldec.isabstract != ThreeState.none) // if evaluated it before completion { const isabstractsave = cldec.isabstract; cldec.isabstract = ThreeState.none; cldec.isAbstract(); // recalculate if (cldec.isabstract != isabstractsave) { cldec.error("cannot infer `abstract` attribute due to circular dependencies"); } } if (cldec.type.ty == Tclass && (cast(TypeClass)cldec.type).sym != cldec) { // https://issues.dlang.org/show_bug.cgi?id=17492 ClassDeclaration cd = (cast(TypeClass)cldec.type).sym; version (none) { printf("this = %p %s\n", cldec, cldec.toPrettyChars()); printf("type = %d sym = %p, %s\n", cldec.type.ty, cd, cd.toPrettyChars()); } cldec.error("already exists at %s. Perhaps in another function with the same name?", cd.loc.toChars()); } if (global.errors != errors) { // The type is no good. cldec.type = Type.terror; cldec.errors = true; if (cldec.deferred) cldec.deferred.errors = true; } // Verify fields of a synchronized class are not public if (cldec.storage_class & STC.synchronized_) { foreach (vd; cldec.fields) { if (!vd.isThisDeclaration() && vd.visible() >= Visibility(Visibility.Kind.public_)) { vd.error("Field members of a `synchronized` class cannot be `%s`", visibilityToChars(vd.visible().kind)); } } } if (cldec.deferred && !global.gag) { cldec.deferred.semantic2(sc); cldec.deferred.semantic3(sc); } //printf("-ClassDeclaration.dsymbolSemantic(%s), type = %p, sizeok = %d, this = %p\n", toChars(), type, sizeok, this); // @@@DEPRECATED_2.110@@@ https://dlang.org/deprecate.html#scope%20as%20a%20type%20constraint // Deprecated in 2.100 // Make an error in 2.110 // Don't forget to remove code at https://github.com/dlang/dmd/blob/b2f8274ba76358607fc3297a1e9f361480f9bcf9/src/dmd/dsymbolsem.d#L1032-L1036 if (cldec.storage_class & STC.scope_) deprecation(cldec.loc, "`scope` as a type constraint is deprecated. Use `scope` at the usage site."); } override void visit(InterfaceDeclaration idec) { /// Returns: `true` is this is an anonymous Objective-C metaclass static bool isAnonymousMetaclass(InterfaceDeclaration idec) { return idec.classKind == ClassKind.objc && idec.objc.isMeta && idec.isAnonymous; } //printf("InterfaceDeclaration.dsymbolSemantic(%s), type = %p\n", toChars(), type); if (idec.semanticRun >= PASS.semanticdone) return; int errors = global.errors; //printf("+InterfaceDeclaration.dsymbolSemantic(%s), type = %p\n", toChars(), type); Scope* scx = null; if (idec._scope) { sc = idec._scope; scx = idec._scope; // save so we don't make redundant copies idec._scope = null; } if (!idec.parent) { assert(sc.parent && sc.func); idec.parent = sc.parent; } // Objective-C metaclasses are anonymous assert(idec.parent && !idec.isAnonymous || isAnonymousMetaclass(idec)); if (idec.errors) idec.type = Type.terror; idec.type = idec.type.typeSemantic(idec.loc, sc); if (idec.type.ty == Tclass && (cast(TypeClass)idec.type).sym != idec) { auto ti = (cast(TypeClass)idec.type).sym.isInstantiated(); if (ti && isError(ti)) (cast(TypeClass)idec.type).sym = idec; } // Ungag errors when not speculative Ungag ungag = idec.ungagSpeculative(); if (idec.semanticRun == PASS.initial) { idec.visibility = sc.visibility; idec.storage_class |= sc.stc; idec.userAttribDecl = sc.userAttribDecl; } else if (idec.symtab) { if (idec.sizeok == Sizeok.done || !scx) { idec.semanticRun = PASS.semanticdone; return; } } idec.semanticRun = PASS.semantic; if (idec.baseok < Baseok.done) { T resolveBase(T)(lazy T exp) { if (!scx) { scx = sc.copy(); scx.setNoFree(); } static if (!is(T == void)) { idec._scope = scx; auto r = exp(); idec._scope = null; return r; } else { idec._scope = scx; exp(); idec._scope = null; } } idec.baseok = Baseok.start; // Expand any tuples in baseclasses[] for (size_t i = 0; i < idec.baseclasses.dim;) { auto b = (*idec.baseclasses)[i]; b.type = resolveBase(b.type.typeSemantic(idec.loc, sc)); Type tb = b.type.toBasetype(); if (auto tup = tb.isTypeTuple()) { idec.baseclasses.remove(i); size_t dim = Parameter.dim(tup.arguments); for (size_t j = 0; j < dim; j++) { Parameter arg = Parameter.getNth(tup.arguments, j); b = new BaseClass(arg.type); idec.baseclasses.insert(i + j, b); } } else i++; } if (idec.baseok >= Baseok.done) { //printf("%s already semantic analyzed, semanticRun = %d\n", toChars(), semanticRun); if (idec.semanticRun >= PASS.semanticdone) return; goto Lancestorsdone; } if (!idec.baseclasses.dim && sc.linkage == LINK.cpp) idec.classKind = ClassKind.cpp; idec.cppnamespace = sc.namespace; UserAttributeDeclaration.checkGNUABITag(idec, sc.linkage); checkMustUseReserved(idec); if (sc.linkage == LINK.objc) objc.setObjc(idec); // Check for errors, handle forward references BCLoop: for (size_t i = 0; i < idec.baseclasses.dim;) { BaseClass* b = (*idec.baseclasses)[i]; Type tb = b.type.toBasetype(); TypeClass tc = (tb.ty == Tclass) ? cast(TypeClass)tb : null; if (!tc || !tc.sym.isInterfaceDeclaration()) { if (b.type != Type.terror) idec.error("base type must be `interface`, not `%s`", b.type.toChars()); idec.baseclasses.remove(i); continue; } // Check for duplicate interfaces for (size_t j = 0; j < i; j++) { BaseClass* b2 = (*idec.baseclasses)[j]; if (b2.sym == tc.sym) { idec.error("inherits from duplicate interface `%s`", b2.sym.toChars()); idec.baseclasses.remove(i); continue BCLoop; } } if (tc.sym == idec || idec.isBaseOf2(tc.sym)) { idec.error("circular inheritance of interface"); idec.baseclasses.remove(i); continue; } if (tc.sym.isDeprecated()) { if (!idec.isDeprecated()) { // Deriving from deprecated interface makes this one deprecated too idec.setDeprecated(); tc.checkDeprecated(idec.loc, sc); } } b.sym = tc.sym; if (tc.sym.baseok < Baseok.done) resolveBase(tc.sym.dsymbolSemantic(null)); // Try to resolve forward reference if (tc.sym.baseok < Baseok.done) { //printf("\ttry later, forward reference of base %s\n", tc.sym.toChars()); if (tc.sym._scope) Module.addDeferredSemantic(tc.sym); idec.baseok = Baseok.none; } i++; } if (idec.baseok == Baseok.none) { // Forward referencee of one or more bases, try again later return deferDsymbolSemantic(idec, scx); } idec.baseok = Baseok.done; idec.interfaces = idec.baseclasses.tdata()[0 .. idec.baseclasses.dim]; foreach (b; idec.interfaces) { // If this is an interface, and it derives from a COM interface, // then this is a COM interface too. if (b.sym.isCOMinterface()) idec.com = true; if (b.sym.isCPPinterface()) idec.classKind = ClassKind.cpp; } interfaceSemantic(idec); } Lancestorsdone: if (!idec.members) // if opaque declaration { idec.semanticRun = PASS.semanticdone; return; } if (!idec.symtab) idec.symtab = new DsymbolTable(); for (size_t i = 0; i < idec.baseclasses.dim; i++) { BaseClass* b = (*idec.baseclasses)[i]; Type tb = b.type.toBasetype(); TypeClass tc = tb.isTypeClass(); if (tc.sym.semanticRun < PASS.semanticdone) { // Forward referencee of one or more bases, try again later if (tc.sym._scope) Module.addDeferredSemantic(tc.sym); return deferDsymbolSemantic(idec, scx); } } if (idec.baseok == Baseok.done) { idec.baseok = Baseok.semanticdone; objc.setMetaclass(idec, sc); // initialize vtbl if (idec.vtblOffset()) idec.vtbl.push(idec); // leave room at vtbl[0] for classinfo // Cat together the vtbl[]'s from base interfaces foreach (i, b; idec.interfaces) { // Skip if b has already appeared for (size_t k = 0; k < i; k++) { if (b == idec.interfaces[k]) goto Lcontinue; } // Copy vtbl[] from base class if (b.sym.vtblOffset()) { size_t d = b.sym.vtbl.dim; if (d > 1) { idec.vtbl.pushSlice(b.sym.vtbl[1 .. d]); } } else { idec.vtbl.append(&b.sym.vtbl); } Lcontinue: } } idec.members.foreachDsymbol( s => s.addMember(sc, idec) ); auto sc2 = idec.newScope(sc); /* Set scope so if there are forward references, we still might be able to * resolve individual members like enums. */ idec.members.foreachDsymbol( s => s.setScope(sc2) ); idec.members.foreachDsymbol( s => s.importAll(sc2) ); idec.members.foreachDsymbol( s => s.dsymbolSemantic(sc2) ); idec.semanticRun = PASS.semanticdone; //printf("-InterfaceDeclaration.dsymbolSemantic(%s), type = %p\n", toChars(), type); sc2.pop(); if (global.errors != errors) { // The type is no good. idec.type = Type.terror; } version (none) { if (type.ty == Tclass && (cast(TypeClass)idec.type).sym != idec) { printf("this = %p %s\n", idec, idec.toChars()); printf("type = %d sym = %p\n", idec.type.ty, (cast(TypeClass)idec.type).sym); } } assert(idec.type.ty != Tclass || (cast(TypeClass)idec.type).sym == idec); // @@@DEPRECATED_2.120@@@ https://dlang.org/deprecate.html#scope%20as%20a%20type%20constraint // Deprecated in 2.087 // Made an error in 2.100, but removal depends on `scope class` being removed too // Don't forget to remove code at https://github.com/dlang/dmd/blob/b2f8274ba76358607fc3297a1e9f361480f9bcf9/src/dmd/dsymbolsem.d#L1032-L1036 if (idec.storage_class & STC.scope_) error(idec.loc, "`scope` as a type constraint is obsolete. Use `scope` at the usage site."); } } /******************************************* * Add members of EnumDeclaration to the symbol table(s). * Params: * ed = EnumDeclaration * sc = context of `ed` * sds = symbol table that `ed` resides in */ void addEnumMembers(EnumDeclaration ed, Scope* sc, ScopeDsymbol sds) { //printf("addEnumMembers(ed: %p)\n", ed); if (ed.added) return; ed.added = true; if (!ed.members) return; const bool isCEnum = (sc.flags & SCOPE.Cfile) != 0; // it's an ImportC enum const bool isAnon = ed.isAnonymous(); if ((isCEnum || isAnon) && !sds.symtab) sds.symtab = new DsymbolTable(); if ((isCEnum || !isAnon) && !ed.symtab) ed.symtab = new DsymbolTable(); ed.members.foreachDsymbol( (s) { if (EnumMember em = s.isEnumMember()) { em.ed = ed; if (isCEnum) { //printf("adding EnumMember %s to %p\n", em.toChars(), ed); em.addMember(sc, ed); // add em to ed's symbol table em.addMember(sc, sds); // add em to symbol table that ed is in em.parent = ed; // restore it after previous addMember() changed it } else { em.addMember(sc, isAnon ? sds : ed); } } }); } void templateInstanceSemantic(TemplateInstance tempinst, Scope* sc, Expressions* fargs) { //printf("[%s] TemplateInstance.dsymbolSemantic('%s', this=%p, gag = %d, sc = %p)\n", tempinst.loc.toChars(), tempinst.toChars(), tempinst, global.gag, sc); version (none) { for (Dsymbol s = tempinst; s; s = s.parent) { printf("\t%s\n", s.toChars()); } printf("Scope\n"); for (Scope* scx = sc; scx; scx = scx.enclosing) { printf("\t%s parent %s\n", scx._module ? scx._module.toChars() : "null", scx.parent ? scx.parent.toChars() : "null"); } } static if (LOG) { printf("\n+TemplateInstance.dsymbolSemantic('%s', this=%p)\n", tempinst.toChars(), tempinst); } if (tempinst.inst) // if semantic() was already run { static if (LOG) { printf("-TemplateInstance.dsymbolSemantic('%s', this=%p) already run\n", tempinst.inst.toChars(), tempinst.inst); } return; } if (tempinst.semanticRun != PASS.initial) { static if (LOG) { printf("Recursive template expansion\n"); } auto ungag = Ungag(global.gag); if (!tempinst.gagged) global.gag = 0; tempinst.error(tempinst.loc, "recursive template expansion"); if (tempinst.gagged) tempinst.semanticRun = PASS.initial; else tempinst.inst = tempinst; tempinst.errors = true; return; } // Get the enclosing template instance from the scope tinst tempinst.tinst = sc.tinst; // Get the instantiating module from the scope minst tempinst.minst = sc.minst; // https://issues.dlang.org/show_bug.cgi?id=10920 // If the enclosing function is non-root symbol, // this instance should be speculative. if (!tempinst.tinst && sc.func && sc.func.inNonRoot()) { tempinst.minst = null; } tempinst.gagged = (global.gag > 0); tempinst.semanticRun = PASS.semantic; static if (LOG) { printf("\tdo semantic\n"); } /* Find template declaration first, * then run semantic on each argument (place results in tiargs[]), * last find most specialized template from overload list/set. */ if (!tempinst.findTempDecl(sc, null) || !tempinst.semanticTiargs(sc) || !tempinst.findBestMatch(sc, fargs)) { Lerror: if (tempinst.gagged) { // https://issues.dlang.org/show_bug.cgi?id=13220 // Roll back status for later semantic re-running tempinst.semanticRun = PASS.initial; } else tempinst.inst = tempinst; tempinst.errors = true; return; } TemplateDeclaration tempdecl = tempinst.tempdecl.isTemplateDeclaration(); assert(tempdecl); TemplateStats.incInstance(tempdecl, tempinst); tempdecl.checkDeprecated(tempinst.loc, sc); // If tempdecl is a mixin, disallow it if (tempdecl.ismixin) { tempinst.error("mixin templates are not regular templates"); goto Lerror; } tempinst.hasNestedArgs(tempinst.tiargs, tempdecl.isstatic); if (tempinst.errors) goto Lerror; // Copy the tempdecl namespace (not the scope one) tempinst.cppnamespace = tempdecl.cppnamespace; if (tempinst.cppnamespace) tempinst.cppnamespace.dsymbolSemantic(sc); /* Greatly simplified semantic processing for AliasSeq templates */ if (tempdecl.isTrivialAliasSeq) { tempinst.inst = tempinst; return aliasSeqInstanceSemantic(tempinst, sc, tempdecl); } /* Greatly simplified semantic processing for Alias templates */ else if (tempdecl.isTrivialAlias) { tempinst.inst = tempinst; return aliasInstanceSemantic(tempinst, sc, tempdecl); } /* See if there is an existing TemplateInstantiation that already * implements the typeargs. If so, just refer to that one instead. */ tempinst.inst = tempdecl.findExistingInstance(tempinst, fargs); TemplateInstance errinst = null; if (!tempinst.inst) { // So, we need to implement 'this' instance. } else if (tempinst.inst.gagged && !tempinst.gagged && tempinst.inst.errors) { // If the first instantiation had failed, re-run semantic, // so that error messages are shown. errinst = tempinst.inst; } else { // It's a match tempinst.parent = tempinst.inst.parent; tempinst.errors = tempinst.inst.errors; // If both this and the previous instantiation were gagged, // use the number of errors that happened last time. global.errors += tempinst.errors; global.gaggedErrors += tempinst.errors; // If the first instantiation was gagged, but this is not: if (tempinst.inst.gagged) { // It had succeeded, mark it is a non-gagged instantiation, // and reuse it. tempinst.inst.gagged = tempinst.gagged; } tempinst.tnext = tempinst.inst.tnext; tempinst.inst.tnext = tempinst; /* A module can have explicit template instance and its alias * in module scope (e,g, `alias Base64 = Base64Impl!('+', '/');`). * If the first instantiation 'inst' had happened in non-root module, * compiler can assume that its instantiated code would be included * in the separately compiled obj/lib file (e.g. phobos.lib). * * However, if 'this' second instantiation happened in root module, * compiler might need to invoke its codegen * (https://issues.dlang.org/show_bug.cgi?id=2500 & https://issues.dlang.org/show_bug.cgi?id=2644). * But whole import graph is not determined until all semantic pass finished, * so 'inst' should conservatively finish the semantic3 pass for the codegen. */ if (tempinst.minst && tempinst.minst.isRoot() && !(tempinst.inst.minst && tempinst.inst.minst.isRoot())) { /* Swap the position of 'inst' and 'this' in the instantiation graph. * Then, the primary instance `inst` will be changed to a root instance, * along with all members of `inst` having their scopes updated. * * Before: * non-root -> A!() -> B!()[inst] -> C!() { members[non-root] } * | * root -> D!() -> B!()[this] * * After: * non-root -> A!() -> B!()[this] * | * root -> D!() -> B!()[inst] -> C!() { members[root] } */ Module mi = tempinst.minst; TemplateInstance ti = tempinst.tinst; tempinst.minst = tempinst.inst.minst; tempinst.tinst = tempinst.inst.tinst; tempinst.inst.minst = mi; tempinst.inst.tinst = ti; /* https://issues.dlang.org/show_bug.cgi?id=21299 `minst` has been updated on the primary instance `inst` so it is now coming from a root module, however all Dsymbol `inst.members` of the instance still have their `_scope.minst` pointing at the original non-root module. We must now propagate `minst` to all members so that forward referenced dependencies that get instantiated will also be appended to the root module, otherwise there will be undefined references at link-time. */ extern (C++) final class InstMemberWalker : Visitor { alias visit = Visitor.visit; TemplateInstance inst; extern (D) this(TemplateInstance inst) { this.inst = inst; } override void visit(Dsymbol d) { if (d._scope) d._scope.minst = inst.minst; } override void visit(ScopeDsymbol sds) { sds.members.foreachDsymbol( s => s.accept(this) ); visit(cast(Dsymbol)sds); } override void visit(AttribDeclaration ad) { ad.include(null).foreachDsymbol( s => s.accept(this) ); visit(cast(Dsymbol)ad); } override void visit(ConditionalDeclaration cd) { if (cd.condition.inc) visit(cast(AttribDeclaration)cd); else visit(cast(Dsymbol)cd); } } scope v = new InstMemberWalker(tempinst.inst); tempinst.inst.accept(v); if (!global.params.allInst && tempinst.minst) // if inst was not speculative... { assert(!tempinst.minst.isRoot()); // ... it was previously appended to a non-root module // Append again to the root module members[], so that the instance will // get codegen chances (depending on `tempinst.inst.needsCodegen()`). tempinst.inst.appendToModuleMember(); } assert(tempinst.inst.memberOf && tempinst.inst.memberOf.isRoot(), "no codegen chances"); } // modules imported by an existing instance should be added to the module // that instantiates the instance. if (tempinst.minst) foreach(imp; tempinst.inst.importedModules) if (!tempinst.minst.aimports.contains(imp)) tempinst.minst.aimports.push(imp); static if (LOG) { printf("\tit's a match with instance %p, %d\n", tempinst.inst, tempinst.inst.semanticRun); } return; } static if (LOG) { printf("\timplement template instance %s '%s'\n", tempdecl.parent.toChars(), tempinst.toChars()); printf("\ttempdecl %s\n", tempdecl.toChars()); } uint errorsave = global.errors; tempinst.inst = tempinst; tempinst.parent = tempinst.enclosing ? tempinst.enclosing : tempdecl.parent; //printf("parent = '%s'\n", parent.kind()); TemplateStats.incUnique(tempdecl, tempinst); TemplateInstance tempdecl_instance_idx = tempdecl.addInstance(tempinst); //getIdent(); // Store the place we added it to in target_symbol_list(_idx) so we can // remove it later if we encounter an error. Dsymbols* target_symbol_list = tempinst.appendToModuleMember(); size_t target_symbol_list_idx = target_symbol_list ? target_symbol_list.dim - 1 : 0; // Copy the syntax trees from the TemplateDeclaration tempinst.members = Dsymbol.arraySyntaxCopy(tempdecl.members); // resolve TemplateThisParameter for (size_t i = 0; i < tempdecl.parameters.dim; i++) { if ((*tempdecl.parameters)[i].isTemplateThisParameter() is null) continue; Type t = isType((*tempinst.tiargs)[i]); assert(t); if (StorageClass stc = ModToStc(t.mod)) { //printf("t = %s, stc = x%llx\n", t.toChars(), stc); auto s = new Dsymbols(); s.push(new StorageClassDeclaration(stc, tempinst.members)); tempinst.members = s; } break; } // Create our own scope for the template parameters Scope* _scope = tempdecl._scope; if (tempdecl.semanticRun == PASS.initial) { tempinst.error("template instantiation `%s` forward references template declaration `%s`", tempinst.toChars(), tempdecl.toChars()); return; } static if (LOG) { printf("\tcreate scope for template parameters '%s'\n", tempinst.toChars()); } tempinst.argsym = new ScopeDsymbol(); tempinst.argsym.parent = _scope.parent; _scope = _scope.push(tempinst.argsym); _scope.tinst = tempinst; _scope.minst = tempinst.minst; //scope.stc = 0; // Declare each template parameter as an alias for the argument type Scope* paramscope = _scope.push(); paramscope.stc = 0; paramscope.visibility = Visibility(Visibility.Kind.public_); // https://issues.dlang.org/show_bug.cgi?id=14169 // template parameters should be public tempinst.declareParameters(paramscope); paramscope.pop(); // Add members of template instance to template instance symbol table //parent = scope.scopesym; tempinst.symtab = new DsymbolTable(); tempinst.members.foreachDsymbol( (s) { static if (LOG) { printf("\t adding member '%s' %p kind %s to '%s'\n", s.toChars(), s, s.kind(), tempinst.toChars()); } s.addMember(_scope, tempinst); }); static if (LOG) { printf("adding members done\n"); } /* See if there is only one member of template instance, and that * member has the same name as the template instance. * If so, this template instance becomes an alias for that member. */ //printf("members.dim = %d\n", tempinst.members.dim); if (tempinst.members.dim) { Dsymbol s; if (Dsymbol.oneMembers(tempinst.members, &s, tempdecl.ident) && s) { //printf("tempdecl.ident = %s, s = '%s'\n", tempdecl.ident.toChars(), s.kind(), s.toPrettyChars()); //printf("setting aliasdecl\n"); tempinst.aliasdecl = s; } } /* If function template declaration */ if (fargs && tempinst.aliasdecl) { if (auto fd = tempinst.aliasdecl.isFuncDeclaration()) { /* Transmit fargs to type so that TypeFunction.dsymbolSemantic() can * resolve any "auto ref" storage classes. */ if (fd.type) if (auto tf = fd.type.isTypeFunction()) tf.fargs = fargs; } } // Do semantic() analysis on template instance members static if (LOG) { printf("\tdo semantic() on template instance members '%s'\n", tempinst.toChars()); } Scope* sc2; sc2 = _scope.push(tempinst); //printf("enclosing = %d, sc.parent = %s\n", tempinst.enclosing, sc.parent.toChars()); sc2.parent = tempinst; sc2.tinst = tempinst; sc2.minst = tempinst.minst; sc2.stc &= ~STC.deprecated_; tempinst.tryExpandMembers(sc2); tempinst.semanticRun = PASS.semanticdone; /* ConditionalDeclaration may introduce eponymous declaration, * so we should find it once again after semantic. */ if (tempinst.members.dim) { Dsymbol s; if (Dsymbol.oneMembers(tempinst.members, &s, tempdecl.ident) && s) { if (!tempinst.aliasdecl || tempinst.aliasdecl != s) { //printf("tempdecl.ident = %s, s = '%s'\n", tempdecl.ident.toChars(), s.kind(), s.toPrettyChars()); //printf("setting aliasdecl 2\n"); tempinst.aliasdecl = s; } } } if (global.errors != errorsave) goto Laftersemantic; /* If any of the instantiation members didn't get semantic() run * on them due to forward references, we cannot run semantic2() * or semantic3() yet. */ { bool found_deferred_ad = false; for (size_t i = 0; i < Module.deferred.dim; i++) { Dsymbol sd = Module.deferred[i]; AggregateDeclaration ad = sd.isAggregateDeclaration(); if (ad && ad.parent && ad.parent.isTemplateInstance()) { //printf("deferred template aggregate: %s %s\n", // sd.parent.toChars(), sd.toChars()); found_deferred_ad = true; if (ad.parent == tempinst) { ad.deferred = tempinst; break; } } } if (found_deferred_ad || Module.deferred.dim) goto Laftersemantic; } /* The problem is when to parse the initializer for a variable. * Perhaps VarDeclaration.dsymbolSemantic() should do it like it does * for initializers inside a function. */ //if (sc.parent.isFuncDeclaration()) { /* https://issues.dlang.org/show_bug.cgi?id=782 * this has problems if the classes this depends on * are forward referenced. Find a way to defer semantic() * on this template. */ tempinst.semantic2(sc2); } if (global.errors != errorsave) goto Laftersemantic; if ((sc.func || (sc.flags & SCOPE.fullinst)) && !tempinst.tinst) { /* If a template is instantiated inside function, the whole instantiation * should be done at that position. But, immediate running semantic3 of * dependent templates may cause unresolved forward reference. * https://issues.dlang.org/show_bug.cgi?id=9050 * To avoid the issue, don't run semantic3 until semantic and semantic2 done. */ TemplateInstances deferred; tempinst.deferred = &deferred; //printf("Run semantic3 on %s\n", toChars()); tempinst.trySemantic3(sc2); for (size_t i = 0; i < deferred.dim; i++) { //printf("+ run deferred semantic3 on %s\n", deferred[i].toChars()); deferred[i].semantic3(null); } tempinst.deferred = null; } else if (tempinst.tinst) { bool doSemantic3 = false; FuncDeclaration fd; if (tempinst.aliasdecl) fd = tempinst.aliasdecl.toAlias2().isFuncDeclaration(); if (fd) { /* Template function instantiation should run semantic3 immediately * for attribute inference. */ scope fld = fd.isFuncLiteralDeclaration(); if (fld && fld.tok == TOK.reserved) doSemantic3 = true; else if (sc.func) doSemantic3 = true; } else if (sc.func) { /* A lambda function in template arguments might capture the * instantiated scope context. For the correct context inference, * all instantiated functions should run the semantic3 immediately. * See also compilable/test14973.d */ foreach (oarg; tempinst.tdtypes) { auto s = getDsymbol(oarg); if (!s) continue; if (auto td = s.isTemplateDeclaration()) { if (!td.literal) continue; assert(td.members && td.members.dim == 1); s = (*td.members)[0]; } if (auto fld = s.isFuncLiteralDeclaration()) { if (fld.tok == TOK.reserved) { doSemantic3 = true; break; } } } //printf("[%s] %s doSemantic3 = %d\n", tempinst.tinst.loc.toChars(), tempinst.tinst.toChars(), doSemantic3); } if (doSemantic3) tempinst.trySemantic3(sc2); TemplateInstance ti = tempinst.tinst; int nest = 0; while (ti && !ti.deferred && ti.tinst) { ti = ti.tinst; if (++nest > global.recursionLimit) { global.gag = 0; // ensure error message gets printed tempinst.error("recursive expansion"); fatal(); } } if (ti && ti.deferred) { //printf("deferred semantic3 of %p %s, ti = %s, ti.deferred = %p\n", this, toChars(), ti.toChars()); for (size_t i = 0;; i++) { if (i == ti.deferred.dim) { ti.deferred.push(tempinst); break; } if ((*ti.deferred)[i] == tempinst) break; } } } if (tempinst.aliasdecl) { /* https://issues.dlang.org/show_bug.cgi?id=13816 * AliasDeclaration tries to resolve forward reference * twice (See inuse check in AliasDeclaration.toAlias()). It's * necessary to resolve mutual references of instantiated symbols, but * it will left a true recursive alias in tuple declaration - an * AliasDeclaration A refers TupleDeclaration B, and B contains A * in its elements. To correctly make it an error, we strictly need to * resolve the alias of eponymous member. */ tempinst.aliasdecl = tempinst.aliasdecl.toAlias2(); // stop AliasAssign tuple building if (auto td = tempinst.aliasdecl.isTupleDeclaration()) td.building = false; } Laftersemantic: sc2.pop(); _scope.pop(); // Give additional context info if error occurred during instantiation if (global.errors != errorsave) { if (!tempinst.errors) { if (!tempdecl.literal) tempinst.error(tempinst.loc, "error instantiating"); if (tempinst.tinst) tempinst.tinst.printInstantiationTrace(); } tempinst.errors = true; if (tempinst.gagged) { // Errors are gagged, so remove the template instance from the // instance/symbol lists we added it to and reset our state to // finish clean and so we can try to instantiate it again later // (see https://issues.dlang.org/show_bug.cgi?id=4302 and https://issues.dlang.org/show_bug.cgi?id=6602). tempdecl.removeInstance(tempdecl_instance_idx); if (target_symbol_list) { // Because we added 'this' in the last position above, we // should be able to remove it without messing other indices up. assert((*target_symbol_list)[target_symbol_list_idx] == tempinst); target_symbol_list.remove(target_symbol_list_idx); tempinst.memberOf = null; // no longer a member } tempinst.semanticRun = PASS.initial; tempinst.inst = null; tempinst.symtab = null; } } else if (errinst) { /* https://issues.dlang.org/show_bug.cgi?id=14541 * If the previous gagged instance had failed by * circular references, currrent "error reproduction instantiation" * might succeed, because of the difference of instantiated context. * On such case, the cached error instance needs to be overridden by the * succeeded instance. */ //printf("replaceInstance()\n"); assert(errinst.errors); auto ti1 = TemplateInstanceBox(errinst); tempdecl.instances.remove(ti1); auto ti2 = TemplateInstanceBox(tempinst); tempdecl.instances[ti2] = tempinst; } static if (LOG) { printf("-TemplateInstance.dsymbolSemantic('%s', this=%p)\n", tempinst.toChars(), tempinst); } } /****************************************************** * Do template instance semantic for isAliasSeq templates. * This is a greatly simplified version of templateInstanceSemantic(). */ private void aliasSeqInstanceSemantic(TemplateInstance tempinst, Scope* sc, TemplateDeclaration tempdecl) { //printf("[%s] aliasSeqInstance.dsymbolSemantic('%s')\n", tempinst.loc.toChars(), tempinst.toChars()); Scope* paramscope = sc.push(); paramscope.stc = 0; paramscope.visibility = Visibility(Visibility.Kind.public_); TemplateTupleParameter ttp = (*tempdecl.parameters)[0].isTemplateTupleParameter(); Tuple va = tempinst.tdtypes[0].isTuple(); Declaration d = new TupleDeclaration(tempinst.loc, ttp.ident, &va.objects); d.storage_class |= STC.templateparameter; d.dsymbolSemantic(sc); paramscope.pop(); tempinst.aliasdecl = d; tempinst.semanticRun = PASS.semanticdone; } /****************************************************** * Do template instance semantic for isAlias templates. * This is a greatly simplified version of templateInstanceSemantic(). */ private void aliasInstanceSemantic(TemplateInstance tempinst, Scope* sc, TemplateDeclaration tempdecl) { //printf("[%s] aliasInstance.dsymbolSemantic('%s')\n", tempinst.loc.toChars(), tempinst.toChars()); Scope* paramscope = sc.push(); paramscope.stc = 0; paramscope.visibility = Visibility(Visibility.Kind.public_); TemplateTypeParameter ttp = (*tempdecl.parameters)[0].isTemplateTypeParameter(); Type ta = tempinst.tdtypes[0].isType(); auto ad = tempdecl.onemember.isAliasDeclaration(); // Note: qualifiers can be in both 'ad.type.mod' and 'ad.storage_class' Declaration d = new AliasDeclaration(tempinst.loc, ttp.ident, ta.addMod(ad.type.mod)); d.storage_class |= STC.templateparameter | ad.storage_class; d.dsymbolSemantic(sc); paramscope.pop(); tempinst.aliasdecl = d; tempinst.semanticRun = PASS.semanticdone; } // function used to perform semantic on AliasDeclaration void aliasSemantic(AliasDeclaration ds, Scope* sc) { //printf("AliasDeclaration::semantic() %s\n", ds.toChars()); // as DsymbolSemanticVisitor::visit(AliasDeclaration), in case we're called first. // see https://issues.dlang.org/show_bug.cgi?id=21001 ds.storage_class |= sc.stc & STC.deprecated_; ds.visibility = sc.visibility; ds.userAttribDecl = sc.userAttribDecl; void normalRet() { ds.inuse = 0; ds.semanticRun = PASS.semanticdone; if (auto sx = ds.overnext) { ds.overnext = null; if (!ds.overloadInsert(sx)) ScopeDsymbol.multiplyDefined(Loc.initial, sx, ds); } } void errorRet() { ds.aliassym = null; ds.type = Type.terror; ds.inuse = 0; normalRet(); } // preserve the original type if (!ds.originalType && ds.type) ds.originalType = ds.type.syntaxCopy(); if (ds.aliassym) { auto fd = ds.aliassym.isFuncLiteralDeclaration(); auto td = ds.aliassym.isTemplateDeclaration(); if (fd || td && td.literal) { if (fd && fd.semanticRun >= PASS.semanticdone) return normalRet(); Expression e = new FuncExp(ds.loc, ds.aliassym); e = e.expressionSemantic(sc); if (auto fe = e.isFuncExp()) { ds.aliassym = fe.td ? cast(Dsymbol)fe.td : fe.fd; return normalRet(); } else return errorRet(); } if (ds.aliassym.isTemplateInstance()) ds.aliassym.dsymbolSemantic(sc); return normalRet(); } ds.inuse = 1; // Given: // alias foo.bar.abc def; // it is not knowable from the syntax whether `def` is an alias // for type `foo.bar.abc` or an alias for symbol `foo.bar.abc`. It is up to the semantic() // pass to distinguish. // If it is a type, then `.type` is set and getType() will return that // type. If it is a symbol, then `.aliassym` is set and type is `null` - // toAlias() will return `.aliassym` const errors = global.errors; Type oldtype = ds.type; // Ungag errors when not instantiated DeclDefs scope alias auto ungag = Ungag(global.gag); //printf("%s parent = %s, gag = %d, instantiated = %d\n", ds.toChars(), ds.parent.toChars(), global.gag, ds.isInstantiated() !is null); if (ds.parent && global.gag && !ds.isInstantiated() && !ds.toParent2().isFuncDeclaration() && (sc.minst || sc.tinst)) { //printf("%s type = %s\n", ds.toPrettyChars(), ds.type.toChars()); global.gag = 0; } // https://issues.dlang.org/show_bug.cgi?id=18480 // Detect `alias sym = sym;` to prevent creating loops in overload overnext lists. if (auto tident = ds.type.isTypeIdentifier()) { // Selective imports are allowed to alias to the same name `import mod : sym=sym`. if (!ds._import) { if (tident.ident is ds.ident && !tident.idents.dim) { error(ds.loc, "`alias %s = %s;` cannot alias itself, use a qualified name to create an overload set", ds.ident.toChars(), tident.ident.toChars()); ds.type = Type.terror; } } } /* This section is needed because Type.resolve() will: * const x = 3; * alias y = x; * try to convert identifier x to 3. */ auto s = ds.type.toDsymbol(sc); if (errors != global.errors) return errorRet(); if (s == ds) { ds.error("cannot resolve"); return errorRet(); } if (!s || !s.isEnumMember()) { Type t; Expression e; Scope* sc2 = sc; if (ds.storage_class & (STC.ref_ | STC.nothrow_ | STC.nogc | STC.pure_ | STC.disable)) { // For 'ref' to be attached to function types, and picked // up by Type.resolve(), it has to go into sc. sc2 = sc.push(); sc2.stc |= ds.storage_class & (STC.ref_ | STC.nothrow_ | STC.nogc | STC.pure_ | STC.shared_ | STC.disable); } ds.type = ds.type.addSTC(ds.storage_class); ds.type.resolve(ds.loc, sc2, e, t, s); if (sc2 != sc) sc2.pop(); if (e) // Try to convert Expression to Dsymbol { // TupleExp is naturally converted to a TupleDeclaration if (auto te = e.isTupleExp()) s = new TupleDeclaration(te.loc, ds.ident, cast(Objects*)te.exps); else { s = getDsymbol(e); if (!s) { if (e.op != EXP.error) ds.error("cannot alias an expression `%s`", e.toChars()); return errorRet(); } } } ds.type = t; } if (s == ds) { assert(global.errors); return errorRet(); } if (s) // it's a symbolic alias { //printf("alias %s resolved to %s %s\n", ds.toChars(), s.kind(), s.toChars()); ds.type = null; ds.aliassym = s; } else // it's a type alias { //printf("alias %s resolved to type %s\n", ds.toChars(), ds.type.toChars()); ds.type = ds.type.typeSemantic(ds.loc, sc); ds.aliassym = null; } if (global.gag && errors != global.errors) return errorRet(); normalRet(); } /******************** * Perform semantic on AliasAssignment. * Has a lot of similarities to aliasSemantic(). Perhaps they should share code. */ private void aliasAssignSemantic(AliasAssign ds, Scope* sc) { //printf("AliasAssign::semantic() %p, %s\n", ds, ds.ident.toChars()); void errorRet() { ds.errors = true; ds.type = Type.terror; ds.semanticRun = PASS.semanticdone; return; } /* Find the AliasDeclaration corresponding to ds. * Returns: AliasDeclaration if found, null if error */ AliasDeclaration findAliasDeclaration(AliasAssign ds, Scope* sc) { Dsymbol scopesym; Dsymbol as = sc.search(ds.loc, ds.ident, &scopesym); if (!as) { ds.error("undefined identifier `%s`", ds.ident.toChars()); return null; } if (as.errors) return null; auto ad = as.isAliasDeclaration(); if (!ad) { ds.error("identifier `%s` must be an alias declaration", as.toChars()); return null; } if (ad.overnext) { ds.error("cannot reassign overloaded alias"); return null; } // Check constraints on the parent auto adParent = ad.toParent(); if (adParent != ds.toParent()) { if (!adParent) adParent = ds.toParent(); error(ds.loc, "`%s` must have same parent `%s` as alias `%s`", ds.ident.toChars(), adParent.toChars(), ad.toChars()); return null; } if (!adParent.isTemplateInstance()) { ds.error("must be a member of a template"); return null; } return ad; } auto aliassym = findAliasDeclaration(ds, sc); if (!aliassym) return errorRet(); if (aliassym.adFlags & Declaration.wasRead) { if (!aliassym.errors) error(ds.loc, "%s was read, so cannot reassign", aliassym.toChars()); aliassym.errors = true; return errorRet(); } aliassym.adFlags |= Declaration.ignoreRead; // temporarilly allow reads of aliassym const storage_class = sc.stc & (STC.deprecated_ | STC.ref_ | STC.nothrow_ | STC.nogc | STC.pure_ | STC.shared_ | STC.disable); if (ds.aliassym) { auto fd = ds.aliassym.isFuncLiteralDeclaration(); auto td = ds.aliassym.isTemplateDeclaration(); if (fd && fd.semanticRun >= PASS.semanticdone) { } else if (fd || td && td.literal) { Expression e = new FuncExp(ds.loc, ds.aliassym); e = e.expressionSemantic(sc); auto fe = e.isFuncExp(); if (!fe) return errorRet(); ds.aliassym = fe.td ? cast(Dsymbol)fe.td : fe.fd; } else if (ds.aliassym.isTemplateInstance()) ds.aliassym.dsymbolSemantic(sc); aliassym.type = null; aliassym.aliassym = ds.aliassym; return; } /* Given: * abc = def; * it is not knownable from the syntax whether `def` is a type or a symbol. * It appears here as `ds.type`. Do semantic analysis on `def` to disambiguate. */ const errors = global.errors; Dsymbol s; // Try AliasSeq optimization if (auto ti = ds.type.isTypeInstance()) { if (!ti.tempinst.findTempDecl(sc, null)) return errorRet(); if (auto tempinst = isAliasSeq(sc, ti)) { s = aliasAssignInPlace(sc, tempinst, aliassym); if (!s) return errorRet(); goto Lsymdone; } } /* This section is needed because Type.resolve() will: * const x = 3; * alias y = x; * try to convert identifier x to 3. */ s = ds.type.toDsymbol(sc); if (errors != global.errors) return errorRet(); if (s == aliassym) { ds.error("cannot resolve"); return errorRet(); } if (!s || !s.isEnumMember()) { Type t; Expression e; Scope* sc2 = sc; if (storage_class & (STC.ref_ | STC.nothrow_ | STC.nogc | STC.pure_ | STC.shared_ | STC.disable)) { // For 'ref' to be attached to function types, and picked // up by Type.resolve(), it has to go into sc. sc2 = sc.push(); sc2.stc |= storage_class & (STC.ref_ | STC.nothrow_ | STC.nogc | STC.pure_ | STC.shared_ | STC.disable); } ds.type = ds.type.addSTC(storage_class); ds.type.resolve(ds.loc, sc2, e, t, s); if (sc2 != sc) sc2.pop(); if (e) // Try to convert Expression to Dsymbol { // TupleExp is naturally converted to a TupleDeclaration if (auto te = e.isTupleExp()) s = new TupleDeclaration(te.loc, ds.ident, cast(Objects*)te.exps); else { s = getDsymbol(e); if (!s) { if (e.op != EXP.error) ds.error("cannot alias an expression `%s`", e.toChars()); return errorRet(); } } } ds.type = t; } if (s == aliassym) { assert(global.errors); return errorRet(); } if (s) // it's a symbolic alias { Lsymdone: //printf("alias %s resolved to %s %s\n", toChars(), s.kind(), s.toChars()); aliassym.type = null; aliassym.aliassym = s; aliassym.storage_class |= sc.stc & STC.deprecated_; aliassym.visibility = sc.visibility; aliassym.userAttribDecl = sc.userAttribDecl; } else // it's a type alias { //printf("alias %s resolved to type %s\n", toChars(), type.toChars()); aliassym.type = ds.type.typeSemantic(ds.loc, sc); aliassym.aliassym = null; } aliassym.adFlags &= ~Declaration.ignoreRead; if (aliassym.type && aliassym.type.ty == Terror || global.gag && errors != global.errors) { aliassym.type = Type.terror; aliassym.aliassym = null; return errorRet(); } ds.semanticRun = PASS.semanticdone; } /*************************************** * Expands template instance arguments inside 'alias assign' target declaration (aliassym), * instead of inside 'tempinst.tiargs' every time. * Params: * tempinst = AliasSeq instance * aliassym = the AliasDeclaration corresponding to AliasAssign * Returns: * null. */ private TupleDeclaration aliasAssignInPlace(Scope* sc, TemplateInstance tempinst, AliasDeclaration aliassym) { // Mark instance with semantic done, not needed but just in case. tempinst.inst = tempinst; tempinst.semanticRun = PASS.semanticdone; TupleDeclaration td; if (aliassym.type) { // Convert TypeTuple to TupleDeclaration to avoid back and forth allocations // in the assignment process if (auto tt = aliassym.type.isTypeTuple()) { auto objs = new Objects(tt.arguments.length); foreach (i, p; *tt.arguments) (*objs)[i] = p.type; td = new TupleDeclaration(tempinst.loc, aliassym.ident, objs); td.storage_class |= STC.templateparameter; td.building = true; aliassym.type = null; } else if (aliassym.type.isTypeError()) return null; } else if (auto otd = aliassym.aliassym.isTupleDeclaration()) { if (otd.building) td = otd; else { td = new TupleDeclaration(tempinst.loc, aliassym.ident, otd.objects.copy()); td.storage_class |= STC.templateparameter; td.building = true; } } // If starting from single element in aliassym (td == null) we need to build the tuple // after semanticTiargs to keep same semantics (for example a FuncLiteraldeclaration // template argument is converted to FuncExp) if (td) aliassym.aliassym = td; aliassym.semanticRun = PASS.semanticdone; if (!TemplateInstance.semanticTiargs(tempinst.loc, sc, tempinst.tiargs, 0, td)) { tempinst.errors = true; return null; } // The alias will stop tuple 'building' mode when used (in AliasDeclaration.toAlias(), // then TupleDeclaration.getType() will work again) aliassym.semanticRun = PASS.initial; if (!td) { td = new TupleDeclaration(tempinst.loc, aliassym.ident, tempinst.tiargs); td.storage_class |= STC.templateparameter; td.building = true; return td; } auto tiargs = tempinst.tiargs; size_t oldlen = td.objects.length; size_t origstart; size_t insertidx; size_t insertlen; foreach (i, o; *tiargs) { if (o !is td) { ++insertlen; continue; } // tuple contains itself (tuple = AliasSeq!(..., tuple, ...)) if (insertlen) // insert any left element before { td.objects.insert(insertidx, (*tiargs)[i - insertlen .. i]); if (insertidx == 0) // reset original tuple start point origstart = insertlen; insertlen = 0; } if (insertidx) // insert tuple if found more than one time { td.objects.reserve(oldlen); // reserve first to assert a valid slice td.objects.pushSlice((*td.objects)[origstart .. origstart + oldlen]); } insertidx = td.objects.length; } if (insertlen) { if (insertlen != tiargs.length) // insert any left element td.objects.pushSlice((*tiargs)[$ - insertlen .. $]); else // just assign tiargs if tuple = AliasSeq!(nottuple, nottuple...) td.objects = tempinst.tiargs; } return td; } /*************************************** * Check if a template instance is a trivial AliasSeq but without other overloads. * We can only be 100% sure of being AliasSeq after running semanticTiargs() * and findBestMatch() but this optimization must happen before that. */ private TemplateInstance isAliasSeq(Scope* sc, TypeInstance ti) { auto tovers = ti.tempinst.tempdecl.isOverloadSet(); foreach (size_t oi; 0 .. tovers ? tovers.a.dim : 1) { Dsymbol dstart = tovers ? tovers.a[oi] : ti.tempinst.tempdecl; int r = overloadApply(dstart, (Dsymbol s) { auto td = s.isTemplateDeclaration(); if (!td || !td.isTrivialAliasSeq) return 1; return 0; }); if (r) return null; } return ti.tempinst; } /*************************************** * Find all instance fields in `ad`, then push them into `fields`. * * Runs semantic() for all instance field variables, but also * the field types can remain yet not resolved forward references, * except direct recursive definitions. * After the process sizeok is set to Sizeok.fwd. * * Params: * ad = the AggregateDeclaration to examine * Returns: * false if any errors occur. */ bool determineFields(AggregateDeclaration ad) { if (ad._scope) dsymbolSemantic(ad, null); if (ad.sizeok != Sizeok.none) return true; //printf("determineFields() %s, fields.dim = %d\n", toChars(), fields.dim); // determineFields can be called recursively from one of the fields's v.semantic ad.fields.setDim(0); static int func(Dsymbol s, AggregateDeclaration ad) { auto v = s.isVarDeclaration(); if (!v) return 0; if (v.storage_class & STC.manifest) return 0; if (v.semanticRun < PASS.semanticdone) v.dsymbolSemantic(null); // Return in case a recursive determineFields triggered by v.semantic already finished if (ad.sizeok != Sizeok.none) return 1; if (v.aliassym) { // If this variable was really a tuple, process each element. if (auto tup = v.aliassym.isTupleDeclaration()) return tup.foreachVar(tv => tv.apply(&func, ad)); return 0; } if (v.storage_class & (STC.static_ | STC.extern_ | STC.tls | STC.gshared | STC.manifest | STC.ctfe | STC.templateparameter)) return 0; if (!v.isField() || v.semanticRun < PASS.semanticdone) return 1; // unresolvable forward reference ad.fields.push(v); if (v.storage_class & STC.ref_) return 0; auto tv = v.type.baseElemOf(); if (auto tvs = tv.isTypeStruct()) { if (ad == tvs.sym) { const(char)* psz = (v.type.toBasetype().ty == Tsarray) ? "static array of " : ""; ad.error("cannot have field `%s` with %ssame struct type", v.toChars(), psz); ad.type = Type.terror; ad.errors = true; return 1; } } return 0; } if (ad.members) { for (size_t i = 0; i < ad.members.dim; i++) { auto s = (*ad.members)[i]; if (s.apply(&func, ad)) { if (ad.sizeok != Sizeok.none) { // recursive determineFields already finished return true; } return false; } } } if (ad.sizeok != Sizeok.done) ad.sizeok = Sizeok.fwd; return true; } /// Do an atomic operation (currently tailored to [shared] static ctors|dtors) needs private CallExp doAtomicOp (string op, Identifier var, Expression arg) { __gshared Import imp = null; __gshared Identifier[1] id; assert(op == "-=" || op == "+="); const loc = Loc.initial; // Below code is similar to `loadStdMath` (used for `^^` operator) if (!imp) { id[0] = Id.core; auto s = new Import(Loc.initial, id[], Id.atomic, null, true); // Module.load will call fatal() if there's no std.math available. // Gag the error here, pushing the error handling to the caller. uint errors = global.startGagging(); s.load(null); if (s.mod) { s.mod.importAll(null); s.mod.dsymbolSemantic(null); } global.endGagging(errors); imp = s; } // Module couldn't be loaded if (imp.mod is null) return null; Objects* tiargs = new Objects(1); (*tiargs)[0] = new StringExp(loc, op); Expressions* args = new Expressions(2); (*args)[0] = new IdentifierExp(loc, var); (*args)[1] = arg; auto sc = new ScopeExp(loc, imp.mod); auto dti = new DotTemplateInstanceExp( loc, sc, Id.atomicOp, tiargs); return CallExp.create(loc, dti, args); } /*************************************** * Interpret a `pragma(inline, x)` * * Params: * loc = location for error messages * sc = scope for evaluation of argument * args = pragma arguments * Returns: corresponding `PINLINE` state */ PINLINE evalPragmaInline(Loc loc, Scope* sc, Expressions* args) { if (!args || args.dim == 0) return PINLINE.default_; if (args && args.dim > 1) { .error(loc, "one boolean expression expected for `pragma(inline)`, not %llu", cast(ulong) args.dim); args.setDim(1); (*args)[0] = ErrorExp.get(); } Expression e = (*args)[0]; if (!e.type) { sc = sc.startCTFE(); e = e.expressionSemantic(sc); e = resolveProperties(sc, e); sc = sc.endCTFE(); e = e.ctfeInterpret(); e = e.toBoolean(sc); if (e.isErrorExp()) .error(loc, "pragma(`inline`, `true` or `false`) expected, not `%s`", (*args)[0].toChars()); (*args)[0] = e; } const opt = e.toBool(); if (opt.isEmpty()) return PINLINE.default_; else if (opt.get()) return PINLINE.always; else return PINLINE.never; }